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Numerical cognition is a fundamental component of human intelligence that has not

been fully understood yet. Indeed, it is a subject of research in many disciplines,

e.g., neuroscience, education, cognitive and developmental psychology, philosophy of

mathematics, linguistics. In Artificial Intelligence, aspects of numerical cognition have

been modelled through neural networks to replicate and analytically study children

behaviours. However, artificial models need to incorporate realistic sensory-motor

information from the body to fully mimic the children’s learning behaviours, e.g., the use of

fingers to learn and manipulate numbers. To this end, this article presents a database of

images, focused on number representation with fingers using both human and robot

hands, which can constitute the base for building new realistic models of numerical

cognition in humanoid robots, enabling a grounded learning approach in developmental

autonomous agents. The article provides a benchmark analysis of the datasets in the

database that are used to train, validate, and test five state-of-the art deep neural

networks, which are compared for classification accuracy together with an analysis of

the computational requirements of each network. The discussion highlights the trade-off

between speed and precision in the detection, which is required for realistic applications

in robotics.

Keywords: cognitive robotics, region-based CNN, SSD, single shot detector, finger counting, iCub robot,

developmental robotics, developmental neuro-robotics

1. INTRODUCTION

A novel interdisciplinary research paradigm, known as Developmental Neuro-Robotics (DNR), has
been recently introduced (Cangelosi and Schlesinger, 2015; Krichmar, 2018; Di Nuovo, 2020) with
the aim to create biologically plausible robots, whose control units directly model some aspect of
the brain. DNR is still making its first steps, but it has been already successfully applied in the
modelling of embodied word learning as well as the development of perceptual, social, language,
and abstract cognition (Asada et al., 2009; Di Nuovo et al., 2013; Cangelosi et al., 2016; Cangelosi
and Stramandinoli, 2018; Nocentini et al., 2019). A research area of interest for DNR is the
development of numerical cognition (Di Nuovo and Jay, 2019; Di Nuovo and McClelland, 2019),
which focuses on the use of fingers and gestures to support the initial learning of digits (Di Nuovo,
2020; Pecyna et al., 2020) as it has been found by numerous developmental psychology and
neuro-imaging studies (Goldin-Meadow et al., 2014; Soylu et al., 2018).

The aim of the work presented in this article is to support further and more realistic studies
in embodied numerical cognition. We present a novel database containing high-resolution images
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of both human and robot hands reproducing numbers in random
positions and backgrounds. While several databases for human
hand gesture recognition have been published in literature, they
usually provide fixed positions and blank backgrounds, which
makes it difficult to generalise in open contexts like DNR.
Moreover, none of these have a focus on the development of
cognitive abilities of robotics therefore they do not include robot
hands. Indeed, while humanoid robot hands and fingers are
designed to look and offer similar functionalities to the human’s,
they have structural differences and limitations because of the
materials, costs, and design choices (Davis et al., 2008). These
differences may impair their recognition by models trained on
human hands only, therefore, it is useful to include the robot
hands in the training and testing to validate the use of models
in the DNR context. In addition, we provide the methodology
and the experimental results to train and test on a number of
neural networks, which are computationally intensive tasks. The
results of this training (including accuracy in the detection of
the number of fingers identifiable in the images) are presented
and provide a baseline for future research with the database.
Therefore, the contribution of this work is two-fold: (i) the
database will facilitate researchers in developmental psychology
and neuroscience to build embodied models of numerical
cognition that use human or robot gestures as an input; (ii)
the experiments with the deep neural network architectures will
constitute a comparative benchmark, considerably reducing the
amount of resources needed bymachine learning researchers that
want to propose new biologically inspired algorithms to support
embodied learning simulations.

In the following section 1.1 we present the interdisciplinary
background of the research and the motivation of the present
work, then in section 1.2 we give an overview of the related
work in computer vision, deep learning, and robotics. The article
continues with section 2, which introduces the hands image
database and the methods used to generate the images and apply
silhouette extraction (section 2.1) along with an introduction
to the networks presented in this experiment (section 2.2) and
an overview of the process to train the networks on the finger-
counting dataset (section 2.3). Then, section 3 presents the results
of the training of the neural networks, with the accuracy of
classification, the losses and confusion matrices and discusses the
results. Finally, section 4 concludes the article.

1.1. Background and Motivation
Abstract concepts like mathematics are represented in the human
brain with the involvement of sensory and motor cortical
areas (Lakoff and Núñez, 2000). Abstract and concrete concepts
are considered a continuum from the most concrete (e.g., “stone”
or “water”) to the most abstract concept (e.g., “justice” or
“freedom”). The learning of abstract concepts is achieved by
linking them to concrete embodied perceptions, e.g., gestures, in
a process of progressive abstraction (Gentner and Asmuth, 2019).

Gestures represent a form of simulated action that arise
from an embodied cognitive system (Hostetter and Alibali, 2008;
Tsiami et al., 2018; Chang et al., 2019). In particular, the use
of hands and gestures is a very attractive method for providing
natural human-computer interaction (Erol et al., 2007). Control

interfaces based on gesture have been developed based on both
static hand postures and dynamic motion patterns (Raheja et al.,
2015; Chaudhary, 2017). Indeed, hands represent a control device
with a high degree of freedom, very useful to manipulate complex
machinery (Raheja et al., 2010;Wu et al., 2010) or to train systems
such as surgical simulations (Badash et al., 2016).

An interesting type of gestures for computer vision are
finger representations of letters and digits, which are also
used as an effective form of communication in sign languages.
To this extent, computers have been trained to recognise
gestures from the American Sign Language (ASL), focusing
on static finger spelling, used to convey names, addresses,
and so on. One approach is to use depth images of the
hand configuration, with further classification of the finger
spelling done using evolutionary algorithms (Pugeault and
Bowden, 2011), Convolutional Neural Networks (CNNs) based
on AlexNet (Kang et al., 2015), or and Principal Component
Analysis Network with Support VectorMachine (Aly et al., 2019).
A second approach is presented by Garcia and Viesca (2016)
which uses a CNN based on the GoogleNet architecture, and
trained on ASL colour image datasets using transfer learning to
detect static finger spelling. However, these articles do not include
the gestures for number digits representation.

Number digits are at the basis of mathematics, in that
they are used to count, measure, and label the fundamental
workings of the universe, and form the basis of our society, from
economic systems to engineering and natural sciences (Beller
and Bender, 2011). The link between the body and numbers has
been extensively studied in child psychology and showed that
mathematics is one of the skills that can be learned through
embodied cognition (Fischer et al., 2012), rather than relying
only on the set of in-born child skills (Lakoff and Núñez,
2000). Numbers are taught to children from very early years
using fingers to provide a spatial-numerical association (Fischer
and Brugger, 2011), as well as various forms of movements,
manipulations, and gestures to acquire cognitive skills (Crollen,
2011).

The tight relation between number cognition and the body
is emphasised by the embodied cognition theory, which holds
that many cognitive skills are acquired through embodied
experiences, like movements, gestures, and manipulations, which
help children in the learning of various cognitive skills by
using limbs and senses to interact with the surrounding
environment and other human beings (Pfeifer et al., 2007;
Glenberg, 2010; Fischer and Coello, 2016; Dackermann et al.,
2017). Indeed, early numerical practice is usually accompanied
by gestures that are considered as a window into children’s
number knowledge, because children spontaneously use gestures
to convey information that is not necessarily found in their
speech (Goldin-Meadow, 1999).

Within the human body, a special role is attributed to hands
and fingers, including a significant influence on the development
of our system of counting. It is believed that we use the base
10 numbering system because we possess 10 fingers in our
hands (Dantzig and Mazur, 2007). In particular, recent research
on embodiment of mathematics has evidenced fingers as natural
tools that play a fundamental role; from developing number sense
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to becoming proficient in basic arithmetic processing (Fischer
et al., 2012). Also, in arithmetic tasks, fingers are used for
offloading cognitive abilities by representing quantities through
physical elements (Costa et al., 2011).

The simulation of numerical skills by means of computational
models is a powerful tool that provides information to evaluate
or compare existing theories and to make novel experimental
predictions that can be tested on humans (Anderson, 2007).
Computational models have the advantage of being fully
specified in any implementation aspect, which makes them
easily reproducible and verifiable, and they can produce detailed
simulations of human performance in various situations, and,
for example, experimented on with any combination of stimuli.
Furthermore, models can be lesioned to simulate cognitive
dysfunctions and performance can be compared to the behaviour
of patients in order to gain information and insights for diagnosis
and treatment that can be difficult to discover otherwise (e.g.,
Conti et al., 2016).

Aspects of numerical cognition have also been modeled using
neural network architectures embodied in humanoid robots to
mimic children learning behaviours, see Di Nuovo and Jay (2019)
for an extensive review. However, for a complete emulation
of human numerical cognition, artificial models need to be
physically embodied, i.e., instantiated into realistic simulations
of the human body that can gesture and interact with the
surrounding environment, such as humanoid robots (Lungarella
et al., 2003). Some development in this field has been achieved
with robots being able to detect their own hands, solely using the
embedded cameras (Leitner et al., 2013).

1.2. Related Work
All the applications covered in the introduction require a
hand/finger detection system to succeed. Traditionally, these
systems have been implemented using electro-mechanical or
magnetic sensing devices—data gloves (Dipietro et al., 2008),
which have sensors to read in real-time the hands and finger joint
angles. They are usually a good source of data for human robot
interaction if they do not obstruct natural hand movements.
However, they are very expensive and require complicated
calibration procedures.

Computer vision appears as the possible alternative solution
to the hand and fingers detection problem since it is contactless,
natural and done with a bare hand. However, several problems
arise with this technology and it raises issues with some
applications: hands may be straight or curved, partially occluded,
grasping other things or other hands and they can be seen from
different viewpoints.

Computer vision is computationally very expensive and in
some applications special hardware has been used to enhance
the identification process. Moreover, accuracy is not as good
as required for some applications. In particular, if we consider
self-occlusions, a complete detection of hands in images is very
complex to obtain. The use of hands has limited 3D motion
applications since it is very hard to extract the orientation and
position of the fingers in the palm frame. To obtain hand position
and orientation, 3D sensors such as Microsoft Kinect could solve
this task (Raheja et al., 2013).

Some 2D computer vision algorithms for hand detection
perform a silhouette analysis (Murthy and Jadon, 2009), which
is a useful approach in very specific applications, but obtaining a
silhouette is not trivial. Hand colour features change depending
on where the hand is in the image because of the illumination and
skin colour.

To perform a good image segmentation to retrieve the
hand silhouette, it is necessary to control illumination and to
have uniform background. In addition, skin colour influences
silhouette detection since pixel intensity plays an important
role in the threshold process. To resolve this colour problem,
some approaches convert the image colour space from RGB
(Red-Green-Blue) to HSV (Hue-Saturation-Value) or YUV
(Luminance-Blue projection-Red projection), where human skin
colour is easier to define.

Once the silhouette has been defined as region of interest
(ROI), it is necessary to extract some scale- and time-invariant
features to decide the shape or gesture of the hand. For example,
convex defect detectionmeasures ratios between convex hull area
and hand silhouette area or higher distances from the silhouette
to the convex hull (Xu et al., 2017).

To fix the problem of illumination, changes in skin colour
and controlled backgrounds, techniques based on edge detection
arise. In this case, the starting point is the gradient of the image
intensity that increases the robustness against changes in lighting,
colour skin and uncontrolled backgrounds. The gradient of the
image highlights edges in the image.

Consequently, edge analysis allows to extract features that are
heavily dependent on the hand shape and do not depend on pixel
colour. The histogram of oriented gradients technique for feature
extraction allows to classify gestures of bare hands with different
colour skins and illumination (Chaudhary and Raheja, 2018).
Orientation histogram is a technique developed by McConnell
(1986) and improved by Dalal and Triggs (2005) in their work
focused on human detection in images and videos.

Vision techniques have already been used in many research
instances, providing some approach examples. One of these
techniques allowed the identification of the hand through the use
of a coloured glove, that allows segmentation of the shape of the
hand within the vision field using the colour as reference (Nagi
et al., 2011).

In the case of robot hands detection, the process is similarly
challenging to human hand detection. Robot fingers detection is
problematic because of the wide variety of shapes it can take, with
problems of occlusions. An additional challenge is posed by the
non-uniformity of hands and fingers material.

On the other hand, the problem of recognising hand and
fingers on an image can be treated as a sub-problem in pattern
recognition, a field that extensively employs artificial neural
networks (ANN). In general, pattern recognition is the study
of how machines interpret the surrounding environment, and
how they distinguish a pattern of interest from a general
background (Basu et al., 2010). Werbos (1991) estimates that
approx. 80% of the work being done with ANN is related
to pattern recognition tasks. A number of neural network
architectures have been proposed for this finger recognition
task (Abiodun et al., 2019), including Multiple Timescales
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Recurrent Neural Networks (MTRNN) (Antunes et al., 2018),
based on Continuous Timescale Recurrent Neural Networks
(CTRNN) (Funahashi and Nakamura, 1993).

Among the cognitive modellers, deep learning architectures
and algorithms are becoming popular among neural networks
modelers as they represent a new efficient approach to
building many layers of information processing stages in
deep architectures for pattern classification and for feature or
representation learning (Di Nuovo et al., 2015; Sigaud and
Droniou, 2016).

The deep learning approach to neural networks is inspired
by the complex layered organisation of the cerebral cortex. Deep
layered processing is thought to be a fundamental characteristic
of cortical computation, making it a key feature in the study of
human cognition. Deep learning approaches have recently been
applied to the modelling of language and cognitive processing,
showing how structured and abstract representations can emerge
in an unsupervised way from sensory data, through generative
learning in deep neural networks (for an overview see Zorzi
et al., 2013). Deep learning architectures represent a new efficient
approach to building many layers of information processing
stages in deep architectures for pattern classification and for
feature or representation learning (Salvaris et al., 2018).

Impressive results have been obtained in several areas, where
deep learning architectures, such as deep belief networks (DBN)
and convolutional deep neural networks, have outperformed
state-of-the-art algorithms on various tasks, such as computer
vision (Krizhevsky et al., 2017) and human action recognition (Ji
et al., 2013).

2. MATERIALS AND METHODS

2.1. Image Database Generation
Our approach to image database generation aims to replicate the
approach a child would use in learning numbers and perform
calculations (especially using small numbers from 1 to 5).
Typically, in a learning scenario a teacher (or a parent) could
show a hand representing a number to the child and say the
number out loud. This would lead to the child associating the
finger configuration with the meaning. In the case of a robot, one
of the ways is to show the robot an image of a hand representing
a number and associate the hand configuration with the number.
Indeed, while a child is able to detect fingers in images innately,
the robot needs to be trained for this task, which requires an
image dataset specifically made for this purpose.

The database of images created for this task consists of two
parts: an iCub robot’s left hand in various positions with fingers
showing numbers from 1 to 5, using American Sign Language,
and human hands in various positions, also showing numbers
from 1 to 5, generally following the ASL but also using other
configurations for wider generalisation, e.g., for the 3 as shown in
Figure 1. We consider the images as separate classes depending
on the number shown with the hand, i.e., class “1” for hands
showing the number 1, and so on. The focus on the digit
representation allows to have more relevant images for this
particular task, compared to other gesture or general purpose
hand image datasets. In addition, all the images were made with

a 640 × 480 resolution, which is typically higher than similar
databases. Pictures of the iCub hand were taken using the robot’s
integrated cameras, while pictures of human hands were taken
with a standard USB camera. The poses were randomly varied
for each shot; finger representations were naturally rotated and
translated within the frame of the picture simulating natural
positions. The distance from the iCub’s cameras to its hand was
kept stable at 0.4 m, and the distance from the camera to the
human hands at was approximately steady at 1.5 m, with small
natural fluctuations.

Overall, we created 4,346 raw images of digit representations.
The dataset with human hands has a total of 2,346 split into two
sets of 1,440 and 906 pictures taken from different individuals
with different poses, comprising about 300 and 200 images for
each class, correspondingly. The dataset with digits represented
by the iCub robot’s hand has a total of 1,998 images: 1,000 taken
with the left camera, with 200 images for each class with different
poses, and 998 taken with the right camera. More details are in
the github repository.

Image segmentation and labelling are crucial in the training
process. Through these two steps, the ANN defines the region
in each image where objects, in this case fingers, are present.
Various applications for manual image labelling are available1,
in which the user has to draw regions of interest (ROI)
where objects in the image are. However, as the number of
images to label grows, the labelling process becomes increasingly
tedious and the risk of labelling errors arises. To avoid errors
and simplify the annotation process, images were taken in
a controlled environment with a fixed background, to allow
automatic hand silhouette extraction through standard image
processing techniques. A useful side effect of this process is the
possibility to easily change the background as required.

The silhouette extraction and background change method for
each image was done using a popular computer vision library
OpenCV (Bradski, 2000). The algorithm was presented in the
preliminary conference paper (Lucas et al., 2019), and comprises
the following stages:

1. Pictures of hands are taken on a controlled background;
2. The RGB colour space is converted to HSV for robot hands

and YUV for human hands, to highlight the hand pixels in the
image;

3. Contours of all objects are detected in the HSV or YUV image;
4. The contour of the bigger object is selected as the hand

silhouette;
5. Closing algorithm is applied to remove noise because of the

lighting;
6. Pixel segmentation is applied to separate the original

background from the hand;
7. Resulting ROI with the silhouette is saved in an “.xml” file;
8. From the hand silhouette, a new image can be created

by superimposing the resulting hand pixels on the desired
background image.

1List of manual image annotation tools from Wikipedia: https://en.wikipedia.org/

wiki/List_of_manual_image_annotation_tools.
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From all the images in the database, we compiled a dataset
example, with 2, 800 images for the training, validation, testing
(2,000 − 400 − 400) of the deep learning neural networks,
described in more detail in sections 2.2 and 2.3. The dataset
contains images of both human and robot hands in equal
proportion, sampled evenly to represent the digits 1 to 5
in various poses. Afterwards, a static data augmentation was
performed by applying a random background to each image from
a collection of 40 different backgrounds, but preserving the size
and position of the hand on the image. The validation set was
used to decide when to stop the training process; whereas the test
set, never seen before by the networks, was used to evaluate the
final performance of the classifiers.

The database, along with the exact images used in the dataset
and helper scripts, is publicly available on GitHub: https://github.
com/EPSRC-NUMBERS/Human-Robot_Finger-Counting_
Dataset. A sample of the images with the corresponding hand
silhouettes is given in Figure 1, for human hand, and in Figure 2

for iCub robot hand. Note that the our implementation of the
closing algorithm removes the noise only from hands and fingers,
which are the focus of our recognition, but not from other parts
that may be included into the silhouette contour, e.g., the arm.

2.2. Neural Networks and Deep Learning
In recent years, artificial neural networks (ANNs) have been
successfully used in many practical applications, including
computing, science, engineering, and medicine among many
others (Abiodun et al., 2018). According to Haykin (2008), there
are correlations in the way an artificial neural network and the
human brain process information (Haykin, 1996): they both
use simple units (“neurons”) interconnected working together
to solve specific problems. ANNs include a set of vectors
of neurons with an activation function, interconnected with
weighted connections and input biases. Weights and biases can
adapt and modify, following training, to fulfil a specific task.
The potential of ANNs reside in their ability to be parallelised
so that the computation can take place on massively parallel
computers which, in turn, allows for new, more complex
models to be developed. The majority of ANN applications are
concerned with classification, clustering, prediction, and pattern
recognition (Abiodun et al., 2019), using combinations of feed-
forward and feedback neural networks architectures (Bishop,
1995).

In feed-forward networks, data, arranged in a vector, passes
through a layer of neurons whose output forms the input vector
of the next layer. Following this strategy and considering that an
image is a 2D array, neurons in one layer arranged in a 2D array
can apply a convolutional filter on an image. A convolutional
filter applies a specific spatial operator that highlights features
(e.g., edges) as a result. Several convolutional layers compute low-
level, mid-level and high-level features of an image. A complete
image classification model is a combination of convolutional
and non-linearity layers, followed by several fully connected
layers. With this architecture a number of models have been
proposed, such as AlexNet (2012), ZF Net (2013), GoogLeNet
(2014), VGGNet (2014), ResNet (2015), DenseNet (2016) (Khan
et al., 2020).

Starting to build a finger detection model from scratch
is an arduous task that could take a long time to reach a
solution. A classification model based on neural networks has
thousands of neurons with hundreds of thousands of weights
and biases to tune. Adjusting all these parameters represents
a very challenging task. Revising the state of the art of object
detection in images, all methods are based on region proposal
classification where a set of bounding boxes with a wide range
of sizes and aspect ratios hypothesize object location in the
image. All these bounding boxes are classified into classes with
different scores. Regions are resampled to extract features with
several layers of convolutional neural networks. Classification
is the process where these features feed a fully connected
layer and a softmax classifier (Szegedy et al., 2017, Figure 15).
Processes of resampling and normalisation (Ioffe and Szegedy,
2015) between CNN layers decrease the size of the model and
avoid saturations. Region-based CNNs (RCNNs) are an evolution
of the AlexNet that won the LSVRC2012 image classification
competition (Ren et al., 2017). Girshick et al. (2014) proposed this
method to bypass going through all the regions with the objects
of interest, and instead use selective search to select only a fixed
number of regions. Another common architecture is Single Shot
MultiBox Detector (SSD) that completely eliminates proposal
generation Liu et al. (2015). MobileNets (based on SSD) are
efficient convolutional neural networks formobile and embedded
vision applications (Sandler et al., 2018, Figure 4A). Inception
SSD (ISSD) is an improvement of the SSD to increase its
classification accuracy without affecting its speed (Chengcheng
Ning et al., 2017).

To tackle the finger detection and classification problem
we used a popular deep learning technique, called “transfer
learning” (Razavian et al., 2014), where generic image
representation descriptors extracted from a CNN model
trained on one dataset, can still be highly effective when
applied to a different task on a different dataset. Architectures
based on CNN networks are naturally fit to implement the
learning transfer approach because the convolutional layers
are able to extract inherent properties from images that can be
independent of the problem and, therefore, be generalised and
used as a base for different classification problems (Weiss et al.,
2016).

The training process needs a large dataset of labelled images
where object regions in the images are defined and classes
identified to adjust all the model parameters. During the last
decade, many publicly available datasets have appeared, such
as COCO (Lin et al., 2014), Kitti (Geiger et al., 2012, 2013),
Open Images (Krasin et al., 2017), Pets (Parkhi et al., 2012).
The availability of such datasets was one of the main reasons
for rapid development of machine learning software libraries
in the research community, with Caffe (Jia et al., 2014),
TensorFlow (Abadi et al., 2016), and Keras (Chollet and others,
2015), amongst the more popular ones. These frameworks often
have a collection of pre-trained models that can be used for
out-of-the-box inference, or used as a base for further training
algorithms, such as transfer learning.

TensorFlow, in particular, has a large collection of pre-trained
object detection models on its GitHub page, the so-called “model
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FIGURE 1 | A sample of human hand images from the dataset, with columns representing numbers from 1 to 5. Each row represents one or more stages from the

previous list: the first row contains original images; the second row shows the images converted from RGB to YUV; the third row shows the mask that is applied for

noise removal; finally, the fourth row shows the extracted hand region using the silhouette and applied to a different background.

zoo”2. When the project started, we chose up-to-date models
from this “model zoo” that featured high accuracy relative to their
size and training time, namely:

• FRCNN1: Faster R-CNN with Inception ResNet v2 Atrous
trained on COCO dataset (version of 28th Jan 2018)

• FRCNN2: Same as first, but with lower region proposal rate
(version of 28th Jan 2018)

• FRCNN3: Same as first, but trained on Open Image Dataset v4
(version of 12th Dec 2018)

• SSD: SSD Inception v2 trained on COCO dataset (version of
28th Jan 2018)

• SSD Lite: SSD Lite Mobilenet v2 trained on COCO dataset
(version of 9thMay 2018).

The aim was to have a good representation in terms of
accuracy/speed trade-off, with Faster R-CNN (FRCNN) models
featuring very good classification accuracy but being rather
slow; and Single-Shot Detector (SSD) models, on other hand
(especially “light”) being generally faster but less accurate.
Additionally, during a preliminary study, the Faster R-CNN
with Neural Architecture Search (NAS) framework was trialled
as well, but the training turned out to be prohibitively slow
(1 epoch ≈ 1 week computational effort), therefore this

2TensorFlow 1DetectionModel Zoo: https://github.com/tensorflow/models/blob/

master/research/object_detection/g3doc/tf1_detection_zoo.md.

architecture was not considered in the final list of architectures
for comparison.

2.3. Training the Neural Networks and
Evaluation Metrics
The training, validation, and test sets comprised 2,000, 400,
and 400 images, respectively. Images for the training and
validation sets were combined with the corresponding ROI
data into two Tensorflow “.record” files to perform hand and
finger detection (with boxes as output) and classification based
on the digit being shown, represented by the position of the
hand and fingers. For FRCNN networks, the training batch
size was set to one image (which, incidentally, coincided with
the default value), to resemble how a human child would be
trained, e.g., being shown one gesture at a time. In this regime,
therefore, one epoch would amount to 2,000 training steps.
The batch size for SSD architectures was kept at the default
value of 24 images, thus an epoch would take approximately 83
training steps.

Approximately after each epoch, the model checkpoint was
saved and the classifier was run on the validation set to
compute total loss and mean Average Precision (mAP), the
two measures that were used to evaluate the classification
performance. Total loss is the weighted sum of classification
loss (softmax function) and localisation loss, which for SSD
is a weighted sigmoid function. For SSD networks the
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FIGURE 2 | A sample of the iCub robot hand images from the dataset, with columns representing numbers from 1 to 5. Each row represents one or more stages from

the previous list: the first row contains original images; the second row shows the images converted from RGB to HSV; the third row shows the mask for noise

removal; finally, the fourth row shows the extracted hand region applied to a different background.

TABLE 1 | Network training hyperparameters.

Network Training hyperparameters FRCNN1 FRCNN2 FRCNN3 SSD SSD Lite

Batch size 1 image 24 images

Learning rate 0.0003 0.0006 0.0004

Classification layer transfer function Softmax Sigmoid

Data augmentation Random horizontal flip Random horizontal flip and

random crop

total loss can take values larger than one. Mean Average
Precision (mAP) is a metric that computes the average
precision value of classification. The values for both of
these metrics were generated by the default tools provided
by the TensorFlow 1.12.0 framework. Table 1 presents some
of the more important hyperparameters and settings in the
training protocol.

Each of the networks was trained twice, to analyse the range

of variation of the classification accuracy with the number

of training steps, to understand if a trend in the learning
process is present. Figure 4 presents the progression of the

likelihood/confidence of the classification task on the validation
set, after an increasing number of steps the network has
been trained with the training set. As training progresses, the
network improves its classification abilities until a point when

classification on the validation dataset does not improve further.
Figure 3 shows how the model losses decrease with the number

of training steps. The confusion matrices and the statistics
related to the confusion elements are computed starting from the
definition of the confusion matrix:

C = Actual

Classified
c11 · · · c1n
...

. . .
...

cn1 · · · cnn

Each element of thismatrix identifies howmany images of a given
class were assigned to each of the possible network output classes.
Columns identify classes available for the network outputs (one,
two, three, four, five, and non-classified–N.C.). Rows identify the
actual class to which an image belongs, considering the number
of fingers shown in the image. The optimal confusion matrix is
the one that displays 100% values only on the main diagonal, so
that each image is correctly placed into the appropriate network
output class, and no cross-inference took place.
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FIGURE 3 | Loss function for all networks, in relation to training steps.

The confusion elements for each class are computed using
these definitions:

True Positives: tpi = cii
False Positives: fpi =

∑n
l=1 (cli − tpi )

False Negatives: fni =
∑n

l=1 (cil − tpi )
True Negatives: tni =

∑n
l=1

∑n
k=1 (clk − tpi − fpi − fni )

Positives: Pi = number of positive cases for the i-th class
Negatives: Ni = number of negative cases for the i-th class

Confusion statistics are computed following the definitions in
Di Nuovo et al. (2018):

Name Formula Description

Accuracy tpi+tni
Pi+Ni

Proximity of the classification results
to the true values. It evaluates the
overall performance of classification

Precision tpi
tpi+fpi

Positive predicted value. This
indicates the reliability of
classification

Negative Prediction tni
tni+fni

Reliability of classification of
distractions

Sensitivity tpi
Pi

Focuses on how good is the
performance in classifying attention

Specificity tni
Ni

Evaluates the performance in
classifying distractions

3. RESULTS

For the analysis of the performance of all the networks under
analysis we selected a stage of the training where a full snapshot
of the network status was available and for which the loss was
as close as possible to the lowest point while the accuracy was
as close as possible to its maximum value, as observed on the
validation test (Figure 4).

Under these constrains, networks were analysed at the
following training steps:

• FRCNN1: Training step = 17594, Mean Average Precision
(mAP)≈ 0.88, Loss≈ 0.065

• FRCNN2: Training step = 30429, Mean Average Precision
(mAP)≈ 0.87, Loss≈ 0.28

• FRCNN3: Training step = 27548, Mean Average Precision
(mAP)≈ 0.87, Loss≈ 0.134

• SSD: Training step = 13700, Mean Average Precision (mAP)
≈ 0.82, Loss≈ 1.937

• SSD Lite: Training step = 38394, Mean Average Precision
(mAP)≈ 0.874, Loss≈ 1.7.

Finally, an averaged computational effort per step for each
network model is presented in Table 2. This table highlights
the average time required for each network to classify an image
(either from the validation or the test set), and to train on a single
image, as measured on a workstation equipped with NVIDIA
GeForce GTX 1080 Ti GPU.

Network performances are presented through confusion
matrices (Tables 3, 4). These report how images belonging to
each class are classified by each network. On each row there are
the actual image classes. On the columns there are the classes
predicted by each of the neural networks, in addition to an “NC”
(“Non classified” column), in case the neural network is unable to
classify the image.

The confusion matrices show that, on average, there is more
confusion with a higher number of fingers. This is generally
due to the occlusions among fingers in the image (e.g., see
Figure 6), and often even a human eye may be incorrectly
counting fingers in such conditions. Specifically, in the images
showing two, three, four, and five fingers, it is possible to
notice that the overlap requires also a human viewer to observe
carefully to correctly identify all fingers. Besides the case
of overlapping fingers, other situations in which a network
may be unable to classify images is if it is unable to detect
fingers, perhaps due to position, size, or inclination of the
hand. In these cases the image is reported as “Non Classified”
(“NC” column).

If we consider the ability of the network to classify images, it
is possible to notice that network FRCNN1 always reports 0 in
the “NC” column, for any image that has been presented (both
for validation and test images). The same network has also the
highest statistics of all the networks for the test set, with an
averaged accuracy of ≈ 88% and a mean precision of ≈ 75.6%.
However, on the image validation set, the network FRCNN2 has
the highest averaged statistics, with a mean accuracy of ≈ 95.7%
and a mean precision of≈ 90.1%.

Analysing the results of the confusion matrices on the test set
(Table 4) it is possible to notice that the results of classification
of 4 and especially 5 fingers is prone to misclassification. In
particular the images with 5 fingers are more often classified
as 4-finger images, because one of the vision of one of the
finger may be occluded in some poses. This is often due to
the misinterpretation of the position of the thumb: in fact, the
features extracted from these two classes are not enough to
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FIGURE 4 | Mean Average Precision (mAP, y-axis) of the 5 networks plotted against the training steps (x-axis), as evaluated on the validation set. Blue circles

represent model checkpoints with the highest mAP, which were then used for classifier evaluation on the test set.

TABLE 2 | Average time required by each network to classify or train on an image.

Time per image Network Classification (validation set) Classification (test set) Training

FRCNN1 ≈ 0.5s ≈ 0.5s ≈ 1.12s

FRCNN2 ≈ 0.23s ≈ 0.23s ≈ 0.71s

FRCNN3 ≈ 0.3s ≈ 0.3s ≈ 0.88s

SSD ≈ 0.04s ≈ 0.04s ≈ 0.15s

SSD Lite ≈ 0.03s ≈ 0.03s ≈ 0.16s

differentiate reliably between the two, as they differ only by the
position of a single phalanx. In FRCNN2, FRCNN3, and SSD
Lite, the detection of images with five fingers has a sensitivity
below what is expected from a random choice among 5 classes
(20% expected).

The classification of robotics finger representations proved to
be more challenging than the human ones. This is evidenced by
Table 5, which shows the number of human and robotic images
in the test set that are correctly classified by all the networks
considered. We would clarify that each network classified a
different subset of images in the test set, Table 5 considers only
the subset of those that were correctly classified by all networks.
Out of 400 test images, 80 per class (40 robot + 40 human), a
total of 173 images are correctly classified by all networks, of
which 151 (75.5%) were from the human dataset and only 22
(11%) from the robotic dataset. In fact, in the test set, there are
no images of robotic fingers representing number 5 that were
correctly classified by all networks under analysis, while just a few

robotic images of numbers 2, 3, and 4 are correctly recognised by
all networks.

Figure 5 presents examples of the subset of the test images
that were successfully classified by all networks. These examples
are for each number and from both the human and the robot
datasets. Note that there was no image of 5 robot fingers that
was correctly classified by all networks. Figure 6 presents a set
of images, one per class, showing robot hand poses that were
wrongly classified by all networks because of the perspective in
which fingers cover each other and, therefore, make them difficult
to count.

The network models were also tested in real time, using a
webcam to capture the image of human hands. It was noted that
the presence of faces and other body parts adversely affected the
classification due to a large number of false positives coming from
these regions of the image. It was speculated that the models were
not trained sufficiently to differentiate features extracted from
hands, as opposed to similarly coloured objects, such as arms
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TABLE 3 | Results of the detection using the five example networks.

FRCNN1 FRCNN2 FRCNN3 SSD SSD Lite

Fingers detected Fingers detected Fingers detected Fingers detected Fingers detected

All values

are in %

1 2 3 4 5 NC 1 2 3 4 5 NC 1 2 3 4 5 NC 1 2 3 4 5 NC 1 2 3 4 5 NC

A
c
tu
a
ln

u
m
b
e
r

S
ig
n
e
d

1 100 0 0 0 0 0 97.5 2.5 0 0 0 0 100 0 0 0 0 0 90 8.75 0 1.25 0 0 81.25 16.25 0 2.5 0 0

2 2.5 97.5 0 0 0 0 0 100 0 0 0 0 1.25 97.5 1.25 0 0 0 1.25 86.25 5 6.25 1.25 0 3.75 86.25 6.25 3.75 0 0

3 0 17.5 82.5 0 0 0 0 17.5 75 7.5 0 0 0 12.5 83.75 3.75 0 0 0 3.75 76.25 15 5 0 0 2.5 80 16.25 1.25 0

4 0 0 3.75 88.75 7.5 0 0 0 1.25 90 8.75 0 0 0 6.25 73.75 20 0 0 0 1.25 63.75 35 0 0 0 8.75 50 41.25 0

5 0 2.5 13.75 16.25 67.5 0 0 1.25 1.25 13.75 83.75 0 0 0 3.75 6.25 90 0 0 0 0 2.5 97.5 0 0 0 5 6.25 88.75 0

Accuracy 99.5 95.5 93 94.5 92 – 99.5 95.75 94.5 93.75 95 – 99.75 97 94.5 92.75 94 – 97.75 94.75 94 87.75 91.25 – 95.5 93.5 92 84.25 89.25 –

(Average) 94.9 95.7 95.6 93.1 90.9

Precision 97.56 82.98 82.5 84.52 90 – 100 82.47 96.77 80.9 90.54 – 98.77 88.64 88.16 88.06 81.82 – 98.63 87.34 92.42 71.83 70.27 – 95.59 82.14 80 63.49 67.62 –

(Average) 87.512 90.136 89.09 84.098 77.768

Negative

Prediction

100 99.35 95.63 97.15 92.35 – 99.38 100 94.08 97.43 96.01 – 100 99.36 95.99 93.69 97.44 – 97.55 96.57 94.31 91.19 99.31 – 95.48 96.52 95 88.13 96.95 –

(Average) 96.896 97.38 97.296 95.786 94.416

Sensitivity 100 97.5 82.5 88.75 67.5 – 97.5 100 75 90 83.75 – 100 97.5 83.75 73.75 90 – 90 86.25 76.25 63.75 97.5 – 81.25 86.25 80 50 88.75 –

(Average) 87.25 89.25 89 82.75 77.25

Specificity 99.38 95 95.63 95.94 98.13 – 100 94.69 99.38 94.69 97.81 – 99.69 96.88 97.19 97.5 95 – 99.69 96.88 98.44 93.75 89.69 – 99.06 95.31 95 92.81 89.38 –

(Average) 96.816 97.314 97.252 95.69 94.312

The images used for these results belong to the “validation” set. The colours are for visualisation purposes: greener colors represent better performance. The “NC” columns identify how many images have not been classified by the
network. Bold values represent correct interpretations of the images in the set by each of the networks: images of one fingers correctly interpreted as 1, and so on.
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TABLE 4 | Results of the detection using the five example networks.

FRCNN1 FRCNN2 FRCNN3 SSD SSD Lite

Fingers detected Fingers detected Fingers detected Fingers detected Fingers detected

All values

are in %

1 2 3 4 5 NC 1 2 3 4 5 NC 1 2 3 4 5 NC 1 2 3 4 5 NC 1 2 3 4 5 NC

A
c
tu
a
ln

u
m
b
e
r

S
ig
n
e
d

1 100 0 0 0 0 0 77.5 15 0 0 0 7.5 86.25 6.25 0 1.25 0 6.25 31.25 13.75 6.25 2.5 1.25 45 23.75 2.5 0 6.25 0 67.5

2 31.25 63.75 5 0 0 0 7.5 82.5 0 8.75 0 1.25 10 68.75 12.5 7.5 0 1.25 0 45 16.25 11.25 2.5 25 1.25 23.75 8.75 20 0 46.25

3 8.75 20 58.75 12.5 0 0 0 32.5 36.25 31.25 0 0 2.5 16.25 57.5 21.25 0 2.5 0 6.25 57.5 1.25 11.25 23.75 0 0 28.75 6.25 1.25 63.75

4 6.25 3.75 0 88.75 1.25 0 2.5 2.5 1.25 92.5 0 1.25 2.5 1.25 1.25 87.5 1.25 6.25 2.5 5 1.25 60 13.75 17.5 0 1.25 0 51.25 0 47.5

5 8.75 6.25 3.75 42.5 38.75 0 0 12.5 6.25 62.5 17.5 1.25 2.5 3.75 13.75 53.75 18.75 7.5 1.25 11.25 7.5 12.5 47.5 20 0 1.25 5 13.75 13.75 66.25

Accuracy 89 86.75 90 86.75 87.5 – 93.5 84 85.75 78 83.5 – 93.75 88.25 86 80.75 83.5 – 85.5 81.75 85.25 86.5 83.75 – 84.5 83.75 83 81 82.5 –

(Average) 88 84.95 86.45 84.55 82.95

Precision 64.52 68 87.04 61.74 96.88 – 88.57 56.9 82.86 47.44 100 – 83.13 71.43 67.65 51.09 93.75 – 89.29 55.38 64.79 68.57 62.3 – 95 82.61 67.65 52.56 91.67 –

(Average) 75.636 75.154 73.41 68.066 77.898

Negative

Prediction

100 91.08 90.46 96.84 86.68 – 94.55 95.07 86.03 97.54 82.9 – 96.53 92.26 89.76 96.2 83.07 – 85.22 86.87 89.67 90.3 87.61 – 83.95 83.82 84.43 87.89 82.22 –

(Average) 93.012 91.218 91.564 87.934 84.462

Sensitivity 100 63.75 58.75 88.75 38.75 – 77.5 82.5 36.25 92.5 17.5 – 86.25 68.75 57.5 87.5 18.75 – 31.25 45 57.5 60 47.5 – 23.75 23.75 28.75 51.25 13.75 –

(Average) 70 61.25 63.75 48.25 28.25

Specificity 86.25 92.5 97.81 86.25 99.69 – 97.5 84.38 98.13 74.38 100 – 95.63 93.13 93.13 79.06 99.69 – 99.06 90.94 92.19 93.13 92.81 – 99.69 98.75 96.56 88.44 99.69 –

(Average) 92.5 90.878 92.128 93.626 96.626

The images used for these results belong to the “test” set. The colours are for visualisation purposes: greener colors represent better performance. The “NC” columns identify how many images have not been classified by the network.
Bold values represent correct interpretations of the images in the set by each of the networks: images of one fingers correctly interpreted as 1, and so on.
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TABLE 5 | Examples of images from the subset of test images that are correctly classified by all networks.

One finger Two fingers Three fingers Four fingers Five fingers

Human hands 36 34 15 34 32

Robot hands 14 1 2 5 0

FIGURE 5 | Examples of from the subset of test images that are correctly classified by all networks.

FIGURE 6 | Pictures showing examples of hand positions that are difficult for networks to classify unambiguously. The “one finger” image is classified by FRCNN3 as

having four fingers on display because of the palm position. The “two fingers” and “three fingers” images provide an example of overlap, hard to identify the correct

number also for the human eye. The “four fingers” and “five fingers” images show subtle variation in the hand position that may easily confuse the network.

or faces. To remedy this, a number of “negative” background
images were added to the pool, showing people with their arms,
but not their hands with fingers. The networks were trained not
to classify these features. During further testing, this procedure
demonstrated improvement in the classification results.

In Figure 3 and Table 2 it is possible to notice that the two
classes of neural networks differentiate significantly in training,
both in terms of loss and execution time per step. While FRCNN
networks require above 200ms to classify an image, and above
700ms for a training step on a single image, they show a training
loss constantly below 2. On the contrary, networks based on the
single-shot detector (SSD) architecture are consistently below the
200msecs mark for both training and classification for a single
image, but the loss is, in average, above 2. This is a consequence of
the network size: FRCNN networks are larger than SSD networks,
and therefore they adapt better to previously unseen input, but
they are computationally more expensive, both for training and
for classification.

The confusion matrices for both the validation and test image
sets highlight that the statistics for the convolutional neural
networks based on Faster Region-Proposal (FRCNN) perform
consistently better than the networks based on the Single-Shot
Detector SSD architecture.

In the graphs showing the progression of the classification
precision (Figure 4) it is possible to notice that in four of them
the trend tends very quickly to an asymptote, and then fine
tunes around it with the following training iterations. The SSD
Lite network, instead has a different trend, almost linear at the
beginning. This peculiar behaviour is estimated to derive from
the size of the network: the SSD Lite network is smaller than all
the other neural networks used for comparison.

In addition, both the networks based on SSD and the FRCNN3
have wider variation on accuracy, depending on the training step.
This requires a careful consideration of when to stop the training
to obtain a reliable classification, but at the same time the training
speed is higher than other networks. The SSD is the network that
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reaches more quickly an optimal training point, while the SSD
Lite network is the one that reaches it later.

4. DISCUSSION

This article has introduced a novel image database that supports
recognition of finger digits configuration to be used in a
developmental neuro-robotics research environment. This open
access database comprises 4,346 images of both human and
robot hands made with 640 × 480 resolution (higher than
typical datasets), and is tailored to digit representation using
fingers, as opposed to manipulation, grasping, or finger spelling.
The images are made in a controlled environment with a
known background, which eases further manipulation. This new
database complements what is already in the public domain and
expands the tool-set available for developmental neuro-robotics
and AI research.

In addition, the article provides a comparative analysis of the
performance of 5 state-of-the-art deep learning artificial neural
networks with this database. The benchmark is meant to act as a
quick guide for follow-up research in deep learning and neuro-
robotics. Future researchers can benefit and benchmark baseline
by comparing their work with the results presented in this paper,
enabling them to save time and resources.

The comparative analysis of the deep learning networks show
a spectrum of performance, with the FRCNN1 network being
the slowest to perform the train (& 1 s/image) and to perform
the classification, but the most accurate (accuracy ≈ 88% and
precision ≈ 75.6%). At the other end of the spectrum, the
SSD Lite network has the fastest training (. 0.2 s/image) and
classification time, but the lowest accuracy (accuracy ≈ 82% and
precision≈ 77.9%).

To summarise, the 5 networks provide a range for trade-off
between speed of training and classification and their ability to
classify previously unseen images: FRCNN networks are slower,

and perform better, whereas SSD networks are faster, but their
ability to classify previously unseen images is reduced.
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