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Abstract—This paper addresses a new way of generating
compliant trajectories for control using movement primitives to
allow physical human-robot interaction where parallel robots
(PRs) are involved. PRs are suitable for tasks requiring precision
and performance because of their robust behavior. However, two
fundamental issues must be resolved to ensure safe operation:
i) the force exerted on the human must be controlled and
limited, and ii) Type II singularities should be avoided to keep
complete control of the robot. We offer a unified solution
under the Dynamic Movement Primitives (DMP) framework
to tackle both tasks simultaneously. DMPs are used to get
an abstract representation for movement generation and are
involved in broad areas such as imitation learning and movement
recognition. For force control, we design an admittance controller
intrinsically defined within the DMP structure, and subsequently,
the Type II singularity evasion layer is added to the system. Both
the admittance controller and the evader exploit the dynamic
behavior of the DMP and its properties related to invariance and
temporal coupling, and the whole system is deployed in a real PR
meant for knee rehabilitation. The results show the capability of
the system to perform safe rehabilitation exercises.

Index Terms—Dynamic movement primitives, Force control,
Parallel robot, Rehabilitation robotics, Singularity avoidance

I. INTRODUCTION

HUMAN-ROBOT interaction is a multidisciplinary field
that includes industrial, social, and medical applications

[1]. In the latter category, rehabilitation is one of the leading
applications [2], which entails physical interaction to assist
the patient. This kind of task requires high performance and
robustness to ensure safe behavior. Parallel robots (PRs) are
suitable for them thanks to their stiffness, load capacity, and
accuracy [3], and usually consist of a fixed platform and
a controlled mobile platform which are linked by closed
kinematic chains [4]. Specifically, lower limb rehabilitation
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with PRs has been deeply studied recently [5]–[7], and it is
the central application of this paper.

Physical interaction in rehabilitation tasks must be safe
and no pain has to be induced to the patient. In this regard,
admittance control is one of the main strategies [8], which
generates robot motion based on the human force, so the
end-effector tracks an admittance model. Some applications
of admittance control in lower limb rehabilitation can also
be found in [9], [10]. However, this generated motion from
the human input raises a new problem in PRs: the admit-
tance controller may lead the robot to a Type II singular
configuration inside its workspace due to the fact that the
force control may need to change the a priori trajectory to
keep compliant interaction, so even if the original designed
trajectory was free of singularities, the resulting one can reach
singular configurations unpredictably. In this case, the control
of the mobile platform is lost, and the patient’s safety could
be in risk.

Gosselin and Angeles [11] established a classification of
singular configurations in PRs, which divides them into two
categories: on the one hand, in Type I or inverse kinematic
singularities, at least one degree of freedom (DOF) is lost
because the determinant of the inverse Jacobian matrix be-
comes null. This kind of singularity typically occurs in serial
robots and usually corresponds to the end-effector of the robot
operating at the boundaries of the workspace. On the other
hand, Type II singularities imply the gain of at least one
uncontrolled DOF because of the degeneracy of the forward
Jacobian matrix, meaning that the PR cannot bear external
forces despite the actuators being locked, and they may occur
inside the workspace, making them harder to address [12].

The negative effect of this kind of singularity is emphasized
when combined with an admittance control since i) the human
participates in the motion of the mobile platform, so there
is a factor of uncertainty in the resulting position, with the
possibility of getting into a singular configuration, and ii) if
the PR effectively reaches a singular configuration, its response
becomes unpredictable in the presence of a force that the
human may presumably be exchanging since such force is
unbearable for the PR. For those reasons, it is imperative to
address the treatment of Type II singularities when designing
a force controller for a PR.

Some methods to tackle this problem can be found in
literature, starting from the mechanical design process of the
PR by optimizing its workspace [13], [14]. However, this is not
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enough to ensure a complete singular-free workspace and so
the singularity analysis is still a concern. The characterization
of Type II singularities has also been researched, and methods
based on Screw Theory [15] have been proposed [16]–[18]
since the Jacobian alone does not provide enough physical
information. Some works have been developed using these
kinds of techniques to help a PR deal with singularities during
operation, requiring extra sensorization such as vision systems
since the robot’s kinematic model is no longer valid in the
vicinity of a singularity [19].

Both the admittance controller and the singularity evader
rely on the idea of altering the reference position signal
to fulfill their goal. Dynamic Movement Primitives (DMP)
[20], [21] is a mechanism that provides a representation of
motions in parallelism with biological systems by encoding the
reference signal using nonlinear dynamical systems, aiming at
the generation of trajectories for control and planning. DMPs
are composed of a set of differential equations with attractor
properties and a nonlinear learnable component with several
advantages [22], like providing a framework for imitation
learning [23], movement generation and recognition [24],
generalization to different targets [25], modulation of the
system with techniques like slow-down feedback [26], and a
reactive behavior using coupling actions [21]. They have been
implemented for tasks like cooperative interaction with the
environment [27] or obstacle avoidance [28].

In this paper, the desired behavior in terms of admittance
and singularity evasion is embedded into a DMP system
through the aforementioned coupling actions. The admittance
behavior can be seen as an instance of interaction with the
environment, while the Type II singularity avoidance can be
treated to some extent as obstacle avoidance. However, this pa-
per proposes a novel approach for the avoidance that involves
the detection of the two limbs which most contribute to the
singular configuration and adapting the reference trajectory of
these limbs with the help of the DMP by defining the coupling
actions from the output of an additional embedded controller
to fulfill a tracking objective, rather than blindly applying
repulsive actions that could degrade the performance.

In most works, the parameters of the DMP (corresponding
to the equivalent damping and stiffness of a second-order
dynamical system) are given some fixed or standard values
to ensure critically damped or overdamped behavior [21].
However, they do not dig into the effect of those constants
on the response regarding the coupling action received. In
this research, a new insight into the DMP is provided where
we design those parameters to obtain the intended behavior
when feeding the coupling action. The unified system proposed
in this paper can exploit all the advantages of DMPs while
ensuring the compliant response of the robotic system.

The whole purpose and the contribution of this paper is the
tracking of position and force reference profiles while avoiding
Type II singularities with a PR, both tasks exploiting the DMP
advantages and dynamic behavior. There exist methods for
offline planning trajectories free of singularities [29], which
cannot adapt to online changes like those happening with force
control. Also, some strategies have been proposed to cross sin-
gular configurations [30]. However, crossing a singularity in a

human-robot interaction setting may not be the safest solution
because of the combined effect of a control loss and external
force exertion. In [19] the task of singularity releasing was
performed, meaning that the PR was initially inside a singular
configuration and the controller had to drive the PR out of
the singularity safely, as opposed to evasion, in which the PR
has to continuously replan trajectories free of singularities to
avoid getting into them. To the best of the authors’ knowledge,
very little has been developed regarding Type II singularity
evasion online, and exclusively for redundant robots [31],
[32]. However, these robots are not exempted from singular
configurations and a careful study of the workspace is required,
arising new problems related to the complex modelling they
involve.

The method presented in this paper is useful in environments
of safe-critical operation such as rehabilitation with non-
redundant parallel robots, where trajectories cannot be totally
planned beforehand since the interaction between human and
robot must remain compliant. The role of the DMP is to pro-
vide the required online adaptation of the reference trajectory
with respect to the reference baseline in order to achieve both
compliant behavior and singularity avoidance. DMPs exhibit
advantageous properties for this purpose, like incremental
learning (possibility to adapt to changes of the trajectory),
and reactive behavior using coupling actions. This paper also
explores a new way to design the coupling actions based on
a novel mechanism that uses a DMP-embedded controller,
which provides minimum deviation from the original defined
trajectory and has not been found for similar tasks.

After the related work in Section II, the formulation of our
version of the DMP and its dynamical properties are explained
in Section III. Section IV depicts the admittance controller
by including its coupling term, and Section V presents the
Type II singularity avoidance layer, which is treated as a
new coupling action. In Section VI, the combined system for
control is designed. Section VII describes the setup for the
experiments, including the 4-DOF PR for knee rehabilitation
and the sensors and software requirements. The test trajectories
and the results of the robot performance for those trajectories
are also depicted. Finally, the conclusions are presented in
Section VIII.

II. RELATED WORK

Lower-limb rehabilitation robotics is an emerging field from
which several novel mechanisms have been developed recently
[7], [33], [34], many of them involving the use of PRs.
First attempts to use the force feedback for changing the
robot’s position were reported by Hogan [35]. However, the
combination of force feedback with DMPs has been barely
explored. Gams et al. [27] designed cooperative DMPs using
coupling terms learned using iterative learning control [36].
Shahriari et al. [37] developed a framework consisting of a
DMP for trajectory encoding and an admittance controller to
track wrench profiles with a virtual energy tank to guarantee
passivity, and Kramberger et al. [38] added to that framework
a direct coupling of the admittance dynamics into the DMP.
This work is the most similar approach to ours; however,
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they still rely on the design of the coupling term rather than
the DMP structure. Wang et al. [39] presented a framework
for robot learning with a teaching phase, learning phase, and
reproduction phase, in which an adaptive admittance controller
was used to account for the unknown human dynamics, and
a neural network-based controller was developed to track the
trajectories from the motion model. DMPs and Gaussian mix-
ture regression were used to encode the human characteristics
based on their demonstrations [40].

On the other hand, Type II singularity detection and avoid-
ance has traditionally been treated as an isolated topic, not
related to admittance control or DMPs. Agarwal et al. [41]
designed a control scheme to modify the behavior of a planar
PR in the proximity of a singularity employing artificial
potential functions at the cost of one DOF of the PR. Six
et al. [30] proposed a new method to cross singularities by
modifying the dynamic model and a computed-torque control
law. These studies have in common that joint positions are
sensed to estimate the cartesian position. Nevertheless, that
is not the safest solution since the direct kinematic model
becomes inaccurate in the vicinity of a singularity. Recently,
Pulloquinga et al. [19] measured the cartesian position of a
4-DOF PR directly by means of a vision system and used
that information to release a PR from an initial singular
configuration. The algorithm used information not only from
the Jacobian but also from the Output Twist Screws (OTSs)
[18] as a proximity detector. The algorithm geometrically
chooses the two actuators that mostly participate in the sin-
gularity and change their reference linearly until the PR gets
released from the singular configuration. In this study, that
method is extended so that the evasion action, instead of
affecting the reference signal directly in a linear fashion,
uses controlled actions embedded in a coupling term of the
DMP to achieve smoother transitions, resembling the obstacle
avoidance methods that have been implemented with DMPs
[42].

III. DYNAMIC MOVEMENT PRIMITIVES AS A
MASS-SPRING-DAMPER SYSTEM

A. Formulation

The DMP structure has been expressed in literature as
a spring-damper second-order dynamical system, stimulated
with a nonlinear forcing term [43], [44]. In this study, that
formulation is extended to a mass-spring-damper dynamical
system so that the full dynamical behavior can be controlled,
and it is expressed for one DOF as follows:

τMż = K(g − y)−Dz + f(x)

τ ẏ = z
(1)

where y is the position and z the scaled velocity by the
temporal factor τ that allows speed changes, which is initially
equal to the temporal length of the trajectory, and g is the goal
(final) position and the attractor point, with z = 0. Regarding
the dynamical system, M is the mass constant, K is the spring
constant, and D is the damping term. The nonlinear function f
is dependent on a phase variable x instead of time directly, and

is defined as a linear combination of N radial basis functions
as follows:

f(x) =

∑N
i=1 wiΨi(x)∑N
i=1 Ψi(x)

x (2)

Ψi(x) = exp(−hi(x− ci)
2) (3)

where ci are the centers of the radial basis functions distributed
along the trajectory and hi the bandwidths. The weights wi

are learned to fit the function, and the phase replaces time and
obeys the following first-order linear dynamical system:

τ ẋ = −αxx (4)

where αx is a positive time constant corresponding to the
exponential decay of the dynamical system. For this system,
x(0) = 1 and x tends to 0 with the law x(t) = exp(−αxt/τ).
Unlike time, the phase variable can be conveniently modified
during execution. The weights wi are learned using techniques
like Locally Weighted Regression (LWR) [45]. In the case of
multiple DOFs, each has its own DMP system and forcing
terms, but they are all synchronized by the same canonical
system.

In traditional DMPs, the values K and D of the DMP are
fixed in advance to some standard values to ensure the system’s
convergence and critically-damped behavior. However, this
paper proposes a new method to conveniently define those pa-
rameters (and M , which has not been taken into consideration
before) without neglecting those issues. This approach aims to
control the effect of the additional coupling terms that can be
added. These coupling terms are one of the most interesting
properties of DMPs and leave the system (1) as:

τ2Mÿ = K(g − y)−Dτẏ + f(x) + fC (5)

This system has been expressed in the alternative second-
order differential equation to facilitate the posterior study,
where fC encompasses the coupling terms already used, for
example, for obstacle avoidance [28], [42].

B. Design of dynamic specifications and response

The main concern now is to achieve the desired behavior
from the DMP when dealing with external coupling forces.
This paper proposes three dynamic constraints to obtain the
constants M , K, and D from the DMP (since τ and g have
fixed values). The dynamics of the system can be typically
defined by the following contrains:

1) The desired static gain (G).
2) The required settling time to reach the steady state with

an error band of 2% (ts).
3) The critically-damped behavior of the system.
Generally, only the third constraint is considered in the

literature, and the parameters are arbitrarily defined to fulfill
it with a certain fast dynamics. In this study, we start with the
formulation of the DMP in terms of a transfer function, with
fC as input, y as output, and s the Laplace variable. Here, we
neglect the term f(x) since its purpose is to define the shape of



4

the learned reference trajectory, and it is unambiguously given
by the phase. On the other hand, the term fC defines how
much the reference is deviated from the original trajectory to
accomplish user-defined requirements, hence its interest, and
its effect is given by:

DMP (s) =
Y (s)

FC(s)
=

1

τ2Ms2 + τDs+K
(6)

This dynamical system faces a problem: the parameter
τ , which provides extra flexibility with the possibility of
modifying the speed, also alters the dynamics (specifically, it
is involved in constraints 2 and 3). Moreover, this parameter
depends on the duration of the trajectory, so changing the
trajectory would alter the dynamic response. To alleviate this
problem, we start by comparing the system with a standard
mass-spring-damper system, whose transfer function is:

Y (s)

F (s)
=

1

ms2 + ds+ k
(7)

where m, d, k are the mass, damping and spring constants
of the standard mass-spring-damper system, respectively. This
system has well-known dynamic properties and can be used
as a baseline for simultaneously satisfying constraints 1-3. In
fact, there are three constraints and three variables (m, d, k),
making it a determinate compatible system whose solution is
(see Appendix A):

k =
1

G
, d =

tsk

2
, m =

d2

4k
(8)

This result must be extrapolated from a standard spring-
damper system to the DMP just by equating equations (6) and
(7):

M =
m

τ2
, D =

d

τ
, K = k (9)

As demonstrated above, the parameter τ is the one that
differentiates a conventional mass-spring-damper system with
a DMP. The design of a DMP neglecting this issue leads
to negative consequences; for example, makes the dynamics
dependent on the duration of the trajectory. On the other hand,
this parameter cannot be dropped since we would lose the
capabilities for changing the speed, and also it regulates the
canonical system (equation (4)). Therefore, the workflow to
obtain the desired responses implies:

1) Choosing the desired static gain (G) and settling time
(ts) for the experiment.

2) Defining the parameters k, d, and m for a standard
mass-spring-damper model to follow that behavior using
equation (8).

3) Calculating M , D, and K for the DMP from equations
(9).

4) Learning the trajectory in a conventional way with
equations (1)-(4).

5) Running the DMP by performing the integration of
the subsystems (the phase and the mass-spring-damper)
taking into account the coupling actions fC occurring
along the trajectory for reference adaptation.

For many DOFs, both vectors G⃗ and t⃗s with lengths equal
to the number of DOFs are defined, and the computations are
performed element-wise, obtaining M⃗ , D⃗, and K⃗, which allow
different behaviors for each DOF according to the needs, but
still synchronized by the same canonical system.

Finally, it is worth mentioning that the stability of the
new system is ensured with bounded coupling forces and
parameters satisfying constraints 1-3 with a position controller
thanks to the DMP properties [46], and the system converges
to the goal g.

IV. ADMITTANCE CONTROL BASED ON COUPLING FORCES

The first and most obvious way to take advantage of the
novel version of the DMP is to exploit the user-defined mass-
spring-damper behavior to use it as an admittance controller.
This requires both a position and a force profile to track, which
are correspondent in time and typically provided in tabulated
files:

Yd = [[yλt, ẏλt, ÿλt]
Λ
λ=1]

T
t=1 (10)

Qd = [[qλt, q̇λt, q̈λt]
Λ
λ=1]

T
t=1 (11)

Fd = [[Fλt]
Λ
λ=1]

T
t=1 (12)

where Yd gathers the reference in cartesian space and Qd

in joint space, with λ the current DOF, Λ the total number
of DOFs, t the time instant, and T the number of samples
of the trajectory. Regarding the reference Yd, we assume in
this work that the orientation is characterized by the Euler
angles and their derivatives, so Yd contains these variables
rather than angular velocities. This means that we can keep
the same DMP structure instead of using the quaternion-
based orientation DMP described in [47]. This setup has the
advantage of controlling the dynamic behavior independently
in each rotation axis.

The forces are typically provided in cartesian coordinates
for the end effector since it is the part of the robot interacting
with the environment. From this point, the λ subscript is
dropped to keep the notation uncluttered, and the scalar version
is used (as we did with the DMP formulation) since the vector
version applies the same procedure for every DOF.

The desired position is encoded with a DMP, which no
longer ensures the time synchronization with the force sampled
from the file. For that reason, forces are sampled instead
from a synchronized encoded system consisting of a linear
combination of NF basis functions (i.e., a Gaussian Kernel
Approximator, GKA) affected by the same phase x as the
position [48]:

Fref (x) =

∑NF

i=1 w
F
i Ψ

F
i (x)∑NF

i=1 Ψ
F
i (x)

x (13)

where the superscript F makes the distinction with respect to
the basis functions and weights from the position encoding
of equation (2). The subscript of the force Fref is different
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from the one of equation (12) (Fd) to emphasize that this force
comes from the approximation rather than the initial file.

The coupling term is thus the difference between the force
reference and the force measured by the sensor:

fC = eF = Fref − Fmeas (14)

This coupling term provokes the desired effect on the system
by defining the proper M , D, and K constants for the DMP
as described in Section III-B. Any kind of controller can be
employed as the underlying position controller, and in this
study, we use a proportional-derivative controller with gravity
compensation (PD+G).

Figure 1 represents the scheme of the admittance controller
intrinsically embedded into the DMP system. The DMP is
encoded using cartesian coordinates to match those of the
incoming coupling force. Then, inverse kinematics is applied
to the output of the reference to allow joint space control
(q⃗ref ). A saturator can be added to prevent the admittance
model from pushing the joints beyond their geometrical limits
(q⃗ref,sat). The vectorized form is employed, and the joint
position controller block (which in our case is a PD+G
controller) is oversimplified for visualization purposes since
it not only receives the error e⃗q to calculate the control action
u⃗, but also the derivative of the error to calculate the derivative
term and the raw position (q⃗meas) for the gravitational term.

ROBOT

FORCE 

SENSOR

SAT.

INV. 

KIN.

+ -+ -

+ -+ -

FmeasFmeasFrefFref

yrefyref qref, satqref, sat

eqeq
qmeasqmeas

fCfC

qrefqref

DMPcart

Yd(t)

DMPcart

Yd(t)

GKA

Fd(t)

GKA

Fd(t)

u u JOINT 

POSITION 

CONTROL

Fig. 1. DMP-embedded admittance controller defined in cartesian space with
GKA for force synchronization and PD+G low-level position controller.

This controller, however, may face severe problems in PRs
since the admittance model may drive a PR to a Type II
singularity within the workspace. For that reason, a new
coupling term is designed in Section V to allow PRs to avoid
Type II singularities.

V. TYPE II SINGULARITIES AVOIDANCE

A. Detection of Type II singularities

According to Gosselin and Angeles [11], there is a rela-
tionship between the independent generalized coordinates (q⃗)
and the end effector’s PR pose (y⃗) given by a set of constraint
equations Φ⃗. Taking the time derivatives of Φ⃗, the differential
kinematics can be expressed as follows:

JI(q⃗)⃗̇q = JD(y⃗)⃗̇y (15)

where JD is the forward or direct Jacobian matrix and JI is
the inverse Jacobian matrix, both square with size equal to

the number of DOFs (Λ). In a Type I singularity, JI becomes
rank deficient (||JI || = 0) and corresponds to that of a serial
robot, involving the loss of at least one DOF. On the other
hand, in a Type II singularity the forward Jacobian matrix (JD)
degenerates (||JD|| = 0) and the mobile platform can move
in the presence of external forces even if all the actuators are
locked. This analysis is justified by the fact that in human-
robot interaction (for example, with an admittance controller)
such external forces exist and could make the robot’s behavior
unpredictable and non-compliant.

As a PR approaches a Type II singular configuration, its
kinematic model becomes inaccurate. For that reason, it is
necessary to estimate y⃗ directly from external sensors rather
than apply the forward kinematic model to the active coordi-
nates obtained from the encoders. A vision system is a good
candidate for estimating y⃗ [19].

However, ||JD|| alone gives no clue about the active ele-
ments responsible for the singular configuration. In [17], the
mobile platform’s movement ($) was divided into Λ Output
Twist Screws (OTSs) as follows:

$ = ρ1$̂O1 + ρ2$̂O2 + · · ·+ ρΛ$̂OΛ (16)

where ρi is the amplitude of each OTS and $̂Oi
is a normalized

screw that includes the instantaneous screw axis and the linear
component: $̂Oi

= (µ⃗ωO
; µ⃗∗

vO ). Each $̂Oi
is obtained by

locking the rest Λ − 1 actuators and using the normalized
Transmission Wrench Screw (TWS) $̂T as follows [49]:

$̂Oi ◦ $̂Tj = 0 (i, j = 1, 2, . . . ,Λ, i ̸= j) (17)

where ◦ is the reciprocal product. Wang and Liu [49] showed
that in a Type II singularity, at least two OTSs are linearly
dependent, meaning that both µ⃗ωO

and µ⃗∗
vO of two $̂O are

parallel. For that reason, the angle between two µ⃗ωO
(Ωi,j) is

an excelent candidate for evaluating the proximity to a Type
II singularity, and it can be verified with the equality of µ⃗∗

vO
.

For Λ $̂O, there are
(
Λ
2

)
angles Ω, defined as:

Ωi,j = arccos (µ⃗ωOi
· µ⃗ωOj

) (i, j = 1, 2, . . . ,Λ, i ̸= j) (18)

Unlike ||JD||, Ωi,j is a dimensional measure, so the prox-
imity to a Type II singularity can be measured in angular units.
As Ωi,j reaches 0, the PR approaches a singular configuration
where i and j are the pair of chains responsible for that
singular configuration [18]. An accurate calculation of Ωi,j

also requires a reasonable estimation of y⃗, which reinforces
the idea that external sensors are needed to measure the PR’s
pose.

In [19], these angles were applied together with JD to
release a PR from an initial singular configuration by de-
tecting the two limbs most responsible for that singularity
(corresponding to the minimum of all the angles) and moving
them in the proper direction that sooner gets the PR out of the
singularity.

In this paper, we employ those indices to avoid singular
configurations, i.e., prevent a PR from getting into positions
with low Ωi,j or ||JD||, in combination with the DMP and the
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admittance model to allow both compliant and robust behavior
simultaneously in PRs.

To perform this task, we first detect the two limbs i and
j which most contribute to the singularity (corresponding to
Ωmin) and then we design the coupling actions required to
move those limbs, while keeping the rest unaltered by the
coupling actions during the evasion task.

B. Design of the coupling term for singularities avoidance

Hereafter, only the minimum of the angles, Ωmin, is
considered because of its connection to a potential singular
configuration, and the PR position becomes more singular as
either Ωmin or ||JD|| approach 0. For that reason, a limit for
both of them, Ωlim and ||JD||lim, are defined experimentally.
The coupling force acts as soon as any measurement of Ωmin

or ||JD|| falls below its corresponding threshold. Only the two
limbs related to Ωmin (named li and lj , which are stacked
in a vector l⃗2×1) are modified by the coupling term. Since
the algorithm for singularity avoidance relies on independent
movements of two joints, a DMP defined in joint coordinates is
more convenient because a coupling force will directly move
the desired limbs (unlike what happened in the admittance
case).

The coupling action should act as a repulsive force that
drives the robot to a position that is not singular (i. e., beyond
the thresholds Ωmin and ||JD||), so this objective can be
posed as a control problem with input fC and goals Ωlim

and ||JD||lim. These goals can be treated separately, and a
PID-like control law has been chosen for each one of them,
with some nuances explained in the following.

We distinguish three different situations regarding the par-
ticipation of each limb η in a singular configuration:

1) If the robot is in a singular configuration and limb η is
involved according to the index Ωmin (η is a member of
vector l⃗), then the repulsion force for this limb is based
on a PID controller like explained below.

2) If the robot is in a singular configuration and limb η is
not involved according to the index Ωmin (η is not a
member of vector l⃗), then its coupling force remains
unchanged with respect to the previous value. This
implies that if it participated in the singularity before
and there was a change of responsible limbs, the force
of this limb will keep acting to avoid chattering or abrupt
changes. If it did not participate, its value was always
0.

3) If the robot is not in a singular configuration, the
integrator of each PID will gradually decrease until
zeroing the repulsion force.

The control of the angle Ωmin is activated when Ωmin <
Ωlim, and the following magnitude is first computed:

eΩ = 1− Ωmin

Ωlim
(19)

where eΩ is a normalized tracking error for which it is
convenient to scale the reference to 1 for both indicators (Ωlim

and ||JD||lim). Then, for each limb involved in the singularity
(elements li of vector l⃗), the following scalar is computed:

||fC ||Ωli
= KpeΩ +KdėΩ +Ki[

∫
eΩdt]li (20)

In this expression, Kp, Kd, and Ki are the proportional,
derivative, and integral constants, respectively. However, each
limb uses its own integrator, which is indicated by the
nomenclature [

∫
· · · ]li . This is useful in case of changing

the responsible limbs within the same singular region, since
only the responsible limbs will keep integrating, while the rest
are kept unchanged. Analogously, for the determinant of the
Jacobian, when ||JD|| < ||JD||lim we employ:

eJ = 1− ||JD||
||JD||lim

(21)

||fC ||Jli
= KpeJ +KdėJ +Ki[

∫
eJdt]li (22)

By the same logic, each limb has its own integrator related
to the Jacobian. Thus, the total absolute force for the two
involved limbs can be defined as the sum of the two contri-
butions as follows:

||fC ||li = ||fC ||Ωli
+ ||fC ||Jli

(23)

These numbers are always positive because of the premise
that only below the limits are they computed, so eΩ > 0, eJ >
0. Hence, the force f⃗C , gets updated as:

f⃗C (⃗l(1)) = d1||fC ||l1 , f⃗C (⃗l(2)) = d2||fC ||l2 (24)

while the other terms of f⃗C remain unchanged with respect to
the previous time step. In this equation, d1 and d2 account for
the direction (positive or negative), so their value can be +1
or −1 and are stacked in a vector d⃗. There are four possible
choices for d⃗ : [+1,+1], [+1,−1], [−1,+1] and [−1,−1].
To choose the best one, the four subsequent responses are
calculated by virtually applying the four possible forces f⃗C to
the DMP and choosing the preferred directions for the actual
execution such that:

1) The new reference position lies within the range of the
actuators and, if so,

2) The value of Ωmin is the highest among the options,
meaning that the chosen direction is the one that most
helps the robot get out of the singular position.

The system’s behavior after getting out of the singularity
remains to be clarified. The designed approach involves can-
celing the proportional and derivative forces (since they would
tend to get back to the singularity) but keeping the integrators
active while they discharge gradually (since the tracking errors
of equations (19) or (21) are negative in this phase) and set
the scalar forces equal to the integral action to avoid abrupt
changes:

||fC ||Ωoutη
= Ki[

∫
eΩdt]η

||fC ||Joutη
= Ki[

∫
eJdt]η

(25)
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Equation (25) provides satisfactory results as long as the
integrators are bounded below by 0, so when they are dis-
charged, they do not try to pull the robot back towards the
singularity. In other words, when they reach 0, they stop the
integration process until a new singular position arises.

Figure 2 represents the scheme of the singularity evader with
a DMP designed in joint coordinates and the definition of the
coupling terms based on measures from a vision system, and a
joint position controller (corresponding to a PD+G controller)
applied directly to the output of the DMP.

VISION 

SENSOR

JD

i,j 

EVADER

Kp, Ki, Kd

||JD||lim, lim

SAT.

ROBOT

+
-

+
-

ymeasymeas

fCfC

qrefqref qref, satqref, sat eqeq

qmeasqmeas

||JD||||JD||

DMPjoint

Qd(t)

DMPjoint

Qd(t)

u 

minmin

JOINT 

POSITION 

CONTROL

Fig. 2. DMP-embedded singularity evader in joint space based on PID control
for the evasion task and low-level PD+G position control.

In [19], a method was proposed to release a robot from
an initial singular position using Ωmin and ||JD|| by moving
the two actuators that mostly participate in the singularity.
However, that algorithm is not meant for evasion, and it relies
on directly manipulating the reference position rather than
providing a dynamical behavior to the system. The DMP
described in this study provides a more compliant response
for the robot.

The decision of choosing a controller to avoid a singularity
rather than an exponential coupling action like the ones
proposed for obstacle avoidance (for example, in [28], [42]) is
justified by the fact that a clear reference can be established
for tracking control (Ωlim and ||JD||lim), providing a more
guided solution.

VI. COMBINED SYSTEM FOR CONTROL

So far, it has been shown how to get the desired admittance
behavior (Section IV) and the singularity avoidance (Section
V) independently. In this section, the combination of both
ideas is addressed. However, there are a few issues to consider
before designing the whole system.

First of all, it would be desirable to have just one DMP
sending out a unique reference to be tracked by the position
controller. The DMP would be affected, thus, by two coupling
terms corresponding to each task. This poses the dilemma
of which coordinates should be chosen for the DMP. The
cartesian coordinates are better suited for the admittance
model because the forces are collected with a sensor in those
coordinates. However, the singularity evader works at the joint
level since only a pair of selected limbs are driven by its cou-
pling action, so the DMP was defined in joint coordinates in
Section V-B. For the combined task of simultaneus admittance

behavior and Type II singularity avoidance, we propose a DMP
in joint coordinates, and the justification will become clear in
the following.

Here, we use a property described in Appendix B which
states that if a DMP is identically defined for all DOFs (they
all share the same dynamics), then there is a direct relationship
between a coupling force exerted in cartesian coordinates
(f⃗Cy ) and in joint coordinates (f⃗Cq ) using the forward and
inverse Jacobian matrices as follows:

f⃗Cq
= J−1

I · JD · f⃗Cy
(26)

This expression can be used to define the admittance be-
havior of a DMP in joint coordinates by feeding f⃗Cq

to such
DMP. In addition, JD is a matrix already calculated since
its determinant takes part in the evasion layer. Therefore, the
coupling term for the admittance behavior in a DMP defined
in joint coordinates could be defined as:

f⃗Cadm
= J−1

I · JD · F⃗H (27)

where F⃗H could be initially set as F⃗H = e⃗F = F⃗ref − F⃗meas

with F⃗ref and F⃗meas defined in cartesian coordinates as
happened in Section IV.

However, a second issue arises when comparing the de-
sired dynamic behavior of both tasks. The response of the
admittance model should rather be slow to perform smooth
movements in the presence of external forces (which, in the
context of rehabilitation, could come from an injured human
limb). However, it is crucial for the evader to get the robot
out of the singularity as soon as possible, which means that a
smaller ts is likely to be chosen for the evasion task.

The adopted solution consists of the definition of a DMP
suitable for evasion, with fast dynamics compared to the
desired admittance model, and feed the cartesian force to
designed transfer functions Hλ(s) (one for each DOF) before
multiplying by the Jacobian JD. These transfer functions are
new second-order filters comprising the desired dynamics of
the admittance model and imply that the elements of the vector
F⃗H should be defined as:

FHλ
(s) = Hλ(s) · eFλ

(s) (28)

Hλ allows defining a different behavior for each DOF in
the cartesian space by choosing desired gains (Gadmλ

) and
settling times (Tadmλ

) accordingly and applying equation (8)
to obtain the constants. However, some care must be taken not
to conflict with the evader’s behavior, which is considered to
be designed equally for all the joints and defined by the DMP
parameters KDMP , MDMP , and DDMP :

1) By choosing slower dynamics for the admittance model,
the transfer functions Hλ dynamically dominate the
DMP because the poles of the latter are significantly
closer to the origin, so the overall system will behave
as a second-order dynamical system in the presence of
an external force.

2) The gain must be chosen so that the overall static gain
of the system for the admittance (Gadmλ

) is the product
of the static gain of the DMP (GDMP ) and that of
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the transfer function (GHλ
), meaning that the transfer

function Hλ is defined as follows:

KHλ
=
Gadmλ

GDMP
, DHλ

=
tsadmλ

KHλ

2
, MHλ

=
D2

Hλ

4KHλ

(29)

Thus, the general workflow for the combined system is the
following:

1) Define the desired behavior of the evader with tseva
and

Geva, supposed uniform for all robot limbs, and obtain
the DMP constants using equation (8).

2) Define the desired behavior of the admittance model,
which can differ for each cartesian coordinate, encoded
in t⃗sadm

and G⃗adm (with tsadmλ
>> tseva

). Obtain the
transfer functions Hλ using equation (29).

3) Set the constants of the goals Ωlim and ||JD||lim, which
are obtained empirically, and the PID constants Kp, Kd,
and Ki for singularity avoidance.

4) In execution, the f⃗Ceva
is directly calculated using equa-

tion (24). The value f⃗Cadm
is obtained using equations

(27) and (28). The sum of both coupling actions is the
total fed to the DMP:

f⃗C = f⃗Ceva + f⃗Cadm
(30)

In addition, when the robot enters a singularity due to the
external force, it is convenient to temporarily deactivate the
admittance model, since an arbitrarily high force could beat the
evader’s repulsive coupling action and lead to destabilization.
For that reason, as soon as either Ωmin or ||JD|| fall below
their limit, a boolean pin (sing pin) deactivates and the input
to the transfer function e⃗′F = e⃗F · sing pin holds the value
0⃗. This is preferable compared to directly setting f⃗Cadm

to 0⃗
since the former implies a gentle reduction of the effect of the
admittance model thanks to the effect of Hλ(s) rather than
the abrupt deactivation that would be caused with the latter
option, resulting in a more compliant response.

Fig. 3 represents the scheme of the combined control system
with the DMP designed in joint coordinates, the evasion and

admittance modules, and the core PD+G controller applied to
the output of the DMP.

As a final clarification, this scheme solves two problems at
once:

1) The two objectives are expressed in different coordinate
systems (end-effector cartesian coordinates for admit-
tance control and joint coordinates for evasion), which is
solved using the mapping of Appendix B and equations
(26)-(27).

2) The desired dynamic behavior is also different for both
objectives, which is solved by choosing the evasion for
the base DMP and the admittance behavior is achieved
with the adaptation of equation (28).

VII. EXPERIMENTS

A. Experimental setup

1) 4-DOF PR for knee rehabilitation: The described con-
trol architecture has been tested in a knee rehabilitation
PR. Knee rehabilitation requires knee flexion-extension and
internal-external rotation, and hip flexion [50]. To this end, a
non-redundant 4-DOF PR has been designed at the Universitat
Politècnica de València [51]. Its four DOFs comprise two
translational movements (xm, zm) in the tibiofemoral plane,
one rotation (ψ) around the coronal plane, and one rotation
(θ) around the tibiofemoral plane (Fig. 4a). These design
specifications were established according to the analysis of
the movements needed for rehabilitation after surgery and the
kind of tests used for diagnosis, such as the Lachman test [52]
and the pivot shift test [53].

The architecture of the 4-DOF PR is 3UPS+RPU, meaning
that the mobile platform is connected to the fixed platform
through three external limbs in UPS configuration and a central
limb in RPU configuration, where the letters R, P, U, and
S stand for the revolute, prismatic, universal, and spherical
joints, respectively, and the underlined format indicate the
actuated joints. This architecture provides the PR with four
major advantages: a) it allows the required mobility, b) it was
simple to manufacture and assemble, c) geometric tolerances
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+
+
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eFeF
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Fig. 3. DMP-embedded combined admittance control and singularity evasion in joint space by adaptation of coupling actions and low-level PD+G joint
position control.
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do not generate instability of the mechanism or high friction,
and d) it is low cost.

q43,
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Fig. 4. Schematic (a) view and (b) configuration of the 4-DOF PR

The PR is characterized by fifteen generalized coordinates
(q⃗):

q⃗ = [q⃗s, q⃗ind]
T (31)

where q⃗ind is the vector of actuated (prismatic) coordinates
and q⃗s are the secondary coordinates, defined as:

q⃗ind = [q13, q23, q33, q42]
T (32)

q⃗s = [q11, q12, q21, q22, q31, q32, q41, xm, zm, θ, ψ]
T (33)

The configuration is defined by the points A0, B0, C0, D0

that link the fixed platform to the mobile platform attached in
A1, B1, C1, Om with four limbs. The configuration is variable
[13] and, in this study, the parameters are R1 = R2 = R3 =
0.4 m, βFD = 90◦, βFI = 45◦, ds = 0.15 m, Rm1 = Rm2 =
Rm3 = 0.3 m, βMD = 50◦, βMI = 90◦.

For more information about the forward and inverse kine-
matic analysis of this PR, see [54].

The external limbs of the PR are driven by prismatic
FESTO DNCE 32-BS10 actuators, while the central limb
is NIASA M100-F16. They are attached to Maxon 148867
DC motors commanded by ESCON 50/5 servo controllers.

An industrial computer reads the encoder positions using a
PCI 1784 Advantech card with 32-bit quadruple AB phase
encoder counters. The control actions are sent through a 12-
bit, 4-channel PCI 1720 Advantech card. The controllers are
implemented in the industrial computer in a modular way,
using Robot Operating System 2 (ROS2) [55] and the C++
programming language. A PD+G control law has been chosen
for position control.

2) Vision system for pose measurement: As explained in
Section V, it is preferable to use external devices to measure
the cartesian pose of the robot rather than apply the forward
kinematic model to the joint positions from the encoder
because that model is no longer valid in the vicinity of a
singularity. In this study, a 3D tracking system (3DTS) is used
for this purpose, composed of 10 infrared cameras (Flex 13)
manufactured by OptiTrack, with an average accuracy greater
than 0.1 mm and a resolution of 1.3 Megapixels at 120 Hz.
What the 3DTS actually tracks is a set of markers (reflective
spheres) placed on both the fixed and the mobile platforms.
Fig. 5 shows a view of the placement of the cameras and a
detail of the markers.

Fig. 5. OptiTrack 3D tracking system layout.

The software Motive processes those markers’ locations,
and that information can be collected by the industrial PC
thanks to the NatNet software development kit (NatNet SDK),
which allows Motive to live stream the data via UDP/multicast.
A calibration process is required prior to the experiments
to ensure a correct reconstruction of the 3D location of the
markers.

In [18], a more detailed explanation of the 3DTS and the
calibration procedure is available.

3) Force sensor: To realize the admittance behavior, a force
sensor is needed to measure the interaction between the patient
and the robot. In this study, the exerted forces and moments
on the mobile platform from the patient’s foot are measured
with an FTN-Delta sensor manufactured by Schunk, which
provides six-axis force/torque measurements in the range of
±330 N (Fx, Fy), ±990 N (Fz) for force and ±30 N·m for
torque load, with a resolution of 0.065 N (Fx, Fy), 0.125 N
(Fz) for force and 0.004 N·m for moment load. A Netbox
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NETB performs the signal conditioning and is connected to
the industrial computer with an Ethernet connection via UDP
at a rate up to 7 MHz. Fig. 6 shows the architecture of the
FTN-Delta sensor and the boot used to attach the patient’s foot
to the sensor.

Ethernet
Connection

PR Control
Computer

Netbox NETB
UDP interface

FTN-Delta

Native Client (C++)
Force node

Ethernet Communications

PR Control 
Computer

(a)

(b)

Power
Supply

Netbox
NETB

Tranducer
Cable

XmYm

Zm

Om

ψ

θ

FTN-Delta

Fig. 6. FTN-Delta sensor architecture regarding (a) hardware and (b) software.

Again, a prior calibration of the sensor should be performed
before the experiments to avoid sensor drifts.

B. Model specifications and test trajectories

The first step involves the selection of the parameters for
both the evader and admittance models. The evader (and
therefore the DMP) has been designed with a quick response
of tseva

= 0.2 s and a gain of Geva = 0.001 m
N for the

four active joints, resulting in (equation (8)) k = 1000 N
m ,

d = 100 Ns
m and m = 2.5 kg. These values are fixed, but

M , D, and K (equation (9)) are calculated at the beginning
of each experiment since they are affected by the variable
length of the trajectory τ . The values of Ωlim and ||JD||lim
are defined through empirical experimentation [18] and set to
2◦ and 0.015, respectively, and JI = I4×4.

Regarding the admittance model, preferences
are different for each axis, and the following
vectors have been designed for good performance:
G⃗adm = [0.004 m

N , 0.002 m
N , 0.04 rad

N·m , 0.04 rad
N·m ]

T ,
t⃗sadm

= [4, 2, 4, 4]T s. The four transfer functions Hλ are
obtained using equation (29). The four TWSs $̂T for this PR
are calculated as:

$̂T1 =

[
z⃗12

r⃗OmA1 × z⃗12

]
, $̂T2 =

[
z⃗22

r⃗OmB1 × z⃗22

]
,

$̂T3
=

[
z⃗32

r⃗OmC1
× z⃗32

]
, $̂T4

=

[
z⃗41
0⃗

] (34)

Two different trajectories have been designed for the eval-
uation. The first trajectory (T1) involves a hip flexion whose
end pose falls in a singularity in xm = 0.01 m, zm = 0.7

m, θ = 0.15 rad, ψ = 0.31 rad. The velocity to reach that
pose is 0.02 m

s for the translational DOFs and 0.03 rad
s for the

rotational ones. This trajectory is not perturbed by any external
force, so the admittance model does not have any effect. This
test serves to check the evader in isolation and has been used
as a baseline to tune the values of Kp, Kd, and Ki of the
DMP controller (see Section V), which are set to 5, 0.1, and
10, respectively.

The second trajectory (T2) consists of a static trajectory
in position (xm = 0.05 m, zm = 0.73 m, θ = 0.07 rad,
ψ = −0.02 rad) with zero force references. According to the
admittance model, a nonzero external force provokes robot
motion, and specifically, a knee rotation in terms of a positive
spin around ψ may lead the robot to a singular position.

Both trajectories are executed on the actual PR, and a com-
parison is established between the activation and deactivation
of the evader in the presence of an external force.

C. Results and evaluation

1) Results of Trajectory 1: Fig. 7 shows the variation in
position caused by the evader force on limbs 3 and 4 for
T1. These are the limbs most affected by the singularity,
i.e., Ωmin = Ω34. This is a specific case in which the
responsible limbs do not change over time in a singular
region, so the algorithm simplifies since only two limbs have
nonzero coupling action and they share the same integrator and
repulsion force (in the scalar form). It can be deduced that the
(avoided) singular configuration starts at approximately t = 15
s and ends at t = 36 s. The deviation of the actual position
with respect to the original reference (the one fed to the DMP)
is ∆q = 4 mm. This value is the same for both limbs since the
dynamics and PID constants for the evader have been chosen
uniformly for all the active joints. However, it is a positive
increment for limb 3 and negative for limb 4, so d⃗ = [+1,−1]
(defined after trying the four possibilities in each time step,
see Section V-B).

The profile of the coupling actions that lead to these results
is depicted in Fig. 8. They are the sum of the proportional,
derivative, and integral components. Although these coupling
forces are designed abstractly (are applied to a virtual mass-
spring-damper), the units (N) have been defined by analogy
to a real system.

To know which singularity indicator caused the activation of
the evader mechanism, Fig. 9 shows the values of both ||JD||
and Ωmin with their corresponding limits.

The most restrictive indicator for this experiment is Ωmin

since the trajectory tries to fall below its limit at t = 15 s,
activating the coupling term. It can be seen how this signal
converges to its limit rather than falling toward 0, thanks to
the effect of the PID and the resulting coupling force of Fig.
8. The initial stage below the limit occurs because the integral
component of the PID needs to charge, and it corresponds to
the gradual increase of the coupling force from t = 15 s in
Fig. 8. In the same way, the connection back to the original
trajectory after the singular configuration is also gradual,
while the integrator discharges to its clipped value of 0. This
coupling force can be seen as a repulsive force similar to that
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applied in obstacle avoidance with DMPs; however, having
an objective control like the one proposed in this study
offers a more guided solution which becomes of paramount
importance in physical human-robot interaction settings like
rehabilitation. A recording of this experiment is available in:
http://roboprop.ai2.upv.es/wp-content/uploads/2022/10/dmp e
vasor TRR15 vf.mp4.

2) Results of Trajectory 2: In the experiment with T1, the
deactivation of the evader might not have a significant impact
as long as the applied external force becomes zero, which was
fulfilled during the first test but does not occur in a realistic
human-robot interaction setup. In the following experiment
with T2, we further justify the statement that in a Type II
singular configuration, the PR cannot bear external forces, and
therefore, we also show the actual utility of the evader. The
admittance module is active for this experiment with a static
reference position, and an external torque is applied around ψ

to lead the robot to a singularity.
Figure 10 shows the value of ψ for the experiments both

with and without the evader activation, and Fig. 11 depicts the
torque in Z exerted on the PR in those experiments.

The first important fact to note is that the experiment
without the evader was stopped soon after its start because the
PR underwent a singular configuration and became unstable
due to the unbearable external force. However, the PR in the
experiment with the evader was kept stable and off the singular
configuration thanks to the evader action. From Fig. 10, it can
be deduced that the singularity starts beyond ψ = 0.2 rad
approximately.

On the other hand, Fig. 11 proves that even exerting a
greater force in the experiment with the evader (which reaches
20 N·m) does not turn the system unstable, in constrast to the
experiment without the evader, where a smaller force suffices
to destabilize the system.

No matter how hard the patient tries to push the robot
toward the singularity (considering reasonably high forces for
a healthy human leg), the combined effect of the deactivation
of the admittance model and the evader contribution through
its coupling force can keep the PR in safe positions.

Furthermore, the deactivation of the admittance model
within a singularity is gradual, so the patient does not feel
an abrupt force or movement, but it is instead a struggle
between the human and the robot. This effect can be seen
in Figure 12, where the indicator Ωmin is plotted, which
is again the most restrictive, so ||JD|| values are omitted.
In this experiment, the affected limbs are again 3 and
4. From approximately t = 30 s, the wiggly blue curve
represents this struggle when the evader is activated to
push the PR in the opposite direction to that of the human
force. This effect is visibly smooth and slight, making it
convenient for rehabilitation tasks. To appreciate this, a
video of this experiment can be visited through this URL:
http://roboprop.ai2.upv.es/wp-content/uploads/2022/10/dmp c

http://roboprop.ai2.upv.es/wp-content/uploads/2022/10/dmp_evasor_TRR15_vf.mp4
http://roboprop.ai2.upv.es/wp-content/uploads/2022/10/dmp_evasor_TRR15_vf.mp4
http://roboprop.ai2.upv.es/wp-content/uploads/2022/10/dmp_con_evasor_vf.mp4


12

0 10 20 30 40

Time (s)

0.015

0.02

0.025

0.03

||
J

D
||

meas

lim

(a)

0 10 20 30 40

Time (s)

1.5

2

2.5

3

3.5

4

4.5

m
in

 (
d

e
g

re
e
s
)

meas

lim

(b)

Fig. 9. Indicators of singularity (a) ||JD||, (b) Ωmin for experiment T1.

0 10 20 30 40 50 60 70

Time (s)

0

0.2

0.4

0.6

0.8

 (
ra

d
)

ref

meas (with evader)

meas (without evader)

Fig. 10. Original reference and actual ψ for experiment T2 with and without
evader.

on evasor vf.mp4.
Figure 12 also depicts why the system without evader

was destabilized: the value of Ωmin reached 0 right before
diverging, bringing to light the utility of the indicator Ωmin

for singularity detection. It is also important to highlight
that the thresholds Ωlim and ||JD||lim are not boundaries
that separate trajectories totally clear of singularities from
extremely dangerous zones because singular configurations
are gradually reached and the indicators, empirically
obtained, may be different among them. The values
used here are a good tradeoff, and certain exceedance
in controlled environments (as occurs in Fig 9b and Fig
12) should not be worrying. The video in the following
URL shows the behavior when the evader is not activated:
http://roboprop.ai2.upv.es/wp-content/uploads/2022/10/dmp s
in evasor vf.mp4.
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Fig. 11. External torque in z Mz for the experiment T2 with and without
evader.

In Fig. 13, the admittance (13a) and evader (13b) coupling
actions for limbs 3 and 4 are represented. The profile of the
admittance coupling action (in joint space) is another proof
that the deactivation is gradual since the values do not directly
drop to 0 (this becomes clearer for limb 3) but rather decrease
gradually as the evader also acts, until the PR gets released
and the human-robot interaction continues. The evader is able
to keep this interaction compliant thanks to the effect of the
integral component, which causes the force to remain stable
even in a state of continuous fluctuation of singularity crossing,
as happens in this experiment.

VIII. CONCLUSION

In this paper, a new insight into the DMP has been provided
from two perspectives: i) the capability to define the dynamic
behavior of the DMP by choosing the proper constants of the

http://roboprop.ai2.upv.es/wp-content/uploads/2022/10/dmp_con_evasor_vf.mp4
http://roboprop.ai2.upv.es/wp-content/uploads/2022/10/dmp_sin_evasor_vf.mp4
http://roboprop.ai2.upv.es/wp-content/uploads/2022/10/dmp_sin_evasor_vf.mp4
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Fig. 12. Values of Ωmin for the experiment T2 with and without the evader.

mass-spring-damper system, which has been extended from
the more simple and traditional spring-damper system with
no other constraint than the critically damped response, and
ii) the possibility to introduce objective controls in the system
and embed them inside the coupling actions through a control
law. A new algorithm for Type II singularity avoidance has
also been presented, which precisely defines an objective on
the DMP and implies a step forward in the discipline of safe
human-robot interaction.

These goals have been successfully fulfilled through an ex-
periment with a 3UPS+RPU PR meant for knee rehabilitation,
where two different tasks were performed simultaneously:
admittance behavior and singularity avoidance. The admittance
model has been embedded into the DMP thanks to the Gaus-
sian Kernel Approximators learned for the force trajectory
and the phase sharing. The experiment showed that a raw
admittance controller is unsafe for human-robot interaction
since it can drive the robot toward unstable singular positions.
Therefore, the inclusion of the designed evader plays a signif-
icant role, at the expense of the extra instrumentation needed
to measure the robot’s pose. Nevertheless, this combination
is not trivial since the two tasks are not naturally expressed
in the same coordinate system, nor do they share the desired
dynamic response, so we have also addressed how to adapt
both issues.

Besides, the singularity evader only uses the two limbs more
involved in the singularity given by the measurement of Ωmin,
so the deviation is tiny, as shown in the experiment of the
evader in isolation (for which a deviation of 4 mm is enough).
When combined with the admittance model, the evader per-
forms smooth deactivations of the admittance behavior, which
do not cause the loss of the compliant manipulation or an
abrupt change uncomfortable for the patient. The evader is
also applicable to any PR prone to undergoing Type II singular
configurations, so our method generalizes to a wide range of
applications.

Type II singularities are exclusive of PRs; however, the de-
veloped methodology based on establishing objective controls

embedded in a DMP and designing the coupling actions to
accomplish such goals can be applied to a serial robot whose
task can be characterized in such a way (for example, in an
obstacle avoidance task).

This study opens up new possible lines of work. The
adaptation is performed during the evasion stage via a PID
controller, however, all the parameters (the DMP, admittance
transfer functions and controllers) are kept constant during
the experiment, so in future work, some of these variables can
be modified online for further adaptation. Also, methods like
iterative learning control (ILC) are interesting since rehabilita-
tion usually involves the repetition of the same experiment. In
this context of rehabilitation, it is also convenient to compare
trajectories for diagnosis, and the DMP encodes the trajectories
in such a way that facilitates this task by means of the learned
weights. The proposed formulation could also benefit from
that feature, as well as the analysis of the coupling actions for
the reproduction of trajectories and imitation learning.

APPENDIX A
DYNAMIC PARAMETERS OF SECOND-ORDER SYSTEM TO

FULFILL CONSTRAINTS

In the following, we derive the solutions of k, d, and m from
equation (8) which simultaneously fulfill the three constraints
expressed in Section III-B for a standard mass-spring-damper
transfer function like the expressed in (7). For the value of k,
it suffices to apply the theorem of static gain, which states that
a generic transfer function TF (s) has a gain in steady state
equal to G = TF (0), and in this case TF (0) = 1

k , so k = 1
G .

The critically damped behavior (constraint 3) is obtained if
the transfer function has two equal poles (or a single pole of
multiplicity 2). For this study, we express the transfer function
as a standard second-order system:

TF (s) =
KTFω

2
n

s2 + 2ξωns+ ω2
n

(35)

where KTF is the gain, ωn is the natural frequency, and ξ
is the damping factor. By comparing the transfer functions
of equations (35) and (7), the values of KTF , ωn, and ξ are
calculated as:

KTF =
1

k
ωn =

√
k

m
ξ =

d

2
√
km

(36)

The poles of this system are given by:

p1,2 = −ξωn ± ωn

√
1− ξ2 (37)

If ξ = 1, the imaginary component disappears, so the pole of
multiplicity two is −ωn. This is the condition for the critically
damped behavior, and making ξ = 1, from equation (36) we
obtain:

d2 = 4km (38)

The last constraint is the settling time, and since there is
one real pole, the settling time with the criterion of 98% of
the final value is:
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Fig. 13. Coupling actions by (a) admittance model, and (b) evader for limbs 3 and 4 in the experiment T2.

ts =
4

ωn
= 4

√
m

k
(39)

Substituting the value of m from equation (38) in (39), the
result is:

ts = 4

√
d2

4k2
= 2

d

k
(40)

The value of d is obtained with equation (40), and afterward
the value of m is calculated with (38), obtaining the sought
expressions of equation (8).

APPENDIX B
COUPLING ACTION CONVERSION FROM CARTESIAN TO

JOINT COORDINATES

Next, the demonstration of the coupling action conversion
(equation (26)) is presented starting from the differential
kinematics equation (15) and assuming that the encoded DMP
is identical for all DOFs, i.e., they share the constants M , D,
and K. We want to show that the response of a DMP defined
in cartesian space can be emulated with a DMP defined in
joint space, and obtain the expression that fulfills this match.

In Fig. 14, this problem is posed graphically, where the
mapping from f⃗Cy

to f⃗Cq
, denoted by A, is the matrix

to obtain. If the natural flow of the phase of the DMP is
not altered with any of its capabilities (for example, the
variation of velocity or the phase stopping), this mechanism
is equivalent to a linear system given by its transfer functions
DMP1(s) = DMP2(s) = · · · = DMPΛ(s) which calculate
a variation (

−→
∆y,

−→
∆q) to sum to the original references (y⃗d, q⃗d)

to obtain the final references (y⃗ref , q⃗ref ).
The following expression must be fulfilled to prove the

equality between both responses:

q⃗ref = IK(y⃗ref ) (41)

yref

DMPcart

 
DMP1(s) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ DMPΛ(s)

  +
+

+
+ΔyΔy

A

DMPjoint

 
DMP1(s) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ DMPΛ(s)

  +
+

+
+

ΔqΔq

qd

fCqfCq
qref

fCy

yd

Fig. 14. Graphical representation of the equivalence of responses using a
DMP defined in cartesian and joint space.

where IK(·) is the inverse kinematics operator. Beforehand,
we assume that the original references do fulfill that expre-
sion: q⃗d = IK(y⃗d). Moreover, the matrices DMPcart =
DMPjoint are equal, both diagonal with the same values
in the diagonal. Following the upper branch, the relationship
between y⃗ref and f⃗Cy is the following:

y⃗ref = y⃗d +
−→
∆y = y⃗d +DMPcart · f⃗Cy

(42)

On the other hand, the following applies to the lower branch:

q⃗ref = q⃗d +
−→
∆q = IK(y⃗d) +DMPjoint · f⃗Cq

(43)

We now want to obtain IK(y⃗ref ), and the following state-
ment can be applied:

IK(y⃗d +
−→
∆y) ≈ IK(y⃗d) +

−→
∆q (44)
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This approximation gets more valid as the displacement
−→
∆y

gets smaller since the IK(·) operator becomes more linear.
This happens as the sampling time is reduced and the changes
get smoother (which is accomplished thanks to the transfer
functions), and equation (15) can also be applied in this
situation for a slight increment, resulting in:

−→
∆q ≈ J−1

I · JD ·
−→
∆y (45)

Now, we can apply equations (44) and (45) to (42) to obtain:

IK(y⃗ref ) ≈ IK(y⃗d) + J−1
I · JD ·DMPcart · f⃗Cy (46)

In order to fulfill equation (41), the expressions (43) and
(46) must match, and this is achieved if:

DMPjoint · f⃗Cq
= J−1

I · JD ·DMPcart · f⃗Cy
(47)

Finally, we used the two properties mentioned above:
1) Both cartesian and joint DMP matrices are identical:

DMPcart = DMPjoint.
2) They are diagonal, and all the members of the diagonal

are the same: DMP1(s) = DMP2(s) = · · · =
DMPΛ(s).

The second property allows the second term of Equation
(47) to commute with respect to DMPcart, so it can be placed
at the beginning of the expression without altering the result.
Afterward, the matrices of DMPjoint and DMPcart can be
removed thanks to the first property, leaving:

f⃗Cq
= J−1

I · JD · f⃗Cy
(48)

This was the intended result of the expression (26), and it
entails the following mapping A:

A = J−1
I · JD (49)

This result indicates that if some desired behavior has been
designed for a DMP in cartesian coordinates (encoded in
DMPcart), and as long as all the DOFs share the dynamics, it
can be extrapolated to the joint space just by defining the same
DMP in joint coordinates and mapping the coupling action
using (48). Of course, this can be applied in the opposite
direction to obtain a behavior in cartesian coordinates from
that in joint coordinates by solving (48) for f⃗Cy

.
The result also states that the mapping for the coupling

action is the same as the one used for the velocities (equa-
tion (15)), which seems counterintuitive since the conversion
between forces involves the transpose Jacobian according to
the principle of virtual power. However, these are not real
but virtual forces applied on a virtual system with the aim
of outputting desired positions and velocities. For this reason,
the analysis showed that the kinematic relationship should be
applied instead.

Lastly, the approximations of equations (44)-(46) depend on
the sample time and the speed of the transfer functions. In all
the experiments performed, with a sample time of 0.01 s, the
response is very accurate as seen in the experimental results.
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[51] M. Vallés, P. Araujo-Gómez, V. Mata, A. Valera, M. Dı́az-Rodrı́guez,
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from the Escuela Politécnica Nacional, Ecuador.
Currently, he is a Ph.D. candidate in automatic,
robotics and industrial computing from Universidad
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