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Abstract Firms manage cash for operational, precautionary and speculative
purposes. Stat-of-the-art cash management models usually focus on cost min-
imization by means of a set of controlling bounds. In this paper, we propose
a multiobjective model to control cash management systems with multiple
accounts characterized by generalized cash flow processes. In addition, we re-
place the customary use of bounds with cash balance reference trajectories.
The model considers two objectives such as cost minimization, measured by
the sum of transaction and holding costs, and risk control, measured by the
sum of deviations from a given cash balance reference. We also present the-
oretical results on the stability of the model for deterministic, predictable
and purely random cash flow processes. By means of numerical examples, we
analyze the robustness of different risk-sensitive models to mean-variance mis-
specifications. The results show that tuning a parameter of our model can be
of help to find more robust cash management policies. Finally, we present a
case study showing how our risk-sensitive model can be used to adjust policies
according to risk preferences.

Keywords Finance · multiobjective decision-making · stability · robustness.

1 Introduction

Cash management focuses on planning and controlling a firm’s cash resources.
To this end, a number of cash management models have been proposed in the
literature. Most of them present a common feature: they follow a inventory
approach in which cash balances are controlled by means of bounds. Cash
balances are allowed to wander around until one of these bounds, usually a
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higher bound and a lower bound, is reached. Then, a control action is made
to restore the balance to a given target.

From the initial inventory approach to the cash management problem
(CMP) by Baumol (1952), most models have attempted to derive optimal
policies within the framework of some simple policy, typically employing time-
invariant cash balance bounds. A slight departure of this framework was con-
sidered by Stone (1972); Gormley and Meade (2007) to introduce forecasts
as key inputs to bound-based models. Cash management models are usually
linked to a particular cash flow process ranging from the uniform and perfectly
known cash flow in Baumol (1952) and Tobin (1956), to purely stochastic be-
havior in Miller and Orr (1966); Eppen and Fama (1969); Constantinides and
Richard (1978); Baccarin (2009); Premachandra (2004); da Costa Moraes and
Nagano (2014), which usually implies a normal, independent and stationary
cash flow distribution. Surprisingly, little and/or contradictory empirical ev-
idence on the assumption of normal, independent and stationary cash flows
has been provided (Homonoff and Mullins, 1975; Emery, 1981; Pindado and
Vico, 1996).

Recent cash management research proposed: (i) the use of the standard
deviation of daily cost as a measure of risk within a multiobjective approach
in which both cost and risk are goals to minimize (Salas-Molina et al, 2016);
(ii) genetic algorithms and particle swarm optimization techniques to derive
policies (Gormley and Meade, 2007; da Costa Moraes and Nagano, 2014);
(iii) to set cash balance reference trajectories as a control strategy (Herrera-
Cáceres and Ibeas, 2016); and (iv) cash flow forecasting as a way to reduce
both uncertainty and costs in cash management (Salas-Molina et al, 2017).

However, there are some open research questions that are worth tackling in
cash management from a multiobjective perspective. On the one hand, we can
think of alternative measures of risk to standard deviation of daily cost used in
Salas-Molina et al (2016) to better capture the notion of risk-sensitive control.
In addition, Monte Carlo methods used in Salas-Molina et al (2016) and genetic
algorithms proposed in Gormley and Meade (2007); da Costa Moraes and
Nagano (2014) do not guarantee the optimality of solutions. On the other hand,
unlike Herrera-Cáceres and Ibeas (2016), cash balance reference trajectories as
a control strategy must consider the cost of control as suggested by Camacho
and Bordons (2007) to be really useful in financial practice. Finally, cash flow
characteristics are crucial in cash management since most models rely on these
assumptions to provide solutions to the problem. Indeed, real-world cash flow
process are neither completely predictable nor totally random (Stone, 1972).
Thus, an exploration of the particular characteristics of the cash flow process
under consideration is a key issue in cash management.

In this paper, we propose a framework for modelling and controlling cash
management systems with multiple bank accounts and general cash flow pro-
cesses. Unlike most of models presented in the literature, we consider cash
management systems with both multiple accounts and multiple transactions
between accounts. Our multidimensional cash management model describes
the behavior of the system by discrete-time linear difference equations. In ad-
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dition, we follow a multiobjective control approach in which both the cost and
the risk of alternative policies are minimized by means of linear-quadratic ob-
jective functions. To this end, we consider linear holding and transaction costs,
but also total squared deviations from a reference cash balance as a measure
of risk. We focus on the common situation faced by cash managers character-
ized by much higher penalty costs for negative cash balances in comparison
to holding costs for positive cash balances. We guarantee the optimality of so-
lutions by encoding the multiobjective cash management problem as a Mixed
Integer Quadratic Program (MIQP). Finally, we analyze the stability for dif-
ferent cash flow processes and the robustness of the model to misspecifications
in cash flow dynamics.

This paper is organized as follows. In Section 2, we describe our linear-
quadratic modelling framework. In Section 3, we provide a linear reformulation
of our model. Next, in Section 4, we analyze the stability cash management
systems. In Section 5, we numerically explore the robustness of our model to
cash flow dynamics misspecifications. In Section 6, we present a case study
showing how our risk-sensitive model can be used to adjust policies accord-
ing to risk preferences. Finally, we conclude in Section 7 suggesting natural
extensions of our work.

2 Multiobjective control of cash management systems

In this section, we formally introduce our multiobjective cash management
model. Within the common two-assets setting in cash management (Miller
and Orr, 1966), consider a company with two bank accounts as depicted in
Figure 1. Account 1 receives payments from customers (inflows) and it is also
used to send payments to suppliers (outflows). Both inflows and outflows are
summarized through the net cash flow f1t. Account 2 represents the amount
of alternative investments available to be converted into cash through trans-
action u1t when needed. In addition, idle cash balances from account 1 can be
allocated in account 2 for a profit through transaction u2t.

1

f1t

2

u1t

u2t

Fig. 1 The common two-assets setting in the cash management problem.

Let {bt : t = 1, 2, . . . , T} a sequence of m-dimensional vectors describing
the state of a cash management system at time t in terms of available cash
balance for m different accounts and a planning horizon of T time steps. Let
{f t : t = 1, 2, . . . , T} a sequence of m-dimensional vectors with cash flows
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for each account within a cash management system. Then, cash managers can
deploy policy {ut : t = 1, 2, . . . , T} as a sequence of n-dimensional control
actions through n possible transactions between accounts. As a result, the law
of motion of such a cash management system can be expressed as:

bt = A · bt−1 +B · ut + C · f t (1)

where A is an m×m matrix; B is an m×n incidence matrix with element Bij
set to: 1 if transaction j adds cash to account i, −1 if transaction j removes
cash from account i, and zero otherwise; and C is another m×m matrix. As
an illustrative example, we can represent the system in Figure 1 by setting:

A =

[
1 0
0 1

]
, B =

[
1 −1
−1 1

]
, C =

[
1 0
0 0

]
. (2)

Then, the system behavior for each particular bank account is given by the
following system of linear difference equations:[

b1t
b2t

]
=

[
b1t−1
b2t−1

]
+

[
1 −1
−1 1

] [
u1t
u2t

]
+

[
1 0
0 0

] [
f1t
f2t

]
(3)

The objective of cash managers is to minimize holding and transaction
costs:

yt = h′ · bt + γ′1 · ut + γ′0 · zt (4)

where h is an m×1 vector with holding costs per money unit for each account,
γ1 is and n×1 vector with variable transaction costs, and γ0 is and n×1 vector
with fixed transaction costs. Since fixed transaction costs are only charged
when a control action occurs, we need an auxiliary n-dimensional binary vector
zt ∈ {0, 1}n satisfying the following constraints (Bemporad and Morari, 1999):

k · zt ≤ ut ≤ K · zt (5)

where K (k) is a very large (small) number.
However, cash managers may be interested not only in the cost but also

in the risk of alternative policies. In the usual context of much higher penalty
costs for negative cash balances in comparison to holding costs for positive cash
balances, minimum cash balances must be kept as references for precautionary
purposes. Reference signals are typically used to determine the necessary con-
trol actions in cash management systems (Herrera-Cáceres and Ibeas, 2016)
and other control systems (Camacho and Bordons, 2007). Furthermore, the
sum of deviations from these references at each time step can be viewed as
a measure of risk from the cash manager perspective. Indeed, the higher the
deviation from a given reference, the riskier the policy since the probability
to be charged with unexpected penalty costs is higher. As a result, we here
follow the approach of controlling risk by setting a positive target cash balance
as a reference for each bank account. Then, we rewrite the cost function in
equation (4) as the following cost-risk function:

yt = w1

(
h′bt + γ′1ut + γ′0zt

)
+ w2 ((bt − br)′Q(bt − br)) (6)
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where br is an m × 1 vector with cash balance references for each account;
and w1, w2 are weights reflecting risk preferences of cash managers subject to
w1 +w2 = 1. Under this framework, risk control takes the form of minimizing
squared deviations from a reference balance. Note also that Q is used to select
which accounts need to be controlled (or even to weight such a control). For
instance, setting:

Q =

[
1 0
0 0

]
(7)

implies that we are controlling balances for account 1, but not for account 2.

As a result, we are facing a multiobjective optimization problem in which
cost and risk are desired goals to minimize. In order to guarantee the optimality
of solutions, we encode the cash management problem as the following Mixed
Integer Quadratic Program (MIQP):

min

T∑
t=1

[
w1

Cmax

(
h′bt + γ′1ut + γ′0zt

)
+

w2

Rmax
((bt − br)′Q(bt − br))

]
(8)

subject to:

bt = A · bt−1 +B · ut + C · f t (9)

bt, br ∈ Rm≥0, ut ∈ Rn≥0, zt ∈ {0, 1}n (10)

t = 1, 2, . . . , T (11)

w1 + w2 = 1 (12)

where Cmax, Rmax are normalization factors to avoid meaningless compari-
son between cost and risk goals. These factors may also be viewed as budget
constraints for the whole planning horizon T in terms of both cost and risk
leading to an unfeasible policy when exceeded. For comparative purposes, we
can set these factors to the cost (w2 = 0) and risk (w1 = 0) of deploying a
trivial policy such as taking no control action by means of equation (6) when
both ut and zt are vectors with all entries set to zero for the whole planning
horizon.

In practice, cash flow shocks randomly occur between the beginning and
the end of each time-step, e.g., a working day. Similarly, cash managers make
control decisions after these random shocks. However, new random shocks
occur immediately after the last control action requiring a new policy. In order
to model this common situation, we assume that both random shocks f t and
control actions ut occur simultaneously. The duration of the time-step, being
either days or minutes, will determine the frequency of control. Finally, it is
also important to highlight that the MIQP encoded from equations (8) to (12)
can be solved using state-of-the-art mathematical programming solvers such
as Gurobi (Gurobi Optimization, Inc, 2016).
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3 An equivalent linear reformulation

Since linearity is usually a desired feature in mathematical programming for
computational reasons, we next provide an equivalent linear reformulation
of the optimization described in Section 2 by relying on goal programming
(Abdelaziz et al, 2007; Ballestero and Garcia-Bernabeu, 2012; Aouni et al,
2014). Briefly, goal programming aggregates goals to obtain a solution that
minimizes the sum of deviations between achievement and the aspiration levels
(or targets) of the goals. The underlying idea behind goal programming is that
the decision-maker follows a satisfying logic expressed by means of targets.
By establishing an achievement objective function, goal programming aims to
conciliate the achievement of a set of goals instead of optimizing every goal.

Then, for each goal gi, it is necessary to determine the aspiration level or
target Gi ∈ R, with i = 1, 2, . . . q, being q the number of different goals
considered. Next, positive δ+i and negative δ−i deviation auxiliary variables
are introduced to connect goal achievement and targets. Then, we express a
general goal programming model as follows:

min

q∑
i=1

(δ+i + δ−i ) (13)

subject to:
gi(x) + δ−i − δ

+
i = Gi (14)

δ−i , δ
+
i ≥ 0 (15)

where each gi(x) is a particular goal defined for any feasible solution x. In
order to linearize the objective function from equation (8), let us consider two
goals, namely, cost and risk. On the one hand, the cost target is obviously zero
and we are interested in minimizing only the sum of positive deviations from
this target. On the other hand, the risk target is the cash balance reference br
and we aim to minimize the sum of both positive and negative deviations from
this target. As a result, we can reformulate the quadratic objective function (8)
to encode the cash management problem as a Mixed Integer Linear Program
(MILP) as follows:

min

[
w1

Cmax

T∑
t=1

δ+1t +
w2

Rmax

T∑
t=1

(
δ+2t + δ−2t

)]
(16)

subject to:
bt = A · bt−1 +B · ut + C · f t (17)

h′bt + γ′1ut + γ′0zt − δ+1t ≤ 0 (18)

diag(Q)′bt − δ+2t + δ−2t = diag(Q)′br (19)

δ+1t, δ
+
2t, δ

−
2t ≥ 0 (20)

bt, br ∈ Rm≥0, ut ∈ Rn≥0, zt ∈ {0, 1}n (21)
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t = 1, 2, . . . , T (22)

w1 + w2 = 1 (23)

where diag(Q) is an m × 1 vector with elements set to the main diagonal of
matrix Q.

4 Stability of cash management systems

A critical issue in cash management control is the cash flow process under
study. This process clearly determines the stability of the cash management
system. In this section, we adapt the standard definitions of stability (Keerthi
and Gilbert, 1988; Bemporad and Morari, 1999) to the case of cash manage-
ment systems. To this end, we restrict ourselves to the usual situation of much
higher penalty costs for negative cash balances in comparison to holding cots
for positive cash balances. Thus, we here follow the approach of analyzing sta-
bility from below, i.e., non-negative cash balances determine the stability of
the system and negative cash balances provoke the instability of the system.

Definition 1 A vector bt ∈ Rm, defining the state of a cash management
system at time t, is said to be an equilibrium state when bt is non-negative,
i.e., when all its entries are greater or equal to zero, bit ≥ 0, with i = 1, 2, . . .m.

By considering only non-negative cash balances in constraint (10), we are
implicitly assuming an infinite penalty cost for negative cash balances. Under
this framework, negative cash balances lead to unfeasible policies.

Definition 2 A sequence of vectors bt ∈ Rm derived from policy ut ∈ Rn≥0
and cash flow f t ∈ Rm is said to be stable when bt is an equilibrium state for
t = 1, 2, . . . , T . The pair (ut, bt) is said to be a stable policy-state pair for f t.

However, the uncertainty associated to the cash flow process under consid-
eration may lead to an eventual negative cash balance even after deploying the
optimal policy. Indeed, we relax the strong assumption in the common two-
assets setting of an infinite cash buffer (e.g. in account 2 in Figure 1). Thus, we
consider that the only available cash is given by the initial state of the system
and the cumulative net cash flow for the whole planning horizon. This fact
leads us to consider the possibility that an unexpected cash flow swing results
in an undesirable cash balance situation. As a result, we next introduce the
concepts of weak α-stability and strong α-stability, which we define in terms
of the particular probability distribution of the cash flow process.

Definition 3 A stable policy-state pair (ut, bt) for f t sampled from a multi-
variate cash flow process f with probability density function h(f) is said to
be weak α-stable when P(f ≤ E[bt]) ≥ α, where P denotes probability and
operator E computes the element-wise average over t.
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Definition 4 A stable policy-state pair (ut, bt) for f t sampled from a multi-
variate cash flow process f with probability density function h(f) is said to be
strong α-stable when P(f ≤ min[bt]) ≥ α, where the operator min computes
the element-wise minimum over t.

In the previous two definitions, we assume that the inequality operator
for vectors holds when it does for each pair of entries in the vectors. As an
illustrative example, consider a Gaussian process f ∼ N (0, 1) for account 1 in
Figure 1, and a deterministic distribution for account 2, which always takes a
value of zero. Assume also that E[bt] = [3.2 5]

′
and min[bt] = [1.5 3]

′
. Clearly:

P(N (0, 1) ≤ 3.2) ≥ 0.99 (24)

P(0 ≤ 5) = 1 ≥ 0.99. (25)

Then, we can say that the policy-state pair (ut, bt) is weak 0.99-stable, but
we cannot say that it is strong 0.99-stable since P(N (0, 1) ≤ 1.5) ≥ 0.99 does
not hold. Since the stability of cash management systems is necessarily asso-
ciated to the cash flow process under consideration, we derive useful insights
for different cash flow processes by means of the following remarks:

Remark 1. A stable policy-state pair (ut, bt) for a deterministic cash flow
process centered at k0 is strong 1-stable if k0 ≤ min[bt]. Indeed, a degenerate
or deterministic multivariate distribution always takes value k0. Since min[bt]
is k0 at least, then P(k0 ≤ min[bt]) = P(k0 ≤ k0) ≥ 1, hence guaranteeing
strong 1-stability.

Obviously, a strong α-stable is also a weak α-stable policy-state pair due to
the classical definitions of mean and minimum values. Note also that the initial
state is not relevant because the definition of a policy-state pair assumes the
feasibility of the policy disregarding its initial condition. When dealing with
stochastic but predictable cash flow processes, actual cash balances are nec-
essarily affected by an m-dimensional error term, usually expressed in terms
of a Gaussian distribution N (0,σe) with zero mean and standard deviation
σe ∈ Rm.

Remark 2. A stable policy-state pair (ut, bt) for a predictable cash flow
process for a given forecasting error distribution he(f) is strong α-stable if
sα ≤ min[bt] where sα is the m-dimensional quantile function for he(f) and
probability α. Recall that the quantile function sα for distribution he(f) spec-
ifies the value at which the probability is less than or equal to α. Then,
the uncertainty for f is given by he(f). As a result, if sα ≤ min[bt], then
P(he(f) ≤ min[bt]) ≥ α, hence guaranteeing strong α-stability.

Remark 3. A stable policy-state pair (ut, bt) for a predictable cash flow pro-
cess with Gaussian forecasting error distribution N (0,σe) is strong α-stable
if zασe ≤ min[bt] where zα is the quantile function for the standard Gaussian
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N (0, 1) with probability α.

Note that for perfect predictions, σe = 0 holds and the forecasting error
distribution degenerates to a deterministic distribution centered at zero as it
is the case of Remark 1 for k0 = 0. In the opposite limit, purely random cash
flow processes can be characterized by a forecasting error distribution equal
to the cash flow distribution itself.

Remark 4. A stable policy-state pair (ut, bt) for a purely random cash flow
process with distribution he(f) = f is strong α-stable if sα ≤ min[bt] where
sα is the m-dimensional quantile function for f and probability α.

As a result, within the framework of the program encoded from equations
(8) to (12), cash managers can deal with stability issues through cash balance
reference br. This reference plays the role of a cash buffer for precautionary
purposes so that the higher the reference the lower the risk of instability.
Ultimately, risk is also associated to the assumptions made on the cash flow
processes. However, cash flow process misspecifications may lead to undesirable
situations as we next consider.

5 Robustness and risk-sensitive control

In this section, we graphically explore the robustness of different instances of
our risk-sensitive model to a misspecification of the cash flow process. This
analysis is closely related to the concept of stability. To this end, we define ro-
bust control as a risk-sensitive optimization procedure as proposed by Hansen
and Sargent (2008). In this sense, our cash management model described in
Section 2 can easily accommodate risk-sensitive analysis by tunning weight
parameters w1 and w2.

Note that an additional source of uncertainty in the model encoded from
equation (8) to (12) may be any misspecification in holding and transac-
tion costs. Beyond the discussion about the relative importance of alternative
sources of uncertainty, any cost misspecification usually results in a balance
deviation with respect to the expected value. Then, an equivalent formulation
is to summarize all sources of uncertainty in the model in a single random
variable that affects balances, namely, cash flows. Thus, we here focus on the
impact of cash flow misspecifications in an attempt to find robust models in
cash management.

5.1 Model predictive control assumptions

In the following numerical experiments, we follow a Model Predictive Con-
trol (MPC) approach (Bemporad and Morari, 1999; Camacho and Bordons,
2007). The underlying idea behind MPC is to use a mathematical representa-
tion of the system (the model) to predict its future evolution. As described in
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Section 2, the law of motion of a cash management system is given by equa-
tion (1). Based on this law, cash managers select a sequence of control actions
(the policy) that minimizes some objective function according to their par-
ticular preferences. Even though short-term planning horizons, e.g., the next
five working days, are usually considered in cash management, an on-line op-
timization procedure is recommended to achieve the desired control feedback.
Thus, we here use MPC as an on-line optimization procedure in which only
the first sample of the optimal policy for a given planning horizon is actually
deployed at each time-step. At the next time-step, a new policy is obtained
replacing the previous one, hence providing the desired feedback control.

As an illustrative example, we next evaluate the impact on cost-risk per-
formance for alternative policies. Then, we apply a MPC strategy for a total
deployment horizon of 500 days in steps of 50 days, equivalent to more than
two working years. To this end, we experiment on the cash management sys-
tem from Figure 1 and the cost structure summarized in Table 1. We select
particular cost values from those recently used in da Costa Moraes and Nagano
(2014) for experimental purposes. This analysis can be repeated as many times
as desired for any misspecification parameter and different weights w1 and w2

in an attempt provide the desired risk-sensitive control. In our experiments,
we consider two classes of possible misspecifications in cash flow processes: (i)
mean distortions; and (ii) variance distortions.

Transaction γ0 (e) γ1 (%) Account h (%)
1 50 0.01 1 0.02
2 50 0.005 2 0

Table 1 Cost structure data for the examples.

5.2 Robustness to misspecification in cash flow means

Assume a Gaussian cash flow process N (µ, σ) for account 1. Time-varying
circumstances may lead to a misspecification of µ in one way or another.
Within the framework of much higher penalty costs for negative cash balances
than holding costs for positive cash balances, an overestimation of µ may have
dramatic consequences. To face such a problem, cash managers can set a cash
balance reference proportional to the variance. Following the recommendations
in Ben-Tal and Nemirovski (1999) and Ben-Tal et al (2009), we set cash balance
references proportional to the respective volatility of cash flow processes as
follows:

br = D · σ (26)

where σ is an m × 1 vector with the expected standard deviation for each
cash flow process; and D is an m×m diagonal matrix with each element Dij ,
with i = j, being a non-negative parameter reflecting the aversion to risk of
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a hypothetical cash manager for each account i. For instance, Dij = 3 means
that a particular cash balance can fall from br to zero in one time-step with
probability 0.99.

Proportional cash balance references to cash flow volatility provide a first
risk control tool for cash managers, but the key parameters to risk-sensitive
control of our model are weights w1 and w2. Let us now consider a Gaussian
cash flow process N (0.1, 1). We want to evaluate the impact of a negative
swing of the mean from 0.1 to zero. To this end, we consider two different
risk-sensitive models, model m1 with w1 = 0.5 and model m2 with w1 = 0.25.
We set a reference balance equivalent to three standard deviations of the cu-
mulative cash flow process over a planning horizon of ten days for optimization

purposes (T = 10). Then, br =
(
3
√

10, 0
)′

= (9.5, 0)
′
. We also set an initial

cash balance for both accounts of b0 = (9.5, 9.5)
′
. Once guaranteed feasibility

of the policy, the selection of an initial cash balance does not interfere on the
results of the experiment due to the quick adjustment provided by the opti-
mal policy (da Costa Moraes and Nagano, 2014). Note also that the planning
horizon T may be different to the deployment horizon for the MPC strategy.
In this example, we consider a deployment horizon of 50 days. This setting
implies that the optimization procedure for 10 days is repeated 50 times.

We can depict our estimate of the cost-risk robustness of both models as
shown in Figure 2. We obtain normalized average cost-risk points by dividing
both the cost (holding and transaction costs) and the risk (squared deviation
from the references) by the respective maximum values obtained for each of
the evaluations. In addition, we represent the uncertainty associated to each
model by plotting an ellipse centered in the cost-risk point with horizontal
semiaxis equal to the standard deviation of cost and vertical semiaxis equal to
the standard deviation of risk. Finally, we measure robustness by the Euclidean
distance between model performance due to a misspecification in the mean of
the cash flow process.

From Figure 2, we can infer that model m2 is more robust than m1 for
a negative swing in the mean because of the shorter distance d2 between m2

and m′2 than d1 between m1 and m′1. Furthermore, the uncertainty around
m2 and m′2 is remarkably smaller than that of m1 and m′1. Indeed, from this
simulation we can say that m2 and m′2 are not significantly different in terms
of cost and risk. However, robustness has a price since the average cost for m1

is slightly lower than that of m2.

5.3 Robustness to misspecification in cash flow variances

In addition to a change in the mean, a misspecification in the variance of a cash
flow process may lead to dramatic consequences in terms of penalty costs for
negative cash balances. Within the same setting of Section 5.2, our aim here
is to compare the impact of a variance change in the cash flow process under
consideration. Note that this variance can be viewed as a misspecification ei-
ther in the cash flow process or in the forecasting error process. We mentioned
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Fig. 2 Robustness to misspecification in cash flow means for two risk-sensitive models.

in the introduction that cash managers can leverage forecasts to achieve cost
savings (Salas-Molina et al, 2017). However, forecasts are inevitably affected
by some forecasting error, which is usually assumed to be Gausssian and ex-
pressed as N (0, σe) with zero mean and a given and standard deviation σe.
Forecasts can be viewed as a reduction in the uncertainty associated to a cash
flow process. The lower the uncertainty the lower the variance introduced by
forecasting errors ranging from zero for a perfect prediction to the variance of
the cash flow itself for a trivial prediction.

As an illustrative example, let us consider a Gaussian cash flow process
N (0.1, 1) for account 1 in Figure 1. We want to evaluate the impact of a 20%
increase in the cash flow standard deviation. As in Section 5.2, we consider two
different risk-sensitive models, model m1 with w1 = 0.5 and model m2 with
w1 = 0.25. We set both the same reference balances and the initial conditions
to compute the normalized average cost-risk performance as shown in Figure 3.

From Figure 3, we infer that model m2 is more robust than m1 for an
increase in cash flow variance because of the shorter distance d2 between m2

and m′2 than d1 between m1 and m′1. Unlike in the case of mean misspecifica-
tion shown in Figure 2, the uncertainty around model performance after the
change remarkably increased for both models. This fact can be explained by
the increase in variance that we evaluate in this second numerical example.

6 Case study

In this section, we show how our risk-sensitive control model can be used to
satisfy the requirements of a wide range of cash managers according to their
particular risk preferences. As a benchmark, we use the Miller and Orr (1966)
model. The bound-based approach proposed by Miller and Orr is at the core
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Fig. 3 Robustness to misspecification in cash flow variances for two risk-sensitive models.

of many recent cash management models dealing with stochastic cash flows
such as Penttinen (1991); Premachandra (2004); Gormley and Meade (2007).
A further advantage of the selection of the Miller and Orr model for illustra-
tive purposes is the possibility to set control bounds based on the statistical
properties of cash flows. In what follows, we briefly describe the Miller and
Orr (1966) model that we later compare to our risk-sensitive approach.

6.1 The Miller and Orr model

Miller and Orr (1966) proposed a simple policy based on three bounds to
control cash balances. This policy implies that when cash balance reaches the
upper bound U , a control action is taken to restore the balance to a target
level Z. Similarly, when cash balance reaches the lower bound L, a positive
transfer is made to restore the balance to Z:

ut =

Z − bt − ft if bt + ft ≥ U
0 if L < bt + ft < U
Z − bt − ft if bt + ft ≤ L

(27)

Note that control actions are taken at the end of each time step, when the
current balance is known after cash flow ft occurs. A similar policy could be
deployed before knowing the actual cash flow by removing ft from equation
(27). Although Miller and Orr set the lower limit L to zero, cash managers
should set a lower limit above zero for precautionary motives (Ross et al, 2002).
To this end, we set a lower bound L proportional to the standard deviation
(σ) of the particular cash flow process under consideration:

L = ξ · σ (28)
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where ξ is a parameter reflecting the aversion to risk of cash managers. The
higher the value of ξ, the more averse to risk they are. Typical values for ξ are
2 or 3 resulting in either a probability of 0.95 or 0.99, respectively, of bringing
balance from the lower bound L to a negative value for Gaussian cash flows.
Later, we can set Z and U according to the formulas proposed by Miller and
Orr:

Z = L+

(
3γ0σ

2

4h

)1/3

(29)

and

U = 3Z − 2L (30)

where γ0 is the fixed transaction cost and h is the holding cost per money unit.
We are now in a position to compare the Miller-Orr model to our risk-sensitive
approach by means of the following numerical exercise.

6.2 Risk-sensitive control example

In the following numerical example, we show what is risk-sensitive control in
practice. In this experiment, we use a real-world data set of 2717 net cash
flows with standard deviation σ = 0.096 millions of Euros from an industrial
company. Consider again a simple cash management system such as the one
depicted in Figure 1, under the cost structure described in Table 1. Recall
that we are interested in controlling balances for cash account 1 by means of
transactions from/to an investment account 2.

A typical approach to control balances based on a set of bounds is described
in Section 6.1 for the case of the Miller and Orr (1966) model. After selecting
a typical value ξ = 2, we set L = 0.193, Z = 0.313 and U = 0.555 (figures
in millions of Euros) according to equations (28), (29) and (30), respectively.
Starting at an arbitrary initial cash balance Z, and randomly sampling 100
observations from our cash flow data set, we can simulate the resulting cash
balance for account 1 by applying the Miller and Orr model described in equa-
tion (27). The evolution of the Miller and Orr controlled balance is depicted
in Figure 4 using a dotted line.

Alternatively, we can follow a risk-sensitive approach by solving the MIQP
encoded from equation (8) to (12) according to some particular cost-risk pref-
erences summarized in weights w1 and w2. As in Section 5, we here follow
an MPC strategy updating the optimal policy at each time-step for a given
planning horizon. As mentioned in Section 2, we set Cmax and Rmax to the
cost and risk of taking no control action for the whole planning horizon. For
comparative purposes, we use target value Z as the cash balance reference to
minimize deviations through objective function (8). The resulting cash bal-
ance derived from the application of our risk-sensitive model for a neutral
cash manager represented by weights w1, w2 = 0.5 is shown in Figure 4 using
a solid line. Note that the cash balance variability is lower than in the case of
the Miller and Orr model.
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Fig. 4 Balance comparison with Miller and Orr for weights w1 = 0.5 and w2 = 0.5.

We can perform an interesting additional exercise by varying weights to
w1 = 0.2 and w2 = 0.8 as in the case of a conservative cash manager that gives
more importance to risk than to cost. The resulting cash balance derived from
the application of our risk-sensitive model for a conservative cash manager
represented by these weights is shown in Figure 5 by means of a solid line and
it is compared again to the benchmark. In this case, our risk-sensitive model
for conservative managers produces balances with remarkable less variability
than both the model for neutral managers in Figure 4 and the Miller and Orr
model.

20 40 60 80 100
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ca
sh

 b
al

an
ce

Miller-Orr
Risk-sensitive-0.2

Fig. 5 Balance comparison with Miller and Orr for weights w1 = 0.2 and w2 = 0.8.

As a result, we can vary weights w1 and w2 in our risk-sensitive model
to satisfy the requirements of a wide range of cash managers in terms of risk
preferences. Indeed, there is a trade-off between cost and risk achievement as it
is customary in multiple criteria decision-making. Following with our numerical
example, Table 2 summarizes the cost and risk achievements derived from
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our risk-sensitive model expressed as a proportion of normalization factors
Cmax and Rmax for different weights. Note that cost can be notably reduced
by accepting higher levels of risk and that risk can be almost reduced to
zero by accepting higher levels of cost. Interestingly, the best combined goal
achievement is attained when risk is almost zero due to a constant balance
evolution over time.

Table 2 Cost and risk proportions of Cmax and Rmax for different weights w1 and w2.

w1 w2 Cost Risk Objective
0.20 0.80 0.48 0.01 0.10
0.40 0.60 0.36 0.02 0.16
0.50 0.50 0.35 0.04 0.19
0.60 0.40 0.33 0.07 0.23
0.80 0.20 0.19 0.36 0.23

7 Concluding remarks

In this paper, we consider short-term decision-making in cash management
from a cost-risk multiobjective perspective. More precisely, we focus on the
common situation faced by cash managers characterized by much higher penalty
costs for negative cash balances in comparison to holding costs for positive
cash balances. Within this framework, we propose a multiobjective cash man-
agement model to deal with both multiple accounts and transaction between
accounts. Since our model focuses on both the cost and the risk of alterna-
tive policies, we compute transaction and holding costs as a measure of cost
and squared deviations from a given reference trajectory as a measure of risk.
Unlike recent research on cash management, we guarantee the optimality of
solutions by encoding the problem as a multiobjective linear-quadratic pro-
gram. Since linearity is a desired feature in mathematical programming, we
also provide an equivalent linear reformulation based on goal programming.

We present further insights on the stability of cash management systems
from a theoretical point of view. In order to adapt the standard definition of
stability to the cash management problem with high penalty costs for negative
cash balances, we follow the approach of analyzing stability from below. We
also study the stability of different cash flow processes from a probabilistic
perspective through the concepts of weak and strong α-stability, which we in-
troduce in this paper. Furthermore, we graphically explore the robustness of
our model to misspecifications in both means and variances of multidimen-
sional cash flow processes. We show how tuning a simple parameter of our
model can be used to find more robust policies in cash management. Our
graphical approach rely on representing uncertainty in the cost-risk space by
means of ellipses. Further research can rely on this method to elicit a more
general method to select more robust cash management models.
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On the applicability of our model for real-world cash management, it is im-
portant to highlight that stability or absence of variability is usually a desired
objective in financial contexts. From that fact, one can extract the conclusion
that cash management models considering not only the cost but also the bal-
ance variability of alternative policies are helpful tools in practice. By means
of a numerical case study, we show how our risk-sensitive control model can be
tuned to accommodate the requirements of cash managers according to their
particular risk preferences. On the other hand, we emphasize the importance
of cash flow forecasting in cash management as a suitable way to reduce uncer-
tainty about the near future. Thus, models accepting forecasts as a key input
such as the one proposed in this paper are closer to real practice by relying
on data-driven techniques such as forecasting rather than models assuming a
theoretical probability distribution. A further advantage of our approach is its
computational tractability. By relying on linear-quadratic programming, our
model can be solved by state-of-the-art commercial solvers such as Gurobi and
CPLEX. This fact implies that our model can be easily embedded in decision
support systems for cash management.
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