

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/200908

Noya, E.; Sánchez Peiró, JA.; Benedí Ruiz, JM. (2021). Generation of Hypergraphs from the
N-Best Parsing of 2D-Probabilistic Context-Free Grammars for Mathematical Expression
Recognition. IEEE. 5696-5703. https://doi.org/10.1109/ICPR48806.2021.9412273

https://doi.org/10.1109/ICPR48806.2021.9412273

IEEE

Generation of Hypergraphs from the N-Best Parsing
of 2D-Probabilistic Context-Free Grammars for

Mathematical Expression Recognition
Ernesto Noya, Joan Andreu Sánchez and José Miguel Benedı́

PRHLT Research Center
Universitat Politècnica de València, Spain

{noya.ernesto, jandreu, jmbenedi}@prhlt.upv.es

Abstract—We consider hypergraphs as a tool obtained with bi-
dimensional Probabilistic Context-Free Grammars to compactly
represent the result of the n-best parse trees for an input image
that represents a mathematical expression. More specifically, in
this paper we propose: i) an algorithm to compute the N-best
parse trees from a 2D-PCFGs, ii) an algorithm to represent the
n-best parse trees using a compact representation in the form of
hypergraphs, and iii) a formal framework for the development
of inference algorithms (inside and outside) and normalization
strategies of hypergraphs.

Index Terms—Mathematical expression recognition, Proba-
bilistic Context-Free Grammars, N-best parse trees, Hyper-
graphs.

I. INTRODUCTION

Nowadays, large repositories with printed scientific docu-
ments are available worldwide from different research fields
in Engineering, Computer Science, Physics, etc. Hundreds
of thousands of these documents include mathematical ex-
pressions (MEs). Locating scientific information in articles
and books placed in public1 or private servers owned by
universities, editorials, libraries, etc. is a usual activity that
concerns many scientific disciplines. The searching of textual
scientific information in these documents is currently a possi-
bility widely exploited by the search engines of the most used
web browsers. However, the searching in massive collections
of digitized printed scientific documents with MEs queries, is
a research area not sufficiently explored.

An appropriate alternative is to develop search engines with
queries of MEs according to the rendered image rather than
the encoding version of the ME given the ambiguity conveyed
by the encoding version. The recently researched methods that
address this problem are based on comparing images. These
methods are not realistic for searching in massive collections.
The reason is that their interpretations are not precise enough
because they do not take into account the context nor the
structure of the image. Furthermore, if the matching problem
is approached in this way, then searching MEs in an electronic
document (e.g. pdf documents) resembles the issue of search-
ing a given object in an image (e.g. a car in the street). But
a remarkable difference with the previous scenario is that, in

1https://arxiv.org/

the case of MEs, two MEs written with different symbols can
have the same meaning, and consequently, they are the same
ME. For example, if we have a look at these two MEs:

∞∑
i=0

1

2i
∑∞
j=0 1/2j

We observe that both of them represent the same concept.
In these examples, both i and j are exchanging variables
that do not change the meaning of the expression. Note
also that comparing both images with traditional image-based
retrieval techniques will show some differences because of
the misplacements. This last problem, when searching ME
in huge collections, can be alleviated by the context around
the ME using a language model. Bi-dimensional Probabilistic
Context-Free Grammars (2D-PCFG) are a formalism that has
demonstrated to be appropriate to address math expressions
recognition [1]. In this paper, we consider this formalism for
ME parsing.

Recently, a new approach has been introduced for searching
words in massive collections of historical handwritten docu-
ment images [2], [3]. This approach does not require any kind
of segmentation, and it does not need to have the complete
and error-free transcription of the images [4]. To address the
ambiguity problem, this approach uses language models to
take advantage of the context. To reduce the search time in
the exploitation phase, a two-phase solution is proposed. In
the first offline phase, the posterior probabilities of words
are calculated from word graphs derived from a handwritten
text recognition process. In a second online phase, these
posteriors are used for indexing and searching for words in the
collection. The fundamental tool in this approach are weighted
word graphs computed with finite-state models, in which the
weights are carefully processed as probabilities. Each path
through the word graph represents a possible transcript and/or
segmentation alternative [5]. This approach has been tested in
real scenarios and massive repositories have started to include
this solution among their services.2

In the case of key math expression spotting in printed
document images, and by analogy with the previous approach
of keyword indexing and search, a two-phase solution was

2http://prhlt-kws.prhlt.upv.es/fcr/

also considered. In this paper, we focus on the first offline
phase where the aim is to calculate the posterior probabilities
of a math expression image. For this purpose, we define the
hypergraphs [6], as a compact model derived from the parsing
process with 2D-PCFG, similar to word graphs for handwritten
document images. The hypergraphs provide a more compact
representation of the parsing space represented by the n-best
parse trees from a 2D-PCFG for a ME image. Where each
of the n-best parse trees represents a possible interpretation of
the ME image and therefore, a specific path in the hypergraph.
Furthermore, the hypergraphs can generalize the information
contained in the n-best parse trees, (as will be discussed
in Section IV-B). Specifically, in this paper, we propose to
research and extend the theoretical framework introduced
in [2], [3], [4] before getting the posterior probabilities of
MEs for document images. The contributions of this paper
include: i) the generation of the n-best parse trees from a 2D-
PCFGs, in a similar way as explained in [7]; ii) the generation
of hypergraphs from the n-best parse trees; iii) the inference
algorithms necessary to normalize the hypergraph.

II. RELATED WORK

ME searching in collections of typeset documents has been
researched in the past for datasets of moderate size [8]. Recent
papers state the problem of ME detection in datasets with less
than 50 scientific documents. Locating isolated MEs seems an
easy task, but locating embedded ME presents a considerable
challenge since they can be confused with running text, as it
is shown in [9]. This last paper does not state the problem
of searching ME according to their contents. Searching for
ME taking into account their contents requires understanding
the ME [10]. Current methods for parsing ME are far from
providing results without errors, both lexical and syntactical.
Even if an error-free ME recognition system was developed,
the possible mark-up language allows the same ME to be
represented in several different ways, as we illustrate in the
Introduction section.

Searching for information in vast collections of difficult
handwritten document images is currently feasible, as some
recent researches have demonstrated [4]. Probabilistic indexing
has allowed searching in collections with hundreds of thou-
sands of document images. ME searching in the collection
of typeset documents can be developed in a similar way, but
searching techniques must take into account that the same
ME can be represented differently with small variations. 2D-
PCFGs is a powerful formalism that can be used for parsing
ME [1]. Several parse trees can account for the same ME and
therefore, 2D-PCFGs can deal with the ambiguity associated
with a ME. Merging several parse trees in a graph structure
has been researched in the past [6], [11].

III. N-BEST PARSING OF 2D-PROBABILISTIC
CONTEXT-FREE GRAMMARS

In printed mathematical expression recognition (MER), the
input is an image or a region of an image. Given an input
image, the first step is to consider a possible representation

function that maps the image to another representation. In our
case, the representation function extracts the set of connected
components, x = {x1, . . . , x|x|}, from the input image.
Figure 1 shows an image example of an input ME and its
set of associated connected components. We pose the MER

Fig. 1. Example of input image, x2
x3

+ ~x, and the set of associated connected
components.

as a structural parsing problem, such that the main goal is to
obtain the set of symbols and the structure that defines the
relationships among them from an input image. Formally, let
x be a set of connected components from an input ME. The
aim is to obtain the most likely sequence of mathematical
symbols s ∈ S related among them according to the most
likely syntactic parse t ∈ T that accounts for x, where S is
the set of all possible sequences of (pre-terminals) symbols
and T represents the set of all possible syntactic parses, such
that s = yield(t). This can be approximated as follows:

t̂ = arg max
t∈T

p(t|x) = arg max
t∈T

∑
s∈S

s=yield(t)

p(t, s | x)

This is approximated as:

(t̂, ŝ) ≈ arg max
t∈T ,s∈S
s=yield(t)

p(s | x) · p(t | s) (1)

where p(s|x) represents the observation (symbol) likelihood
and p(t|s) represents the structural probability.

Two strategies are often used to address this problem. The
first one solves the problem in two steps. In a first step, by
calculating the segmentation of the input into mathematical
symbols, and a second, by computing the structure that relates
all recognized symbols [12]. The second one solves the
problem through a fully integrated strategy for computing
Eq. (1) where symbol segmentation, symbol recognition, and
the structural analysis of the input expression are globally
achieved [1]. This second option is considered in this paper.
Specifically, we will consider the formulation of Eq. (1) as a
search problem.

A. Notation and Problem Formulation

Probabilistic Context-Free Grammars (PCFGs) are a power-
ful formalism for syntactic pattern recognition. These models
are appropriate for capturing long-term dependencies between
the different elements in a ME. In this paper, we consider a
two-dimensional extension of PCFG, a well-known formalism
widely used for MER [13], [1].

Definition 1. A Context-Free Grammar (CFG), G, is a four-
tuple (N ,Σ, S,P), where N is a finite set of non-terminal
symbols, Σ is a finite set of terminal symbols (N ∩ Σ = ∅),
S ∈ N is the start symbol of the grammar, and P is a finite
set of rules: A→ α, A ∈ N , α ∈ (N ∪ Σ)+.

A CFG in Chomsky Normal Form (CNF) is a CFG in which
the rules are of the form A→ BC or A→ a, where A,B,C ∈
N and a ∈ Σ.

Definition 2. A Probabilistic CFG (PCFG) is defined as a pair
(G, p), where G is a CFG and p : P →]0, 1] is a probability
function of rule application such that ∀A ∈ N :

∑nA

i=1 p(A→
αi) = 1, where nA is the number of rules associated with non-
terminal symbol A.

Definition 3. A Two-Dimensional PCFG (2D-PCFG), G, is a
generalization of a PCFG, where terminal and non-terminal
symbols describe two-dimensional regions. This grammar in
CNF results in two types of rules: terminal rules and binary
rules.

First, the terminal rules A→ a represent the mathematical
symbols which are ultimately the terminal symbols of 2D-
PCFG. Second, the binary rules A r−→ BC have an additional
parameter, r, that represents a given spatial relationship, and
its interpretation is that regions B and C must be spatially
arranged according to the spatial relationship r.

Definition 4. Let G be a 2D-PCFG, and let x be a set of con-
nected components. First, we define T (A, a) as the set of trees
whose root is (A, a), where A ∈ N is a non-terminal symbol
and a ∈ ℘(x) is a certain input span. T (A, a) ∈ T (A, a),
represents one of the possible trees in T (A, a). Second, we
define a probabilistic function p : T → [0, 1], as follows:

(I) If there is a terminal rule A → s and a set with just one
connected component, {xi}, 1 ≤ i ≤ |x|, then we have the
tree 〈A, {xi}〉 ∈ T (A, {xi}), and its probability is:

p(〈A, {xi}〉) =
∑
s∈Σ

p(s | A) p({xi} | s)

≈ 1

|x|
max
s

{
p(s | A) p(s | {xi})

p(s)

}
(2)

where p(s|A) is the probability of the terminal rule, p(s|{xi})
is the probability provided by a symbol classifier, and p(s)
is the prior probability of the symbols. We consider here all
connected components to be equiprobable.

(II) If there is a binary rule A → BC, a tree T1(B, b) in
T (B, b) and a tree T2(C, c) in T (C, c), such that b ∩ c =
∅ and a = b ∪ c, then we refer the tree 〈T (A, a), T1, T2〉 as
the tree with root A, left subtree T1, and right subtree T2, and
its probability is approximated as:

p(〈(A, a), T1, T2〉)
≈ max

r
p(r | BC) p(BC | A) p(T1) p(T2) (3)

where p(BC|A) is the probability of the binary rule, and
p(r|B,C) is the probability that regions encoded by non-
terminals B and C are arranged according to spatial rela-
tionship r.

A parse tree for x according to G is a binary tree, T (S,x) ∈
T (S,x). The best parse tree is the parse tree with maximum
probability. The N best parse trees are the N parse trees with

maximum total probability. Finally, let us denote Tn(A, a) as
the n-th best tree among those in T (A, a). The problem is
then finding T 1(S,x), T 2(S,x), . . . , TN (S,x).

B. Best Parse Tree

The computation of the N-best parse tree from 2D-PCFGs
for MEs has been designed as a two-step process. First, we
calculate the best parse tree for the input ME, and then,
taking advantage of the structures created in this first step,
we compute the remaining of N-best parse trees.

Following [1], where a parsing algorithm from 2D-PCFGs
for on-line MER is presented, we propose a modification of
this algorithm to compute the best parse trees based on the
following recursive equations.

First, let us define γ1(A, a) is the probability that A ∈ N
is the 1-best solution of the connected component set a.

Initialization. According to Eq. (2) and given that the symbol
classifier can provide several recognition alternatives, with
different non-terminal symbols A,A ∈ N , for every connected
component {xi}, 1 ≤ i ≤ |x|, let us define,

γ1(A, {xi}) = max
T∈T 1(A,{xi})

p(T)

T 1(A, {xi}) = arg max
T∈T 1(A,{xi})

p(T)

The set of trees T 1(A, {xi}) whose roots are of the form
(A, {xi}) can be define as,

T 1(A, {xi}) = { 〈A, {xi}〉 : A→ s; p(s | {xi}) > 0 } (4)

Recursion. According to Eq. (3), ∀A ∈ N and ∀a ∈ ℘(x),

such that |a| > 1:

γ1(A, a) = max
T∈T 1(A,a)

p(T)

T 1(A, a) = arg max
T∈T 1(A,a)

p(T) (5)

where, for a ∈ ℘(x) such that |a| > 1,

T 1(A, a) = { 〈(A, a), T 1(B, b), T 1(C, c)〉 :

A→ BC; b ∩ c = ∅; a = b ∪ c } (6)

denotes the set of candidate trees with root A that comprises
the connected components a.

Assuming the pruning strategies presented in [1], the time
complexity of this algorithm is O(|P ||x|3 log |x|).

C. N-Best Parsing

The second step of the process takes profit of the structures
created in the computation of the 1-best parse tree (see Eq. (4)
and (6)). For the computation of the N-best parse tree, we
follow [7] to compute the recursive enumeration of the best
parse trees, that take advantage of the partial order between
different candidate trees. Next, we will generalize the recursive
equations given in the previous section to compute the N-best
parse trees, and then we will propose an algorithm to solve
the generalized equations.

As mentioned above, the problem is to obtain Tn(S,x)
for 1 ≤ n ≤ N . For this, we must define Tn(A, a), 1 ≤
n ≤ N , A ∈ N and a ∈ ℘(x) as the n-th best tree among
those that have root A and the set of connected components a.
Therefore, Tn(A, a) can be chosen as the best tree different
from T 1(A, a), . . . , Tn−1(A, a) in the set T n(A, a), which is
defined below.

Analogously to the case of 1-best (see Eq. (4)) and taking
into account Eq. (2), we can define T n(A, {xi}) for all A ∈
N , 1 ≤ i ≤ |x|, and 1 < n ≤ N , as,

T n(A, {xi}) = T n−1(A, {xi})− {Tn−1(A, {xi})} (7)

Furthermore, for |a| > 1 and considering Eq. (6), let us
define T n(A, a) as,

T n(A, a) = (T n−1(A, a)− {Tn−1(A, a)})

∪ {〈T (A, a), T p+1(B, b), T q(C, c)〉}

∪ {〈T (A, a), T p(B, b), T q+1(C, c)〉} (8)

where A → BC; a, b, c ∈ ℘(x); b ∩ c = ∅; a = b ∪ c
and 1 ≤ p, q ≤ n. Values p and q are used to keep track of
previous solutions that have been used in the past. That is, if
T p(B, b) has been used in a previous tree, then T p+1(B, b) is
needed and it is combined with T q(C, c).

Following [7] and assuming that {〈T (A, a), T1, T2〉} de-
notes the empty set if T1 or T2 does not exist. Then we have
that:

γn(A, a)n = max
T∈T n(A,a)

p(T)

Tn(A, a) = arg max
T∈T n(A,a)

p(T) (9)

Therefore, the problem of computing the N-best parse
trees for an image consists in using equations (4) and
(5) to obtain T 1(S,x) and, taking advantage of the
calculations made, using equations (7) and (8) to find
T 2(S,x), . . . , TN (S,x). The algorithm that is shown in Fig-
ure 2 solves the equations for increasing values of n, recur-
sively starting from the tree Tn(S,x). The algorithm makes
use of the recursive procedure NextTree(), for n > 1,
and once Tn(S,x) = NextTree(Tn−1(S,x), n) is avail-
able, NextTree(〈T (A, a), T p(B, b), T q(C, c)〉, n) computes
Tn(S,x) according to equation (8). This requires two new
candidates trees T p+1(B, b) and T q+1(C, c), if any of this
candidates has not been computed before we call the function
NexTree recursively on it. An example of the solutions
produced can be seen in Figure 3.

The 2D-CYK algorithm runs in time O(|P ||x|3 log |x|). The
number of different sets T (A, a) is O(|a|2|Σ|) and, in the
worst case, all of them must be initialized in linear time with
respect to the size of the set. The computation of the N -best
parse trees requires no more than N |x| calls to NextTree.
The total time required by the whole algorithm to compute the
N best parse trees is O(|P ||x|3 log |x|+N |x| log(|x|+N)).
This computational complexity analysis is based on worst case
assumptions that could be too pessimistic. In practice, it can
be expected that even for large values of N, not all the sets

T 1(S,x) = CYK(x)
f o r n=2 t o N:
Tn(S,x) = NextTree (Tn−1(S,x) , n)

re turn {T 1(S,x), T 2(S,x), . . . , TN (S,x)}

def NextTree (〈T (A, a), T p(B, b), T q(C, c)〉 , n) :
T n(A, a) = T n−1(A, a)− {Tn−1(A, a)}
i f |a| > 1 :

i f T p+1(B, b) not s e t :
NextTree (T p(B, b) ,p+ 1)

i f T p+1(B, b) != None :
p = p(BC | A) · p(r | BC) · γp+1(B, b) · γq(C, c)
i f p > 0.0 :
T n(A, a) = T n(A, a) ∪

{〈T (A, a), T p+1(B, b), T q(C, c)〉}
i f T q+1(C, c) not s e t :

NextTree (T q(C, c) ,q + 1)
i f T q+1(C, c) != None :
p = p(BC | A) · p(r | BC) · γp(B, b) · γq+1(C, c)
i f p > 0.0 :
T n(A, a) = T n(A, a) ∪

{〈T (A, a), T p(B, b), T q+1(C, c)〉}
i f T n(A, a) != None :
γn(A, a) = max

T∈T n(A,a)
p(T)

Tn(A, a) = arg max
T∈T n(A,a)

p(T)

e l s e Tn(A, a) = None

Fig. 2. Algorithm to generate n-best parse trees for an input expression.

of candidates are initialized and the number of recursive calls
would be much lower than N |x|.

IV. PARSING AND HYPERGRAPHS

A hypergraph is a generalization of the graph, where the
arcs (now called hyperarcs) may connect several nodes at the
same time. We use hypergraphs as a representation of the
result of an N-best parsing with a given 2D-PCFG. Given
a certain parse tree, the non-terminals represent the nodes
and the rules represent the hyperarcs. Figure 3 in the left
shows the hypergraph associated with the 1-best parse tree
for the expression x2

x3
+ ~x. Nodes Term_H, LetterMin and

Digit are non-terminals of the 2D-PCFG and the hyperarc
that relates them is the rule (Term H → LetterMin Digit).
Each hyperarc has an associated weight that is related to the
probability of the rule.

We intend to use hypergraphs to represent the n-best parse
trees for a 2D-PCFG. Nodes and hyperarcs may be shared
among different parse trees if they represent the same infor-
mation. Thus, hypergraphs provide a compact representation
of the parsing space. As we will see below, this compact rep-
resentation allows us to develop efficient inference algorithms.

A. Notation

First, we give some preliminary definitions of hypergraphs.
For more detailed information see [14].

x2
x3 + ~x x2

x3
+ ~x x2

x3 + ~x

Fig. 3. 3-best parse trees for input expression, x2
x3

+ ~x, and the expressions associated with the interpretations of these 3-best solutions.

Definition 5. A weight directed hypergraph (hereinafter hy-
pergraph) H is a pair (V, E) where V is a set of nodes (or
vertices) and E is a set of directed hyperarcs (or hyperedges).

Since we want to use the hypergraphs as a compact rep-
resentation of the n-best parse trees for a 2D-PCFG, G =
(N ,Σ, S,P), we re-define the notions of node and hyperarc.

Definition 6. A node v ∈ V is a pair (n(v), s(v)) where n(v)
is the node tag and s(v) is the span (or position information)
associated with this node.

In our case, the span, s(v) = a, represents the set of con-
nected components associated to the node tag, n(v). Therefore,
if n(v) = A ∈ N (non-terminal symbol) then v is an internal
node. On the other hand, if n(v) = A ∈ Σ (terminal symbol)
then v is an leaf node.

Definition 7. Given H, a hyperarc e ∈ E is a tuple
(H(e), T (e), t(e), p(e)) where the tail T (e) and head H(e)
are subsets of V , t(e) is a transcription associated with the
hyperarc and p(e) is a score (or weight).

Given that 2D-PCFGs considered are in Chomsky Normal
Form, the head H(e) contains exactly one (internal) node and
the tail T (e) two (internal) nodes to model binary rules (A→
BC), or one (leaf) node to model unary rules (A→ x). This
is a particular case of hyperarc B-arc defined in [14]. In our
case, t(e) is the LATEX transcript representing the semantics
associated with the hyperarc. Finally, p(e) is the arc score. In
our case, the arc score represents a probability. Depending on
whether e represents a unary or binary rule, its probability is
obtained from Eq. (2) or Eq. (3) respectively,

∀e ∈ E : n(H(e)) = A; n(T (e)) = (s); s(H(e)) = {xi};

p(e) =
p(s | A) p(s | {xi}) p({xi})

p(s)
(10)

∀e ∈ E : n(H(e) = A; n(T (e)) = (B,C); s(H(e)) = a

p(e) = p(r | BC) p(BC | A) (11)

Definition 8. A complete tree t of a hypergraph H is a
sequence of hyperarcs in which there is a root node (and only
one) that completely covers the input ME represented by x.

Let ψ(t) be the set of all hyperarcs that make up t in
H, there must be a hyperarc, and only one, e ∈ ψ(t) that
accomplishes n(H(e)) = S ∈ N , where S is the axiom of
the 2D-PCFG; and s(H(e)) = x, where x is the complete
set of connected components that represents the input ME.
The probability of a tree is the product of the probabilities
of all the hyperarcs that compose it. Thus, for a given set of
connected components x, the joint probability p(x, t) can be
approximated from a hypergraph H as:

p(t,x) ≈
∏

e∈ψ(t)

p(e)
def
= pH(t,x) (12)

A hypergraph H should typically contain the majority of the
most probable decoding hypotheses considered in the maxi-
mization of Eq. (9), including the best hypothesis. Therefore,
the unconditional probability of x can be approximated by
the accumulated probability of all complete trees represented
in H:

p(x) ≈
∑
t

pH(t,x)
def
= pH(x) (13)

This expression can be very efficiently computed using dy-
namic programming, as we will see in Sec. IV-C.

B. Generation of hypergraphs

Once the n-best parse trees for an input expression are
generated, in order to get the complete hypergraph H = (V, E)
we need to go through each tree, saving all nodes and rules
in a graph structure, merging the terminals and pre-terminals
representing the same sets of connected components. From
the N-best parse trees for the input ME, represented by x,
algorithm in Figure 4 computes the set of nodes and hyperarcs
of the hypergraph H

Figure 5 shows the hypergraph obtained by applying the
algorithm of Figure 4, only for the 3-best parse trees of
expression, x2

x3
+ ~x, shown in Figure 3. It should be noted that

Compute : T 1(S,x), . . . , Tn(S,x)
V={} / / Nodes
Hu={} / / una ry h y p e r a r c s
Hb={} / / b i n a r y h y p e r a r c s
f o r a l l T i(S,x) in T 1(S,x), . . . , TN (S,x) :

addTree (T i(S,x))
re turn (V, [Hu+Hb])
def addTree (〈T (A, a), T p(B, b), T q(C, c)〉) :

i = addNode(A, a)
i f |a| == 1 :

j = addNode(s, a)
i f (i(A)→ j(”s”), p) not in Hu :
Hu[|Hu|] = (i(A)→ j(”s”), p))

e l s e :
j = addNode(B, b)
k = addNode(C, c)
i f (i(A)→ j(B)k(C), p)) not in Hb :
Hb[|Hb|] = (i(A)→ j(B)k(C), p))

addTree (T p(B, b))
addTree (T q(C, c))

def addNode(X,x) :
f o r i = 0 . . . |V | :

i f (X,x) in V [i] :
re turn i

V [|V |] = (X,x)
re turn |V | − 1

Fig. 4. Algorithm to generate a hypergraph using the n-best parse trees.

the true solution is not among these 3-best parse trees (in fact
it is the 4-best parse tree). However, as also it happens with
the word graphs [2], the hypergraphs allow to generalize to the
n-best parse trees. As can be seen in Figure 5, the hypergraph
generated only with the 3-best parse trees also contains the
true solution.

C. Algorithms

An efficient way to calculate the total probability of Eq. (13)
is to generalize the well-known Inside and Outside algorithms
for PCFGs [15] and extend them for 2D-PCFGs and hyper-
graphs.

1) INSIDE Algorithm for hypergraphs:

Given H and the set of connected components x, associated
with the input ME, for each of the nodes of v ∈ V of H, we
can define,

αH(A, a)
def
= p(A

∗⇒ a), (14)

as the probability that A = n(v) is a solution of the set of
connected components, a = s(v).

Initialization. Given equations (2) and (10) for unary hyper-
arcs, ∀ e ∈ E with H(e) = v ∈ V and T (e) = s ∈ Σ , and
considering that n(v) = A ∈ N ; s(v) = {xi} and 1 ≤ i ≤
|x|, we can define,

αH(A, {xi}) =
∑
e∈E

p(e)

Fig. 5. Hypergraph obtained from the 3-best parse trees (Figure 3) for the
input expression, x2

x3
+ ~x.

Recursion. Given equations (3) and (11) for the binary hyper-

arcs, ∀ e ∈ E with H(e) = v and T (e) = (m,n) : v,m, n ∈
V , and considering that n(v) = A, n(m) = B and n(n) = C
are the node tags and s(v) = a, s(m) = b, and s(n) = c are
the node spans, that must satisfy b ∩ c = ∅ and b ∪ c = a,
we can define,

αH(A, a) =
∑
e∈E

αH(B, b) αH(C, c) p(e) (15)

Finally, the probability pH(z), defined in Eq. (13), can be
computed as,

pH(z) = αH(S,x) (16)

where S it is the axiom of grammar and x is the set of
connected components of the input ME.

2) OUTSIDE Algorithm for Hypergraphs:

Similarly, given H and the set of connected components x,
associated with the input ME, for each of the nodes of v ∈ V
of H, we can define,

βH(A, a)
def
= p(S

∗⇒ g Au), (17)

as the probability that A = n(v) is a solution of the set of
connected components, a = s(v), and the remaining of H
correctly explains the connected components that are not in a,
where g and u are two disjoint sets of connected components
that meet that g ∪ a ∪ u = x.

Initialization. For the (only) root node of H, where its tag
is the axiom S of the grammar, and x is the complete set
of connected components associated with the input ME, we
define,

βH(S,x) = 1

Recursion. For every pair of binary arcs e, e′ ∈ E in the
hypergraph H that satisfy respectively H(e) = H(e′) = m,
T (e) = (v, n) and T (e′) = (n, v) with v,m, n ∈ V . In
addition, n(v) = A, n(m) = B and n(n) = C are the node
tags and s(v) = a, s(m) = b and s(n) = c are the node
spans, that must satisfy a ∩ c = ∅ and a ∪ c = b, we can
define.

βH(A, a) =
∑
e∈E

βH(B, b) αH(C, c) p(e) + (18)∑
e′∈E

βH(B, b) αH(C, c) p(e′) (19)

Finally, the probability pH(z), defined in Eq. 13, can be
also computed as,

pH(x) =
∑
e∈E

βH(A, {xi}) αH(A, {xi}) (20)

For 1 ≤ i ≤ |x|, where H(e) = v with n(v) = A and
s(v) = {xi}.

D. Hypergraph Normalization

In this section will address the issue of normalization of
hyperarcs of hypergraph. To do this we start by defining the
tree posterior probability associated with a hypergraph H.

Definition 9. Given a hypergraph H, the tree posterior
probability p(t|x) can be approximately computed as:

p(t|x) ≈ pH(t,x)

pH(x)

def
= pH(t|x) (21)

Similarly as introduced in [2] for the case of word lattices,
the scores (or probabilities) of hyperarcs of a hypergraph can
be normalized in several ways. For the purposes of this paper,
we need the hyperarcs scores to be normalized as follows:

Definition 10. For a given hyperarc e ∈ E , its normalized
score, ϕ(e), is defined as the sum of posterior probabilities of
all the complete parsing trees which include arc e. That is:

ϕ(e)
def
=

∑
t:e∈ψ(t)

pH(t|x) (22)

An example of normalized hypergraph can be seen in Fig-
ure 5. For a hypergraph normalized in this way, the following
properties can be shown:

Theorem 1. Given a hypergraph H = (V, E), the normalized
score of a hyperarc ϕ(e) : e ∈ E can be efficiently computed
by the expression,

ϕ(e) =
αH(A, a) βH(A, a)

αH(S,x)
(23)

Proof: Given H, ∀e ∈ E , Eq. (22) indicates that the sum
must be made for all the parse trees t in H, where the hyperarc
e appears in a certain position. Therefore, considering Eq. (21)
and Eq. (16), then Eq. (22) can be written as:∑

t:e∈ψ(t)

pH(t|x) =
1

αH(S,x)

∑
t:e∈ψ(t)

pH(t,x) (24)

where pH(t,x) is the product of probabilities of the hyperarcs
of the parse tree t, with the restriction that the hyperarc e
is present in t. Given H(e) = v is the head node, where
n(v) = A is the node tag and s(v) = a is the span associated
with this node, we have that:∑

t:e∈ψ(t)

pH(t,x) = p(S
∗⇒ g Au) p(A

∗⇒ a)

where g ∩ a ∩ u = ∅ and g ∪ a ∪ u = x. Considering
the definitions of inside probability (Eq. (14)) and outside
probability (Eq. (17)) and arc normalized score (Eq. 22), the
Eq. (24) can be rewritten as,∑

t:e∈Ψ(t)

pH(t|x) =
αH(A, a) · βH(A, a)

αH(S,x)
= ϕ(e)

V. EXPERIMENTAL EVALUATION OF THE ALGORITHMS

We developed a MER system based on 2D-PCFG that com-
putes the hypergraph for an input image using the equations
and algorithms previously presented . In this section, we study
the time behaviour of the algorithms depending on the size of
the MEs, the spatial relationships and the number of N-best
trees generated when creating the hypergraph.

In order to evaluate the effect that both the size of the ME
and the number of relationships among connected components
have on the execution time, we synthesized two different types
of MEs for illustrating the best and worst-case scenarios.
Figures 6 and 7 were made using simple MEs, where only
a horizontal spatial relationship was considered. Figure 8 was
made using a more complex template where the ME grows
both horizontally and vertically giving a more pessimistic
case for execution time. When increasing the number of parse
trees generated for a ME, we can study the effect in small
expressions that may have a small number of different parse
trees, and long expressions with many more possible trees.3

Figure 6 shows the mean execution time when computing
the 1-best tree on MEs of increasing length. The ordinate axis
represents the execution time in seconds on a logarithmic scale
and the abscissa axis represents the size |x| of the input MEs.
The plot shows the theoretical time complexity in blue, and
the behaviour in practice with a black dotted line.

Figure 7 shows the effect of increasing the number of parse
trees to generate, N , on simple MEs of sizes 10, 25 and 50.
The ordinate axis represents the execution time in seconds and
the abscissa axis represents the number of parse trees that are
generated, both in logarithmic scale. The time for computing
the 1-best solution is excluded from this plot.

Figure 8 shows the mean execution time when computing
the 1-best tree on MEs of increasing size for complex MEs.
The ordinate axis represents the execution time in seconds on
a logarithmic scale and the abscissa axis represents the size |x|

3All the experiments have been run on a 3 GHz Intel(R) Core(TM) i5-
6600K CPU computer running under Ubuntu 18.04. The algorithm has been
implemented in C++ and compiled with g++ 7.5.0.

20 40 60 80 100
10−4

10−3

10−2

10−1

100

101

102

103

|x|

O(|P ||x|3 log |x|)

Fig. 6. 1-best for |x|=[5, 100] on horizontal relationships.

101 102 103 104
10−3

10−2

10−1

100

101

102

103

N

|x| = 10

|x| = 25

|x| = 50

Fig. 7. N -best execution time for different values of N on expressions of
different sizes |x|. The red expression of |x| = 10 has a maximum of 500
hypothesis.

of the input ME. As in the previous experiment, the plot in blue
represents the theoretical time complexity and the behaviour
in practice is shown as a black dotted line.

In these experiments, we can see that the 1-best parsing
algorithm is the most expensive procedure. The results for
generating the N-best solutions have a more linear scaling. In
realistic MEs of length |x| = 25 the time needed to compute
the first 100 trees is between 1-2 sec. making it usable in
real-world applications.

10 20 30 40 50 60
10−4

10−3

10−2

10−1

100

101

102

103

|x|

O(|P ||x|3 log |x|)

Fig. 8. 1-best for |x| = {3, 7, 9, 19, 21, 43, 59} on horizontal and vertical
relationships.

VI. CONCLUSION

In this paper, we have presented a proposal for generating
hypergraphs from the N-Best parsing of 2D-PCFGs for ME

recognition. Hypergraphs are an efficient interface between
mathematical expression recognition and the indexing and
searching systems of mathematical expressions. More specif-
ically, in this paper we propose an algorithm to compute
the N-best parse trees from a 2D-PCFGs, an algorithm to
represent the n-best parse trees using a compact representation
in the form of hypergraphs, and a formal framework for the
development of inference algorithms (inside and outside) and
normalization strategies of hypergraphs. In addition, some
preliminary experiments have been reported to check the
behavior of the proposed algorithms. In the future, we plan
to apply these results on indexing and searching problems
of mathematical expressions in large collections of digitized
images.

ACKNOWLEDGMENT

This work has been partially supported by the Ministerio de
Ciencia y Tecnologı́a under the grant TIN2017-91452-EXP
(IBEM) and by the Generalitat Valenciana under the grant
PROMETEO/2019/121 (DeepPattern).

REFERENCES

[1] F. Álvaro, J. A. Sánchez, and J. M. Benedı́, “An integrated grammar-
based approach for mathematical expression recognition,” Pattern
Recognition, vol. 51, pp. 135–147, 2016.

[2] A. Toselli, E. Vidal, V. Romero, and V. Frinken, “HMM word graph
based keyword spotting in handwritten document images,” Information
Sciences, vol. 370, pp. 497–518, 2016.

[3] A. H. Toselli, V. Romero, E. Vidal, and J. Sánchez, “Making two vast
historical manuscript collections searchable and extracting meaningful
textual features through large-scale probabilistic indexing,” in 2019 15th
IAPR Int. Conf. on Document Analysis and Recognition (ICDAR), 2019.

[4] E. Vidal, “Text search and information retrieval in large historical
collections of untranscribed manuscripts”,” Invited key note talk at Inter-
national Conference on Document Analysis and Recognition (ICDAR),
2019.

[5] S. Ortmanns, H. Ney, and X. Aubert, “A word graph algorithm for
large vocabulary continuous speech recognition,” Computer Speech and
Language, vol. 11, no. 1, pp. 43–72, 1997.

[6] D. Klein and C. D. Manning, “Parsing and hypergraphs,” in In IWPT.
Association for Computational Linguistics, 2001, pp. 123–134.

[7] V. Jiménez and A. Marzal, “Computation of the n best parse trees for
weighted and stochastic context-free grammars,” in Advances in Pattern
Recognition, F. Ferri, J. Iñesta, A. Amin, and P. Pudil, Eds. Springer
Berlin Heidelberg, 2000, pp. 183–192.

[8] R. Zanibbi and D. Blostein, “Recognition and retrieval of mathematical
expressions,” International Journal of Document Analysis and Recogni-
tion, vol. 15, pp. 331–357, 2012.

[9] M. Mahdavi, R. Zanibbi, H. Mouchère, C. Viard-Gaudin, and U. Garain,
“ICDAR 2019 CROHME + TFD: Competition on recognition of hand-
written mathematical expressions and typeset formula detection,” in
International Conference on Document Analysis and Recognition, 2019.

[10] W. Zhong, S. Rohatgi, J. Wu, C. Giles, , and R. Zanibbi, “Accelerating
substructure similarity search for formula retrieval,” in Proc. European
Conference on Information Retrieval, 2020.

[11] L. Huang and D. Chiang, “Better k-best parsing,” in In IWPT. Asso-
ciation for Computational Linguistics, Oct. 2005, pp. 53–64.

[12] R. Zanibbi, D. Blostein, and J. Cordy, “Recognizing mathematical
expressions using tree transformation,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 24, no. 11, pp. 1–13, 2002.

[13] A.-M. Awal, H. Mouchere, and C. Viard-Gaudin, “A global learning
approach for an online handwritten mathematical expression recognition
system,” Pattern Recognition Letters, vol. 35, no. 0, pp. 68 – 77, 2014.

[14] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen, “Directed hypergraphs
and applications,” Discrete Appl. Math., vol. 42, no. 2–3, pp. 177–201,
1993.

[15] C. D. Manning and H. Schütze, Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

