
SORT 42 (1) January-June 2018, DOI: 10.2436/20.8080.02.50

Empirical analysis of daily cash flow time-series
and its implications for forecasting
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Abstract

Usual assumptions on the statistical properties of daily net cash flows include normality, absence
of correlation and stationarity. We provide a comprehensive study based on a real-world cash
flow data set showing that: (i) the usual assumption of normality, absence of correlation and
stationarity hardly appear; (ii) non-linearity is often relevant for forecasting; and (iii) typical data
transformations have little impact on linearity and normality. This evidence may lead to consider
a more data-driven approach such as time-series forecasting in an attempt to provide cash man-
agers with expert systems in cash management.
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1. Introduction

Cash management is concerned with the ef cient use of a company’s cash and short-
term investments such as marketable securities. The focus is placed on maintaining the
amount of available cash as low as possible, while still keeping the company operating
ef ciently. In addition, companies may place idle cash in short-term investments (Ross,
Wester eld and Jordan, 2002). Then, the cash management problem can be viewed as
a trade-off between holding and transaction costs. If a company tries to keep balances
too low, holding cost will be reduced, but undesirable situations of shortage will force to
sell available marketable securities, hence increasing transaction costs. In contrast, if the
balance is too high, low trading costs will be produced due to unexpected cash ow, but
the company will carry high holding costs because no interest is earned on cash. There–
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Figure 1: Example of a cash ow time-series.

fore, there is a target cash balance which each company must optimize according to the
particular characteristics of its cash ows. An example of a raw cash ow time-series
is shown in Figure 1, where observations do not apparently follow any seasonal pattern
and whose evolution over time seems to be quite stable in terms of mean and variance,
similarly to a white noise signal.
Testing the validity of time-series assumptions is an ongoing issue in nance (Mara-

the and Ryan, 2005; Ewing and Thompson, 2007; Cavaliere and Xu, 2014; Horváth,
Kokoszka and Rice, 2014; Arratia, Cabana and Cabana, 2016; Torabi, Montazeri and
Grané, 2016). Since Baumol (1952), a number of cash management models have been
proposed to control cash balances. These models are based either on the speci c sta-
tistical properties of cash balances or on cash ow forecasts. A comprehensive review
of models, from the rst proposals to the most recent contributions, can be found in
Gregory (1976), Srinivasan and Kim (1986), and da Costa Moraes, Nagano and So-
breiro (2015). Most of them are based on assuming a given probability distribution for
cash ows such as: (i) a random walk in the form of independent Bernouilli trials as in
Miller and Orr (1966); (ii) a Wiener process as in Constantinides and Richard (1978),
Premachandra (2004), and Baccarin (2009); (iii) a double exponential distribution as in
Penttinen (1991). From these and other works, we observe that common assumptions
on the statistical properties of cash ow time-series include:

• Normality: cash ows follow a Gaussian distribution with observations symmet-
rically centered around the mean, and with nite variance.

• Absence of correlation: the occurrence of past cash ows does not affect the prob-
ability of occurrence of the next ones.
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• Stationarity: the probability distribution of cash ows does not change over time
and, consequently, its statistical properties such as the mean and variance remain
stable.

• Linearity: cash ows are proportional either to another (external) explanatory vari-
able or to a combination of (external) explanatory variables.

Surprisingly, little and/or contradictory empirical evidence on these assumptions has
been provided besides individual cases through time. Early on, negative normality tests
were reported in Homonoff and Mullins (1975) for the times series samples of a manu-
facturing company. Contrastingly, later on, Emery (1981) reported normally distributed
cash ow, after data transformation, for two out of three companies, and a small serial
dependence for all of them. Pindado and Vico (1996) provided negative normality and
independence results on 36 companies, but considering daily cash ow for only a single
month. Previous works also reported day-of-week and day-of-month effects on cash
ows, in line with the works of Stone and Wood (1977), Miller and Stone (1985), and
Stone andMiller (1987). Recently, Gormley andMeade (2007) described the time-series
from a multinational company with a non-normal distribution and serial dependence.
We consider that the evidence derived from these works is inconclusive due to: (i)

the disagreement between the conclusions of some of the works; (ii) the limited number
of companies analysed; and (iii) the short time range of the observations. Moreover,
none of the previous works considered the presence of non-linear patterns for forecast-
ing purposes. In this work, we provide an analysis of the statistical properties of 54
real cash ow data sets from small and medium companies in Spain as a representative
sample of the most common type of companies in Europe. Indeed, small and medium
companies contribute to 99.8% of all enterprises, 57.4% of value added, and 66.8% of
employment across the EU28 (Muller et al., 2015). To the best of our knowledge, this
is the most comprehensive empirical study on daily cash ow so far. We base this state-
ment on both the length and number of data sets, which amounts to 58005 observations
in total, with a minimum, average and maximum time range of 170, 737, 1508 working
days, respectively. In addition, we consider a wider range of statistical properties. A
further contribution of the present work is to make all the aforementioned data publicly
available online1. Finally, from a forecasting perspective, we also aim to identify the
family of forecasters that best accommodate to cash ow time-series data sets. To this
end, we propose a new and simple cross-validated test for non-linearity that provides
further knowledge to cash managers in their search for better forecasting models.
Our results show the unlikely occurrence of normality, absence of correlation and

stationarity in the data sets under study. These results are consistent with the cited re-
ports of Homonoff and Mullins (1975), based on only one time-series, and Pindado and
Vico (1996), based on a very short time range, raising doubts about the claim of indepen-

1. http://www.iiia.csic.es/ jar/54datasets3.csv
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dence. We also report that normality could not be achieved through removing outliers,
contrary to what was reported by Emery (1981), based on only three time-series. Our
analysis also con rms the in uence of seasonality as suggested in Miller and Stone
(1985) and Stone and Miller (1987). Thus, we consider that our results provide stronger
evidence against normality, uncorrelatedness and stationarity than previous works. Note
that we do not claim that these results can be extrapolated to all kind of companies. On
the contrary, we provide further evidence against standard assumptions in cash man-
agement. This evidence may lead to consider a more data-driven approach such as
time-series forecasting in order to provide cash managers with expert systems in cash
management (Nedović and Devedzić, 2002).
In an attempt to achieve Gaussian and stationary time-seres, practitioners typically

use the Box-Cox transformation (Box and Cox, 1964), and time-series differencing
(Makridakis, Wheelwright and Hyndman, 2008). Furthermore, some kind of outlier
treatment is also a recommended practice. Then, we also study the impact of outlier
treatment by replacing them with linear interpolations between two consecutive obser-
vations. However, in our study, we nd little bene t when these methods are applied to
our data sets. As a result, we point out the underlying question about data transformation
in relation to the properties of a time-series. Is it always possible to achieve a Gaussian
and linear time-series through data transformations? We rely here both on common
statistical tests and on our novel non-linearity test to answer this question and we nd
that: (i) outlier treatment and Box-Cox transformation are not always enough to achieve
normality; (ii) outlier treatment produces mixed results in terms of noise reduction and
information loss; (iii) outlier treatment and Box-Cox transformations do not produce
linearity. These results suggest that non-linear models conform a justi able alternative
for cash ow time-series forecasting, beyond the current conjectures of the literature.
The remaining of the paper is organized as follows. In Section 2, we provide a

statistical summary of the contributed 54 real cash ow data sets including normality,
correlation and stationarity. In Section 3, we propose a new cross-validated test for non-
linearity based on the comparison of a linear model and a non-linear model. Later, we
present in Section 4 detailed results on the impact of data transformations on linearity.
Finally, we provide some concluding remarks in Section 5.

2. Data summary

The data set contains daily cash ows from 54 different companies from the manufac-
turing and the service sector in Spain with annual revenue up to e10 million each. No
company from the primary sectors is included in the sample. We select only small and
medium companies since it is the most common size of companies in both Spain and
Europe (Muller et al., 2015). This data set covers a date range of about eight years and
is available online. An instance in the data set contains the following elds or columns:
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Table 1: Data sets statistical summary. Mean, standard deviation, minimum, maximum in thousands of e.

Id Length Null % Mean Std Kurtosis Skewness Min Max

1 856 35.7 0.01 3.38 594.81 22.37 −9.07 90.27
2 684 29.8 0.26 5.80 58.98 3.69 −56.51 62.66
3 856 8.5 0.36 35.35 163.62 6.28 −303.20 671.04
4 1201 34.9 −0.12 14.32 78.14 −6.30 −223.38 72.76
5 849 19.4 0.00 1.67 56.10 −0.48 −18.26 16.42
6 799 20.7 0.01 6.63 33.21 −2.42 −68.97 56.27
7 772 38.5 0.07 5.36 86.75 6.74 −24.41 82.91
8 695 21.7 0.05 3.15 14.27 −2.57 −24.21 11.31
9 852 18.8 0.73 56.54 18.92 −0.78 −411.41 473.36
10 744 13.2 0.12 6.95 70.63 0.60 −81.13 78.72
11 639 62.6 −0.05 8.56 391.86 −17.65 −191.53 30.74
12 503 2.6 0.48 35.30 449.38 20.70 −47.27 771.38
13 697 24.7 0.52 24.24 18.81 2.06 −99.39 227.45
14 604 4.6 0.10 13.23 8.51 1.05 −63.23 92.71
15 605 4.1 0.68 11.67 4.43 0.33 −54.75 55.61
16 596 6.4 0.01 1.46 107.82 6.68 −8.48 22.61
17 1102 25.1 0.58 13.31 215.97 11.96 −118.01 250.13
18 552 3.1 0.16 2.16 70.23 5.10 −16.14 26.36
19 503 2.4 −0.31 2.58 6.43 0.50 −15.06 15.28
20 848 27.8 0.02 1.07 96.19 3.86 −12.07 16.04
21 829 18.7 −0.06 5.99 33.36 −1.62 −70.00 53.17
22 494 1.6 −0.46 27.28 22.64 −1.96 −244.29 138.87
23 604 9.1 1.63 20.85 79.99 5.41 −124.19 269.27
24 1097 8.4 0.96 20.36 95.45 6.48 −73.33 317.85
25 587 10.9 0.49 13.94 119.60 6.93 −116.01 201.13
26 751 11.6 −0.02 1.77 15.73 0.15 −10.73 15.56
27 332 8.1 0.29 1.64 10.60 2.14 −4.36 11.84
28 855 5.1 0.00 4.64 13.83 1.77 −18.10 39.01
29 609 13.6 0.04 6.07 108.66 −6.35 −90.04 55.89
30 554 8.1 0.03 1.47 68.26 5.47 −4.81 19.82
31 372 29.6 0.37 8.05 31.46 −2.41 −80.44 34.95
32 1103 24.8 0.28 4.03 11.07 0.54 −25.76 24.50
33 854 31.0 −0.19 6.81 115.63 −1.74 −94.33 95.59
34 1508 11.5 −0.06 10.13 19.89 −2.32 −96.82 49.65
35 501 7.4 0.20 5.40 11.41 −0.58 −31.42 29.19
36 359 11.4 0.42 1.85 12.24 2.44 −7.87 11.84
37 361 3.0 −0.69 17.82 139.06 −1.38 −228.88 218.42
38 170 9.4 −1.20 7.10 43.34 −5.73 −61.93 19.66
39 1104 29.0 0.02 0.95 7.95 −0.07 −5.67 6.57
40 198 0.0 0.78 12.38 0.58 1.02 −25.63 36.91
41 341 17.6 −0.25 8.34 15.80 1.22 −44.29 64.34
42 566 11.0 0.01 1.82 308.62 −15.80 −37.02 7.48
43 750 3.2 0.34 13.10 7.66 −0.04 −65.84 73.40
44 287 4.2 0.52 11.46 81.19 −0.05 −118.74 120.34
45 1465 49.8 0.04 9.12 43.51 −2.89 −107.20 75.47
46 565 44.8 0.54 5.58 75.41 2.91 −51.16 73.83
47 503 4.4 1.98 46.81 46.03 1.37 −338.39 478.26
48 605 13.1 0.21 22.71 34.31 −1.68 −207.04 203.09
49 993 50.5 −0.08 1.36 27.18 −2.18 −10.78 12.73
50 605 45.0 −0.01 27.37 43.79 −2.01 −262.52 221.96
51 1225 0.2 15.09 96.96 2.77 0.12 −419.88 481.66
52 1225 0.4 8.94 49.39 36.23 2.81 −325.46 700.66
53 1223 39.7 0.47 9.13 203.12 −10.25 −196.88 38.48
54 1225 52.3 0.46 77.91 151.93 4.28 −1021.36 1532.10
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• Date: standardized YYYY-MM-DD dates from 2009-01-01 to 2016-28-08.
• Company: company identi er from 1 to 54.
• NetCF: daily net cash ow in thousands of e.
• DayMonth: categorical variable with the day of the month from 1 to 31.
• DayWeek: categorical variable with the day of the week from 1 (Monday) to 7
(Sunday).

Table 1 shows the statistical summary of daily net cash ow on non-holidays, grouped
by company. Small and medium companies are likely to experiment daily null cash
ows, meaning that no monetary movement is observed at a particular working day
even under regular activity. As a result, the occurrence of null cash ows is an impor-
tant characteristic of small and medium companies due to the size of companies. Indeed,
almost 30% of the companies in our data set present more than 25% of null cash ow
observations even at working days. This fact implies that a null cash ow prediction
will be right at least 25% of the times for this group of data sets. Therefore, two good
baseline forecasting models for comparative purposes would be an always-predict-null
or an always-predict-mean forecaster (Makridakis et al., 2008).
In addition, the average net cash ow shows that a high percentage of companies

present either positive or negative mean with the exception of companies 5 and 28.
High positive kurtosis indicates a peaked data distribution in comparison to the normal
distribution that has zero kurtosis. The skewness is a measure of the symmetry of the
data distribution. Negative skewness indicates that the left tail is longer, and positive
skewness indicates that the right tail is longer.

2.1. Normality

First, we study if our cash ows follow a Gaussian distribution. In fact, the observed
kurtosis and skewness can be used as a rst normality test of the data distribution for
each company. Table 1 shows that no company presents zero kurtosis and skewness.
Only company 40, with kurtosis 0.58 and skewness 1.02, could be considered close to
normality. The proportion of null cash ows is also a strong evidence against normality.
Since this situation is likely to be common for SMEs and, due to the high proportion of
this type of companies in Europe, we believe that cash managers should test normality
before applying cash management models based on this assumption.
Two additional tests can be used to either verify or reject the hypothesis of normality:

the Shapiro-Wilk test for normality (Royston, 1982) and the Lilliefors (Kolmogorov-
Smirnov) test for normality (Lilliefors, 1967). The results from these two tests applied
to the original time-series (summarized in Table 2) allow us to reject the hypothesis of
normally distributed cash ows for all the companies in our data set (no exception).
However, the presence of correlation and possible changes in the mean of data sets may
limit the reliability of these tests. We overcome this problem by performing an addi-
tional normality test. More precisely, we check the normality of the residuals of tting
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an ARMA model to each of the time-series as suggested by Ducharme and Lafaye de
Micheaux (2004). To obtain ARMA models, we follow the automatic tting procedure
described in Hyndman and Khandakar (2008). Finally, we test the normality of the resid-
uals by means of Neyman (1937) smooth tests as recently proposed by Ducharme and
Lafaye de Micheaux (2004) and Duchesne, Lafaye de Micheaux and Tagne Tatsinkou
(2016). The results from Table 2 before any data transformation suggest the rejection of
the normality hypothesis.
As pointed out elsewhere (Emery, 1981; Pindado and Vico, 1996), a possible ex-

planation for non-normality could be the presence of abnormally high values or heavy
tails. Thus, we repeated the Shapiro-Wilk, the Lilliefors (Kolmogorov-Simirnov), and
the Neyman tests for normality, but now using a trimmed version of the net cash ow
time-series by deleting observations greater or lower than three times the sample stan-
dard deviation. No difference in the results of the tests was observed, con rming the
non-normality hypothesis beyond the conjectures of Emery (1981) and Pindado and
Vico (1996).
Non-normal residuals may be problematic in the estimation process when using lin-

ear models. Data transformations such as the Box and Cox (1964) transformation to nor-
mality represent a possible solution. Forecasts are then calculated on the transformed
data, but we must reverse the transformation to obtain forecasts on the original data,
resulting in two additional steps. However, these transformations are not always the
solution to the non-normality problem. Using both the original observations and the
trimmed version of our data sets, we proceeded to transform the data using a Box-Cox
transformation of the type:

y(λ) =

⎧⎨
⎩

(y+λ2)
λ1−1

λ1
if λ1 �= 0,

log(y+λ2) if λ1 = 0,
(1)

where y is the original time-series, and λ1 and λ2 are parameters. In these experiments,
we rst set λ2 to minus two times the minimum value of the time-series to avoid prob-
lems with negative and zero observations. Box and Cox (1964) provided the pro le like-
lihood function for λ1 and suggested to use this function as a way to tune this parameter.
Then, we follow the recommendations in Venables and Ripley (2013) to compute the
pro le likelihood function for λ1, and we later select the value that maximizes the log-
likelihood function when applying a linear regression model of the time-series based
on day-of-month and day-of-week dummy variables. After a Box-Cox transformation
on the trimmed time-series, we repeated the Shapiro-Wilk, the Lilliefors (Kolmogorov-
Smirnov), and the Neyman smooth tests for normality obtaining again negative results
as shown in Table 2. A possible explanation of these results is that the correlational
structure of a transformed time-series closely depends on the original. A special case of
this feature for a logarithmic transformation can be found in Moriña, Puig and Valero
(2015). As a result, we must conclude that, even after Box-Cox transformation, the
normality hypothesis does not hold.
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Table 2: Normality tests. SW: Shapiro-Wilk; LKS: Lilliefors (Kolmogorov-Smirnov).

Before data transformation After trimming and Box-Cox transformation
Id SW p-value LKS p-value Neyman p-value SW p-value LKS p-value Neyman p-value
1 0.20 < 0.05 0.31 < 0.05 13165.72 < 0.05 0.76 < 0.05 0.23 < 0.05 2125.70 < 0.05
2 0.36 < 0.05 0.35 < 0.05 6539.22 < 0.05 0.55 < 0.05 0.35 < 0.05 3884.23 < 0.05
3 0.42 < 0.05 0.26 < 0.05 6452.81 < 0.05 0.76 < 0.05 0.26 < 0.05 839.58 < 0.05
4 0.45 < 0.05 0.32 < 0.05 10249.73 < 0.05 0.69 < 0.05 0.28 < 0.05 4463.36 < 0.05
5 0.54 < 0.05 0.24 < 0.05 5103.79 < 0.05 0.83 < 0.05 0.23 < 0.05 949.19 < 0.05
6 0.59 < 0.05 0.27 < 0.05 3694.65 < 0.05 0.78 < 0.05 0.26 < 0.05 768.83 < 0.05
7 0.48 < 0.05 0.32 < 0.05 4768.18 < 0.05 0.74 < 0.05 0.29 < 0.05 1223.53 < 0.05
8 0.64 < 0.05 0.33 < 0.05 1902.93 < 0.05 0.75 < 0.05 0.28 < 0.05 1724.23 < 0.05
9 0.54 < 0.05 0.39 < 0.05 2558.89 < 0.05 0.63 < 0.05 0.38 < 0.05 1563.74 < 0.05
10 0.41 < 0.05 0.24 < 0.05 6437.00 < 0.05 0.78 < 0.05 0.25 < 0.05 1715.64 < 0.05
11 0.17 < 0.05 0.39 < 0.05 10234.39 < 0.05 0.49 < 0.05 0.35 < 0.05 3164.46 < 0.05
12 0.11 < 0.05 0.37 < 0.05 9828.61 < 0.05 0.76 < 0.05 0.28 < 0.05 1171.58 < 0.05
13 0.59 < 0.05 0.33 < 0.05 2229.85 < 0.05 0.65 < 0.05 0.31 < 0.05 1111.39 < 0.05
14 0.84 < 0.05 0.17 < 0.05 353.45 < 0.05 0.89 < 0.05 0.16 < 0.05 127.69 < 0.05
15 0.89 < 0.05 0.16 < 0.05 216.99 < 0.05 0.91 < 0.05 0.16 < 0.05 148.40 < 0.05
16 0.53 < 0.05 0.22 < 0.05 3145.88 < 0.05 0.88 < 0.05 0.20 < 0.05 175.85 < 0.05
17 0.24 < 0.05 0.34 < 0.05 14724.84 < 0.05 0.69 < 0.05 0.31 < 0.05 2295.82 < 0.05
18 0.55 < 0.05 0.19 < 0.05 2660.82 < 0.05 0.89 < 0.05 0.19 < 0.05 242.65 < 0.05
19 0.92 < 0.05 0.10 < 0.05 456.82 < 0.05 0.97 < 0.05 0.10 < 0.05 54.93 < 0.05
20 0.53 < 0.05 0.24 < 0.05 4530.45 < 0.05 0.84 < 0.05 0.24 < 0.05 578.91 < 0.05
21 0.69 < 0.05 0.23 < 0.05 2015.07 < 0.05 0.84 < 0.05 0.22 < 0.05 588.95 < 0.05
22 0.67 < 0.05 0.22 < 0.05 1263.64 < 0.05 0.82 < 0.05 0.21 < 0.05 285.96 < 0.05
23 0.48 < 0.05 0.27 < 0.05 3365.92 < 0.05 0.77 < 0.05 0.27 < 0.05 500.78 < 0.05
24 0.49 < 0.05 0.29 < 0.05 5986.28 < 0.05 0.71 < 0.05 0.31 < 0.05 1345.56 < 0.05
25 0.36 < 0.05 0.28 < 0.05 5084.02 < 0.05 0.74 < 0.05 0.28 < 0.05 805.87 < 0.05
26 0.75 < 0.05 0.21 < 0.05 1271.00 < 0.05 0.84 < 0.05 0.21 < 0.05 476.22 < 0.05
27 0.81 < 0.05 0.17 < 0.05 3832.19 < 0.05 0.92 < 0.05 0.14 < 0.05 1034.84 < 0.05
28 0.77 < 0.05 0.21 < 0.05 1622.42 < 0.05 0.85 < 0.05 0.19 < 0.05 486.48 < 0.05
29 0.31 < 0.05 0.39 < 0.05 6782.20 < 0.05 0.55 < 0.05 0.37 < 0.05 3712.34 < 0.05
30 0.62 < 0.05 0.20 < 0.05 1988.27 < 0.05 0.86 < 0.05 0.21 < 0.05 196.55 < 0.05
31 0.69 < 0.05 0.18 < 0.05 1707.62 < 0.05 0.86 < 0.05 0.19 < 0.05 580.67 < 0.05
32 0.73 < 0.05 0.22 < 0.05 1838.10 < 0.05 0.80 < 0.05 0.22 < 0.05 741.53 < 0.05
33 0.24 < 0.05 0.37 < 0.05 10442.42 < 0.05 0.44 < 0.05 0.38 < 0.05 6581.93 < 0.05
34 0.68 < 0.05 0.27 < 0.05 2529.16 < 0.05 0.77 < 0.05 0.23 < 0.05 1048.52 < 0.05
35 0.74 < 0.05 0.24 < 0.05 1027.85 < 0.05 0.83 < 0.05 0.23 < 0.05 356.87 < 0.05
36 0.67 < 0.05 0.26 < 0.05 4331.31 < 0.05 0.80 < 0.05 0.23 < 0.05 1949.37 < 0.05
37 0.10 < 0.05 0.46 < 0.05 6768.47 < 0.05 0.18 < 0.05 0.46 < 0.05 5398.45 < 0.05
38 0.41 < 0.05 0.30 < 0.05 1695.03 < 0.05 0.68 < 0.05 0.21 < 0.05 371.92 < 0.05
39 0.82 < 0.05 0.24 < 0.05 497.26 < 0.05 0.87 < 0.05 0.23 < 0.05 191.56 < 0.05
40 0.89 < 0.05 0.21 < 0.05 50.00 < 0.05 0.95 < 0.05 0.15 < 0.05 2155.90 < 0.05
41 0.66 < 0.05 0.28 < 0.05 1117.07 < 0.05 0.73 < 0.05 0.27 < 0.05 507.15 < 0.05
42 0.21 < 0.05 0.36 < 0.05 8189.26 < 0.05 0.68 < 0.05 0.24 < 0.05 725.85 < 0.05
43 0.84 < 0.05 0.16 < 0.05 686.05 < 0.05 0.90 < 0.05 0.17 < 0.05 281.96 < 0.05
44 0.37 < 0.05 0.30 < 0.05 2611.31 < 0.05 0.71 < 0.05 0.30 < 0.05 427.38 < 0.05
45 0.42 < 0.05 0.36 < 0.05 11122.67 < 0.05 0.57 < 0.05 0.35 < 0.05 6084.71 < 0.05
46 0.34 < 0.05 0.37 < 0.05 5194.50 < 0.05 0.51 < 0.05 0.37 < 0.05 2620.56 < 0.05
47 0.40 < 0.05 0.30 < 0.05 3979.90 < 0.05 0.64 < 0.05 0.30 < 0.05 1869.51 < 0.05
48 0.52 < 0.05 0.34 < 0.05 2851.85 < 0.05 0.66 < 0.05 0.33 < 0.05 1247.03 < 0.05
49 0.38 < 0.05 0.46 < 0.05 6891.41 < 0.05 0.51 < 0.05 0.45 < 0.05 2739.27 < 0.05
50 0.30 < 0.05 0.39 < 0.05 6871.79 < 0.05 0.40 < 0.05 0.38 < 0.05 4855.75 < 0.05
51 0.93 < 0.05 0.11 < 0.05 320.22 < 0.05 0.94 < 0.05 0.12 < 0.05 293.46 < 0.05
52 0.80 < 0.05 0.15 < 0.05 1538.44 < 0.05 0.93 < 0.05 0.13 < 0.05 293.37 < 0.05
53 0.35 < 0.05 0.33 < 0.05 9770.54 < 0.05 0.62 < 0.05 0.29 < 0.05 3792.57 < 0.05
54 0.30 < 0.05 0.37 < 0.05 11389.52 < 0.05 0.45 < 0.05 0.37 < 0.05 7568.90 < 0.05
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2.2. Correlation and seasonality

In what follows, we test the correlation of cash ows and we also explore if season-
ality is present. Autoregressive Integrated Moving Average (ARIMA) models by Box
and Jenkins (1976), have been extensively used for time-series analysis and forecasting.
When dealing with time-series, the autocorrelation coef cient, rk, describes the relation-
ship between observations that are lagged k time periods (Makridakis et al., 2008). We
say that a time-series is not autocorrelated when the rk values for different lags are close
to zero. An example of an independent time-series is the so-called white-noise model
where each observation is made by adding a random component to a certain level.
An intuitive plot to assess correlation is the Poincaré map (Kantz and Schreiber,

2004), which is a scatter plot of the original time-series and a k-periods lagged time-
series as in Figure 2, which shows a lag of 1 day for time-series 1 and 2 from Table 1.
As a reference, we also include the Poincaré map for a white-noise and for a sinusoidal
time-series. A cloud of points suggests lack of correlation, as for time-series 1 and
white-noise, and the presence of any form suggests a more complex relationship, as for
time-series 2 and the sinusoidal. For comparative purposes, we present in Figure 3 the
classical plots showing autocorrelation and partial autocorrelation functions for different
lags within the range 1-20 with dashed horizontal lines representing 95% con dence
intervals. From the analysis of Figure 3, we note correlation for time-seres 1 and 2 at
lags 1 and 15, respectively.
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Figure 2: Poincaré map with lag 1 for time-series 1 and 2.
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Figure 3: Autocorrelation plots for time-series 1 and 2.

A more general approach is to consider a set of the rst rk values as a whole as in the
Ljung and Box (1978) test, which we applied to the original time-series and produced
mixed results. More precisely, we found that the null hypothesis of independence could
not be rejected in 24 out of 54 companies as summarized in Table 3. These results
imply that some kind of serial correlation is likely to be present in the case of companies
presenting a certain degree of autocorrelation in the sample. A plausible type of serial
correlation is seasonality, that is, the existence of a pattern that repeats itself over xed
time intervals in the data (Makridakis et al., 2008). It can be identi ed by signi cant
autocorrelation coef cients. Seasonal trend decomposition methods Cleveland et al.,
1990), seasonal ARIMA models (Box and Jenkins, 1976; Franses and Van Dijk, 2005)
or linear (and non-linear) regression models based on seasonal variables are available
options to deal with seasonality. In cash ow forecasting, the distribution approach by
Miller and Stone (1985) also deserves to be mentioned.
As mentioned in the introduction, previous works by Emery (1981), Miller and Stone

(1985), Stone and Miller (1987), and Pindado and Vico (1996), reported the in uence of
day-of-month and day-of-week effects on cash ow patterns. Here, we test the presence
of seasonality by tting a regression model on raw daily cash ows using day-of-month
and day-of-week dummy variables. To avoid co-linearity issues in regression, we use
thirty day-of-month dummy variables from the 2nd to the 31st day of the month and four
day-of-week variables fromMonday to Thursday up to a total of 34 regression variables.
At each time step t, predictor xti is set to one if the corresponding day-of-month is i, zero
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otherwise, and xt j is set to one if the corresponding day-of-week is j, with j ranging from
1 for Monday to 4 for Thursday. Mathematically, the linear regression model used to
test seasonality is expressed as follows:

yt =
31∑
i=2

βixti+
4∑
j=1

β jxt j+ ε. (2)

Table 3 reports, on the one hand, the Ljung-Box correlation test applied to raw data
and, on the other hand, the F-statistic, the p-value and the coef cient of determination
R2, derived from the regression model. One may expect that the rejection of the correla-
tion null hypothesis results in better regressions. Our results, however, show a different
behavior. Non-linear patterns, non-periodical temporal correlations, and the effect of
outliers become possible explanations as we will see below.

2.3. Stationarity

In this section, we analyse if cash ows from our data set can be labelled as stationary.
More precisely, we focus on weak stationarity that considers the change over time of the
rst (mean) and second moment (variance) of a random process. We can visually assess
stationarity by inspecting a time-series plot as the one shown in Figure 1. Virtually,
every process we nd in nature is non-stationary, since its parameters depend on time
(Kantz and Schreiber, 2004). However, a minimum requirement is that basic statistical
properties of a distribution, such as mean and variance, remain constant over time, when
measured through appropriately long time windows. It is important to highlight that sea-
sonality is a particular case of non-stationarity, at least, within each periodic uctuation
when we focus on short-term changes in parameters. In what follows, we pay attention
to long-term changes (periods longer than a month) as a way to assess stationarity.
Following the recommendations in Kantz and Schreiber (2004), we perform a sta-

tionarity test based on the uctuations of a sample mean and variance. More precisely,
we compute the sample mean and variance of each original time-series by months and
obtain the standard errors for both. If the observed uctuations of the running mean and
variance are within these errors, then we consider the time-series stationary. The results
from this test shows that none of the time-series is stationary. These results are consis-
tent with the fact that most of the p-values of the regression models used for checking
seasonality are below 0.05 as summarized in Table 3.
One way of removing non-stationarity is time-series differencing, which is de ned

as the change between two consecutive observations. Similarly, seasonal differencing is
the change between corresponding observations from two consecutive seasonal periods.
Since the presence of seasonality is likely (see Table 3), we next explore three alternative
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Table 3: Correlation and seasonality test results.

Id Ljung-Box Test Statistic p-value F-statistic p-value R2

1 Non-rejected 11.05 1.00 1.99 < 0.05 0.08
2 Rejected 65.99 < 0.05 1.05 0.39 0.05
3 Non-rejected 34.47 0.72 1.87 < 0.05 0.07
4 Rejected 120.15 < 0.05 1.51 < 0.05 0.04
5 Rejected 120.91 < 0.05 1.85 < 0.05 0.07
6 Non-rejected 46.96 0.21 1.12 0.29 0.05
7 Rejected 166.97 < 0.05 5.47 < 0.05 0.20
8 Rejected 67.15 < 0.05 0.79 0.80 0.04
9 Rejected 97.32 < 0.05 5.30 < 0.05 0.18
10 Rejected 145.00 < 0.05 2.04 < 0.05 0.09
11 Non-rejected 10.57 1.00 0.97 0.51 0.05
12 Non-rejected 3.25 1.00 0.98 0.51 0.07
13 Rejected 139.26 < 0.05 5.21 < 0.05 0.21
14 Rejected 74.58 < 0.05 7.13 < 0.05 0.30
15 Rejected 87.67 < 0.05 1.92 < 0.05 0.10
16 Non-rejected 38.12 0.56 4.31 < 0.05 0.21
17 Non-rejected 14.49 1.00 4.91 < 0.05 0.14
18 Rejected 57.25 < 0.05 2.99 < 0.05 0.16
19 Rejected 75.16 < 0.05 2.58 < 0.05 0.16
20 Non-rejected 43.37 0.33 2.71 < 0.05 0.10
21 Non-rejected 46.65 0.22 1.37 0.08 0.06
22 Non-rejected 33.35 0.76 1.49 < 0.05 0.10
23 Rejected 68.36 < 0.05 5.60 < 0.05 0.25
24 Non-rejected 41.30 0.41 15.41 < 0.05 0.33
25 Non-rejected 33.35 0.76 4.23 < 0.05 0.21
26 Rejected 95.79 < 0.05 1.22 0.18 0.05
27 Non-rejected 44.66 0.28 1.24 0.18 0.12
28 Rejected 112.21 < 0.05 5.64 < 0.05 0.19
29 Non-rejected 42.55 0.36 1.37 0.08 0.08
30 Rejected 107.46 < 0.05 6.18 < 0.05 0.29
31 Non-rejected 47.51 0.19 1.25 0.16 0.11
32 Rejected 105.26 < 0.05 4.81 < 0.05 0.13
33 Rejected 201.50 < 0.05 1.57 < 0.05 0.06
34 Rejected 130.53 < 0.05 11.61 < 0.05 0.21
35 Rejected 66.04 < 0.05 0.99 0.49 0.07
36 Non-rejected 44.66 0.28 1.82 < 0.05 0.16
37 Rejected 96.75 < 0.05 1.58 < 0.05 0.14
38 Non-rejected 45.37 0.26 1.06 0.39 0.21
39 Rejected 192.30 < 0.05 6.11 < 0.05 0.16
40 Rejected 78.81 < 0.05 0.86 0.68 0.15
41 Non-rejected 39.05 0.51 1.72 < 0.05 0.16
42 Non-rejected 22.85 0.99 3.90 < 0.05 0.20
43 Rejected 80.56 < 0.05 2.96 < 0.05 0.12
44 Non-rejected 19.56 1.00 1.89 < 0.05 0.20
45 Rejected 82.69 < 0.05 1.26 0.15 0.03
46 Non-rejected 32.23 0.80 1.32 0.11 0.08
47 Non-rejected 35.67 0.67 0.90 0.63 0.06
48 Non-rejected 42.53 0.36 1.71 < 0.05 0.09
49 Rejected 105.02 < 0.05 26.15 < 0.05 0.48
50 Rejected 135.48 < 0.05 1.24 0.17 0.07
51 Rejected 131.27 < 0.05 16.66 < 0.05 0.32
52 Rejected 66.68 < 0.05 5.01 < 0.05 0.13
53 Non-rejected 18.62 1.00 1.59 < 0.05 0.04
54 Rejected 129.11 < 0.05 0.88 0.67 0.02
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seasons (or periods) to apply differencing: 1) one day, equivalent to no seasonality; 2)
ve days, to account for day-of-week seasonality; and 3) twenty days, to account for
day-of-month seasonality. Finally, differencing can be applied only once to data, twice
or a number n of times de ning the order of differencing. In Table 4, we summarize
stationarity results for our data set in terms of the number of time-series that are labelled
as stationary in mean and variance according to the test described above. Only a small
fraction of time-series can be considered stationary in mean (but not in variance) after
rst and second-order differencing. From this analysis, we conclude that our cash ow
time-series are non-stationary, even after differencing.

Table 4: Percentage of time-series labelled as stationary in mean and variance.

Differencing Zero-order First-Order Second-Order

Seasonality Mean Var Mean Var Mean Var

1 0 0 18.5 0 18.5 0
5 0 0 3.7 0 5.6 0
20 0 0 0 0 0 0

2.4. Discussion

Our results show that the widely extended hypothesis of cash ow normality is not
present in our data sets. The presence of high abnormal values does not explain this
behavior since non-normality persisted after removing these abnormal values. Non-
linearity could be a possible explanation as we will see below. We also reported mixed
results on autocorrelation and the in uence of day-of-month and day-of-week effects
on cash ow along the lines of the literature. We additionally report that common solu-
tions to non-normality and non-stationarity such as data transformation and differencing
produced little bene t when applied to our time-series. Since seasonality and serial cor-
relation are also present in our data set, we further explore the usefulness of alternative
forecasting models. More precisely, we next study linearity and data transformation as
an additional part of our empirical analysis for cash ow forecasting.

3. A simple cross-validated test for non-linearity

Most forecasting models are linear for computational convenience. However, non-linear
patterns are likely to be present in nance and business time-series. A time-series linear
model is de ned as a variable yt that depends on the additive contribution of a number
of explanatory variables in vector xtxtxt for any time t as follows:

yt = βββTxtxtxt+ et (3)
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where βββT is a transposed vector of coef cients, and et is the error or the residual compo-
nent. An alternative and more general model can also be considered:

yt = g(xtxtxt)+ εt (4)

where g(xtxtxt) is any function that aims to describe the underlying time-series. By consid-
ering non-linear relationships between the set of predictors and the cash ow dependent
variable, more complex patterns such as interactions between the day-of-week and the
day-of-month may be captured.
Different tests of linearity can be found in Ramsey (1969), Keenan (1985), Lee,

White and Granger (1993), and Castle and Hendry (2010). Basically, all of them follow
a common approach: rst, they choose a function g(xtxtxt) in equation (4) including linear
and non-linear terms and, second, they test for the signi cance of the non-linear terms.
However, these approaches are not suitable for forecasting purposes owing to the fol-
lowing reasons: (i) the assumption of a speci c form g(xtxtxt) for the regression equation
such as quadratic, cubic or exponential forms; (ii) cross-validation is neglected.
If we relax the assumption of linearity, different non-linear models such as ran-

dom forests (Breiman, 2001), neural networks (Hornik, Stinchcombe and White, 1989;
Zhang, Patuwo and Hu, 1998), or radial basis functions (Broomhead and Lowe, 1988),
could also be considered. However, the consideration of non-linear functions may lead
to over tting to the original time-series. To prevent this problem, we propose the use of
time-series cross-validation. Cross-validation is a method to assess the predictive per-
formance of a forecasting model that circumvents the problem of over tting the data by
testing the accuracy of the model on subset of data not used in the estimation (Hyndman
and Athanasopoulos, 2013). As a result, we here propose a simple cross-validated test
for non-linearity based on the following steps:

1. Estimate two alternative forecasting models, one linear and another one non-linear.
2. Cross-validate the predictive accuracy of both models with respect to a baseline.
3. Label as trivial2 if both models are signi cantly worse than the baseline.
4. Label as non-linear if the error of the non-linear model is signi cantly lower than
that of the linear model. Otherwise, label as linear as described in Figure 4.

Since we do not assume any distribution for the forecasting results, we use the two-
sided Wilcoxon rank-based for statistically signi cant differences in performance be-
tween models. More precisely, we test the null hypothesis that the distribution of the
difference is symmetric about zero with a 95% con dence interval (Wilcoxon, Katti and
Wilcox, 1970). Approximate p-values are computed based on the asymptotic distribu-
tion of the two-sided Wilcoxon test statistic and used to label data sets as detailed in
Algorithm 1.

2. Trivial is here used with the meaning of very little value with respect to a basic standard.
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Figure 4: Simpli ed ow chart for our cross-validated test for non-linearity.

Algorithm 1 Algorithm for a simple cross-validation test for non-linearity
1: Input: Cash flow data set of T instances, minimum number k of instances to estimate a

model, baseline m0, linear model m1, non-linear model m2, prediction horizon h, level of
significance α.

2: Output: Average prediction error, statistic for the difference in mean errors, confidence
interval.

3: for i = 1,2, . . . ,T − k− h+ 1 do
4: Select the instances from time k+ i to k+ h+ i− 1, for the test set;
5: Estimate m0 with instances at times 1,2, . . . ,k+ i− 1;
6: Estimate m1 with instances at times 1,2, . . . ,k+ i− 1;
7: Estimate m2 with instances at times 1,2, . . . ,k+ i− 1;
8: Compute test errors ε0, ε1, ε2 from time k+ i to k+ h+ i− 1;
9: Compute average h-step errors ε0(h), ε1(h), ε2(h);

10: Test for α significant differences between ε0(h), ε1(h), ε2(h);
11: if ε0(h)< ε1(h) and ε0(h)< ε2(h) then
12: Label as trivial;
13: else if ε2(h)< ε1(h) then
14: Label as non-linear;
15: else
16: Label as linear.
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A common practice to assess the usefulness of forecasts derived from any model is to
compare its accuracy to that of a baseline forecasting model. The use of a baselinemodel
allows us to label our data sets as trivial if neither the linear model nor the non-linear
model are able to improve the accuracy of the baseline. We here report accuracy results
with respect to a mean forecaster, meaning that forecasts are always the average of all
past observations. We also tried with an additional baseline forecaster using the last
observed value as a forecast (persistence model) with much worse results in comparison
to the mean forecaster.
We consider the minimum length k to estimate a model as the 80% of the oldest

instances forming the training set. The remaining 20% of the instances form the test
set for cross-validation. Initially, both the linear and the non-linear model are estimated
using the rst 80% of the instances. Then, forecasts for a prediction horizon up to 20
days are computed using the estimated models and squared errors are recorded. Then,
forecasting accuracy is evaluated on a rolling basis, since both the last observation of
the training set and the rst observation of the test set roll forward in time. As a result,
forecasting errors are recorded for each remaining observation in the test set resulting
into two paired error samples, one for the linear model and one for non-linear model.
A critical point when using our cross-validated test for non-linearity is the selection

of both the linear and the non-linear forecast model. In essence, our test is a comparative
tool based on forecasting accuracy as a proxy for non-linearity. Given a set of explana-
tory variables, a linear label result from our test implies that the non-linear model is not
able to capture non-linearity. However, chances are that alternative non-linear models
might perform differently. In this sense, if the time-series is not a white-noise process,
then the search for a more informative set of features is meant to play a key role. As
a result, multiple runs of our test are necessary to discard/assess non-linearity by using
alternative linear and non-linear models
For illustrative purposes, we here restrict ourselves to a linear regression model and

a non-linear random forest model, both using day-of-month and day-of-week variables
as predictors. Salas-Molina et al. (2017) report that these two models perform signi -
cantly better than autoregressive models when producing forecasts for usual prediction
horizons up to one hundred days. Here, we are interested in comparing forecasting
models that perform well for a wide range of planning horizons from the information
available at some point in time. Thus, we expect that forecasting models based on sea-
sonal variables capture patterns for common prediction horizons better than time-series
models based on previous observations due to lack of relevant information as reported
by Salas-Molina et al. (2017).
In the case of the linear regression model, each instance contains 34 dummy predic-

tor variables, 30 for day-of-month and 4 for day-of week, and a cash ow observation.
This linear regression model is the same that we used in Section 2.2 to check seasonal-
ity. In the case of random forests, each instance contains two categorical variables, one
for day-of-month and one for day-of-week. Random forests are ensembles of slightly
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Figure 5: A basic decision tree. DOM = Day-of-month; DOW = Day-of-week.

different decision trees (Ho, 1998; Breiman, 2001). An ensemble methodology is able
to construct a predictive model by integrating multiple trees in what is called a decision
forest (Dietterich, 2000). Decision trees split the input space in subsets based on the
value of features such as the day-of-month and day-of-month. In the example in Fig-
ure 5, for days comprised between the 25th (node S1) and the 29th of each month (node
S2) occurring on Friday (node S3), the predicted cash ow is -1.
Recent examples of time-series forecasting using random forests can be found in

Booth, Gerding andMcgroarty (2014), Zagorecki (2015) and Salas-Molina et al. (2017).
Summarizing, random forests are used to forecast variables based on an ensemble of
different trees. Unlike linear regression, random forests allow to capture (if any) more
complex relationships between predictor variables allowing us to identify possible non-
linearities in the underlying cash ow process represented by our sample data sets.
In Table 5, we summarize results only for data sets that can be labelled as trivial

because neither the linear model nor the non-linear model were able to signi cantly beat
the baseline forecaster. As described in Algorithm 1, we label time-series as linear when
lower normalized squared errors are obtained using the regression model. Similarly, we
label time-series as non-linear when lower errors are obtained using the random forest
model. In addition, we test the signi cance of the difference in performance between
regression and random forest models. When p-values from these tests are below 0.05,
we consider that sample errors for the linear and the non-linear model are signi cantly
different.
From those time-series in which the absence of correlation could no be rejected (see

Ljung-Box test at Table 3), 20 out of 24 were labelled as trivial. On the other hand,
only 6 of them were labelled as non-linear according to our cross-validated de nition.
As mentioned above, these results depend on the selected forecasting models. Instead
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Table 5: Results of the test for non-linearity. Reg NSE = Regression normalized squared error; RF NSE =
Random forest normalized squared error.

Id Reg NSE RF NSE Statistic p-value Triviality Linearity

1 0.99 1.00 26 < 0.05 Non-Trivial Linear
3 0.99 1.01 8 < 0.05 Non-Trivial Linear
4 1.00 1.01 0 < 0.05 Non-Trivial Linear
7 0.81 0.83 0 < 0.05 Non-Trivial Linear
9 0.90 0.93 3 < 0.05 Non-Trivial Linear
13 0.86 0.88 13 < 0.05 Non-Trivial Linear
14 0.76 0.77 45 < 0.05 Non-Trivial Linear
16 0.85 0.86 64 0.13 Non-Trivial Linear
18 0.86 0.88 63 0.12 Non-Trivial Linear
19 0.96 0.94 182 < 0.05 Non-Trivial Non-linear
20 0.99 0.98 209 < 0.05 Non-Trivial Non-linear
23 0.78 0.79 78 0.33 Non-Trivial Linear
24 0.73 0.79 0 < 0.05 Non-Trivial Linear
25 0.77 0.81 21 < 0.05 Non-Trivial Linear
28 0.84 0.90 0 < 0.05 Non-Trivial Linear
29 0.99 0.99 30 < 0.05 Non-Trivial Linear
30 0.73 0.80 5 < 0.05 Non-Trivial Linear
33 0.94 0.93 166 < 0.05 Non-Trivial Non-linear
34 0.97 0.95 172 < 0.05 Non-Trivial Non-linear
39 0.96 0.96 36 < 0.05 Non-Trivial Linear
42 0.88 0.87 149 0.11 Non-Trivial Linear
43 0.99 0.96 210 < 0.05 Non-Trivial Non-linear
48 1.01 0.99 191 < 0.05 Non-Trivial Non-linear
49 0.63 0.65 7 < 0.05 Non-Trivial Linear
51 0.77 0.80 0 < 0.05 Non-Trivial Linear
52 0.94 0.94 116 0.70 Non-Trivial Linear

of claiming that random forests are able to better capture non-linear patterns than alter-
native models, we encourage practitioners to consider additional combinations of both
linear and non-linear models.
One may assume either linearity or non-linearity from the results of our non-linearity

test, but it is important to analyse the robustness of these results to both the presence of
outliers and the impact of other data transformations.

4. The impact of data transformations

In this section, we aim to analyse the impact of outlier treatments on noise reduction, as
intended, and on information loss, as an undesirable effect. We also study the in uence
of Box-Cox data transformations on the results of our cross-validated non-linearity test.
Detection and treatment of outliers is an ongoing issue in data mining (Rousseeuw and
Leroy, 1987; Hodge and Austin, 2004). An outlier is an observation that appears to
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signi cantly deviate from other members of the sample in which it occurs (Grubbs,
1969). Outliers arise due to changes in systems, measurement errors or simply due to
deviations from average activity. It is also important to note that an outlier may also be
the most interesting part of the data.
On the one hand, from the set of cash ow time-series labelled as trivial, some of

them may be labelled as non-trivial after removing outliers as a way of noise reduction.
On the other hand, from those data sets labelled as non-trivial, some of them may be la-
belled as trivial due to the information loss produced by the treatment. We here measure
the effect of removing outliers on the prediction error using time-series cross valida-
tion for different thresholds of outlier replacement. For each data set, we progressively
identify as outliers cash ow observations greater than 5, 4, and 3 times the standard
deviation in a training set with the 80% oldest observations. We replace outliers with
a linear interpolation of the previous and the posterior observation and we proceed as
detailed in Algorithm 1 to cross-validate triviality and linearity. The results from this
analysis are summarized in Table 6, where global performance after treatments is as-
sessed by averaging noise (error) reduction. Note that some time-series in Table 6 are
not present in Table 5 because outlier treatment and Box-Cox transformation produced
a improvement in accuracy.
By following this procedure, we identify data sets 5, 10, 17, 32, 44 and 54 (6 out

of 28), initially labelled as trivial that, after outlier treatment, can be labelled as non-
trivial due to noise reduction. Similarly, data sets 4 and 48 that were initially labelled
as non-trivial can be labelled as trivial after outlier treatment due to information loss.
If we measure noise reduction by the error reduction and information loss by the error
increase, then we can assess the impact of outlier treatment. Following this approach, we
obtained mixed results for non-trivial data sets after outlier treatment: an average noise
reduction of 22%, and an average information loss of 14%. It is important to recall that
unexpected observations are often the most interesting part of the data to predict, e.g.,
when the goal is to forecast unusual but genuine cash ows.
Non-linearity and outliers are closely linked. Indeed, Castle and Hendry (2012) hy-

pothesized that non-linear functions can align with outliers, causing functions to be con-
sidered relevant spuriously, which can be detrimental for generalizing and forecasting.
If this hypothesis is correct, the relative forecasting ability of a linear model in compar-
ison to a non-linear model would increase as the presence of outliers in a training set is
reduced. From the set of time-series nally labelled as non-trivial, data sets 33, 34 and
54, initially labelled as non-linear changed their labels to linear. Surprisingly, data sets
17, 18, 23, 25, 39, 44 and 49 (7 out of 30), could be labelled as non-linear after outlier
treatment. Except for data sets 17 and 44, in all cases there was information loss, i.e.,
error increase, suggesting that non-linear models can deal better with information loss.
We also considered a Box-Cox transformation to analyse if this kind of data trans-

formation may in uence the results from our cross-validated non-linearity test. From
the set of non-trivial data sets we compare linearity labels, rst, after outlier treatment,
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Table 6: Results of the test for non-linearity after outlier treatment and Box-Cox transformation. Changes
in labels are marked with ∗.

After outliers After outliers and Box-Cox
Id Triviality Linearity Noise reduction Linearity Noise reduction

1 Non-Trivial Linear 0.00 Non-linear∗ −0.01
3 Non-Trivial Linear 0.02 Non-linear∗ 0.00
5 Non-Trivial Non-linear 0.40 Non-linear 0.41
7 Non-Trivial Linear −0.10 Linear −0.13
9 Non-Trivial Linear −0.04 Linear −0.04
10 Non-Trivial Non-linear 0.46 Non-linear 0.47
13 Non-Trivial Linear −0.18 Linear −0.21
14 Non-Trivial Linear −0.05 Linear −0.07
16 Non-Trivial Linear −0.18 Linear −0.17
17 Non-Trivial Non-linear∗ 0.71 Non-linear 0.71
18 Non-Trivial Non-linear∗ −0.20 Non-linear −0.20
19 Non-Trivial Non-linear −0.03 Non-linear −0.04
20 Non-Trivial Non-linear −0.02 Non-linear −0.02
23 Non-Trivial Non-linear∗ −0.22 Non-linear −0.22
24 Non-Trivial Linear −0.20 Linear −0.06
25 Non-Trivial Non-linear∗ −0.26 Non-linear −0.25
28 Non-Trivial Linear −0.05 Linear −0.04
29 Non-Trivial Linear 0.07 Non-linear∗ 0.00
30 Non-Trivial Linear −0.06 Linear −0.04
32 Non-Trivial Non-linear 0.18 Non-linear 0.21
33 Non-Trivial Linear∗ −0.12 Linear −0.11
34 Non-Trivial Linear∗ 0.12 Linear 0.09
39 Non-Trivial Non-linear∗ −0.02 Linear∗ −0.01
42 Non-Trivial Linear −0.23 Linear −0.14
43 Non-Trivial Non-linear 0.04 Non-linear 0.03
44 Non-Trivial Non-linear∗ 0.48 Non-linear 0.82
49 Non-Trivial Non-linear∗ −0.56 Non-linear −0.61
51 Non-Trivial Linear −0.03 Linear −0.03
52 Non-Trivial Linear 0.01 Linear 0.03
54 Non-Trivial Linear∗ 0.17 Linear 0.17

Average performance 0.00 0.02

and second, after outlier treatment and Box-Cox transformation as described in equation
(1). In addition, we compare information loss computed as the difference between the
sum of errors of the linear and non-linear forecasting models before and after the outlier
treatment. A positive value means noise reduction or error reduction while a negative
value means information loss or error increase. Results from Table 6 show a similar
performance after Box-Cox transformation since the change in labels occurs in data sets
with similar linear and non-linear noise reduction.
Table 7 shows the impact of outlier treatment and data transformation on the clas-

si cation of time-series derived from our cross-validated non-linearity summarized in
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Table 7: Number of time-series data sets and their labels after transformation. OT=Outlier treatment;
DT=Data transformation.

Label Raw data After OT After OT and DT

Trivial 28 24 24
Non-trivial 26 30 30

-Linear 20 17 15
-Non-linear 6 13 15

Table 6. The high number of trivial data sets may be caused by the general inherent ran-
domness of cash ows. In addition, an increase in the number of time-series classi ed
as non-trivial after treatments suggests a positive impact. However, non-linear models
seem to obtain a higher bene t from treatments. First, outlier treatment produced a small
improvement in non-triviality but also an outstanding increase in non-linearity. Second,
after both outlier treatment and Box-Cox data transformation, resulted in similar results
but with better performance for non-linear models.
It is worth mentioning that global performance in terms of error reduction remained

unchanged after outlier treatment and slightly improved after data transformation (see
Table 6). Thus, we conclude that: (i) common data transformations had little impact on
our time-series in terms of linearity and accuracy; and (ii) outlier treatment and Box-Cox
transformation were unable to transform non-linear into linear cash ows.

5. Concluding remarks

Small and medium companies contribute to a high percentage of all enterprises, value
added and employment in Europe. In this paper, we provide a complete empirical study
of the statistical properties of daily cash ows based on 54 real-world time-series for
small and medium companies. To the best of our knowledge, this work is the most com-
prehensive empirical study on daily cash ows so far in terms of the range of statistical
properties considered, and also in terms of the number and the length of the data sets.
Particularly, we focus on the implications of our analysis for forecasting due to its key
role in cash management. An additional contribution of this work is to make all data
publicly available online for further research.

5.1. Summary of findings

Our results show that the extended hypotheses of normal, stationary and uncorrelated
cash ows are hardly present in our cash ow data set. Thus, we conclude that the
standard assumptions of normality, stationarity and uncorrelatedness that have been ex-
tensively used in the cash management literature must be veri ed before the deployment
of any cash management model based on them. We do not claim that these results can be
generalized to all small and medium companies. Indeed, we hypothesize that companies
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with a larger number of daily cash ows may be closer to satisfy these usual assumptions
than small and medium companies. This hypothesis represents an interesting subject of
future research and we here set the path to this research by providing the methods to
verify such hypothesis. We also highlight that common solutions to non-normality and
non-stationarity such as data transformation and differencing produce little bene t when
applied to our data sets, with the risk of losing important information on extreme cash
ows. Alternative and more complex data transformations are nevertheless an option to
consider in further research to achieve Gaussian cash ows.
In an attempt to discover the attributes of actual-world cash ows, we also studied the

presence of non-linearity. To this end, we proposed a new simple test for non-linearity
with two main advantages in comparison to alternative approaches. First, our test does
not assume any non-linear function. Second, it is based on time-series cross validation
to increase robustness and to avoid over tting. It is important to note that our cross-
validated de nition of non-linearity depends on the alternative models considered, one
linear and another one non-linear.
Our cross-validated non-linearity test labelled as either trivial, linear or non-linear

our cash ow data set after outlier treatment resulting in an important increase in the
number of data sets labelled as non-linear. After both outlier treatment and Box-Cox
transformation, linearity could not be achieved and non-linear models showed more
robust. However, the overall impact of data transformations on forecasting performance
was limited. The application of our test to provide further evidence on these topics when
using alternative cash ow data sets represents a natural extension of our work.

5.2. Implications

Our results raise questions about two common assumptions in cash ow time-series
since we found that: (i) the usual assumption of normality, absence of correlation and
stationarity is hardly present; and (ii) common data transformations such as outlier treat-
ment and Box-Cox transformation have little impact on normality and linearity. Con-
trary to the rather common assumption in the literature, these results imply that neither it
is always possible to achieve a Gaussian, white-noise and linear time-series through data
transformation nor it is always desirable due to information loss. In this paper, we are
interested in models that produce forecasts for a wide range of planning horizons. Thus,
autoregressive and linear models should be considered as an initial step towards more
realistic ones which are better adapted to real cash ow situations. The results from our
cross-validated test for non-linearity suggest that non-linear models represent a justi -
able alternative for time-series forecasting. Moreover, since our test is both model and
outlier dependent, a promising line of future work is the integration of outlier treatment
in the test itself in an attempt to assess noise reduction or information loss.
We claim that a number of preliminary steps are necessary in cash ow forecast-

ing before model selection: (i) statistical summary including normality, correlation and
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stationarity; (ii) impact of data transformations such as outlier treatment and Box-Cox
transformation; (iii) non-linearity test to determine the type of model which is expected
to deliver a better performance. This process is not limited to daily cash ow, since it
can also be applied to any other time-series data set when cross-validation is required.
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Torabi, H., Montazeri, N.H. and Grané, A. (2016). A test for normality based on the empirical distribution
function. SORT-Statistics and Operations Research Transactions, 1, 55–88.

Venables, W.N. and Ripley, B.D. (2013). Modern Applied Statistics with S-PLUS. Springer Science &
Business Media.

Wilcoxon, F., Katti, S. and Wilcox, R.A. (1970). Critical values and probability levels for the wilcoxon rank
sum test and the wilcoxon signed rank test. Selected Tables in Mathematical Statistics, 1, 171–259.

Zagorecki, A. (2015). Prediction of methane outbreaks in coal mines from mulivariate time series using
random forest. In Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, pp. 494–500.
Springer.

Zhang, G., Patuwo,B.E. and Hu, M.Y. (1998). Forecasting with arti cial neural networks: The state of the
art. International Journal of Forecasting, 14, 35–62.


