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Models and algorithms for production planning, scheduling and sequencing 

problems: a holistic framework and a systematic review. 

Abstract 

Production planning, scheduling and sequencing comprise the core of the manufacturing 

companies’ performance. The new and changing market demands make manufacturing a 

challenge because companies must produce by using the minimum possible number of resources 

to provide high-quality products and to respond quickly to market demands. Thus the need for 

efficient production planning, scheduling and sequencing has become a very important research 

area for companies and researchers in recent decades. We evaluated the current state of such 

research with a holistic framework that comprised the plans aggregation and disaggregation 

levels, the modelling approaches to represent the different types of plans and their characteristics, 

the solution approaches with the adopted algorithms, the application areas, the intra- and inter-

enterprise levels of integration, the sizes of the datasets used to validate the models and 

algorithms, the development tools, and the quality of the solutions obtained in relation to the 

problems’ data size. The systematic literature review is arranged within the framework and 

grouped around different types of plans, including production planning, scheduling and 

sequencing, and their combinations. Finally, some gaps in the related research are identified and 

future research opportunities are proposed. 

Keywords: Production planning; Scheduling; Sequencing; Mathematical programming; 

Metaheuristics. 

1 Introduction 

In recent decades, researchers and industrial professionals have voiced concern about production 

planning. Several approaches have been developed to formulate and solve production planning 

problems. Developing models for real problems is a complex task, and the solution procedure is 

difficult in most cases. For this reason, a plethora of solution techniques and methods has been 

developed to provide different types of solutions. 

The literature describes different models and approaches to solve production planning, 

scheduling and sequencing problems. The general aim of research works was to determine the 

resources needed so that production meets customer demands. The production planning problem 

has been extensively studied because it allows manufacturers to improve enterprise profits by 

better using manufacturing resources. In fact, the decision-making process in production planning 

allows not only the resources needed to carry out future manufacturing operations to be 

determined, but also all the production activities performed to optimise companies’ objectives to 

be effectively coordinated. This allows resources to be allocated to production as and when 

required at the lowest cost [1]. 

The scientific literature based on tactical and operational production planning concepts is 

a vast fruitful area to which plenty of attention has been paid. The number of publications has 

rapidly increased, and the variety of proposed methods, trends and structures is very wide. These 

trends need to be aligned to address production planning, scheduling and sequencing problems 

and solutions in enterprises. The present review seeks to provide both an understanding of the 

common and unique characteristics of the proposed models of production planning, scheduling 

and sequencing problems and an accurate classification of different optimisation criteria to solve 

them. Accordingly, we pose the following research questions: 



RQ1. How can production planning, scheduling and sequencing problems be classified? 

RQ2. What types of modelling approaches are used in production planning, scheduling 

and sequencing problems, and what characteristics do they have? 

RQ3. What methods or techniques are proposed to solve production planning, scheduling 

and sequencing problems? 

RQ4. What methods or techniques can solve real large-scale problems, and what is the 

obtained solution quality? 

Before investigating the modelling approaches and solution approaches proposed in the 

literature to deal with production planning, scheduling and sequencing problems, we analysed the 

existing review works to justify the research need of this paper. 

The production planning literature is currently extensive. Nam and Logendran [2] 

conducted a review of Aggregate Production Planning (APP) from 1950 to 1990 to summarise 

the various existing techniques within a framework. By reducing searches to papers published in 

the recent decade, we found that Cheraghalikhani et al. [3] focused on APP methodologies, 

characteristics and structures of models and solving approaches, and many papers emphasise APP 

models under uncertainty; see Jamalnia et al. [4]. 

Many works in the literature discuss techniques, methods, levels, and solution approaches 

related to production planning. Mula et al. [5] analysed models for production planning under 

uncertainty by classifying them into four typologies: conceptual models, analytical models, 

artificial intelligence models and simulation models. Díaz-Madroñero et al. [6] reviewed 

optimisation models for tactical production planning. These authors analysed different 

characteristics, including the problem type, aim, number of products, time period, nature of 

demand, capacity constraints, extensions, modelling approach, solution approach, development 

tool, application, limitations and benefits. 

Although much research has been conducted in the production planning area in general, 

the analysed reviews differ in several aspects. Some papers are descriptive, which highlights the 

importance of a specific field. One work worth highlighting is that by Mundi et al. [7], which 

reviewed production planning models by considering the uncertainty given by lack of 

homogeneity on products (LHP). These authors classified the reviewed papers according to the 

sectors affected by LHP inherent uncertainty, the modelled inherent LHP uncertainty types and 

approaches for modelling. Lage and Filho [8] reported production planning and control (PPC) in 

remanufacturing by proposing a classification based on four categories: PPC activities, 

characteristics, remanufacturing subsystem-focused and research type. 

Other reviews have analysed production planning from a combined perspective. One 

example is that by Mula et al. [9], who reviewed mathematical programming models for 

production and transport planning. They classified papers according to supply chain structure, 

decision level, modelling approach, purpose, shared information, limitations, novelty and 

application. Akçcal and Çetinkaya [10] studied quantitative models for inventory and production 

planning in closed-loop supply chains. They classified deterministic and stochastic problems 

according to modelling of demand, return processes and solution methodologies. On the supply 

chain, Peidro et al.  [11] conducted a literature review that focused on supply chain planning under 

uncertainty by adopting quantitative approaches, similarly to Stindt and Sahamie [12] and 

Govindan et al. [13], whose reviews considered closed-loop supply chain planning. 

After analysing previous literature reviews and, as far as we are aware, we concluded that 

our paper significantly differs from extant publications. We identified that most authors did not 

consider the holistic framework herein proposed. Therefore, this review aims to provide an 

overview of the key elements of production planning, scheduling, and sequencing problems. We 



propose a holistic framework to characterise all the aggregation and disaggregation levels. We 

place particular emphasis on the decision-making level at which they are contextualised. 

Continuing with the analysis of the most relevant aspects when posing a problem, such as 

planning horizon, type of modelling approach, the objectives pursued by mathematical models 

and the techniques applied to solve problems, we observe which tools are the most widely used 

to solve these problems. We also analyse applications and evaluate the quality of the problem’s 

solution according to the size of data. 

Finally with this systematic review of articles based on the holistic classification 

framework, we seek to identify current research trends in production planning, scheduling and 

sequencing, as well as future research gaps and directions. 

In order to answer these four research questions, this paper is organised as follows. 

Section 2 describes the methodology followed to perform the systematic literature review and 

details the proposed framework to review production planning, scheduling and sequencing 

problems. In Section 3, a detailed analysis of aggregation levels, the modelling approach, the 

solution techniques, the objectives raised, the development tool, the applications area and the 

quality of solutions, are applied to production planning, scheduling and sequencing problems. 

Section 4 highlights and discusses the main results. Finally, Section 5 draws the main conclusions 

and directions for future research. 

2 Literature review methodology 

The systematic literature review employed a structured methodology, and followed a scientific 

and transparent process, to reduce papers’ selection bias by a thorough literature search. The 

synthesis that characterised the systematic literature review allowed existing findings, research 

guidelines and gaps to be identified [14]. This paper followed a 4-step methodology in accordance 

with Seuring and Müller [15] and Seuring and Gold [16]: (i) collecting material (Section 2.1); (ii) 

descriptive analysis (Section 2.2); (iii) selecting or identifying categories (Section 2.3); (iv) 

evaluating material (Section 2.4) . 

2.1 Collecting material 

The references collected for this study covered a 20-year (2000-2020) time frame. We conducted 

searches in December 2020 in the Elsevier SCOPUS and Web of Science citation databases. The 

collected works included all the English language articles registered as ‘Articles’, with no 

limitations set to scientific journals. Searches included the title, abstract and keyword fields, and 

three search terms were defined. Each term was a combination of the keyword ‘Product* Plan*’ 

OR ‘Product* Schedul*’ OR ‘Product* Sequenc*’, with an additional keyword: mathematical 

programming, linear programming, heuristic, metaheuristic or matheuristic (see Fig. 1). The 

selected keywords were chosen to collect the most relevant papers. The modifier asterisk was 

used in the Boolean search as a source word for all the derivative keywords. Figure 1 depicts the 

strategy adopted to follow the structured literature review process. 

 



 
Fig. 1. Structured literature review process. 

 

The keyword search gave 2,380 articles after removing duplicates. The abstracts of these 

articles were reviewed to assess if they matched our research questions. Throughout this process 

(i.e., from 2,380 studies to 82), the exclusion criteria for why papers were unrelated to production 

planning, scheduling and sequencing modelling approaches were as follows: 

- Not including the production processes whose approaches cover production planning, 

manufacturing operational process scheduling and sequencing processes 

- Lack of an optimisation model or heuristic, metaheuristic, or matheuristic algorithms. 

Simulation and analytic methods were excluded from the review. although these 

methods may appear, they go beyond the scope of this paper. 

After analysing abstracts, 82 papers were retained for full reading.  Subsequently to this 

analysis, we added 12 articles that resulted from the backward search process and, thus, resulted 

in 94 papers. Additional papers were included as they were cited in the articles that derived from 

the keyword search and were applicable to the research topic. Of this subset of 94 articles, 34 

were not considered relevant to the review because they did not satisfactorily answer our research 

questions. This left 60 papers for the analysis, evaluation and classification processes. 

2.2 Descriptive analysis 

This study analysed 60 scientific papers published between 2000 and 2020, and Figure 2 

illustrates their publication trend. In turn, a slightly increasing trend in the last 3 years was 

identified. Some years provided significantly fewer papers than previous years; for example, more 

articles were retrieved in 2014 than in 2015. 



 
Fig. 2. Distribution of the reviewed papers according to year. 

 

Most of the articles selected for the final review appeared in 20 different journals. Figure 

3 shows the distribution of the articles reviewed from these journals. Of the 20 journals, 

International Journal of Production Research published the most papers with 26.66% of all the 

reviewed articles. Of the 20 journals, Computers and Industrial Engineering, Computers and 

Operations Research, European Journal of Operational Research and International Journal of 

Production Economics were equally representative, and collectively published 43.33% of all the 

reviewed articles. Overall, 42 publications appeared in the top five journals. 

 

 
Fig. 3. Distribution of articles for publication year and journal. 
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2.3 Category selection 

In order to answer RQ1, we proposed a holistic framework that summarised the most important 

aspects characterising production planning, scheduling and sequencing problems. This holistic 

framework resulted from integrating the literature reviews [6, 9, 17–19] and from deducting the 

analysed papers. This framework details a set of categories, such as: decision level, plan 

aggregation, planning horizon, modelling approach, mathematical model objectives, solution 

approach, development tool, proposed solution, application area, actual case application, data set 

size, solution quality. Table 1 presents the resulting framework, which represents a significant 

contribution of this work and can be general applied to any production planning, scheduling and 

sequencing problem. 

 

Table 1 

Framework proposed to represent production planning, scheduling and sequencing problems. 

Categories Analytical categories 

Decision level Strategical, Tactical, Operational 

Plan aggregation Aggregated Plan (AP), Master Plan (MP), Dispatching Plan (DP) 

Planning horizon Day, Week, Month, Year 

Modelling approach 

Binary Programming (BP) 

Constraint Programming (CP) 

Dynamic Programming (DP) 
Fuzzy Programming (FP) 

Fuzzy Goal Programming (FGP) 

Fuzzy Linear Programming (FLP) 
Fuzzy Multi-Objective Linear Programming (FMOLP) 

Goal Programming (GP) 

Integer Programming (IP) 
Integer Linear Programming (ILP) 

Integer-Weighted Goal Programming (IWGP) 

Linear Programming (LP) 

Mixed Integer Linear Programming (MILP) 

Mixed Integer Non-Linear Programming (MINLP) 

Multi-Objective Linear Programming 

(MOLP) 

Multi-Objective Mixed-Integer Linear 
Programming (MOMILP) 

Multi-Objective Mixed-Integer Non-

Linear Programming (MOMINLP) 
Multi-Objective Non-Linear 

Programming (MONLP) 

Non-Linear Programming (NLP) 
Quad-Objective Mixed Integer Linear 

Programming (QOMILP) 

Quadratic Programming (QP) 

Robust Programming (RP) 

Stochastic Programming (SP) 

Mathematical 

model objectives 
Cost, Time, Product, Resources, Service, Sustainability 

Solution approach 

Optimizer 

Algorithm (OA) 

OA/ Branch and Bound (BB) 

OA/ Branch and Cut (BC) 

OA/ Criss-cross (CC) 
OA/ Decomposition strategy (DS) 

OA/ Lomnicki (LO) 

OA/ Lompen Algorithm (LM) 
OA/ Simplex (SI) 

OA/ Solution procedure of model P* 

(SPP*) 

Heuristic 

Algorithm 

(HA) 

HA/ Benders Decomposition (BD) 
HA/ Beam Search (BM) 

HA/ Campbell-Dudeck Algorithm (CD) 

HA/ Decomposition & Aggregation (DA) 
HA/ Fix-Price-Optimise (FPO) 

HA/ Greedy (GR) 

HA/ Iterative Variable Neighbourhood 
(IVN) 

HA/ Lagrangian Relaxation (LGR) 

HA/ Local Improvement Procedure (LIP) 
HA/ LP and Fix (LF) 

HA/ LP Relaxation (LPR) 

HA/ Minimum Spanning Tree (MS) 
HA/ Multi-Objective Master Planning 

Algorithm (MOMPA) 

HA/ Nawaz, Enscore and Ham (NEH) 
HA/ Nearest Neighbour (NN) 

HA/ Primal-Dual Based Heuristic 

(PDBH) 
HA/ Relax and Fix (RF) 

HA/ Relax-Price-Fix (RPF) 

Metaheuristic 

Algorithm 

(MA) 

MA/ Ant Colony Optimisation (ACO) 

MA/ Evolutionary Computation (EC) 
MA/ Genetic Algorithm (GA) 

MA/ GRASP (GR) 

MA/ Iterated Local Search (ILS) 
MA/ Iterated Greedy (IG) 

MA/ Memetic Algorithm (MA) 

MA/ Multi-objective Simulated Annealing 
(MOHSA) algorithm 

MA/ Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) 
MA/ Particle Swarm Optimisation (PSO) 

MA/ Scatter Search (SS) 

MA/ Simulated Annealing (SA) 

MA/ Subpopulation Genetic Algorithm 
(SPGA) 

MA/ Tabu Search (TS) 

MA/ Tabu Search Grabowski and 
Wodecki (TSGW) 

MA/ Variable Tabu Search (VTS) 

MA/ Variable Neighbourhood Search 
(VNS) 

MA/ Variable Neighbourhood Descent 

(VND) 
MA/ Weighted Sum Multi-Objective 

Genetic Algorithm (WMOGA) 

 
Matheuristic 
Algorithm 

(MTA) 

MTA/ Ant Colony + Mathematical Model 

(ACO_MM) 
MTA/ Biased Random-Key Genetic 

Algorithm + Mathematical Model 

(BRKGA_MM) 

MTA/ Iterated Local Search + 

Mathematical Model (ILS_MM) 

MTA Simulated annealing + 

Mathematical Model (SA_MM) 



MTA/Fixed Variable List Algorithm and 

Clustering Sequence Algorithm + 
Mathematical Model (FVLA_CSA_MM) 

MTA Genetic Algorithm + Mathematical 

Model (GA_MM) 

MTA/ Tabu Search + Mathematical 

Model (TS_MM) 
 

Development tool Programming Languages, Modelling language, Solver 

Proposed solution 

Model + Solution (MS), Model + Solver+ Solution (MSS), Model + Algorithm description (MAD) Model 

+ Algorithm description+ Solution (MADS), Model + Algorithm description+ Solver+ Solution 

(MADSS), Model + Algorithm description+ Algorithm Pseudocode + Solver + Solution (MADPCSS) 

Applications area Sectorial - Transversal 

Real case 

application 
Yes (Y) / No (N)  

Enterprise 

integration level  
Intra-enterprise level – Inter-enterprise level  

Data set size Small (S) – Medium (M) – Large (L) 

Quality solution Optimal (OP), Near – Optimal (N-OP) – Good (GD) 

2.4 Material evaluation 

All the articles were evaluated and coded according to the holistic framework proposed in Section 

2.2. Validation was carried out by considering the characteristics, approaches and level of 

aggregation of each article. To do so, we used the grouping technique and applied deductive and 

inductive methods [20]. The evaluation ensured that articles had sufficient information to be 

validated. 

3 Results analysis 

3.1 Decision level 

Production planning, scheduling and sequencing problems can be decomposed and classified 

according to the extent or effect of the decision in time terms [9]. Several authors, such as [6, 21–

24] among others, have classified these problems as strategical, tactical and operational problems.  

Strategical or long-term planning models address a time period lasting between 5 and 10 

years. This decision level implies a wide range of uncertainty, which normally affects enterprises’ 

design, configuration and location. Moreover, strategical decisions deal with the development of 

new products, the identification of distribution channels, suppliers’ selection and the selection of 

information technology [25]. 

Tactical planning models aim to plan mid-term activities. These models address planning 

horizons that last between 1 month or several months and 2 years. The decisions made at the 

tactical level are planned to be executed and comply with the decisions made at the strategical 

level. Tactical decisions include activities like production planning, material handling, 

distribution and storage planning, production capacity allocation, inventory management and 

maintenance activities [6,9,25]. 

The operational level is characterised by addressing short-term decisions that are 

generally made weekly, daily or hourly by focusing essentially on sequencing, scheduling, 

packaging, lot size calculation, routes allocation and vehicle load. This level seeks to guarantee 

an optimal flow of products along the production chain [23,25,26].  

We should also bear in mind that distinctions of decision levels cannot always be made 

because some problems may involve planning at many levels and are incorporated into different 

decision levels. By way of example, the works of Rasmi et al. [27] present an Aggregate 

Production planning (APP) problem that incorporate decisions at the strategical and tactical levels 

in a multi-objective mixed-integer linear program (MOMILP) model, which evaluate economic, 

social, environmental and cultural aspects for an appliance manufacturer. Moreover, Omar and 

Teo [28], Xue et al. [29], Aghezzaf et al. [30], Fumero et al. [31] and Fumero, Corsano and 



Montagna [32] propose tactical-operational decision making, which is often used for models 

dealing with mid-term decisions that are taken daily, weekly or monthly, and generally up to 1 

year. 

In line with this, Omar and Teo [28], Fumero et al. [31], Fumero, Corsano and Montagna 

[32] propose dealing with production planning and scheduling jointly. Xue et al. [29] address 

production planning and scheduling by the hierarchical production planning approach. Finally, 

Aghezzaf et al. [30] propose a robust hierarchical production planning approach for master 

planning and scheduling. Table 2 classifies the reviewed works in relation to their decision-

making level. Of all the reviewed papers, 28.33% address production planning at the tactical level, 

and propose solutions to aggregate and master plans. Over half the reviewed papers (61.67%) 

make decisions at the operational level by addressing scheduling and sequencing problems, 8.33% 

of the analysed papers deal with planning problems at several decision-making levels, namely 

tactical and operational, and only 1.66% present strategical and tactical decisions. 

 

Table 2.  

The decision-making levels of the reviewed works. 

Decision level Reference 

Strategical & Tactical  Rasmi et al. [27] 

Tactical 

R.-C. Wang & Fang [33]; Leung & Chan [34]; Baykasoglu & Gocken [35]; Sillekens et al. [36]; 

Mirzapour Al-E-Hashem et al. [37]; Zhang et al. [38]; Ramezanian et al. [39]; Chakrabortty & 

Akhtar Hasin [40]; Khalili-Damghani & Shahrokh [41]; Makui et al. [1]; Tavaghof-Gigloo et al. 

[42]; Gholamian et al. [43]; de Kruijff et al. [44] ; Mehdizadeh et al. [45]; Djordjevic et al. [46] ; 

Bensmain et al. [47]. 

Operational 

Grabowski & Wodecki [48]; D. Gupta & Magnusson [26]; Nonås & Olsen [49]; Bellabdaoui & 

Teghem [50]; Hooker [51]; P Doganis & Sarimveis [52]; Gaglioppa et al. [53]; Moon et al. [54]; 
Philip Doganis & Sarimveis [55]; Fakhrzad & Khademi Zare [56]; Mohammadi et al. [57];  

Guimarães et al. [58]; Cheng et al. [59]; Chen et al. [60]; Motta Toledo et al. [61]; Na & Park [62];  

Franz et al.[63]; Mattik et al. [64]; Golle et al. [65]; Baumann & Trautmann [66]; Abdeljaouad et 
al.[67]; Aroui et al.[68]; Zeppetella et al. [69]; Torkaman et al. [70]; Lopes et al. [71]; Woo & Kim 

[72]; Verbiest et al. [73]; Mönch & Roob [74]; Ekici et al. [75]; Chansombat et al. [76];  de Armas 

& Laguna [77]; S. Wang et al. [78]; De Smet et al. [79]; Yang & Xu [80]; Otto & Li [81] 

Tactical & Operational 
Omar & Teo [28]; Xue et al. [29]; Aghezzaf et al. [30];  Fumero et al.[31]; Fumero et 

al.[32];Rodoplu et al. [82] 

3.2 Plan aggregation 

Plan Make, identified in SCOR views [83], forms part of one of the most relevant planning 

decisions for companies. Plan Make aims to achieve effective planning and management for all 

production operations, and in such a way to optimise company objectives. It focuses on 

determining the optimal number of items to be produced, the inventory, and other key production 

factors, to meet the variable demand in a planning horizon. Plan Make can be divided by 

considering three different decision-making production levels that comprise production planning, 

scheduling and sequencing [84]. 

In manufacturing environments, production planning supports decision makers in 

determining the use of resources, which are generally decisions made about the quantity to be 

produced, the inventory level, the required workforce size or the allocation of the necessary assets 

and resources to carry out the manufacturing process to meet the real or planned demand on a 

given horizon [85,86]. Production planning problems can cover mid-term or long-term planning 

horizons using aggregated or disaggregated information. Hax and Meal [87] distinguished 

production planning problems according to their horizon time and aggregation, which ranged 

from a long-term aggregation level (aggregated plan) to a short-term detailed level (dispatching 

plan). 



The production planning category distinguishes two types of plans: aggregate plans and 

master plans. In aggregated plans, the used unit is product families, which refers to the groups of 

products belonging to the same type that shares similar configurations [29]. Production plans can 

be disaggregated into more detailed programmes, which define the product quantities to be 

produced during shorter time periods than the aggregated plan, which are normally weekly or 

monthly periods [88]. 

Production planning problems represented 30% of all the reviewed papers, the majority 

of which dealt with aggregated plans (see Table 3). We found only one article, that of de Kruijff, 

Hurkens, and de Kok [44], which addressed the master plan and proposed a mid-term production 

planning model for high-tech and low-volume industries. 

The literature contains a vast variety of point views when contextualising scheduling and 

sequencing plans, and some do not clearly indicate how the functions of each one should be 

carried out. The present work considers that the scheduling plan deals with efficient resources 

allocation given a set of due dates, release dates, demand for products and operational restrictions 

to help to decide the number of products to be produced during each time period. Accordingly, 

the scheduling plan implies finding a way to assign times (at which each operation in the sequence 

will start and finish), corresponds to the activity of timetabling operations [89], while sequencing 

plans involves the sequencing of jobs given a set of shared resources (jobs, materials, machines) 

so that they meet certain production constraints; such as capacity, production levels, precedence, 

start and due dates, machine capabilities, machine availabilities, lot-size restrictions, resource 

requirements and resource availabilities [85,86,89] A sequencing plan specifies the order in which 

jobs are to be processed at a shared workstation.  

Considerably more research interest has been shown in scheduling problems and their 

combinations (45%) because the practical application of such problems to industry is more 

frequent. Scheduling problems have been combined with production planning problems [28–32], 

and also with sequencing problems [58,59,70,77]. Fewer sequencing problems have been studied 

(see Table 3) as 25% of the research works analysed these problems. These problems have often 

been combinatorial and presented as NP-Hard, so most research works have applied specific 

algorithms to solve them. 

A distinctive feature of scheduling and sequence problems is listed at the lowest 

production hierarchy level, namely at the operational decision-making level. Once sequence and 

scheduling plans have been computed, they are reflected in production orders. Implementing these 

orders to start the production of each item is called dispatching [90]. 

 

Table 3. 

Plan type and plan aggregation of the reviewed works. 
Plan type Plan’s 

Aggregation 

Planning 

Horizon 

Planning 

Period 

Reference 

Production 

Planning 
 

Aggregated 

Plan 

Year 
 

Week Sillekens et al. [36]; de Kruijff et al. [44]  

Month 
Mirzapour Al-E-Hashem et al. [37];  Tavaghof-Gigloo et al. 

[42]; Bensmain et al. [47];  

Quarterly Month Leung & Chan, [34] 

Month Week Makui et al. [1]; Djordjevic et al. [46] 

Week Day Fang et al. [91]  

NS(*) 

 

Month Chakrabortty & Akhtar Hasin [40]   

NS 

R.-C. Wang & Fang [33]; Baykasoglu & Gocken [35]; Zhang 

et al. [38]; Ramezanian et al. [39]; Khalili-Damghani & 
Shahrokh [41]; Gholamian et al. [43]; Mehdizadeh et al. [45]; 

Rasmi et al. [27] 

Master Plan Month Week de Kruijff et al. [44] 

Scheduling 
Dispatching 
Plan 

Month Week Mattik et al. [64] 

Week 
Day Philip Doganis & Sarimveis [55]   

NS Motta Toledo et al. [61]; De Smet et al. [79]  

Day Day Nonås & Olsen [49] 



 Hour Doganis & Sarimveis [52]  

NS NS 

Grabowski & Wodecki [48]; Gupta & Magnusson [26];  
Hooker [51]; Gaglioppa et al. [53]; Fakhrzad & Khademi Zare, 

[56]; Zeppetella et al. [69]; Chansombat et al. [76]; Verbiest et 

al., [73]; S. Wang et al. [78]; Yang & Xu, [80]; Otto & Li, 2020 
[81]; Prata, de Abreu, et al., 2020 [92]; Prata, Rodrigues, et al. 

[93]; Rodoplu et al. [82]  

Day Minute Woo & Kim [72]  

Sequencing 
Dispatching 

Plan 

Week NS Baumann & Trautmann [66] 

Day NS Franz et al. [63] 

NS NS 

Mohammadi et al. [57]; Bellabdaoui & Teghem [50]; Moon et 

al. [54]; Chen et al. [60] ; Golle et al. [65] Na & Park [62];  

Abdeljaouad et al. [67]; Aroui et al. [68]; Lopes et al. [71];  
Mönch & Roob [74]; Ekici et al. [75] 

Production 

Planning & 

Production 

Scheduling 

Aggregated 

Plan & 

Dispatching 
Plan 

Year 

 

Quarterly Xue et al. [29]; Fumero et al. [31] 

Month Omar & Teo [28] 

Week Hour Fumero et al. [32] 

Master Plan 

& 
Dispatching 

Plan 

Month Week Aghezzaf et al. [30] 

Production 

Scheduling 

& 

Production 

Sequencing 

Dispatching 

Plan 

Day Hour de Armas & Laguna [77] 

NS NS Guimarães et al. [58]; Cheng et al. [59]; Torkaman et al. [70] 

 (*) NS: not specified. 

 

The analysis performed on the plans’ aggregation features enables to provide a concrete definition 

of production planning, sequencing, and scheduling problems. The proposed delimitation 

describes the different planning levels. Tactical or medium-term level uses aggregated data, once 

the results of this phase are available, you can move on to a detailed short-term scheduling phase. 

Input data for planning problems at the tactical level is generally measured in months or weeks 

rather than days or hours, as is done in scheduling and sequencing plans. Planning issues at the 

tactical level seek to minimize production costs, warehousing costs, inventory costs, and others 

detailed in section 3.4. The results obtained from this process generally describe the monthly or 

weekly production quantities for all products, requiring a number of resources (machines, 

operations) and capacities. Scheduling and sequencing activities are done in the short term, 

although, as mentioned above, some papers present a combined approach in which the results of 

medium-term planning are the input of scheduling or sequencing plans (short-term). Short-term 

plans seek to optimize each stage and each installation (machines or resources), in shorter time 

horizons [94]. 

3.3 Modelling approach and solution techniques 

The literature describes a wide variety of models and approaches to solve production planning, 

scheduling and sequencing problems. The analysed works have generally sought to develop 

models and to apply them to real planning problems using large-sized input data. As this leads to 

complexity, the procedure to find a solution in data management and computational efficiency 

terms is difficult. This is why there are different types of techniques to model and solve production 

planning, scheduling and sequencing problems. The objective of the present paper was to 

analogously present the mathematical programming methods followed to raise different model 

types, the techniques to solve them and the software used to treat these problems. Table 4 presents 

the applied modelling approach and solution techniques in the reviewed works to answer RQ1 

and RQ2. The first column in Table 4 refers to the modelling approach. The analysis allowed us 

to conclude that mixed integer linear programming (MILP) models were the most widely used to 

deal with production planning, scheduling and sequencing problems. Indeed 73.33% of the 



analysed papers adopted this approach, while only two authors resorted to fuzzy linear 

programming (FLP) [33,46]. Other modelling approaches indicated during the review included 

fuzzy goal programming (FGP) [41], multi-objective linear programming (MOLP), mixed integer 

non-linear programming (MINLP) [47,79, 40], multi-objective mixed-integer linear 

programming (MOMILP) [45], multi-objective mixed-integer non-linear programming 

(MOMINLP) [37], quad-objective mixed integer linear programming (QOMILP) [27] and the 

robust programming (RP) model [1]. Hooker [51] combined two methods: mixed integer linear 

programming (MILP) and constraint programming (CP). Omar and Teo [28] combined and 

applied two techniques, firstly MILP to solve the aggregate plan, and then an integer 

programming (IP) model to disaggregate the plan. 

The second column in Table 4 refers to the solution algorithms proposed in the reviewed 

works. Considering the complexity of the models and their applications, different types of 

techniques appeared to solve distinct production problems. Andres et al. [95] classified these 

techniques into four groups: (i) optimiser algorithms (OA), which respond to techniques that 

ensure that the best possible solution is provided, and are commonly integrated into predetermined 

solutions; (ii) heuristic algorithms (HA), which do not guarantee the optimal solution, but a 

solution/s that is/are relatively good by coming close to the global optimum [96]; (iii) 

metaheuristic algorithms (MA), which consist of higher-level heuristics [96] and can provide a 

sufficiently high-quality solution through an iterative master process that guides and modifies 

subordinate heuristics (partial search algorithm) operations [6,97]; (iv) matheuristic algorithms 

(MTA) represent a hybridisation or combination of heuristic and metaheuristic algorithms and 

exact methods [98] 

Regarding the techniques for solving production planning, scheduling and sequencing 

problems, 71.66% of the articles described the algorithm used to solve these problems, while 

28.33% did not use a specific algorithm, but described the type of commercial solvers employed. 

Some commercial solvers like Gurobi or Cplex incorporate parametrisation features to efficiently 

solve optimisation problems. Nevertheless, the reviewed papers did not report any software 

parameter to provide clues about the algorithms employed in the commercial solver. 

The majority of the reviewed articles applied metaheuristic algorithms (37.20%), where 

genetic algorithms were the predominant metaheuristic procedure. Some authors performed 

combinations or hybridisations of algorithms, and a summary of the most relevant ones follows. 

Fakhrzad and Khademi Zare [56] introduced a hybrid genetic algorithm (genetic algorithm + local 

search) that, jointly with a Lagrangian algorithm, addressed the lot size determination in 

multistage production scheduling problems. With this hybridisation, the authors obtained near-

optimal solutions in a medium dataset. Chen et al. [60] presented a hybrid approach based on two 

metaheuristic algorithms, the variable neighbourhood search and particle swarm optimisation 

(VNPSO), to solve multistage and parallel-machine scheduling problems. This hybrid algorithm 

was compared to the traditional particle swarm optimisation (PSO) algorithm, and the authors 

concluded that the obtained solutions and the calculation time were better in the hybrid algorithm 

than in the traditional PSO for obtaining almost optimal solutions for large instances. Aroui et al. 

[68] presented two metaheuristic algorithms (genetic algorithms and simulated annealing) and a 

hybrid algorithm composed of a genetic algorithm and simulated annealing (GASA) to solve a 

problem to sequence assembly lines of mixed models to minimise workload. The authors tested 

MILP and algorithms in an industrial case of a truck assembly line. The results obtained from the 

different algorithms demonstrated that the hybrid algorithm provided better solutions and better 

calculation times than MILP in large instances. GASA was also better than simulated annealing 

algorithms but required longer calculation times and SA provides better solutions than the genetic 

algorithm.  



Finally, is worth mentioning the work of Torkaman et al. [70], who proposed a hybrid 

simulated annealing (HSA) algorithm that used a genetic algorithm to obtain an initial solution. 

This hybrid algorithm was used to solve multistage, multiperiod and multiproduct lot sizing 

problems with remanufacturing and sequence-dependent setups and a setup carry-over in a flow 

shop system. This hybrid algorithm was compared to the four heuristic algorithms and a MILP 

model. The authors concluded that the MILP model achieved better solutions than the hybrid 

algorithm when computing small datasets. Nevertheless, the MILP model needed a longer 

calculation time than HSA. Accordingly, HSA in larger instances was more efficient than the 

mathematical model and heuristic methods, thus the proposed hybrid algorithm can be used in 

this type of problem to obtain better calculation times in medium and large datasets. 

In terms of heuristic algorithms (30.23%), the most widely used techniques were LP 

Relaxation (LPR) [32,38,53] and Benders decomposition [1, 44, 51]. For optimiser algorithms 

(16.27%), some frequently used techniques included Branch and Bound (BB) [42,49,64]. Finally, 

MTA (16.27%), the metaheuristic combinations (genetic algorithms) and MILP models were the 

most frequently used [61,72]. 

Table 4 shows the various combinations or associations of each development tool 

classified as programming languages, modelling languages and solvers. As regards programming 

languages, only a few authors (25.00%) indicated the programming languages that they used to 

conduct their research, while others simply did not specify (NS) them. The employed languages 

were C, C#, C++, Julia, Java, Python and Visual Basic, whereas C++ was the most preferred one 

(46.66%). Modelling languages included AIMMS, GAMS, ILOG, JUMP LINGO, MATLAB and 

OPL, and 58.33% of the reviewed studies described which modelling language they used, of 

which LINGO and ILOG were the most frequently reported ones. Of them all, 81.66% informed 

about the solvers utilised to solve production planning, scheduling and sequencing problems. 

Solvers were CPLEX, CP Optimiser, LINGO, Xpress, Gurobi and OM Patners, and the most 

representative ones were CPLEX (50.00%) and LINGO (18.33%). 

The proposed solution column summarises the findings of the reviewed articles. For those 

papers proposing model and solution (MS), readers can find a mathematical programming model 

and its solution. By way of example, we cite Wang and Fang [33] and Djordjevic et al. [46], who 

proposed a fuzzy linear programming model, but only indicated the obtained results. Model, 

solver and solution (MSS) added the solver. In this case, Khalili-Damghani and Shahrokh [41] 

used a fuzzy goal programming model and solved it by LINGO. Algorithm description (MAD) 

showed a model and described the algorithm, but these research types were not studied because 

they went beyond the scope of RQ4. 

Model, algorithm description and solution (MADS) showed the model, and described the 

algorithm and the obtained solution, but not the used solver; e.g., Fang et al. (2017) [91] 

formulated the aggregate production planning problem as an MILP model, and solved it by the 

Lagrangian relaxation technique (LGR), but did not describe the used solver. Model, algorithm 

description, solver and solution (MADSS) similar proposed solutions to MADS and included the 

used solver; e.g., Chen et al. [60] studied a sequencing problem and formulated an MILP model 

by developing a hybrid approach based on VNS and PSO. The MILP model was formulated with 

the IBM ILOG CPLEX software package and was solved by BB algorithms, which were 

implemented in C++. Model, algorithm description, algorithm pseudocode, solver and solution 

(MADPCSS) added the pseudocode algorithm to MADSS, and there were only seven papers of 

this type: Mehdizadeh et al. [45] de Kruijff et al. [44]; Gupta and Magnusson [26]; Motta Toledo 

et al. [61]; Hooker [51]; Franz et al. [63]; Aroui et al. [68]. 

 

 



Table 4. 

The modelling approach and solution techniques of the reviewed works. 
Modelling 

approach 

Algorithm Programming 

Languages 

Modelling 

language 

Solver Proposed 

solution 

Reference 

FLP - NS NS NS MS R.-C. Wang & Fang [33];  

Djordjevic et al. [46] 

FGP - NS LINGO LINGO MSS Khalili-Damghani & Shahrokh 

[41] 

FMOLP OA/ SI NS GAMS CPLEX MSS Gholamian et al. [43] 

FP MA/ TS NS NS NS MADS Baykasoglu & Gocken [35] 

GP OA/ SI NS NS LINDO MSS Leung & Chan [34] 

IP MTA/ 

(BRKGA + 

IP) 

C++ NS LP_Solve MADS Mönch & Roob [74] 

ILP Hybrid 

MA/ GA + 

HA/ LGR 

Visual 

Basic 

NS LINGO MADSS Fakhrzad & Khademi Zare [56] 

HA/ IVN NS ILOG 

CPLEZ 

CPLEX MADPCSS Otto & Li [81] 

MILP 

 

 

- NS NS OM 

Partners 

MSS Bellabdaoui & Teghem [50] 

- NS NS CPLEX MSS P Doganis & Sarimveis [52];  

Golle et al. [65] 

 NS OPL CPLEX MSS Aghezzaf et al. [30] 

- NS GAMS CPLEX MSS Philip Doganis & Sarimveis [55] ;  

Fumero et al. [31] 

- C NS Gurobi MSS Baumann & Trautmann [66] 

- NS ILOG 

CPLEX 

CPLEX MSS Zeppetella et al. [69];  Lopes et al. 

[71] 

- NS NS Gurobi MSS Chansombat et al. [76] 

- Julia JUMP Gurobi MADS S. Wang et al. [78] 

HA/ BD NS AIMMS CPLEX MADPCSS de Kruijff et al. [44] 

HA/ GR NS OPL 

MATLAB 

CPLEX MADPCSS D. Gupta & Magnusson [26] 

HA/ LF 

HA/ RF 

NS ILOG 

CPLEX 

CPLEX MSS Sillekens et al. [36] 

HA/ LGR C# NS NS MADS Fang et al. [91] 

HA/ LPR NS NS CPLEX MSS Gaglioppa et al. [53] 

HA/ LPR NS GAMS CPLEX MSS Fumero et al. [32] 

HA/ LPR 

HA/ BM 

C# LINGO LINGO MADSS Zhang et al. [38] 

HA/ NEH NS LINGO LINGO MADSS Abdeljaouad et al. [67] 

MA/ GA NS NS NS MADS Moon et al. [54] 

C++ NS CPLEX MADSS Cheng et al. [59] 

NS ILOG 

CPLEX 

CPLEX 

CP 

Optimise

r 

MADSS Na & Park [62] 

MTA/ GA 

+ MILP 

C++ NS CPLEX MADPCSS Motta Toledo et al. [61] 

MA/ 

MOHSA 

NS MATLAB NS MADS Mohammadi et al. [57] 

MA/GA 

MA/ SA 

Hybrid 

MA/GA 

+ MA/SA 

NS ILOG 

CPLEX 

MATLAB 

CPLEX MADPCSS Aroui et al. [68] 

MA/GA 

MA/ TS 

NS LINGO- 

MATLAB 

LINGO MADSS Ramezanian et al. [39] 

MA/TSGW C++ NS NS MADS Grabowski & Wodecki [48] 

MA/VNS 

MA/ VTS 

NS ILOG 

CPLEX 

CPLEX MADPCSS Franz et al. [63] 



MA/PSO 

Hybrid 

MA/ VNS + 

MA/ PSO 

C++ ILOG 

CPLEX 

CPLEX MADSS Chen et al. [60] 

OA/ BB NS NS CPLEX MADSS Nonås & Olsen [49] 

OA/ BB 

OA/ SI 

NS NS FICO 

Xpress 

Optimize

r -CBC 

MSS Tavaghof-Gigloo et al. [42] 

OA/ SPP* NS LINGO LINGO MADSS Xue et al. [29] 

OA/BB 

HA/ LPR 

NS OPL CPLEX MSS Mattik et al. [64] 

MTA/ILS + 

MILP 

NS NS Gurobi MADS Verbiest et al. [73] 

MTA/ GA + 

MILP / 

MTA/ SA + 

MILP 

NS ILOG 

CPLEX 

CPLEX MADS Woo & Kim [72] 

MTA/ TS + 

MILP 

C++ NS CPLEX MADS Ekici et al. [75] 

HA/ RF Python NS CPLEX MADPCSS Rodoplu et al. [82] 

MTA/FVLA

_CSA_MM 

Julia JUMP CPLEX MADPCSS Prata et al. [93] 

MA/ VND - 

MA/ IG 

NS MATLAB NS MADPCSS Yang & Xu [80] 

- Java SE 8 NS CPLEX MSS de Armas & Laguna [77] 

MTA/ 

RPF 

+ FPO + 

MILP 

C++ ILOG 

CPLEX 

CPLEX MADSS Guimarães et al. [58] 

Hybrid 

MA/ SA 

+ MA/ GA 

NS GAMS 

MATLAB 

CPLEX MADSS Torkaman et al. [70] 

MILP – CP HA/ BD NS OPL CPLEX MADPCSS Hooker [51] 

MILP - 

IWGP 

- NS LINGO LINGO MSS Omar & Teo [28] 

MINLP Hybrid 

MA/GA + 

HA/ RF 

based rolling 

horizon 

heuristic 

NS LINGO LINGO MADPCSS Bensmain et al. [47]; 

HA/RF  NS NS Gurobi MADPCSS De Smet et al. [79] 

MOLP MA/ GA NS MATLAB NS MADS Chakrabortty & Akhtar Hasin [40] 

MOMILP MA/ SPGA 

MA/ 

WMOGA 

MA/ NSGA-

II 

NS LINGO 

MATLAB 

LINGO MADPCSS Mehdizadeh et al. [45] 

MOMINLP OA/ BB NS LINGO LINGO MSS Mirzapour Al-E-Hashem et al. 

[37] 

QOMILP - NS NS NS MS Rasmi et al. [27] 

RP HA/ BD NS GAMS NS MADS Makui et al. [1] 

3.4 Mathematical model objectives 

This section reviews mathematical programming models in detail. Mathematical models often 

describe a problem through the objective function, as well as constraints to define the problem’s 

structure. Therefore, to answer RQ2 and to study the characteristics of problems, we analysed the 

objective functions of the models proposed in the reviewed papers (see Table 6). 

Table 5 summarises the typical objectives used to support decision making in production 

planning, scheduling and sequencing problems. The objectives were classified according to their 



nature: (i) cost-based objectives (OC), costs or profits representing variables related to monetary 

units; (ii) time-based objectives (OT) evaluate the time units required to perform certain 

processes, i.e. jobs, machines, material processing, manufacturing cycles, order processing, etc; 

(iii) product-based objectives (OP), which intend to improve the efficiency of operations and aim 

to ensure that manufacturing meets the appropriate quantity and quality to cover customer 

demands; (iv) resource-based objectives (ORS), which seek to achieve the optimal use of 

resources, such as people, materials and machinery; (v) service-based objectives (OS), which 

assess delays, shortage or expiration dates, and the quality of goods and services for final 

customers; (vi) sustainability-based objectives (OST), which seeks to strike a balance in the 

utilisation of resources for production at environmental, social and economic dimensions. In order 

to gain profounder knowledge, the review analysis allowed a group of 64 subtypes of objectives 

belonging to each defined category (OC, OT, OP, ORS, OS and OST; see Table 5) to be identified. 

 

Table 5. 

Production planning, scheduling and sequencing objectives. 
Type of 

objectives 
Subtype  Designation Subtype  Designation 

Costs (OC) 

Production cost minimisation OC1 Holding cost minimisation OC21 

Variable production cost 
minimisation 

OC2 Changeover cost minimisation OC22 

Remanufacturing cost OC3 Supply chain cost minimization OC23 

Setup cost minimisation  OC4 Shortage cost minimisation OC24 

Inventory cost minimisation  OC5 
Changing shift model minimisation 
(cost) 

OC25 

Cost to change from 

production capacity level 
OC6 

Transportation, inventory and shortage 

costs minimisation 
OC26 

Normal/ Extra time (overtime) 
production cost minimisation 

OC7 
Subcontract cost minimisation 
(outsourcing) 

OC27 

Labour minimisation (hiring 

cost and lay-off cost) 
OC8 Fixed cost per unit minimisation OC28 

Cost of workers’ salary 
minimisation 

OC9 
Repairs and deterioration machines 
cost minimisation 

OC29 

Labour training cost OC10 Machine utilisation cost minimisation OC30 

Workforce changing cost 

(skilled and unskilled 
workforce) 

OC11 
Cost’s preventive maintenance 

minimisation  
OC31 

Normal and overtime labour 

cost minimisation 
OC12 Capital cost minimisation OC32 

Backorder minimisation 
(quantity or cost)  

OC13 Start-up cost OC33 

Idle time cost minimisation OC14 Contamination cost OC34 

Tardiness penalty costs; 

earliness penalty costs 
minimisation 

OC15 Cost value of jobs of family OC35 

Investment cost minimisation OC16 Maintenance costs minimisation  OC36 

Profit maximisation OC17 
Delivery and tardiness costs 

minimisation OC37 

Transport cost minimisation OC18 Total costs minimisation OC38 

Raw Material purchasing cost 
minimisation 

OC19   

Raw material inventory 

holding cost 
OC20   

Time (OT) 

Lead time minimisation OT1 Mean flow time minimisation of jobs OT9 

Production time minimisation  OT2 Time of sequences minimisation  OT10 

Warehouse time minimisation OT3 Cycle time minimisation OT11 

Preparation times 

minimisation 
OT4 Work overload minimisation  OT12 

Transition time minimisation OT5 Makespan minimisation OT13 

Setup time minimisation  OT6 Total weighted completion time 

minimisation 

 

OT14 Tardiness minimisation  OT7 

Earliness minimisation  OT8   

Products (OP) 

Product sold maximisation OP1 Inventory quantity minimisation OP4 

Shortage product minimisation OP2 Faulty products minimisation  OP5 

Total production maximisation  OP3 Quality of products maximisation OP6 



Resources 

(ORS) 

Labour minimisation hiring 

and lay-off (quantity) 
OR1 Machine utilisation maximisation OR2 

Service (OS) 
Customer service level 

maximisation 
OS 

Sustainability 

(OST) 

Environmental issues 

minimisation  
OST1 Social factors minimisation OST3 

Cultural elements 

maximisation 
OST2 

The production planning process at the tactical level generally finds objectives related to 

searches for financial benefits. These financial benefits are represented by reductions in the 

different cost types. The costs to be minimised at this level are mainly related to production, hiring 

or firing, inventory and storage, subcontracting, and production in normal time and overtime. In 

the combined production planning and scheduling approach are less frequent in the literature, 

since they require greater coordination of operations, so the models and techniques must be 

incorporated into a single framework [94]. This approach moves from a first phase that uses 

aggregated data to a second phase that employs more detailed information. Thus, in the 

aggregated phase, objectives are generally sought to minimise production, inventory, setup, 

backorder, and normal and overtime costs, while the objectives in the scheduling stage are 

essentially based on times, such as lead time, setup time, tardiness and earliness. 

Production scheduling models focus on optimising the facilities and resources in different 

areas on shorter planning horizons. The objectives pursued by scheduling models seek to reduce 

setup, holding and production costs and times, and to minimise makespan and tardiness. 

The objectives sought by the combined scheduling and sequencing approaches are 

primarily to minimise setup and holding costs. Finally, the sequencing problem mainly pursues 

minimising makespan, tardiness and work overload, but also tends to reduce setup, transition, 

mean flow, sequence and cycle times.  

Table 6 

The main objectives of the proposed models. 
Ref. / Goals in the objective 

function 

Costs Time Product Resources Service  Sustainability  

 R.-C. Wang & Fang [33] 
OC1; OC7; 

OC8; OC17 

 Grabowski & Wodecki [48] OT13 

D. Gupta & Magnusson [26] OC4; OC5 

 Nonås & Olsen [49] OT7 

 Bellabdaoui & Teghem [50] OT10 

 Hooker [51] 
OC28 OT7; 

OT13 

 Omar & Teo [28] 
OC1; OC4; 
OC5; OC12; 

OC13 

OT6; 
OT7; 

OT8 

 P Doganis & Sarimveis [52] 
OC1; OC4; 

OC8; OC21 

 Philip Doganis & Sarimveis [55] 
OC21; OC22; 

OC30 

 Gaglioppa et al. [53] OC1; OC4; OC5 

 Moon et al. [54] 
OT7; 
OT9; 

OT13 

 Fakhrzad & Khademi Zare [56] 
OC2; OC4; 
OC17; OC21 

 Leung & Chan [34] OC17 OP5 OR2 

 Baykasoglu & Gocken 

[35] 

OC1; OC7; 

OC12 

OP1; 

OP4 

OR1 

 Aghezzaf et al. [30] OC1; OC5 OT1 

 Mirzapour Al-E-Hashem et al. [37] 

OC1; OC5; 

OC8; OC10; 

OC18; OC19; 

OC20; OC23 

OP2 



 Sillekens et al. [36] 

OC1; OC6; 

OC8; OC12; 
OC21; OC28 

     

 Xue et al. [29] 

OC1; OC4; 

OC5; OC8; 
OC12; OC13 

     

 Mohammadi et al. [57] 

 OT4; 

OT5; 

OT6; 
OT7 

    

 Ramezanian et al. [39] 

OC1; OC4; 

OC5; OC8; 
OC13; OC27 

     

 Zhang et al. [38] 
OC1; OC5; 

OC16 

     

 Chakrabortty & Akhtar Hasin [40] 
OC1; OC5; 
OC7; OC8; 

OC13; OC27 

     

 Cheng et al. [59]  OT13     

 Guimarães et al. [58] OC4; OC21      

 Chen et al. [60]  OT13     

 Franz et al. [63]  OT12     

 Golle et al. [65]  OT12     

 Khalili-Damghani & Shahrokh [41] 

OC1; OC8; 

OC9; OC10; 
OC13; OC20; 

OC21 

 OP6  OS  

 Mattik et al. [64] 
 OT7; 

OT13 
    

 Motta Toledo et al. [61] 
OC4; OC5; 

OC24 

     

 Na & Park [62]  OT7     

 Baumann & Trautmann [66]  OT13     

 Abdeljaouad et al. [67]  OT13     

 Fumero et al. [31] OC17      

 Gholamian et al. [43] 

OC1; OC8; 

OC10; OC19; 

OC20; OC23; 

OC26 

 OP2 OR1   

 Makui et al. [1] 

OC1; OC4; 

OC5; OC8; 
OC11 

     

 Tavaghof-Gigloo et al. [42] 
OC12; OC21; 

OC25; OC27 

     

 Aroui et al. [68]  OT12     

 Fang et al. [91] OC1      

 Fumero et al. [32] OC17      

 Zeppetella et al. [69] OC1; OC17      

 de Kruijff et al. [44] 
OC13; OC21; 

OC22 

     

 Lopes et al. [71]  OT11     

 Mehdizadeh et al. [45] OC17; OC29      

 Torkaman et al. [70] 
OC1; OC3; 

OC4; OC21 

     

 Chansombat et al. [76] 

OC1; OC4; 

OC14; OC15; 

OC21; OC31 

     

 Mönch & Roob [74];   OC35     

 Verbiest et al. [73]; 
OC32; OC33; 

OC34 

     

 Woo & Kim [72]  OT13     

 Ekici et al. [75] 
 OT7; 

OT8 
    

 de Armas & Laguna [77]   OP3    

 Djordjevic et al. [46] 

 OT1; 

OT2; 
OT3; 

OT4 

    

 Rasmi et al. [27] 
OC17     OST1; OST2; 

OST3 

 Bensmain et al. [47] OC5; OC36      

 S. Wang et al. [78]  OT14     



 De Smet et al. [79] 
OC4; OC7; 

OC21 

     

 Yang & Xu [80] OC37      

 Otto & Li [81] OC38      

 Prata [93] OT13      

 Rodoplu et al. [82] OC1      

3.5 Applications area and enterprise integration level 

Some important aspects when modelling production planning, scheduling and sequencing 

problems are the industrial sector, the specific industry and the product type to which the model 

is proposed. The impact of applying a model generated for a specific industry to another industry 

or sector type can be insignificant in some cases, but can be transcendental in others because the 

required costs and time directly affect the profitability and feasibility of processes. In order to 

analyse the impact of a model, and by analysing its extrapolation to another industry or sector, 

the reviewed models were classified into two categories: sectorial and transversal (see Table 7). 

The sectorial category responded to vertical measures and focused on a specific sector or industry. 

The transversal category referred to all those production operations that have had or could have 

an impact on multiple manufacturing sectors, and generally responded to horizontal measures 

[99]. 

According to Table 7, 30% of the articles were classified in the sectorial category and 70% 

in the transversal category. The problems that arose in the sectorial category generally responded 

to a specific industry’s needs and often used real data: Omar & Teo [28]; Doganis & Sarimveis 

[55]; Leung & Chan [34]; Mirzapour Al-E-Hashem et al. [37]; Cheng et al. [59]; Chen et al. 

(2013) [60]; Mattik et al. [64] ;  Aroui et al. [68]; de Armas & Laguna  [77]; Ekici et al. [75]. 

Other studies did not use real data, but tests with similar data to those of a real case were carried 

out: Nonås and Olsen [49]; Sillekens et al. [36]; Motta Toledo et al. [61];  Baumann & Trautmann 

[66], Franz [63]; de Kruijff et al. [44]; Chansombat et al. [76] were also classified as sectorial. 

The papers classified in the transversal category could be applied or adapted to various industrial 

sectors. Some studies, such as those by Tavaghof-Gigloo et al. [42]  Khalili-Damghani & 

Shahrokh [41] Makui et al. [1]  Djordjevic et al. [46], used real data from one industry (see Table 

7). Although these studies were validated in a specific industry type, the proposed techniques and 

approaches could be applied to other sectors. In this category, several  works conducted tests with 

similar data or instances to those of a real case [30,40,43,50,58,73]. 

Enterprise integration is an Industrial Information Integration Engineering (IIIE) category. 

IIIE is a multidisciplinary research area, according to Chen, 2016 [100],  “it is a set of foundational 

concepts and techniques that facilitate the industrial information integration process”. Chen, 2016 

[100] and Chen, 2020 [101] in their literature reviews on industrial information integration 

defined 37 and 27 categories, respectively, one of which was enterprise integration. According to 

Andres and Poler [100], enterprise integration was classified at two levels: intra- and inter-

enterprise levels.  

The intra-enterprise level refers to solving production planning, scheduling and sequencing 

as internal enterprise activities; that is, not sharing information with other supply chain network 

actors. However, information can be integrated at different plans aggregation levels computed in 

the same enterprise. That is, the output of an aggregated plan is integrated into a tactical plan 

(master plan). In the same way, the master plan solution is integrated and used as the input of 

operational plans, namely sequencing or scheduling mathematical models. Omar and Teo [28] 

presented an integrated approach to determine the batches to be processed in a batch processing 

environment of multiple products and identical parallel machines. This approach was 

hierarchically divided into three levels. The first level solved the problem in aggregate by 



focusing on production decisions, inventories and backorders. A second level disaggregated the 

problem into monthly batches. A third level solved the sequencing of batches on parallel 

machines. Xue et al. [29] presented a modelling approach that integrated production planning and 

scheduling for decision support for senior and middle managers. The MILP model described 

aggregated production planning, family de-aggregation and production scheduling with 

sequence-dependent setup times. Fumero et al. 2016 [31] reported an MILP model that presented 

a hierarchical approach to integrate different decision-making levels (production planning and 

scheduling decisions) on multiproduct batch plants. Aghezzaf, et al. [30] provided a model that 

hierarchically integrated planning decisions from semifinished products at an aggregated level up 

to finished products; that is, with disaggregated information. Fumero et al. 2017 [32] provided 

MILP that integrated planning and scheduling for the production planning of multiproduct batch 

plants in several stages operating in the campaign mode. 

The inter-enterprise level is associated with the collaborative planning among different 

supply chain stakeholders. The majority of  papers addressed production planning, scheduling 

and sequencing from the intra-enterprise perspective, while only one paper, that of Mirzapour Al-

E-Hashem et al. [37], considered the collaborative network perspective. Mirzapour Al-E-Hashem 

et al.  [37] contemplated multi-objective aggregate production planning to a multisite, 

multiperiod, multiproduct aggregate production planning problem. By developing a MOMINLP, 

this model proposed two objective functions. The first aimed to minimise total supply chain losses 

and the second to minimise the sum of the maximum amount of shortages between customers’ 

zones during all periods. The computational tests of this model demonstrated its efficiency for 

supply chain production planning. 

 

Table 7.  

Industry sectors and application type. 
Reference Sectorial Transversal Real 

case 

Industry application 

 R.-C. Wang & Fang [33]  X N   

 Grabowski & Wodecki [48]  X N   

 Nonås & Olsen [49] X  N Maritime and shipyard industry 

 D. Gupta & Magnusson [26]  X N   

 Bellabdaoui & Teghem [50]   X Y Steelmaking-continuous casting 

 Omar & Teo [28]  X  Y Chemical and pharmaceutical  

 Hooker [51]  X N   

 P Doganis & Sarimveis [52]  X N Dairy 

 Philip Doganis & Sarimveis [55]  X  Y Dairy 

 Gaglioppa et al. [53]   X N Process Industries 

 Moon et al. [54]  X N   

 Leung & Chan [34] X  Y Surface and materials science  

 Fakhrzad & Khademi Zare [56]   X N   

 Baykasoglu & Gocken [35]  X N   

 Mirzapour Al-E-Hashem et al. [37] X  Y Wood and Paper 

 Sillekens et al. [36]  X  N Automotive 

 Xue et al. [29]   X N Digital Electronic 

 Aghezzaf et al. [30]   X Y X-ray film 

 Mohammadi et al. [57]  X N   

 Ramezanian et al. [39]  X N   

 Zhang et al. [38]   X N   

 Cheng et al. [59]  X  Y Solar cell manufacturing 

 Chen et al. [60] X  Y Solar cell manufacturing 

 Guimarães et al. [58]  X N Beverage industry 

 Chakrabortty & Akhtar Hasin [40]   X N Textile 

 Mattik et al. [64] X  Y Steel 



 Motta Toledo et al. [61]  X  N Food (soft drinks) 

 Franz et al. [63] X  N Automotive 

 Na & Park [62]   X N   

 Khalili-Damghani & Shahrokh [41]   X Y Automotive colours and resins 

 Baumann & Trautmann [66] X  N Consumer goods sector, 

 Golle et al. [65]  X N   

 Abdeljaouad et al. [67]  X N   

 Gholamian et al. [43]   X N Wood and Paper 

 Tavaghof-Gigloo et al. [42]  X Y Electronics manufacturer 

 Makui et al. [1]  X Y Paper Industry 

 Fumero et al. [31]  X N   

 Aroui et al. [68]  X  Y Automotive 

 Fang et al. [91]  X N Iron and Steel 

 Fumero et al. [32]  X N   

 Zeppetella et al. [69]  X N   

 de Kruijff et al. [44] X  N High-tech low volume 

 Torkaman et al. [70]  X N Automotive 

 Mehdizadeh et al. [45]  X N   

 Lopes et al. [71]  X N   

 Mönch & Roob [74]  X N  

 Verbiest et al.[73]  X N Chemical 

 Woo & Kim [72]  X   

 Ekici et al. [75] X  Y Electronics manufacturer 

 de Armas & Laguna [77]  X  Y Pipe-insulation industry 

 Chansombat et al. [76] X  N Capital goods  

 Djordjevic et al. [46]  X Y Automotive  

 Rasmi et al. [27] X  Y Household appliances 

 Bensmain et al. [47]  X N  

 S. Wang et al. [78]  X N Coating 

 De Smet et al. [79] X  N Paper 

 Yang & Xu [80]  X N  

 Otto & Li [81]  X N  

 Prata [93]  X N  

 Rodoplu et al. [82]  X N Textile 

3.6 Solution quality and problem scale 

Currently, mathematical models seek to capture the most relevant aspects of industry processes 

in a simplified way. Accordingly, very few or no models reflect all the aspects of a real-world 

company’s processes. The use of mathematical models can be compromised between complexity 

and reality. Therefore, employing optimisation algorithms, heuristics, metaheuristics and 

matheuristics allows the best performance of solutions for real world problems (large problem 

scales) without committing the efficiency of the required computational resources. 

In this context, we classified the quality of solutions into three categories: (i) optimal 

(OP), characterised by being able to provide exact and optimal solutions; (ii) near-optimal (N-

OP), containing solutions that generate an optimisation gap that is generally less than 2%; (iii) 

good (GD), which encompasses reasonable solutions in time and quality terms without reaching 

an optimum solution. 

Table 8 compares the quality of the solutions with the problem scale, which refers to the 

data size or numerical instances of problems. According to the amount of data used to validate 

the proposed models, three categories of problem scale were defined: (i) a small dataset, which 

allows rapid tests to be run; (ii) a medium dataset, which is significantly bigger in size and 

dimension, and allows optimal or near-optimal solutions to be found in reasonable computation 

times; (iii) a large dataset, generally corresponding to instances that simulate real data or are in 

fact real data extracted from company manufacturing processes. 



Finally, to answer RQ4, over 55.0% of the papers used small datasets to test the 

performance of the models and algorithms, most of these documents reached optimal solutions 

and 20 papers tested the problems with large-scale data. Of these papers, only the work of 

Chansombat et al. [76] obtained an OP solution. These authors proposed MILP for a problem that 

integrated production and preventive maintenance scheduling into the capital goods industry. This 

type of problem is generally solved with metaheuristic methods and they achieved N-OP 

solutions. However, the mathematical model presented by the authors achieved OP solutions for 

small, medium and large datasets.  

In the area of production planning the use of large-scale dataset was less frequent. in 

approaches where the production planning and scheduling are jointly modelled and solved, no 

large-scale dataset studies were tested. However in these two approaches, most studies presented 

real industrial applications or generated similar data to the real ones of a company or industry, 

such as those presented by [1,30,34,37,40,42–44,46]. The size of the datasets generated by these 

studies were useful enough because they represented real cases. Therefore, it was not necessary 

to create or generate larger datasets. However, half the studies that tested real instances and 

medium datasets obtained OP results, but the other half obtained N-OP or GD solutions. 

Production scheduling and sequencing problems are generally NP-Hard, which makes 

them difficult to solve when large datasets are considered. In the combined approaches that jointly 

solved scheduling and sequencing problems, tests were performed primarily with medium 

datasets and N-OP solutions were obtained (see Fig. 4).  

 

 

Fig. 4. Distribution of the scale of problems and solution quality. 

 

The application of different types of methods for production planning, scheduling and 

sequence problems, and the amount of data, provided distinct solutions (see Table 8); for example, 

those presented by Grabowski and Wodecki [48]. They proposed a Tabu Search Grabowsk and 

Wodecki (TSGW) algorithm to address a flow workshop scheduling problem with makespan 

criteria, and reported N-OP solutions for a problem with a large dataset consisting of 500 jobs 
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and 20 machines. Hooker [51] proposed an algorithm based on decomposition benders for a 

programming problem. By applying it to a large dataset, they achieved N-OP solutions. Cheng et 

al. [59] presented a variation of the genetic algorithm, which they have called the hybrid code 

genetic algorithm. They presented N-OP solutions to problems with large datasets in a multistage 

and parallel-machine scheduling problem in the solar cell industry. Golle et al. [65] reported two 

models for sequencing products on a mixed-model assembly line to minimise work overload. 

These models were tested with different data sizes and provided N-OP solutions with a large 

dataset using CPLEX. Mattik et al. [64] worked with numerical tests using parameters and data 

deriving from a real case in the steel industry and used MILP accompanied by LP relaxation in 

addition to the Branch and Bound procedures. With these solution approaches, the authors 

obtained almost OP solutions for medium and large datasets. Baumann and Trautmann  [66] 

presented a hybrid method for the short-term scheduling of make-and-pack production processes 

and represented the problem through MILP. This model was able to provide N-OP solutions for 

large-scale and real-life instances for consumer goods companies.  

From the review, we conclude that the resolution of production planning, scheduling and 

sequencing when mathematical model approaches were applied to large dataset instances was not 

efficient in terms of calculation time and the quality of solutions. Over 71.66% of the reviewed 

papers used different types of methods and around 28 distinct types of techniques were tested (see 

Table 4). In this regard, matheuristic and metaheuristic algorithms obtained better results in large 

instances, as well as the hybridisations of metaheuristic algorithms [60,68]. 

Table 8 

Problem scales and solutions quality. 

Authors Problem Scale Solution Quality 

Small 

(S) 

Medium 

(M) 

Large 

(L) 

OP N-

OP 

GD 

 R.-C. Wang & Fang [33] x S 

 Grabowski & Wodecki [48] x x x S-M L 

 Nonås & Olsen [49] x S 

D. Gupta & Magnusson [26] x S 

 Bellabdaoui & Teghem [50] x S 

 Omar & Teo [28] x M 

 Hooker [51] x x x S-M L 

 P Doganis & Sarimveis [52] x S 

 Philip Doganis & Sarimveis [55] x S 

 Gaglioppa et al. [53] x x S M 

 Moon et al. [54] x x S M 

 Leung & Chan [34] x S 

 Fakhrzad & Khademi Zare [56] x x S M 

 Baykasoglu & Gocken [35] x S 

 Mirzapour Al-E-Hashem et al. [37] x M 

 Sillekens et al. [36] x S 

 Xue et al. [29] x S 

 Aghezzaf et al. [30] x S 

 Mohammadi et al. [57] x M 

 Ramezanian et al. [39] x x S M 

 Zhang et al. [38] x M 

 Cheng et al. [59] x x x S M-L

 Chen et al. [60] x x x S M-L

 Guimarães et al. [58] x x x S-M L

 Chakrabortty & Akhtar Hasin [40] x S 

 Mattik et al. [64] x x M-L

 Motta Toledo et al. [61] x L 

 Franz et al. [63] x x x S M L 



 Na & Park [62] x x S-M

 Khalili-Damghani & Shahrokh [41] x S 

 Baumann & Trautmann [66] x x M-L

 Golle et al. [65] 

 Abdeljaouad et al. [67] 

x x x S M-L

x x x S M-L

 Gholamian et al. [43] x M 

 Tavaghof-Gigloo et al. [42] x M 

 Makui et al. [1] x M 

 Fumero et al. [31] x S 

 Aroui et al. [68] x x S L 

 Fang et al. [91] x x S-M

 Fumero et al. [32] x S 

 Zeppetella et al. [69] x S 

 de Kruijff et al. [44] x M 

 Torkaman et al. [70] x x S-M

 Mehdizadeh et al. [45] x x S M 

 Mönch & Roob [74] x x S L 

 Verbiest et al. [73] x x x S M-L

 Woo & Kim [72] x x x S-M L 

 Lopes et al. [71] x M 

 Ekici et al. [75] x L 

 de Armas & Laguna [77] x M 

 Chansombat et al. [76] x x x S-M-L

 Djordjevic et al. [46] x S 

 Bensmain et al. [47] x x x S M-L

S. Wang et al. [78] x x S-M

 De Smet et al. [79] x x x S M-L

 Yang & Xu [80] x x x S M-L

 Otto & Li [81] x L 

 Prata [93] x x S-L

 Rodoplu et al. [82] x x S L 

4 Discussion and perspectives 

The range of experiments carried out in the papers addressing production planning, 

scheduling and sequencing problems illustrate the vast variety of techniques addressed in the 

literature to solve such enterprise planning problems. It must be stated that MILP were the most 

widely used (44 of 60) to represent the different types of production planning, scheduling and 

sequence Problems. In production planning problems, we found that the majority of models dealt 

with aggregated plans and applied MILP as the modelling approach, and also applied heuristic 

and metaheuristic algorithms to solve them. LINGO was identified as the most widely used solver. 

Production planning problems were mainly classified as transversal models, which allowed their 

application regardless of industry and sector type. The proposed approaches were validated with 

small and medium datasets, and collectively achieved optimal solutions. Production scheduling 

problems were predominantly modelled with MILP models, and heuristic and metaheuristic 

algorithms were implemented to solve them. The CPLEX commercial software was extensively 

used to obtain N-OP solutions with medium and large datasets. Although some solutions were 

almost OP, only a few real cases appeared. In sequencing problems, MILP was still the most 

widely used modelling approach. The developed models were well tested with metaheuristic 

algorithms, such as the genetic algorithm and variable neighbourhood search algorithm, for which 

CPLEX was the most widely used commercial software. Multiple tests were run with a medium 

dataset, which usually obtained N-OP and GD solutions. Although no predominant sector 

appeared in our review, we detected that the automotive industry presented real cases.  

Of the reviewed papers, only one study applied MOMINLP [37] to a problem of multi-

objective aggregate production planning. To solve the proposed MOMINLP, the authors 



formulated this problem as an MOMINLP model and then transformed it into a linear model. 

Afterwards, MOMINLP was reformulated as a robust MOLP model, and this robust multi-

objective model was then solved as a single-objective problem. Similarly, only two studies 

employed MINLP approaches [47,79]. MINLP models are generally used to address chemical 

engineering design problems [103]. Currently, there are different types of solvers to deal with 

MINLP models, such as AlphaECP, Antigone, AOA, BONMIN, BARON, Couenne, DICOPT, 

Juniper, LINDO, Minotaur, Muriqui, Pavito, SBB, SCIP and SHOT. These solvers have been 

tested with different instances by Kronqvist et al. [104]. The use of such a model is an area that 

involves many researchers who seek to develop solver software. For this reason, it is necessary 

to further investigate models and algorithms for this problem type [104]. Therefore, modelling 

MINLP, MOMINLP and MOMILP for production planning, scheduling and sequencing 

problems is considered as a novel area to be explored. 

Our systematic literature review enabled us to recognise an important research line for 

solving production planning, scheduling and sequencing problems, which includes the adoption 

of: (i) hybrid methods, as the combinations or hybridisations of metaheuristic or heuristic 

algorithms; (ii) the interoperation of mathematical models with metaheuristic or heuristic 

algorithms, designated in the literature as matheuristic algorithms. The papers applying MTA 

have been demonstrated to give good results as well as hybrid algorithms. According to Pellerin 

et al. [105], hybrid metaheuristic algorithms have been extensively studied in the past two 

decades. These authors [105] also analysed the performance of 36 different hybrid metaheuristic 

algorithms, applied to a resource-constrained project scheduling problem, and concluded that 

these techniques gave N-OP solutions quickly and efficiently. Here we found a gap in the 

literature as the MTA research line has not yet been studied in such depth as the hybrid 

metaheuristic algorithms area.  

Some studies proposing MTA are analysed in Section 3.3 and obtained N-OP solutions for 

planning purposes. Some examples include the work carried out by Woo and Kim [72], in which 

proposed a combination of an MILP model with a simulated annealing algorithm and a genetic 

algorithm to deal with a parallel machine scheduling problem with time-dependent deterioration 

and multiple rate-modifying activities. In this problem, the authors were able to obtain N-OP 

solutions and suggested researching other matheuristics with other types of combinations to 

improve the computation time of the algorithms they presented. Verbiest et al. [73] described an 

MTA made up of an MILP model with an iterative local search algorithm for multiproduct batch 

plant designs on parallel production lines. With this combination they obtained good results in 

acceptable times, but proposed furthering their research to extend problems with more 

restrictions. The work by Ekici et al. [75] presented a combined of an ILP model with a Tabu 

search algorithm to address the unrelated parallel machine scheduling problem with sequence-

dependent setups. This paper used real-world instances to test the proposed matheuristic 

technique, and this technique provided good solutions for the addressed problem. 

Consequently, the design of MTA can be a flexible and useful tool for solving a wide range 

of planning problems [104, 105]. Thus matheuristic techniques have the advantage of reducing 

and simplifying problems into smaller problems or subproblems that can be solved using 

mathematical models and different types of solvers, which also benefits from the synergies among 

optimisation, heuristic and metaheuristic techniques [107]. Therefore, future work should aim to 

validate the efficiency of matheuristics in large instances and in real problems. At present, there 

is limited evidence for the performance of these techniques. Accordingly, matheuristic techniques 

offer a wide field to be explored given the different combinations that can be developed.  



5 Conclusions and future research 

Production planning, scheduling and sequencing are usually the most critical activities 

that a company performs. For companies, the objective of these activities is to use the fewest 

resources in the shorted possible time to meet demand. In recent years, various methods and 

solution techniques have appeared in the literature to overcome such problems. We conducted a 

systematic literature review to offer a comprehensive perspective of production planning, 

scheduling and sequencing problems published from 2000 to 2020. This review leads to three 

main contributions. Firstly, from the studied and the analysed articles we present a holistic 

framework that characterises planning problems. Secondly, we organise and classify the existing 

papers according to the proposed holistic framework after identifying the aggregation and 

decision levels, the type of models, the objectives characterising each modelling approach, the 

followed resolution techniques, the development of tools, the application areas and sectors, the 

enterprise integration level, the experiments carried out to test real cases, the data size with which 

the problem was solved, and the quality of the obtained solutions. Finally, our contribution 

consists in identifying research opportunities.  

According to the reviewed topic, future research lines are next determined. This review 

indicates that a gap still exists in developing mathematical models. Accordingly, novel modelling 

approaches should be developed to address and associate the parameters related to production and 

sustainability (for its three pillars: social, economical and environmental), and these should also 

address uncertain parameters. Another research area is to develop transversal formulations when 

modelling a planning problem. Transversal formulations could comprise general and modular 

formulations that can be adapted to the context of the application, and these formulations can be 

evaluated in different activity sectors.  

Additionally, the development of matheuristic algorithms to propose new modelling 

approaches and solution techniques is needed to avoid large computational efforts, and to obtain 

GD or N-OP solutions when larger and more complex production planning, sequencing and 

scheduling problems are posed at the industrial level. We also recommend studying non-linear 

mathematical models, using different types of non-linear solvers, and comparing the 

computational results of these solvers to those solving linear models. Finally, we propose 

mathematical models being generated from an inter-enterprise perspective as most of the 

presented papers have focused on intra-enterprise models without considering any type of 

collaboration between supply chain companies. Considering the importance of collaboration in 

planning, production scheduling and sequencing terms [100], we suggest that the problems of 

production planning, scheduling, and sequencing should be treated from a collaborative 

perspective, in which the different network partners share information. Several authors describe 

the advantages of inter-enterprise models, such as those presented by Hall and Potts [108], who 

describe that the implementation of Inter-enterprise architecture can reduce the total cost of the 

system by 20-25%. In addition, the implementation of inter-enterprise models provides additional 

benefits, such as harmonisation of processes, alignment of the commercial strategy, reduction of 

technological costs and risks, improved customer service and better responsiveness [109]. 

Therefore, the proposed framework will play a major role in guiding future research as it allows 

the key features of a production planning, scheduling and sequencing problem to be identified. 
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