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a b s t r a c t

Double-layered multihead weighing machines contain twice the number of hoppers as
present in a simple machine with the same number of heads, which enables additional
objective optimization possibilities considering the increased number of combinations
among hoppers. This research study deals with bicriteria optimization for double-layered
upright and diagonal machines using brute force as the optimization criteria. One of the
optimization objectives is related to the target weight; the target weight must be at
least and as close as possible to the weight to pack. Furthermore, this study also aims
to minimize the time for which a certain portion of a product remains in the hopper
while waiting to be selected for package formation. This time is known as priority and
is measured based on the number of iterations or the number of packages produced by
the machine while the hopper waits to be discharged. For these purposes, Different
strategies were tested for both machines, which simultaneously optimize the target
weight and the priority of the hoppers, showing the reduction of the extraction of the
process in addition to reducing the costs of excess product and its reprocessing.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The ever-growing complexity of data processed and analyzed for efficient decision-making has prompted packaging
ompanies to develop strategies and tools to ensure timely responses to meet the needs of their customers and consumers.
ne of the most frequent challenges companies experience is process optimization, wherein complex problems must often
imultaneously meet more than one objective. In fact, different optimization techniques have evolved along with the needs
f the food packaging industry. Each technique offers particular advantages based on the specifications and restrictions of
heir target functions associated with computational costs related to memory consumption and execution times of their
mplementation algorithms.

On a global scale, as stringent regulations guarantee that customers receive what they are actually buying, packaged
ontents must be consistent with their corresponding label, ingredients, and net content. Hence, the actual net content
ust not be lower than the net content reported to consumers on the label. In this context, multihead weighers are
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Symbols and abbreviations

Q Number of packages
l Iteration in which the package is packed, l∈= {1, 2, 3 . . .Q}

HWi Set of n weighing hoppers i = {1, 2, 3 . . . n}
HBj Set of n booster hoppers j = {n + 1, n + 2, . . . 2n}
Hm =

{
HWi ∪ HBj

}
Set of 2n hoppers m = {1, 2, 3, . . . 2n}

H ′ Subset of combined hoppers
T Target label weight
k Number of hoppers combined
wil Actual weight of each hopper i = {1, 2, 3, . . . 2n} in the l interaction based on the filling strategy

(S1, S2, or S3)
Wl Sum of the weights of k hoppers in the lth iteration
Pmax Maximum priority allowed for 2n hoppers
pil Positive integer; priority of the i ∈ {1, 2, 3, . . . 2n} hopper in the l∈= {1, 2, 3 . . .Q } iteration
Pl Sum of priorities of k hoppers in the lth iteration
pmaxl Positive integer; highest priority of all hoppers in the l∈= {1, 2, 3 . . .Q } iteration
S Set of hoppers that meet all problem conditions
θ Relative weight or importance of target priority; varies at each iteration
D The optimal point is found during each iteration using the set of k hoppers
ANOVA Analysis of variance
CVpaq Coeficiente de variacion de los Q paquetes

important because their accuracy and reliability foster agile processes and guarantee standard compliance [1,2]. For these
purposes, such machines require a certain configuration in their base code that may guarantee their content packaging
accuracy as this is the first objective to be met for compilation with legal guidelines. This configuration must minimize
differences between the actual package content and the net content reported on the product label, thus reducing the
variability between the two values and complying with one of the quality principles [3]. By reducing the target weight
variability T , the quality of the food packaging process is improved [4], costs associated with product reprocessing times
are reduced, and excess product is minimized [5]. In other words, processes must be optimized to guarantee that the
packaged content is as close as possible to the net content reported on the label. For quality engineering, optimization
techniques, new algorithms, and experimental designs can be used to improve and optimize industrial processes [6].

When exploring the food packaging industry, many products require rapid packaging processes. In such cases, the time
gap between product weighing and product packaging becomes critical. Here, the quality’sproduct is enhanced when it
is packaged quickly. The time gap is the second problem that must be addressed when coupled with the label content,
constituting a bicriteria optimization problem.

Double-layered multihead weighers feature one set of hoppers with another set of hoppers underneath, forming two
hopper layers. The hoppers on the upper layer receive the product from the feeding hoppers (HF ) and record the weight of
he received product. These hoppers are known as weighing hoppers (HW ). Once the weight is recorded, the hoppers are
discharged to auxiliary hoppers known as booster hoppers (HB). So, weigh hoppers receive a new portion of product. When
the machine hoppers are full, a combinatorial analysis and the appropriate mathematical design are used to select a subset
H ′ from k hoppers to optimize the objective(s) stated in the problem. This subset is then discharged to the package based
on the consideration that in machines with an upright configuration, a weighing hopper cannot be selected without its
booster hopper; alternatively, in machines with a diagonal configuration, a weighing hopper and a booster hopper cannot
be selected simultaneously (Fig. 1).

In this study, a new bicriteria optimization algorithm is proposed for double-layered upright and diagonal machines.
For each package, this algorithm select a H ′ subset from k hoppers so that the sum of their weights is less than the
maximum capacity of the package but greater and as close as possible to the value reported on the label (target weight
T ). Furthermore, the algorithm ensures the minimum total time from product weighing to the discharge of k hoppers.
his is known as hopper selection priority (p). This algorithm was validated using a case study of actual weights based on
process simulation using a software program specifically designed and developed for such purposes. The experimental
ests were conducted using filling strategies, which were previously validated in other studies [7–9].

The remainder of this paper is divided as follows. Section 2 discusses the background of multiobjective optimization
or multihead machines. Section 3 describes the configuration of the double-layered upright and diagonal machines used
n the hopper-filling process. Section 4 describes the target process functions. Section 5 presents the packaging algorithm,
nd Section 6 reveals the preliminary numerical results and assessments. Section 7 describes the results obtained using
he experimental designs for different scenarios assessed for the process, and Section 8 discusses reprocessing or excess
aterial costs. Finally, Section 9 presents the conclusions from this study.
2
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Fig. 1. Upright and diagonal multihead weigher components and system.

2. Background

Different researchers have already addressed the packaging problems associated with multihead machines. In fact,
several studies have considered multiobjective process optimization based on a machine configuration. The net package
content and time during which the product remains in the hoppers before being discharged are the two bicriteria
optimization objectives studied in the scientific publications available. For example, an integer weight case study was
conducted using a dynamic programming algorithm to minimize the maximum time that a product remains in the hopper
before being discharged into a package while assuring that the total weight of each package was as close as possible
to its target weight. [10]. This same principle was later extended to double-layered upright and diagonal machines
from the discrete weight perspective [11]. Subsequently, an algorithm was introduced to reduce the execution times
of the proposed models [12], thus increasing the efficiency of the packaging process proposed previously [10]. This
new algorithm was then applied to duplex and quasiduplex machines [13]. Similarly, another study proposed the use
of heuristic algorithms to achieve enhanced results in the bicriteria packaging process that targets label weights and
priority orders [14,15]. Finally, new bicriteria approaches have been developed for optimizing the food packaging process
for real weights [8,9]. These approaches are considered innovative because the relative importance of the objectives
is ensured dynamically and adjusted for each packaging operation. Another study determined the operational process
conditions [16], wherein the package weight and hopper priority were the main objectives. These approaches are very
useful for the packaging of fresh or frozen products. However, no scientific research has studied diagonal and upright
machines by considering real weights in hoppers based on preset k values. The foregoing adds a greater level of importance
o the present study, wherein a new bicriteria optimization algorithm is proposed for double-layered upright machines
y considering real weights and preset k values.

. Machine configuration

The successful optimization of the packaging process requires two stages. The first stage corresponds to the machine
onfiguration, which is addressed in this section and is related to the quantity of the product supplied to each hopper.
he proposed algorithm is related to the number of k hoppers combined and is based on the average product supplied to
ach weighing hopper according to three strategies proposed in the literature [7,9] (Table 1 and Eqs. (1)–(3)). The three
trategies known as S1, S2, and S3 consider the set of n weighing hoppers divided into five, three, and one subgroups,
espectively. In the S3 strategy, each hopper is filled with the same average quantity of product (µ = T/k) by considering
he number of hoppers combined. However, in S2 and S3 strategies, each group receives a different average product
uantity. To guarantee the variation in the average product supply, we will rely on the δ parameter, which is commonly
sed in statistical process control to simulate out-of-control processes. In this study, this parameter will be used to
uarantee that not all hopper subgroups receive an even average product supply. The δ values used range from 0 to
with increments of δmin = 0.5.
Similarly, the coefficient of proportionality γ (σ = γµ) for the packaged product, as applied in other studies [16,17],

s related to the average content captured by each hopper and its variability. For example, some studies [17] have proven
3
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Table 1
Number of weighing hoppers (ni) and average content of hoppers (µi) for each subgroup using the equal distribution strategy according the S1 , S2 ,
nd S3 strategies.

Equal distribution

µ n S1 , a = mod
( n
5

)
S2 S3

a = 0 a = 1 a = 2 a = 3 a = 4

µ1 = µ − δσ n1
n
5

[[n/5]] [[n/5]] + 1 [[n/5]] + 1 [[n/5]] + 1 [[n/3]] n

µ2 = µ − (δ − δmin)σ n2
n
5

[[n/5]] [[n/5]] [[n/5]] + 1

µ3 = µ =
T
k

n3
n
5

[[n/5]] + 1 [[n/5]] [[n/5]] + 1 [[n/5]] n − 2 · [[n/3]]

µ4 = µ + (δ − δmin)σ n4
n
5

[[n/5]] [[n/5]] [[n/5]] [[n/5]] + 1

µ5 = µ + δσ n5
n
5

[[n/5]] [[n/5]]+1 [[n/5]] + 1 [[n/5]] + 1 [[n/3]]

that the theoretical standard deviation for a hopper with the target weight T = 250 g required for a product (such as
avioli) by combining k = 5 hoppers can be calculated as follows: σ = 0.331 ·

250 g
5 = 16.55 g.

Thus, the S1 strategy divides the n weighing hoppers into five subgroups, (n1, n2, n3, n4, and n5,where
∑5

i=1 ni = n)
nd feeds different average product quantities to each subgroup (µ1, µ2, µ3, µ4, and µ5) according to Eq. (1). The S2
trategy divides the n weighing hoppers into three subgroups (n1, n3, and n5) and feeds different average quantities to
ach subgroup (µ1, µ3, and µ5) according to Eq. (2). Finally, in the S3 strategy, the n weighing hoppers are filled with the
ame amount of product µ =

T
k for each hopper according to Eq. (3). In all three (S1, S2 and S3) strategies, each booster

hopper adopts the same supply from its corresponding weighing hopper until the complete filling of 2n system hoppers.

wi ∼ N(µj, σ = γµj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µ1 = µ − δσ

µ2 = µ − (δ − δmin)σ
µ3 = µ =

T
k

µ4 = µ + (δ − δmin)σ
µ5 = µ + δσ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)

wi ∼ N(µj, σ = γµj) =

⎧⎨⎩ µ1 = µ − δσ

µ3 = µ =
T
k

µ5 = µ + δσ

⎫⎬⎭ (2)

wi ∼ N(µ, σ = γµ) =

{
µ =

T
k

}
(3)

In addition to the S1, S2, and S3 filling strategies (in which an average product supply is established for each subgroup),
e must define a distribution of hoppers, namely, the number of hoppers assigned to each subgroup (Tables 2 and 3).

n this sense, three types of distributions are proposed: equal, central, and extreme. In the equal distribution strategy,
ach group includes approximately the same number of hoppers. For example, in the S1 filling strategy, the total number

of hoppers ((n)) is divided among the five subgroups
( n
5

)
. Each ni (i = 1, . . . , 5) is assigned a number of hoppers equal

o the largest integer multiplied by 5 that is closest to n (integer part
[[ n

2

]]
). If the remainder of the division

(
mod

( n
5

))
s 1, the central group (n3) will have one more hopper; if it is 2, a hopper will be assigned to each extreme group. For
od

( n
5

)
= 3, they are distributed among n1, n3, andn5 and mod

( n
5

)
= 4. In the case of n3, the subgroup will have one less

opper than the rest. The central distribution strategy assigns as many hoppers as possible to the central set of hoppers.
or example, in the S2 filling strategy for n ≤ 8 and n > 8, one and two hoppers will be assigned, respectively, to each
nd and the surplus is assigned to the central group. Finally, the extreme distribution strategy assigns the largest number
f hoppers to the extreme subgroups n1 and n5 and the least number of hoppers to n3.

. Target process functions

This section presents the mathematical model for the process in double-layered upright and diagonal machines. The
ymbols, decision variables, target functions, and constraints for each process are also presented.

.1. Target function

In the considered bicriteria packaging problem, two objectives are set. The first objective is related to the product
eight packaged, and the second objective refers to the time the product remains in the hopper before being packaged.
ach objective will be addressed in detail below.
4
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Table 2
Results obtained using the S1 , S2 , and S3 strategies for k = 3, 4, 5, and6, Pmax = 10, and γ = 0.123.
Fusilli

k Upright Diagonal µ1 µ2 µ3 µ4 µ5

µpaq σpaq CVpaq µpaq σpaq CVpaq

S1
3 251.430 1.083 0.0043 251.570 1.149 0.0045 62.83 67.96 83.33 98.71 103.83
4 251.149 0.974 0.0038 251.248 0.954 0.0038 47.13 50.97 62.50 74.03 77.88
5 250.894 0.885 0.0035 250.845 0.695 0.0027 37.70 40.78 50.00 59.23 62.30
6 250.612 0.500 0.0019 250.587 0.489 0.0019 31.42 33.98 41.67 49.35 51.92

S2
3 251.653 1.219 0.0048 251.523 1.121 0.0044 62.83 83.33 103.83
4 251.211 0.941 0.0037 251.142 0.878 0.0034 47.13 62.50 77.88
5 250.778 0.609 0.0024 250.724 0.577 0.0023 37.70 50.00 62.30
6 250.531 0.429 0.0017 250.517 0.424 0.0016 31.42 41.67 51.92

S3.
3 251.721 1.248 0.0049 251.290 0.992 0.0039 83.33
4 251.316 0.995 0.0039 251.009 0.856 0.0034 62.50
5 250.894 0.716 0.0028 250.754 0.7641 0.0030 50.00
6 250.758 0.948 0.0037 250.597 0.760 0.0030 35.714

Table 3
Factors and levels studied in the DOE for diagonal and upright machines.
Factors Factor levels

Strategy: Number of subgroups S1 = 5 S2 = 3 S3 = 1
Hopper distribution Central Equal Extreme
Filling position delta (δ) 0 0.5 1 1.5 2 2.5 3

4.1.1. First objective
This objective basically aims to minimize the difference between the effective content of the package Wl and the net

content reported on the label T . Binary vectors Xi and Yj are defined for the weighing hoppers Eq. (4) and booster hoppers
Eq. (5), respectively; components xi or yj take the value 1 if the hopper weight Hm is selected or takes the value 0 (Eqs. (6)
nd (7)).

Xi = (x1, x2, x3, x4, . . . , xn) (4)

Yj = (yn+1, yn+2, yn+3, yn+4 . . . y2n) (5)

xi =

{
1, if HWi is the selected hopper
0, otherwise

(6)

yj =

{
1, if HBi is the selected hopper
0, otherwise

(7)

To select the hoppers whose sum of the weights are the closest and greatest to the package weight, the function is
minimized f1 = Wl − T .

minimize f1 (x, y) =

⎡⎣ n∑
i=1

xiwi +

2n∑
j=n+1

yjwj

⎤⎦ − T (8)

4.1.2. Second objective
In this case, the discharge priority will be given to the hoppers that have not been selected for the longest time to

make up the content of a package; hence, the function is maximized f2 = Pl − Pmax ≤ 0.

minimize f2 (x, y) = Pmax −

[∑n
i=1 xipi +

∑2n
j=n+1 yjpj

k

]
(9)

Restrictions: In both the objectives, the restrictions are related to hopper restrictions. For the double-layered upright
machine, the operating restriction of the system is that an upper hopper cannot be selected if its corresponding booster
hopper has not been selected, indicating that Eq. (10) must be used. For the double-layered diagonal machine, a weighing
hopper and its booster cannot be selected simultaneously, which is guaranteed using Eq. (11).

xi − yj ≤ 0 (10)

x + y ≤ 1 (11)
i j

5
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At each lth iteration, the best combination of k hoppers from the available 2n hoppers must be selected. If Eqs. (6)–
10) for the double-layered upright machine are satisfied simultaneously for the entire set of k combined hoppers and
qs. (6)–(9) and (11) for the double-layer diagonal machine are satisfied, the combination is valid.

.2. Bicriteria function

A function is proposed that combines the two target functions to satisfy them simultaneously. For each iteration, our
pproach is to determine a combination of k hoppers that are closer to the ideal point (T , Pmax) with

(
Wl,

Pl
k

)
coordinates,

namely, the point that is closest to the ideal point. Wl is some part of the first objective that must be minimized, and
Pl
k is some part of the second objective that must be minimized. Therefore, Eq. (12) representing the Euclidean distance
integrates both the objectives, wherein we have also added θ to regulate the relative weight of the discharge priority of
he k hoppers. The optimal point is found during each iteration using the set of k hoppers that minimize D.

D =

√
(1 − θ) (Wl − T )2 + θ

(
Pl

k
− Pmax

)2

(12)

varies at each iteration and takes values of 0 ≤ θ < 1, and it is defined according to Eq. (13).

θ =
pmaxl − 1

Pmax
(13)

otably, in the first (l = 1) iteration, hoppers show a priority of 1. Hence, pmaxl = 1, making θ = 0. Then, the set of
hoppers closer to the target weight will be selected. Similarly, if the lth iteration presents more than one k − nuple

hoppers wherein ∀i, pil = Pmax, the expression
( Pl

k − Pmax
)

= 0 and the set of k hoppers with less |Wl − T | is selected.
Alternatively, among the set of k − nuple hoppers with equal weight Wl, those with the highest Pl are chosen.

5. Optimal weighing and packaging algorithm in double-layered upright and diagonal machines

Our food packaging problem is related to the knapsack problem [18–20], and the search algorithm used in the
packaging process is brute force [21], in which all combinations of k hopper that meet the constraints are tested
individually and the one closest to the optimal point is selected after evaluating it using the target function. Further,
each step of the algorithm is presented.

Step 1. In the initial process configuration, the following parameters are recorded: the number of packages processed
(Q ); number of weighing hoppers (n); number of hoppers combined (k); target label weight (T ) ; and maximum allowed
riority of each hopper (Pmax), understood as the maximum number of packages that can wait to be discharged. All hoppers
tart at zero priority pi = 0.
tep 2. Once the initial settings are assigned, the empty weighing hoppers HWi are loaded with randomly assigned weights

wi, i ∈ {1, 2, . . . , n} according to the S1, S2, or S3 strategy and by considering the number of hoppers in each subgroup. A
priority of pil+1 = pil + 1 is assigned.
tep 3. To the extent that the weighing hoppers record the amount of product received, they discharging their content
o their empty booster hoppers HBj: w(n+i)l = wil, p(n+i)l = pil, wil = 0, and pil = 0. The weighing hoppers previously
ischarged are reloaded with the new content.
tep 4. Once all the hoppers are filled, the software verifies that they do not exceed the discharge time limit. If pil > Pmax,
hen wil = 0 and pil = 0.
tep 5. The software also validates that all the hoppers contain the product; otherwise, it restarts the loading process for
he empty hoppers.
tep 6. The highest priority for all hoppers is obtained pmaxl and calculated for θ =

pmaxl−1
Pmax

. The hoppers that meet the
riteria (reported in Section 4.2) are combined for the upright or diagonal machines by calculating the distances of each
ombination to the ideal point and saving the information of k hoppers resulting in the minimum distance. The product
s discharged from the optimum-point hoppers and packaged once each combination has been verified.
tep 7. The process starts again with the loading of the empty hoppers until the total number of packages (Q ) required
as been reached.

. Preliminary analysis

During the algorithm implementation, we used the coefficient of proportionality of γ = 0.123 for fusilli product [17].
n addition, a total of n = 16 weighing hoppers were assessed at k = 3, 4, 5 and 6, δ = 2, δmin = 0, 5, Pmax = 10, and a
arget weight of T = 250 gm. The number of hoppers in each subgroup is shown in Table 2. The calculated performance
easures were the average weight of packages produced (µpaq), standard deviation of the packages produced (σpaq), and

coefficient of variation of the packages produced
(
CVpaq =

µpaq
σpaq

)
for Q = 10,000 packages.

The data produced show a low T value, with asymmetric behavior contradicting the assumption of normalcy, because
weights greater than and as close as possible to the target weight are evaluated. The results for the double-layers upright
6
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Table 4
Robust ANOVA for CVpaq: diagonal and upright machines.

Diagonal machine Upright machine

Value p value Value p value

Subgroup 2,6203.307 0.0001 12,555.0799 0.0001
Strategy 2,710.003 0.0001 759.7305 0.0001
Delta 13,780.865 0.0010 10,456.7978 0.0010
Subgroup · Strategy 9,867.217 0.0010 4,743.2698 0.0010
Subgroup · Delta 28,433.190 0.0010 15,806.8678 0.0010
Strategy · Delta 2,441.629 0.0010 914.9166 0.0010
Subgroup · Strategy · Delta 9,077.823 0.0010 4,941.5710 0.0010

Fig. 2. Interaction plot with Huber M-estimators for diagonal machines.

and diagonal double machines are presented in Table 4. In relation to the number of hoppers combined (k), the results
improve by increasing the number of hoppers to be combined k. Regardless of the machine type and strategy, the values
closest to T are obtained with k = 6, with low coefficients of variation

(
CVpaq

)
in the case of the fusilli and ravioli products.

Alternatively, when reviewing the strategies, by dividing the n hoppers in three groups, the S2 strategy reduces process
variability in both machines and products. Similarly, better performance is preliminarily obtained in the case of the
diagonal machine during the process when comparing the strategies and the number of hoppers combined. Based on
these findings, the experimental design presented in Section 7 was proposed to determine the conditions that reduce the
process variability by providing values greater than and as close as possible to the target weight when prioritizing the
hoppers that hold more undischarged contents as the process progresses.

7. Experimental design

Based on our preliminary results, we conducted a multifactorial design of experiments (DOE) of fixed effect factors [22]
to determine the best combination of treatments that provides the least process variability and reaches its optimum point.
The multifactorial design consists of three factors, as shown in Table 5 for a total of 63 treatments in each machine, each
of them with three replicates (total 252 runs). The coefficient of variation (CVpaq) recorded in each run of 10,000 packages
s the response variable used in the design.

In addition to analyzing the best factor combination, the upright and diagonal machines are compared to determine
he machine that offers lower process variability. Here, the first factor encompasses three levels consisting of the S1, S2,
nd S3 strategies that determine the hopper subgroups. The second factor is the type of hopper grouping, which will be
erformed using the equal, central, and extreme distribution strategies. The filling position constitutes the third factor
nd is set at seven levels δ = 0, 0.5, 1, 1.5, 2, 2.5, and 3 with δmin = 0.5. The design is applied to each machine with
= 16 weighing hoppers, k = 6 hoppers combined, maximum priority of Pmax = 10, a target weight of 500 g for the

fusilli product, and γ = 0.123.
Given the asymmetric behavior of the data, the robust ANOVA and Huber estimators for interactions [23] are used

to assess our design. Based on the results shown in Table 6, there are significant differences between the levels of each
factor as well as in their interactions by obtaining significant p values. When assessing Figs. 2 and 3, the process exhibited

imilar behavior for both machines according to the configuration and combination of factors. In the upright and diagonal

7
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w

Fig. 3. Interaction plot with Huber M-estimators for upright machines.

Table 5
Fusilli costs.

Fusilli

c: Raw material unit costs (=Ccent/g) 0.03
r: Reprocessing costs (=Ccent/package) 5.64

Table 6
Robust ANOVA for estimating costs: diagonal and upright machines.

Diagonal machine Upright machine

Value p value Value p value

Subgroup 47,088.31 0.0001 27,378.398 0.0001
Strategy 10,512.32 0.0001 5,612.130 0.0001
Delta 36,705.61 0.0010 25,834.105 0.0010
Subgroup · Strategy 39,803.86 0.0010 16,350.307 0.0010
Subgroup · Delta 69,503.24 0.0010 28,580.031 0.0010
Strategy · Delta 16,704.41 0.0010 8,471.424 0.0010
Subgroup · Strategy · Delta 51,675.71 0.0010 22,678.960 0.0010

machines, considering the delta levels (δ), the coefficient of variation decreases for values between δ = 1.5 and δ = 3.
Regarding the number of subgroups in which the set of n hoppers is divided, the strategy S2 = 3 achieves the best results
for the packaging process in the cases studied using the two machines. Alternatively, when considering the distribution
strategy, the case of extreme distribution is not recommended when working with five hopper subgroups because it
shows the largest variability. However, for both machines, this distribution generates the optimum value considering
three subgroups (S2) with δ = 2, regardless of the type of machine.

8. Economic analysis

The product quality depends on how close its quality features are to their nominal value, and everything that deviates
from the said nominal value is considered a loss to society [24]. Thus, any gap between the actual package contents and
the content reported on the label represents additional costs for the company. Similarly, considering the hopper priority,
hoppers will be discharged if they exceed the waiting time (Pmax) and in the model proposed herein, the hoppers must
enter the reprocessing cycle. To calculate the excess content costs and the costs associated with reprocessing the product
discharged by the hoppers, the reference values implemented by Beretta [25] and listed in Table 5 below will be used.

Considering that r represents the value per each 200-g package, we will use r1 =
5.64
200 = 0.0282 as the reprocessing

cost per gram. The excess product costs for each package are estimated (Wl − T ), so the total excess product for each

cycle of Q = 10,000 packages is WT = (µw − T ) · 10,000, where µw =

∑Q
1 Wl

Q is the average content of Q packages along
with the cost of reprocessing the discharged product (WD) and WD is the quantity of product discharged by the hoppers
that exceeded the waiting time (Pmax). Then, the costs for all 10,000 packages are obtained using Eq. (14).

cost = WT · c + WD · r1 (14)

here c is the unit cost per gram and r is the cost per gram of the reprocessed product.
1

8
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Fig. 4. Interaction plot with Huber M-estimators for diagonal machines.

Fig. 5. Interaction plot with Huber M-estimators for upright machines.

Based on the results shown in Table 5, there are significant differences between the levels of each factor as well as
n their interactions based on the p values. When assessing Figs. 4 and 5, the process exhibited similar behavior for both
achines based on the configuration and combination of factors. In the upright and diagonal machines, considering the
, the costs decrease for values between δ = 1.5 and δ = 3. Regarding the number of subgroups in which the set of n
oppers is divided, the strategy S2 = 2 yields the best results for the packaging process in the cases studied using the two
achines. Alternatively, when considering the distribution strategy, the extreme distribution is not recommended when
orking with five hopper subgroups as it generates higher costs. Both machines achieve the lowest costs when using the
qual distribution per subgroup by considering three subgroups (S2) with δ = 3.

. Conclusions

The food packing industry constantly requires process optimization to remain competitive in the market by reducing
ts operating costs while improving the quality of the final product according to the needs of its customers. The multihead
eighing process is no stranger to this reality. In this study, a new food packaging algorithm and its corresponding
ptimization model for double-layered upright and diagonal multihead weighers are presented. The algorithm is initially
alidated by considering the machines with n = 16 weighing hoppers using three hopper-filling strategies (S1, S2, and
3) and by assigning each subgroup the same number of hoppers and different combinations of hoppers k. To assess
he performance of the process, two products (ravioli and fusilli) were tested at different γ values and an DOE was
stablished to compare different distribution strategies (central, equal, or extreme), subgroup strategy S , S , and S ,
( 1 2 3)

9
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and filling position δ factor levels. These conditions were applied to in both the machines using the fusilli product as an
xample (γ = 0.123) with n = 16 feeding hoppers, k = 6 hoppers combined, and a maximum priority of Pmax = 10.
o assess the process, the mean and standard deviations of all 10,000 packages were recorded to obtain the CVpaq as a
esign response variable. The results indicated that the best filling configuration to reduce the process variability is the S2
trategy, particularly when using three hopper subgroups, assigning the largest number of hoppers to the extreme group,
nd using filling position δ = 2. Moreover, it is evident that the excess product and reprocessing costs decrease in the
ase of both machines when using an equal distribution of hoppers per group when considering three subgroups (S2) with
= 3.
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