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Performing lifespan assays with Caenorhabditis elegans (C. elegans) nematodes manually is a time consuming and 
laborious task. Therefore, automation is necessary to increase productivity. In this paper, we propose a method to 
automate the counting of live C. elegans using deep learning. The survival curves of the experiment are obtained 
using a sequence formed by an image taken on each day of the assay. Solving this problem would require a 
very large labeled dataset; thus, to facilitate its generation, we propose a simplified image-based strategy. This 
simplification consists of transforming the real images of the nematodes in the Petri dish to a synthetic image, 
in which circular blobs are drawn on a constant background to mark the position of the C. elegans. To apply this 
simplification method, it is divided into two steps. First, a Faster R-CNN network detects the C. elegans, allowing 
its transformation into a synthetic image. Second, using the simplified image sequence as input, a regression 
neural network is in charge of predicting the count of live nematodes on each day of the experiment. In this 
way, the counting network was trained using a simple simulator, avoiding labeling a very large real dataset 
or developing a realistic simulator. Results showed that the differences between the curves obtained by the 
proposed method and the manual curves are not statistically significant for either short-lived N2 (p-value log 
rank test 0.45) or long-lived daf-2 (p-value log rank test 0.83) strains.
1. Introduction

There is great interest in understanding aging and this field is un-

der continuous study. With aging, neurodegenerative diseases such as 
Alzheimer’s and Parkinson’s appear and constitute a major social prob-

lem. For this reason, it is essential to search for new drugs, therapeutic 
components and food products to help tackle these diseases and im-

prove the quality of life. The nematode Caenorhabditis elegans (C. ele-
gans) is an ideal animal model for research due to its characteristics: (a) 
it measures 1 mm in length, allowing large populations to be cultured 
in standard Petri dishes economically; (b) it is mainly fed on the bacte-

ria Escherichia coli (E.coli), which is inexpensive; (c) it is transparent, 
making it possible to observe its tissues and organs under a micro-

scope; (d) it has a short lifespan of approximately 3 weeks (although 
this can vary depending on the strain), allowing short-term assays to 
be performed. Thanks to research using this nematode, discoveries re-

lated to aging have been made [1–3]. The assay par excellence in the 
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study of aging with C. elegans is the lifespan assay, which consists of 
counting the number of live nematodes each day of the experiment 
to obtain survival curves [4–6]. The nematodes are divided into dif-

ferent groups and subjected to different conditions that may influence 
life expectancy. Subsequently, statistical methods are used to analyze 
whether there are statistically significant differences between the sur-

vival curves obtained. This daily counting is carried out manually in 
most laboratories by qualified technicians, who check whether each 
nematode is still mobile by prodding them with a platinum wire to 
check their response, especially in the last days, when their movement 
is greatly reduced. Considering the above, together with the fact that 
100 nematodes are usually needed to test each condition, this is a very 
laborious and time-consuming task. Thus, the automation of this pro-

cess becomes highly necessary, as in addition to reducing time and 
facilitating the researcher’s tasks, it provides more precise and objec-

tive measurements and avoids possible human errors. However, the 
automation of C. elegans assays in standard Petri dishes is a complex 
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task as these nematodes can adopt a great variety of postures and give 
false positives (due to the presence of lint, dust, etc.) or false negatives 
(occlusions, aggregations, condensations). Solving these problems re-

quires complex vision algorithms, in which numerous parameters must 
be manually adjusted. For this reason, given the good results obtained 
by deep learning techniques in task resolution in recent years, this work 
has sought to analyze the use of artificial neural networks to automate 
lifespan assays. All these problems make lifespan automation a task 
in which nematode detection and event counting (live or dead) must 
be solved. Training a neural network to learn to solve this problem 
requires complex models, which need very large labeled datasets in or-

der to achieve good results. Obtaining very large datasets from lifespan 
experiments requires a lot of capture and labeling time. Developing a 
realistic simulator is also a complicated task and, furthermore, training 
these models require high computational resources. Due to these limi-

tations of artificial neural networks when few data and computational 
resources are available, we propose a method that seeks to decompose 
the problem into two phases and to train the counting network with a 
simplified simulated image. In summary, the contributions of this paper 
are as follows:

• A method using artificial neural networks is proposed to automate 
the acquisition of survival curves for the lifespan assay with C. ele-
gans. Specifically, it is approached as a regression problem in which 
the input of the network is a sequence with an image correspond-

ing to each day of the experiment and the output is a sequence of 
values corresponding to the number of live nematodes each day.

• Given the difficulty of the problem, due to all the issues mentioned 
above together with the difficulty involved in obtaining a suffi-

ciently large dataset, we propose a training method based on a 
simplified domain in order to train the regression network model 
with simulated images. The strategy consists of transforming the 
real images into a synthetic domain that is easy to simulate and, 
thus, train the regression network in this synthetic domain with as 
large a dataset as required.

• This strategy comprises two phases. First, a Faster R-CNN network 
is in charge of performing nematode detection, and the positions 
are used to obtain an image of simple blobs. Second, an alive count-

ing neural network is used to perform the regression and obtain the 
lifespan curves.

• The proposed strategy could be applied to other animal behav-

ior monitoring problems (trajectory analysis, anomaly detection) 
where obtaining large labeled datasets is costly.

The paper is structured as follows: Sect. 2 shows the state of the art 
in lifespan automation techniques with traditional computer vision and 
deep learning, and a review of techniques for training neural networks 
with synthetic data. Sect. 3 describes the proposed lifespan method. 
Experiments and results are presented in Sect. 4. Discussion and con-

clusions are presented in Sect. 5.

2. Related work

In this section we review the state of the art of automation lifespan 
experiments using both traditional computer vision and deep learn-

ing techniques and review some learning techniques using synthetic 
data.

2.1. Automation of C. elegans lifespan assays

In recent decades, different methods have been proposed to auto-

mate C. elegans lifespan assays [7]. WormScan [8] proposes the use of 
scanners to monitor standard Petri dishes and employ motion detec-

tion techniques to determine whether nematodes are alive or dead. The 
Lifespan Machine [9] also proposes a method for lifespan automation 
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based on monitoring Petri dishes by means of scanners but in a more 
Computational and Structural Biotechnology Journal 21 (2023) 5049–5065

sophisticated way. Modifications have been made to the scanner allow-

ing for better temperature regulation, which affects nematode lifespan, 
and optics are adjusted to obtain better image quality. Moreover, they 
developed their own software that enables them to identify the nema-

todes and analyze their movement to determine whether they are alive 
or dead. WorMotel [10] used non-standard multiwell plates, in which 
each nematode is separated, thus avoiding aggregations and facilitating 
the detection of dead nematodes. However, being in a very confined 
space limits the nematode’s movement and may modify its behavior. 
Automated Wormscan [11] presents another method based on capture 
by scanners and has developed motion-based image analysis software. 
WormBot [12] is a robotic system that allows semi-automatic lifespan 
analysis. Recently, a new prototype [13] has been developed, capable 
of automating the lifespan assay and obtaining survival curves using 
traditional computer vision techniques. These methods automate ne-

matode counting using traditional computer vision techniques based 
on motion analysis. The drawback of these techniques is that they re-

quire manual adjustment of numerous parameters that should work in 
order to solve a wide variety of problems arising in the assays: con-

densation, occlusions, aggregations, occurrence of fuzz and dust motes, 
changes in illumination, etc. Given these difficulties, it is interesting 
to analyze the use of artificial neural networks to solve lifespan assay 
automation, as they have recently demonstrated good results in object 
detection, classification and segmentation tasks [14–16], outperform-

ing traditional techniques. In addition, neural networks have been used 
in recent years to solve problems [17–20] related to people counting, 
behavioral analysis, etc. In this work we aim to count the number of 
live C. elegans on each day of the experiment. To know whether a ne-

matode is alive or dead we must check if it has moved from one day 
to the next; therefore, this is an event counting and movement analy-

sis problem. Several deep learning approaches have been proposed in 
the literature to solve different problems involving C. elegans. WorMa-

chine [21] uses a neural network to distinguish nematodes from noise. 
In [22] convolutional neural networks (CNNs) are used to classify differ-

ent strains of nematodes. We have also found papers proposing methods 
for the identification of head and tail, and the estimation of skele-

tons [23–25]. Works such as [26] and [27] use Faster R-CNN to detect 
C. elegans. Recently, methods based on neural networks working with 
microscopic images have been proposed: [28] outlines a method to seg-

ment and estimate the age of C. elegans; [29] uses linear regression and 
logistic regression models to estimate the age of nematodes; in [30]

models are presented to classify nematodes into long-lived and short-

lived categories, to classify movement into fast or slow and allow the 
accurate segmentation of nematodes into anterior, mid-body and pos-

terior parts. In our previous work [31], we combined traditional vision 
techniques with a deep learning-based C. elegans live or dead classi-

fier. Unlike our previous approach, where the problem was solved by 
individually classifying C. elegans as live or dead by combining tradi-

tional computer vision techniques and neural networks, in this work it 
has been approached as a regression problem based entirely on deep 
learning.

2.2. Synthetic datasets

One of the limitations of supervised learning with artificial neural 
networks is the difficulty in obtaining a sufficiently large, varied, and 
representative dataset of the problem under study. Depending on the 
problem, obtaining a correctly labeled dataset can be very laborious 
and costly. There are various techniques that can help to solve this prob-

lem, such as data augmentation by means of transformations (rotations, 
translations, intensity changes, etc.), the application of transfer learning 
or the use of synthetic imaging. The latter has stirred interest in the re-

search community in recent years. The use of simulators can provide 
synthetic datasets, avoiding the cost of labeling and obtaining per-

fectly labeled images. However, the generated images usually present 

a problem known as domain transfer or domain gap, which prevents 
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Fig. 1. Pipeline of the proposed lifespan automation method: (a) capture, detection and domain change; (b) obtaining the lifespan curve.
the direct use of the simulator-generated images to train models that 
work with real images. In recent years, different methodologies have 
been proposed to mitigate the domain gap problem [32]. One of these 
is domain randomization [33], which consists of applying transforma-

tions to the synthetic images so that the synthetic dataset distribution 
is sufficiently varied to make the model, trained with these data, ro-

bust enough to work with real data. Another technique is “cut, paste 
and learn” [34], which consists of mixing different real images to ob-

tain synthetic samples. Despite reducing the domain gap, this technique 
is limited because the potential variability depends on the real images 
available. Recently, domain adaptation techniques [35] have been used 
to make the simulated images more realistic using generative adversar-

ial networks (GANs). This refinement has also been performed in the 
reverse way, i.e., making real images pass into the domain of synthetic 
images. Other strategies employed are hybrid datasets [36]: (a) mixing 
real and simulated images; (b) first training the network with a simu-

lated image and then performing the fine-tuning training with the real 
image. In this work, we propose a domain translation strategy from real 
to synthetic images, but we do not use a realistic synthetic image but, 
rather, a simplified image of blobs.

3. Proposed lifespan method

This paper proposes a method to automate the lifespan assay with C. 
elegans, that is, to establish the number of live C. elegans on each day of 
the experiment from an image sequence, and subsequently obtain the 
survival curve. Fig. 1 shows the pipeline of our method, which com-

prises two stages: First, the image sequence of the assay is captured. 
This sequence consists of one image from each day of the experiment. 
Next, a detection network is used to locate the C. elegans present in the 
images. Using these locations, a new type of simplified image is gener-

ated, in which circular blobs appear on a constant background at the 
positions where the C. elegans are located. This sequence in synthetic 
domain is the input of a regression neural network, which returns to 
the output a vector with the number of live C. elegans in each day. As 
shown in Fig. 1, the synthetic images are rescaled to a lower resolu-

tion to train the counting network without causing memory problems. 
Finally, post-processing is applied to the curve obtained.

3.1. Image acquisition method

Our lifespan method needs to capture images of the whole Petri dish, 
5051

for which members of our laboratory have developed two capture sys-
tems: (1) a Cartesian multi-view robot [37], which can also analyze 
images at the micro level and (2) SiViS [13], an open software and 
hardware system, which has been used in this work. This system uses a 
backlight configuration, in which a lighting system (a 7” Raspberry Pi 
display 800 × 480 at a resolution at 60 fps, 24-bit RGB color) is placed 
at the bottom, while at the top there is a RGB Raspberry Pi camera v1.3 
(OmniVision OV5647, which has a resolution of 2592 × 1944 pixels, 
a pixel size of 1.4 × 1.4 μm, a view field of 53.50° × 41.41°, optical 
size of 1/4”, and focal ratio of 2.9). In this configuration, the Petri dish 
is placed in between the two. This system incorporates an intelligent 
illumination control [38] (performed by a Raspberry Pi 3) that main-

tains the background and the nematodes in less variable gray ranges, 
which facilitates segmentation. The distance between the camera and 
the Petri plate is sufficient to enable a complete picture of the Petri 
plate, and the camera lens is focused at this distance (about 77 mm). 
With this image capture and resolution setting (1944 × 1944 pixels), 
the worm size projects approximately 55 × 3 pixels. An example of the 
image captured by the SiViS system is shown in Fig. 2.

3.2. Domain change method based on detection

Once the image sequences of the lifespan assay have been captured, 
the next step of the method is the domain change from the real images 
to the simplified image domain, on which the counting neural network 
has been trained. As discussed in the related work section, when trans-

forming real images to synthetic ones, the use of generative adversarial 
networks [39] is common. Analyzing our problem, we concluded that 
the optimal solution for our case was the use of a detection network for 
the following reasons:

1. GANs are complicated to train (convergence problems, modal col-

lapse, difficulty in choosing metrics, need for complex cost func-

tions), while training a pre-trained detection network is simpler.

2. Supervised GANs with the paired data method need a lot of data 
for training, while the detection network can take advantage of 
pre-training.

3. As discussed in [40], unsupervised GANs tend to work well in style 
transfer if it involves changes in color and texture. However, if 
the task requires geometry changes and detection of objects to be 
removed (in our case the edge of the plate, dirt, and other opaque 
objects that can be mistaken for the nematode), making it work is 

even more complex.
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Fig. 2. Example of a complete picture of the Petri plate captured with SiViS.
4. GANs can generate images with artifacts, while using the detec-

tion network to make the domain change will only produce false 
positive or false negative errors.

In recent years, convolutional neural networks (CNNs) have facilitated 
great advances in the detection of small objects [41]. Noteworthy are 
the one-stage (YOLO [15], SSD [42]) and two-stage methods (Faster R-

CNN [16], RFCN [43]). The two-stage methods use a Region Proposal 
Network (RPN), which generates the candidate bounding boxes to be 
objects of interest. The network then determines the class to which each 
candidate belongs and performs a regression to refine the bounding box 
coordinates. Methods such as YOLO perform detection and classification 
in a single stage. One-stage methods are faster but two-stage meth-

ods are more accurate. Therefore, as our application does not require 
speed, we chose Faster R-CNN. In addition, accuracy and robustness are 
needed as detection must be performed at different C. elegans life stages 
and on backgrounds with possible dirt on the Petri dish. Specifically, 
the Faster R-CNN model with a ResNet-50-FPN backbone pre-trained

on COCO dataset has been used. The network architecture is shown in 
Fig. 3.

The model was implemented and trained on a computer with an In-

tel® Core™ i9-9900KF processor and an NVIDIA GeForce RTX 2080 Ti 
GPU. The network was trained for 20 epochs with an initial learning 
rate of 0.005 modified every 3 epochs by a factor of 0.1. The opti-

mizer used was SGD with momentum 0.9 and weight decay 0.0005. 
Vertical flip was used as a data augmentation technique. As shown 
in Fig. 4, the real image is processed by the detection neural net-

work obtaining the coordinates of the bounding box for each nema-

tode. Using these coordinates, the synthetic domain image is created, 
rescaled to a resolution of 256 x 256 pixels. This size is chosen be-

cause the aim is to work with the lowest possible resolution in order 
to train the counting network without incurring memory problems. 
In our repository (https://github .com /AntonioGarciaGarvi /Celegans -
Lifespan -Automation -Using -Deep -Learning), readers can find a demo 
with some examples of how our model detects C. elegans and the syn-

thetic images generated.

3.3. Counting method

To solve the problem of counting live C. elegans, it was approached 
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as a regression in which the input of the network is a sequence of images 
(1 for each day of the experiment) and the output is a vector with the 
number of live C. elegans in each image. Our method uses a sequence 
length of 57 images, since the longest lasting assay we perform is 60 
days, and counting starts from day 4, which is approximately when C. 
elegans reaches adulthood. The determination of the number of live ne-

matodes for each day is based on the changes in position between days; 
therefore, it is necessary to use temporal information. Taking this into 
account, a sequence to sequence architecture was proposed, consisting 
of three convolutional layers acting as feature extractors, sequential lay-

ers extracting the temporal information and finally three linear layers 
obtaining the count vector. A schematic image of the proposed count-

ing method is shown in Fig. 5. For the sequential processing part, three 
alternatives were compared: LSTM, GRU and Transformer. This compar-

ison is shown in the results section. Table 2 shows the hyperparameters 
of the seq2seq models compared. The models were implemented and 
trained using the Pytorch deep learning framework on a computer with 
an Intel® Core™ i7-7700K processor and NVidia GeForce GTX 1070 Ti 
graphics card. The models were trained for 600 epochs with a learning 
rate of 0.001 and a batch size of 16 samples. The cost function (Eq. (1)) 
was the mean squared error (MSE) and the optimizer used was SGD.

MSE = 1
𝑁

𝑁∑

𝑖=1

(
𝑦𝑖 − 𝑦𝑖

)2
(1)

where N is the total number of frames in the batch, 𝑦𝑖 and 𝑦𝑖 are the 
model prediction for the number of live C. elegans in frame i and the 
true number of live C. elegans in frame i, respectively (Table 1).

3.3.1. Simulator

As mentioned in the introduction, training neural networks may re-

quire a large amount of data depending on the task to be solved. For 
this reason, the use of synthetic data has been proposed in this paper. 
To avoid the domain gap problem, we decided to transform the real 
image to a simplified domain and then train the lifespan network with 
these synthetic images. The simulator uses a mathematical model to 
generate the lifespan curves, and in this case we have used the Weibull 
model (Eq. (2)) [45]. Weibull model can calculate the percentage of 
C. elegans alive on the day of experiment t, using two parameters (a, 
b) as input, which are related to the slope of the mortality curve and 
the mean lifespan, respectively. Random transformations are applied to 

these theoretical curves to avoid overfitting the neural network to them. 

https://pytorch.org/vision/main/models/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html
https://pytorch.org/vision/main/models/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html
https://github.com/AntonioGarciaGarvi/Celegans-Lifespan-Automation-Using-Deep-Learning
https://github.com/AntonioGarciaGarvi/Celegans-Lifespan-Automation-Using-Deep-Learning
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Fig. 3. Faster R-CNN detection network architecture employed [44].

Fig. 4. Domain change from real (left) to simplified synthetic image (right).
In addition, during the simulation, cases like those occurring in the real 
images are recreated: (a) occlusions causing blobs to disappear on one 
day and reappear on the following days; (b) on days without capture 
(weekends and holidays) a blank image is used; (c) small rotations and 
translations that may occur when placing the plates in the capture sys-

tem. Using the generated curve, images are generated for each day of 
the experiment, as shown in Algorithm 1.

𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙(𝑡) = 𝑒

−𝑡
𝑏
𝑎

(2)

The simulation is done online, i.e., the dataset is generated during 
training, thus avoiding the need to store the images on disk. The image 
size is small (256 x 256 pixels) and the operations are simple; therefore 
it can be simulated quickly. The input parameters to the simulator are 
the mean life, the slope and the number of objects to simulate. Thus, 
the sequence generated by the simulator for each combination of these 
parameters is an input to the network. The number of objects varies 
between 10 and 15, since this is the number of C. elegans that are usu-

ally present in the experiments in our dataset. The parameter affecting 
the mean life oscillated between 5 and 57, and the slope parameter be-

tween 4 and 20. This combination gives rise to 5406 theoretical curves, 
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which are also randomly modified, so they change in each training it-
eration. This, together with the fact that the positions of the blobs is 
also randomly generated each time, increases the variability, making 
the dataset as large as required.

As our lifespan regression model has a fixed sequence length (57), 
when experiments are of shorter duration, we use padding which con-

sists of replicating the last image until the end of the sequence. There-

fore, as there are no worm displacements, the neural network must 
learn that all worms are dead. Additionally, we use a different type 
of padding on days when no images are captured. In such cases, we in-

sert blank images as padding. This ensures that the temporal continuity 
of the experiment is maintained in the input data while allowing the 
neural network to recognize periods when no images were available for 
analysis. These blank image paddings do not affect the real-time inter-

vals either, as they represent the absence of data rather than artificial 
worm activity.

3.3.2. Postprocessing

The last step involves correction of the obtained curves, since 
the lifespan curves must decrease monotonically. The post-processing 
method proposed in [46] is applied. This method divides the curve 
into two cycles using the mean life of the strain (usually 14 days for 

strain N2 and 42 for daf-2). In the first cycle, which corresponds to 
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Table 1

Summary of the alive counting neural network architecture used.

Layer name Output size Layer details

conv1 [Batch size x seq length, 4, 252x252] 5x5, 4, stride 1

cnn bn1 [Batch size x seq length, 4, 252x252] 𝑒𝑝𝑠 = 1𝑒− 05, momentum=0.1

leaky relu1 [Batch size x seq length, 4, 252x252] -

max pooling1 [Batch size x seq length, 4, 84x84] 3x3, stride 3

conv2 [Batch size x seq length, 8, 80x80] 5x5, 8, stride 1

cnn bn2 [Batch size x seq length, 8, 80x80] 𝑒𝑝𝑠 = 1𝑒− 05, momentum=0.1

leaky relu2 [Batch size x seq length, 8, 80x80] -

max pooling2 [Batch size x seq length, 8, 20x20] 4x4, stride 4

conv3 [Batch size x seq length, 16,16x16] 5x5, 16, stride 1

cnn bn3 [Batch size x seq length, 16, 16x16] 𝑒𝑝𝑠 = 1𝑒− 05, momentum=0.1

leaky relu3 [Batch size x seq length, 16, 16x16] -

max pooling3 [Batch size x seq length, 16, 8x8] 2x2, stride 2

seq2seq [Batch size, seq length, 1024] See Table 2

linear1 [Batch size, 2000] In features = seq length x 1024

Out features = 2000

bn fc 1 [Batch size, 2000] 𝑒𝑝𝑠 = 1𝑒− 05, momentum=0.1

leaky relu fc1 [Batch size, 2000]

linear2 [Batch size, 2000] In features = 2000

Out features = 2000

bn fc2 [Batch size, 2000] 𝑒𝑝𝑠 = 1𝑒− 05, momentum=0.1

leaky relu fc2 [Batch size, 2000]

linear3 [Batch size, 750] In features = 2000

Out features = 750

bn fc 3 [Batch size, 750] 𝑒𝑝𝑠 = 1𝑒− 05, momentum=0.1

leaky relu fc3 [Batch size, 750]

linear4 [Batch size, seq length] In features = 750

Out features = seq length
Fig. 5. Diagram of the architecture used. The CNN performs the feature extrac-

tion, the sequence neural network extracts the temporal information, and the 
fully connected layers perform the live C. elegans counting.

Table 2

Hyperparameters of the seq2seq models used.

LSTM & GRU TRANSFORMER

Hidden size Num layers dim depth heads mlp dim dim head

1024 2 1024 2 8 2048 64

the days with the highest probability of occlusions or aggregations, 
if the number of nematodes is higher on one day than on the previ-

ous one, the latter is corrected upwards. The second cycle corresponds 
to days with less movement and greater accumulation of dirt, which 
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leads to false detections, so if more nematodes are detected in the cur-
Algorithm 1 Simplified domain image simulator.

1: Input: Simulation parameters: initial objects, a, b
2: Output: Sequence of 57 images of the simulated assay

3: Calculate survival curve using Eq. (2)

4: Apply variability to the curve

5: Randomly select days with no capture within a set of predefined patterns that take 
into account the weekends and holidays

6: Initialize state table (Table 3) of objects (random pos (x,y), state=1)

7: Initialize array sequence

8: for day in experiment days do

9: Create empty background image

10: if day != 1 then

11: Calculate random movement radius

12: Calculate position within the circle defined by the radius of motion

13: Update state and positions (x, y)

14: end if

15: if day not in days with no capture then

16: for object in initial objects do

17: Draw blob

18: end for

19: else

20: Create empty white background image

21: end if

22: A small rotation and translation are applied to the image.

23: Save image in array sequence

24: end for

Table 3

Simulation state table. ID is the identifier of each of the N blobs. State is 0 if 
the blob is dead or 1 if it is alive. Last position is the coordinates (x,y) where 
the blob was in the previous day’s image.

ID State: 0 (dead) / 1 (alive) Last position (x, y)

1 st1 X1, Y1

. . .

. . .

N stN XN, YN

rent day’s count than on the previous day, it is corrected downwards. 
In our repository (https://github .com /AntonioGarciaGarvi /Celegans -
Lifespan -Automation -Using -Deep -Learning), readers can find an exam-

ple of how our model predicts lifespan curve given the simplified do-
main images as input.

https://github.com/AntonioGarciaGarvi/Celegans-Lifespan-Automation-Using-Deep-Learning
https://github.com/AntonioGarciaGarvi/Celegans-Lifespan-Automation-Using-Deep-Learning
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4. Experiments and results

4.1. Lifespan assay protocol

Caenorhabditis elegans strains used were: N2, Bristol (wild-type), and 
CB1370, daf-2 (e1370), maintained under standard conditions at a tem-

perature of 20 °C. All nematodes were age-synchronized and pipetted 
onto Nematode Growth Medium (NGM) in 55 mm Petri plates. Sev-

eral problematic issues were considered when performing the assay: 
(1) nematode reproduction was prevented by adding FUdR (0.2 mM) 
to the plates; (2) fungal contamination was reduced by adding Fungi-

zone(1 μg/mL) [47]; (3) nematode occlusion, caused by worms climb-

ing up the plate walls, was reduced by placing the food (OP50 strain 
of Escherichia coli), in the middle of the Petri dish. The experiment was 
carried out by a laboratory technician from the first day until the last 
nematode died. Each day, the plates were removed from the incubator, 
placed in the monitoring system and checked to ensure there was no 
condensation on the lid. Then, a sequence of 30 images at 1 fps was 
captured and once this was completed, the plates were returned to the 
incubator.

4.2. Datasets

Following the protocol described above, images were captured from 
106 plates, each containing between 10 and 15 nematodes. Part of the 
images were labeled for the detection problem and others for the live 
and dead counts. The labeling of the lifespan dataset was performed 
by visualizing the sequence of 30 captured images and identifying the 
C. elegans in it, for each day. To distinguish them from other possible 
objects in the image, analyses were made of the characteristics related 
to color, length and type of movement. Once the C. elegans had been 
identified, they were marked (at their centroid approximately) as alive 
or dead depending on their movement. If they moved during the se-

quence, they were considered alive. If they did not move, their position 
and posture were compared with the images of the previous and fol-

lowing day. If they remained the same as on those two days, they were 
considered dead, otherwise they were marked as alive. The images of 
the detection dataset were labeled analogously, marking the centroid. 
The images were then processed to obtain the bounding-box labels. Us-

ing the marked centroid, a window was generated around it. Working 
with this sub-image, we segmented it by applying a threshold of 33, we 
obtained the contour and the minimum rectangle containing it, which 
gave the coordinates of the bounding box. Finally, the generated bound-

ing box was checked for correctness and in case of a segmentation error, 
it was manually corrected. Our proposed method’s annotations were 
generated through consensus reached by a small group of human anno-

tators, resulting in no variability between independent annotators. As 
can be seen, this procedure is very laborious, hence, the cost of gener-

ating a labeled dataset is high.

4.3. Results of detection network

The set of images made available the detection network (a total of 
1900) was divided into 80% for training and 20% for validation. In 
this section we show the results obtained in the validation dataset using 
common object detection metrics [48]. To determine whether a pre-

diction is correct, the Intersection over Union (IoU), which evaluates 
the overlap between two bounding boxes, was used. It is calculated 
by dividing the area of overlap between the actual and the predicted 
bounding box by the area of union of the two (Eq. (3)):

IoU =
area of overlap

area of union
(3)

An IoU threshold of 0.5 was set so that:

• If the IoU is greater than or equal to the threshold, it is a correct 
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detection, True positive (TP).
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• If the IoU is less than the threshold, it is an incorrect detection, 
False positive (FP).

• When an object is not found by the network, it is counted as False 
negative (FN).

Once the predictions were evaluated, the following metrics were used:

• Precision (Eq. (4)). It is the percentage of correct detections out of 
the total number of detections made by the network.

• Recall (Eq. (5)). It is the percentage of objects found by the net-

work.

• F1 score (Eq. (6)). It is a harmonic average of precision and recall.

Precision = TP

TP + FP
= TP

all detections
(4)

Recall = TP

TP + FN
= TP

all ground truths
(5)

F1 score = 2 ⋅Precision ⋅Recall

Precision + Recall
(6)

The detection network returns the predictions together with a pre-

diction confidence score. Using this score we performed a filter, keeping 
only those predictions that were above a threshold. Table 4 shows the 
results obtained by the detection network for different threshold values 
in the validation dataset. Finally, we chose to use a threshold of 0.85 
for generating the synthetic images, since it presented a better balance 
between precision and recall.

4.4. Lifespan results

In order to analyze method robustness, the lifespan method was val-

idated with two assays using different strains: one with short-lived C. 
elegans (N2) and the other with a long-lived strain (daf-2). The aim of 
the experiment was to compare the curves obtained by the proposed 
method with the manually labeled curves following the procedure de-

scribed in the dataset section and to calculate the errors. Errors were 
calculated as follows in the same way as in [31]: (1) the image se-

quences for each of the assay plates were processed using the proposed 
method, thus obtaining the count for each day of the experiment; (2) for 
each day, the number of live C. elegans was added up and the survival 
percentage was obtained by dividing by the number of initial nema-

todes (Eq. (7)); (3) the error for each day (Eq. (8)) was obtained as the 
difference in absolute value of the percentage survival of the manual 
and the automatic curve; (4) finally the mean and standard deviation of 
the errors were calculated (Eq. (9)).

% live C. elegans =
live C. elegans current day ⋅100

initial live C. elegans
(7)

𝑒(𝑑) = ∣ %𝑙𝑖𝑣𝑒𝑚𝑎𝑛𝑢𝑎𝑙(𝑑) − %𝑙𝑖𝑣𝑒𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐(𝑑) ∣ (8)

MAE =

𝑑𝑎𝑦𝑠∑
𝑑=1

𝑒(𝑑)

𝑑𝑎𝑦𝑠
(9)

For the experiment with strain N2, an assay was performed with 
n=103 nematodes, distributed among 10 test plates, with approxi-

mately 11 C. elegans per plate.

The experiment with strain daf-2 was performed using 4 test plates, 
each containing 13 nematodes, resulting in a total of n=52 nematodes.

4.4.1. Architecture comparison

In this experiment a comparison was made between the results of 
different SOTA architectures for sequence processing. Specifically, the 
LSTM, the gated recurrent unit (GRU) and the Transformer were evalu-

ated. Since the initialization of the weights influences the results, three 
training sessions were performed with each alternative, calculating the 
error and standard deviation using the validation method explained in 
this section (Eq. (9)). Subsequently, the average of the mean errors and 

the average standard deviation of the trained models were calculated. 
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Table 4

Results obtained by the detection network in the validation dataset for different score thresholds.

Scores threshold Targets Detections TP FP FN Precision Recall F1 score

0.95 4037 3436 3195 241 842 0.929 0.791 0.855

0.9 4037 3764 3363 401 674 0.893 0.833 0.862

0.85 4037 3971 3447 524 590 0.868 0.854 0.861

0.8 4037 4127 3494 633 543 0.847 0.865 0.856

0.7 4037 4398 3567 831 470 0.811 0.884 0.846

Fig. 6. Manual-automated comparison for N2 strain. The horizontal axis shows the days of the experiment, and the vertical axis shows the proportion of live C. 
elegans.
Table 5

Average results of the 3 trials performed with each model. The mean and stan-

dard deviation of the MAE (%) are presented.

CNN-LSTM CNN-GRU CNN-Transformer

Mean std Mean std Mean std

4.98 4.35 5.06 4.03 4.29 3.86

Based on these two metrics, the models were compared, determining 
which model obtained the best results, and whether the differences 
were statistically significant. The results of each of the test replicates 
have been included in Appendix A.

Table 5 shows the average results of the trials. In Appendix B, 
we report a MANOVA analysis performed to test whether architecture 
significantly influences the error metrics. The results indicate that ar-

chitecture does not have a statistically significant effect on the error 
metrics.

4.4.2. Lifespan statistical analysis results

This section shows the results of the statistical study of the model 
(CNN-Transformer) that obtained the best results in the previous com-

parison. Fig. 6 shows the results obtained for N2 assay. The mean error 
obtained was 3.32 ± 3.67%.

The results obtained for daf-2 assay are shown in Fig. 7. The mean 
error obtained was 3.74 ± 3.55%.

Once the curves were obtained, statistical significance was eval-

uated using the open-source tool OASIS [49]. The results obtained 
(Appendix C) show that the differences between the curves obtained 
with the proposed method and the manual curves were not statisti-

cally significant for either short-lived N2 (p-value log rank test 0.45) 
or long-lived daf-2 (p-value log rank test 0.83) strains. In addition to 
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the log-rank test, three statistical tests, the survival time F-test, par-
tial slopes rank-sum test and normalized chow test, have been added to 
identify the differences in lifespan variations.

5. Discussion and conclusions

This paper has presented a new method for automating the C. ele-
gans lifespan assay using deep learning. To solve the problem, a training 
strategy has been proposed for cases where few data are available. Fol-

lowing this strategy, we have divided the task of counting of live C. 
elegans into two stages. The first stage involves the detection and trans-

formation from the real to the simplified domain, whereas the second 
one involves counting by regression. Despite having few training data, 
good results are obtained with the Faster R-CNN detection network (f1-

score 0.86), as most of the errors are due to cases where errors in cap-

ture or plate soiling occurred. Examples of errors made by the detection 
network are shown in Fig. 8. We find cases of nematode aggregation, 
where instead of detecting two individuals, the model detects them as 
if they were one. One possible cause of this error is that there are very 
few cases of this situation in the dataset, because it hardly occurs in the 
assay when working with few nematodes per plate. This problem means 
the method is not robust for assays with high-aggregating strains, such 
as the Hawaii-type strains. Another typical error occurs with dark ob-

jects that have similar characteristics to C. elegans, such as fuzz. Some 
errors also appear at the edge of the plate, as this is a poorly illumi-

nated area and thus hinders establishing whether the object detected is 
a nematode or not. These cases usually require human analysis of a tem-

poral sequence, since, as mentioned in the previous section, labeling is 
done by analyzing a sequence of 30 images. Therefore, considering that 
the detection network solves the problem using a single image, this is 
an expected error. Moreover, as in the case of aggregation, there are not 
many cases of this type in the dataset either. To demonstrate that our 
results are independent from the specific splitting of the data set, we 

performed a 5-fold cross-validation. The results of this experiment con-
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Fig. 7. Manual-automated comparison for daf-2 strain. The horizontal axis shows the days of the experiment, and the vertical axis shows the proportion of live C. 
elegans.

Fig. 8. Examples of error cases of the detection network. a) Errors due to C. elegans aggregation. b) Cases of dark blobs (noise) appearing on the plate. c) Examples 
of blobs with nematode-like characteristics. d) Errors in the edge zone of the plate.
firm the consistent performance of the model across different subsets 
(see detailed results in Appendix D).

The lifespan method has been validated with N2 and daf-2 strains, 
obtaining curves with statistically non-significant differences with re-

spect to those labeled manually. However, the method presents some 
errors. As expected, the experiment with the daf-2 strain presents a 
higher error due to the longer experimental duration, which causes dirt 
accumulation on the plates. Fig. 9 shows a comparison between a plate 
in the early days and one in the later days. This gives rise to a higher 
number of errors in detection and, therefore, also in counting. Another 
aspect to consider in these long experiments is that there are more cases 
of C. elegans remaining stationary in the last days, making only small 
head and tail movements. Such movements are more difficult to detect 
with our method, as it uses low resolution. Errors have been corrected 
slightly by applying the post-processing technique. One of the problems 
encountered by the model concerns prediction on days without image 
capture (holidays and weekends), on which the manual curve main-

tains the count of the previous day. To avoid these discrepancies, the 
predicted curve could be modified, since the days without image cap-

tures are known or, alternatively, the real curve could be modified by 
interpolating instead of keeping the C. elegans count from the previous 
5057

day.
When comparing our lifespan automation method with existing 
methods [8,10–12,46], we found that the algorithms employed by their 
software are tuned for images captured with their specific system (res-

olution, illumination conditions, lifespan protocol), therefore, a quan-

titative comparison is not possible. Likewise, our model is trained to 
work with images captured with our acquisition system, and cannot 
be directly applied to images captured by the other devices. To do so, 
the model would need to be adapted and retrained. Therefore, of all 
these traditional methods, we were only able to make a direct compar-

ison with our previous method [46], which is designed for our capture 
conditions. All traditional methods perform similar processing steps 
(alignment and differentiation between images) to determine the death 
of C. elegans. Therefore, this is indicative of how our method would 
work compared to the others. The results (see appendix E) show how 
the proposed regression model obtains error rates similar to those of 
the traditional automatic method in the lifespan curves and how the 
detection models allow better filtering of noise when detecting worms.

The approximate cost of labeling a 30-day assay is 13 working days 
per condition (approx. 10 plates). To this cost must be added the work 
to be done for the preparation of the assay plates and the time spent by 
the laboratory technician to capture the images, which vary between 

30 and 60 days depending on the strain (N2 and daf-2). Taking into 



Computational and Structural Biotechnology Journal 21 (2023) 5049–5065A. García-Garví, P.E. Layana-Castro, J.C. Puchalt et al.

Fig. 9. Temporal changes in the dirt on the plates: a) example of a plate from the first days of the assay and b) example of an image from the last days of the assay.
account this cost, the use of synthetic data represents a great saving of 
time and costs.

Considering the initial limitations in terms of the lack of data and 
computational resources, the results (Sect. 4.4.2) are quite good. Future 
work could improve the results by improving the detection network, ex-

ploring different architectures and hyperparameters. In Appendix D we 
have added a trial with a Faster R-CNN model employing a Resnet50-

FPN backbone version 2 to show how using models with more param-

eters can improve detection results. The results could also be improved 
by trying to simulate possible errors in the detection network of the 
lifespan simulator. In this work we have focused on recreating the cases 
that occur in real images (occlusion, rotation and translation and days 
without capture). This strategy has enabled us to solve the problem 
of counting live C. elegans and provides us with the nematode’s loca-

tion, making this network useful to solve tracking problems too. This 
strategy could also be extrapolated to resolving other animal-behavior 
monitoring problems (trajectory analysis, anomaly detection), in which 
obtaining large labeled datasets is laborious and time consuming.
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Appendix A. Repeated trials results

This appendix shows the results of each of the test replicates per-

formed in Sect. 4.4.1. The results are shown broken down by each 
validation test (N2 and daf-2) in Tables A.1, A.2 and A.3.

Table A.1

Summary of results trial 1. The MAE (%) and standard deviation are presented.

Strain CNN-LSTM CNN-GRU CNN-Transformer

MAE std MAE std MAE std

N2 3.85 2.84 4.82 4.71 3.76 4.38

daf-2 5.19 5.19 7.09 5.02 5.94 3.97

Average 4.52 4.02 5.95 4.87 4.85 4.17

Table A.2

Summary of results trial 2. The MAE (%) and standard deviation are presented.

Strain CNN-LSTM CNN-GRU CNN-Transformer

MAE std MAE std MAE std

N2 3.13 4.15 3.45 2.71 3.70 4.07

daf-2 7.59 5.45 6.98 4.66 5.26 3.51

Average 5.36 4.80 5.22 3.69 4.48 3.79

https://active-vision.ai2.upv.es/wp-content/uploads/2022/03/models.zip
https://active-vision.ai2.upv.es/wp-content/uploads/2022/03/models.zip
https://github.com/AntonioGarciaGarvi/Celegans-Lifespan-Automation-Using-Deep-Learning
https://github.com/AntonioGarciaGarvi/Celegans-Lifespan-Automation-Using-Deep-Learning
https://github.com/JCPuchalt/SiViS
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Fig. B.1. Screenshot of the scatter plot performed with SPSS for the analysis of linearity.
Table A.3

Summary of results trial 3. The MAE (%) and standard deviation are presented.

Strain CNN-LSTM CNN-GRU CNN-Transformer

MAE std MAE std MAE std

N2 4.54 4.04 4.35 4.07 3.32 3.67

daf-2 5.60 4.44 3.68 3.02 3.74 3.55

Average 5.07 4.24 4.02 3.55 3.53 3.61

Table A.4

Average results of the 3 trials performed with each model. The error per plate 
(average mean and average standard deviation of the MAE (%)) is presented.

CNN-LSTM CNN-GRU CNN-Transformer

Avg Mean Avg std Avg Mean Avg std Avg Mean Avg std

9.20 3.18 9.07 2.66 8.92 3.50

The following table shows the average error per petri dish (Ta-

ble A.4).

Appendix B. MANOVA

The goal of this MANOVA analysis is to determine whether the 
architecture used (CNN-LSTM, CNN-GRU and CNN-Transformer) sig-

nificantly affects the accuracy metrics chosen to assess lifespan error 
(Average MAE and Average STD). Therefore, the independent variable 
is architecture and the dependent variables are Avg MAE and Avg STD. 
SPSS 16.0 software was used to perform this analysis. First, before ex-

tracting conclusions, it was verified that the assumptions for applying 
MANOVA were met:

• Independence of observations. Models were trained with different 
random weight initializations, therefore, observations are indepen-

dent.

• Linearity. It was checked using a scatter plot (Fig. B.1).

• Normality. We used Shapiro-Wilk test. As shown in the Fig. B.2, the 
significance values are greater than 0.05. This is an indication that 
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multivariate normality is met.
• Homogeneity of variance-covariance matrices. As can be seen in 
the Fig. B.3, Box’s test for homogeneity of covariance matrices in-

dicates that there is no difference between the covariance matrices 
(F = 0.439; p-value greater than 0.05).

Once the assumptions were verified, we performed a multivariate 
test (Fig. B.4). SPSS performs different statistical tests to determine the 
significance and effect of the independent variable (architecture) on 
the dependent variables (Avg MAE and Avg STD). Since the p-value is 
greater than 0.05 for all tests, we can conclude that architecture has no 
statistical significance on MAE and STD.

Appendix C. Statistical analysis

This appendix shows the screenshots of the statistical study per-

formed with the open source tool OASIS [49] (Figs. C.1–C.11).

A possible cause for this could be the steepness of the curves, which 
is an artefact generated by weekends and holidays. On applying fil-

ters, such as fitting the data to theoretical models (Weibull), the results 
would be as follows.

Appendix D. Additional detection experiments

We conducted a 5-fold cross-validation experiment to assess the per-

formance of our worm detection neural network across different subsets 
of the dataset. The results, reported as the average ± standard devia-

tion of COCO mean Average Precision (mAP) for thresholds from 0.5 
to 0.95 with a step size of 0.05 using pycocotools, are presented in Ta-

ble D.1.

In addition, we compared its performance with an alternative neural 
network model. Specifically, it was compared to a more recent version 
of the initial model, the faster R-CNN with a Resnet50-FPN backbone 
version 2. This version has a larger number of parameters (43.7 M ver-

sus 41.8 M). It also includes improvements in the pretraining method-

ology. The results are presented below using the same metrics and the 

same training and validation splits (Table D.2).



Computational and Structural Biotechnology Journal 21 (2023) 5049–5065A. García-Garví, P.E. Layana-Castro, J.C. Puchalt et al.

Fig. B.2. Screenshot of the normality test performed with SPSS.

Fig. B.3. Screenshot of the Box’s test for homogeneity of covariance matrices performed with SPSS.

Fig. B.4. Screenshot of the Multivariate test performed with SPSS.

Fig. C.1. Screenshot of the survival analysis performed with the open source tool OASIS for the N2 strain assay. It shows the Irwin’s restricted mean lifespan and the 
age in days at different % mortality.

Fig. C.2. Screenshot of the Log-rank test performed with the open source tool OASIS for the N2 strain assay.

Table D.1

Results of the 5-fold cross-validation for the Faster R-CNN with a Resnet50-FPN backbone.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std

mAP@[0.5–0.95] 0.5555 0.5535 0.5721 0.5638 0.5688 0.5628 0.0081
5060
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Fig. C.3. Screenshot of the Survival F-test performed with the open-source tool OASIS for the N2 strain assay. Survival F-test is not applicable because the neural 
network data do not follow a normal distribution according to the Shapiro-Wilk normality test.

Fig. C.4. Screenshot of the Partial slopes rank-sum test performed with the open-source tool OASIS for the N2 strain assay. According to the test, as p-value > 0.05, 
the differences between the slopes are not statistically significant.

Fig. C.5. Screenshot of the Normalized Chow test performed with the open-source tool OASIS for the N2 strain assay. According to the test, as p-value > 0.05, the 
differences between the slopes are not statistically significant.

Fig. C.6. Screenshot of the survival analysis performed with the open-source tool OASIS for the daf-2 strain assay. It shows the Irwin’s restricted mean lifespan and 
the age in days at different % mortality.

Table D.2

Results of the 5-fold cross-validation for the faster R-CNN model with a ResNet-50-FPN 
backbone version 2.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std

mAP@[0.5–0.95] 0.6039 0.6045 0.6226 0.6169 0.6150 0.6126 0.0082
5061
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Fig. C.7. Screenshot of the Log-rank test performed with the open-source tool OASIS for the daf-2 strain assay.

Fig. C.8. Screenshot of the Survival F-test performed with the open-source tool OASIS for the daf-2 strain assay. Survival F-test is not applicable because the neural 
network data do not follow a normal distribution according to the Shapiro-Wilk normality test.
Fig. C.9. Screenshot of the Partial slopes rank-sum test performed with the 
open-source tool OASIS for the daf-2 strain assay. According to the test, as p-

value > 0.05, the differences between the slopes are not statistically significant.

Fig. C.10. Screenshot of the Normalized Chow test performed with the open-

source tool OASIS for the daf-2 strain assay. According to the test, as p-value <
0.05, the differences between the slopes are statistically significant.

Appendix E. Comparison with a traditional method

The proposed method was compared with our traditional method 
[46] has been carried out. To perform this comparison we have anal-

ysed the two parts of the method: detection and regression. First, we 
compared the accuracy of C. elegans detection using the metrics de-
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scribed in section 4. It should be noted that the traditional algorithm 
does not detect worms, but detects moving objects instead. Therefore, 
its results do not reflect the detections in one image but the integration 
of the detections of possible worms in a sequence of 30 images. Filters 
are then applied to these trajectories (integration of the detections in 
the 30 images) to determine which ones correspond to a living worm. 
Comparison at the detection level is therefore not possible, but it gives 
us an approximation of the neural network’s ability to filter out noise. 
The results are as follows (Tables E.1 and E.2).

Secondly, the lifespan metrics were calculated as discussed in sec-

tion 4.4. The results are as follows in Table E.3 and Fig. E.1.

In the experiment with strain N2, the traditional algorithm obtained 
a lower average error whereas in the experiment with strain daf -2, bet-

ter results were obtained with the proposed method. On average, both 
methods displayed a similar error

Appendix F. Error analysis

This appendix shows the best and worst plate-level predictions made 
by the proposed method. The survival curves of the plates with the most 
and least error obtained are presented below. The worst performing 
curves are due to errors such as those shown in Figs. 8 and 9b). In these 
plates, such cases occur more frequently and this leads to an increase 
in the error of the regression network. The effect of this noise is accen-

tuated by the fact that these plates contain few worms (10-15). For this 
reason, we analyzed the error per condition and not per plate, in order 
to increase the sample size and reduce the influence of noise (Fig. F.1).
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