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Abstract: This paper presents empirical models developed through stepwise multiple linear regres-
sion to estimate the live fuel moisture content (LFMC) in a Mediterranean area. The models are
based on LFMC data measured in 50 field plots, considering four groups with similar bioclimatic
characteristics and vegetation types (trees and shrubs). We also applied a species-specific LFMC
model for Rosmarinus officinalis in plots with this dominant species. Spectral indices extracted from
Sentinel-2 images and their averages over the study time period in each plot with a spatial resolution
of 10 m were used as predictors, together with interpolated meteorological, topographic, and seasonal
variables. The models achieved adjusted R2 values ranging between 52.1% and 74.4%. Spatial and
temporal variations of LFMC in shrub areas were represented on a map. The results highlight the
feasibility of developing satellite-derived LFMC operational empirical models in areas with various
vegetation types and taking into account bioclimatic zones. The adjustment of data through GAM
(generalized additive models) is also addressed in this study. The different error metrics obtained
reflect that these models provided a better fit (most adjusted R2 values ranged between 65% and
74.1%) than the linear models, due to GAMs being more versatile and suitable for addressing complex
problems such as LFMC behavior.

Keywords: Sentinel-2; live fuel moisture; spectral indices; Mediterranean forests; meteorological
data; topographic data; Google Earth Engine; GAMs

1. Introduction

Forest fires are regulating processes in nature that cause dynamism in Mediterranean
forest ecosystems, acting as a process of regeneration of forest lands and recycling of
nutrients [1]. Due to climate change, rural depopulation that entails the abandonment of
the forest, and changes in land use, from the beginning of this century, forest fires have
occurred with greater frequency and intensity in southern European countries, causing
ecological and socioeconomic damage to the population and their assets, with growing
concern from national and regional governments [2–4].

There are several factors that have a great impact on ignition processes and affect the
behavior of forest fires: fuel type, topography, meteorological conditions (wind speed, air
temperature, relative humidity, rainfall), and fuel variables such as the moisture content of
the fuel, forest structure, and land cover (tree and shrub cover in the case of this study) [5].
Therefore, models aiming to predict the behavior of forest fires must take the spatiotemporal
variations of these factors into account [6]. Fuel moisture content (FMC) is an influential
factor in estimating wildfire potential [7]. Live fuel moisture content (LFMC) is a measure
of the amount of water available in live vegetation and has long been recognized as an
important component of fire hazard. LFMC is an essential parameter for wildfire risk [8]
and wildfire simulations, as it affects vegetation flammability, fire spread rate, and flame
intensity [9].
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Different studies have found an important correlation between the burned area and the
LFMC [10–12]. Some of these studies clarified that large wildfires occur when the living fuel
crosses critical levels of dryness. Mediterranean regions have long dry periods, together
with large increases in temperature in the summer period. In this sense, climate change
trends could aggravate the situation [13], causing a significant decrease in the LFMC and
lengthening the critical season for forest fires [4]. This problem, in turn, could worsen with
the intensification of fuel load accumulation and fuel connectivity of forest vegetation [14],
because of the rural exodus and a general lack of land management. Therefore, accurate and
complete field-based estimates of spatial and temporal LFMC are needed to assess wildfire
danger [15] and develop early warning systems for monitoring critical conditions [16];
however, this requires a lot of work and time, resulting as expensive and covering small
areas [17]. LFMC estimation methods based on satellite data can cover large areas, and
they have been widely used in different ecosystems and geographic areas. Yebra et al. [18]
reviewed the use of remote sensing data to estimate LFMC, with a particular focus on
operational use for fire risk assessment.

Two main approaches are commonly followed for the estimation of LFMC from remote
sensing data: empirical systems and radiative transfer models (RTM). Radiative transfer
is based on physical laws governing canopy water content relationships, and empirical
models are statistically fitted to LFMC field measurements using spectral data [18]. Several
studies have demonstrated the potential use of statistical models to estimate LFMC using
vegetation indices from satellite data [19–21]. RTMs are robust and easy to generalize, but
the parameterization is complex and depends mainly on the model selected. Furthermore,
the main difficulty in using RTMs for LFMC estimation is the uncertainty of the inversion
procedure [22]. Instead, empirical models are simple, easy to calibrate, and can combine
spectral indices with meteorological variables to improve LFMC predictions [20,23,24]. In
general, empirical approaches show similar or even better accuracies than physical models
when applied locally [21,25,26]. However, to accurately estimate the LFMC with empirical
models in larger areas, a large number of observations are required.

When studying LFMC, differences depending on the existing forest species and soil
water dynamics must be considered. Martin-StPaul et al. [17] used a LFMC database
obtained in the south of France and the island of Corsica during the fire seasons from
1996 to 2016 to establish a linear LFMC prediction model. Contrasting water strategies
between species evidenced that LFMC dynamics may be different from species to species
in Mediterranean ecosystems. Chuvieco et al. [23] used land surface temperature estimated
with AVHRR (advanced very high-resolution radiometer) data to estimate LFMC in grass-
land and shrub species, and identified one of the advantages of empirical models: the
potential inclusion of thermal information, especially critical in fuels adapted to summer
drought, as is the case with most Mediterranean shrubs. In addition, some studies have
shown the great predictive power of land surface temperature (LST) together with optical
data in empirical models [20,23,27,28]. The relationship between LFMC and LST lies in
the interaction between the energy balance mechanisms of the plant and its response to
water stress [18]. Other authors used seasonal variables to provide information about
the seasonal periodicity of LFMC [29] or other predictors obtained from meteorological
observatories [30].

The contribution of this study is to calculate and evaluate LFMC empirical models
for shrub plots on the one hand, and mixed tree plots on the other, in a broad area of
the Valencian region, in the Central Mediterranean area of Spain, with data collected for
the whole region and during all seasons of the year. Field-measured LFMCs obtained
over a period, including data from all seasons of the year and two-year periods of dry
seasons (June 2020 to November 2021), were used to fit the models. This is a further
step with respect to the work of Costa-Saura et al. [30], who built an empirical model
combining the normalized difference moisture index (NDMI) extracted from Sentinel-2
images and meteorological variables (mean surface air temperature and mean wind speed),
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to estimate the LFMC in shrub plots for a smaller area of the same region, but considering
only observations in shrub areas in the 2019 summer fire season.

The aims of the present study were (i) to analyze the annual LFMC variation of
the shrub and mixed (shrub and tree) vegetation; (ii) to evaluate the performance of
different spectral and water indices derived from Sentinel-2 images, in order to define
LFMC estimation models, taking into account two vegetation types and two bioclimatic
zones in a Mediterranean area; (iii) to analyze the inclusion of topographic variables and
mean of spectral indices in each plot (calculated using all available study dates), to include
spatial differences in LFMC models and reduce errors; (iv) to propose empirical models
adapted to seasonal and climatic changes, taking into account a cumulative precipitation
variable and the average surface air temperature in the previous days; (v) to compare results
obtained with empirical models using multivariate linear regression or general additive
models with splines (GAMs); and (vi) to map the spatial evolution of LFMC during the
months leading up to a major wildfire.

2. Materials and Methods
2.1. Study Area

The study plots are located in the Valencian region of Spain, in the east of the Iberian
Peninsula (Figure 1) and with great influence from the Mediterranean Sea. The orography
is highly variable throughout the entire territory, ranging from 0 to 1830 m of altitude above
sea level, although most of the territory lies at altitudes below 1000 meters. In addition, the
region presents a Mediterranean climate characterized by hot summers and mild winters,
with low rainfall (350–550 mm per year). Rainfall frequently occurs in the fall and to a
lesser extent in spring and winter. Summers are very dry and hot, causing long periods of
drought and water deficits for the vegetation.
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cion-de-incendios/models-de-combustible, accessed 16 December 2022); and a detail of the plots in 
the Gilet zone code (bottom left), with concentric circles in red representing field collection areas. 

Figure 1. Location of the Valencian region (top left); distribution of plots in the study area and
fuel types based on Scott and Burgan models (right) (source: http://agroambient.gva.es/es/web/
prevencion-de-incendios/models-de-combustible, accessed 16 December 2022); and a detail of
the plots in the Gilet zone code (bottom left), with concentric circles in red representing field
collection areas.

http://agroambient.gva.es/es/web/prevencion-de-incendios/models-de-combustible
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2.2. Field Data Collection

Small apical branches from various species of shrubs and trees were collected within
30-meter-radius plots containing a homogeneous vegetation type and structure, ensuring
that the pixels corresponding to the satellite images represent the same or very similar
areas to those collected in the field. Samples were collected every 15 days during the study
period from June 2020 to November 2021. The samples were transported in sealed bags
to prevent moisture loss, they were weighted wet, then oven-dried in the laboratory at
100 ◦C and weighed again to obtain the dry weight of each sample. LFMC corresponds to
the water content of the vegetation calculated as the percentage of water contained in the
species sampled in the field with respect to their dry weight, estimated with the following
Formula (1):

LFMC =
W f − Wd

Wd
100 (1)

where Wf corresponds to the fresh weight and Wd to the dry weight. The LFMC values per
species and plot were added to a database throughout the study period. In addition, LFMC
values per plot were calculated as a weighted average of LFMC values of the dominant
species, considering the FCC (fraction of canopy cover) of each species as weights (see
Table A1 in Appendix A). The percentiles of the weighted average values of LFMC in each
plot were calculated. Then, the outliers found in the box and whisker plots were reviewed,
to detect possible errors in the measurement of LFMC in any of the species.

This study is part of a research project where field data were collected in 88 specific
plots of shrubs and trees, with the objective of developing a methodology for mapping the
LFMC in the Valencian region of Spain with a spatial resolution of 10 m. In this particular
study, field data in a subset of 50 plots were used to build the training sample, distributed
throughout the Valencian region (see Figure 1 and Table A1). In the study area, there are
differences in altitude, temperature, and rainfall, which are directly related to the natural
vegetation present. Plot location was based on an even representation of different biocli-
matic zones, as well as on the presence of dominant species of Mediterranean shrub. Many
of the study plots were close enough to each other to estimate local variations (same zone
code). These plots are part of a larger database, and they were selected according to the
availability of field data, as well as on their location within the two main bioclimatic zones
in our study area. The first column of Table A1 shows the numbering of the 50 plots in the
database, and they were assigned to one of the two groups corresponding to the two biocli-
matic zones (see Figure 1 and Table A2). There are variations in slope, aspect, and altitude
within the two groups, even between plots within the same zone code (Tables A1 and A2).

The thermo-Mediterranean group (group 1) corresponds to the area closer to the coast,
with lower altitude; it is characterized by a climate with average annual air temperatures
generally between 17 and 19 ◦C, ranging in the winter from mild to warm. The nature
and distribution of the vegetation is mainly conditioned by the rainfall, as the chemical
composition of the soil only seems to be decisive in certain areas with rainfall values above
400 mm. Precipitation affects the development of sclerophyllous forests composed of Pinus
halepensis, Ulex parviflorus, Pistacia lentiscus, and Quercus coccifera.

The meso-Mediterranean group (group 2) contains the inland areas of the Valencian
region with higher altitudes than the thermo-Mediterranean areas. Average annual air tem-
perature ranges from 13 to 17 ◦C, and during the winter this interval is more pronounced.
The distribution of the vegetation is conditioned by calcium carbonate-rich substratum
soils and rainfall. Dense thickets of Pistacia lentiscus, trees such as Pinus pinaster, and
repopulations of Pinus halepensis are very frequent.

2.3. Remote Sensing Data

Copernicus Sentinel-2 image bands were downloaded using the Google Earth Engine
14 environment, then spectral indices at 10 m spatial resolution were derived. The product
used (Level 2A) is georeferenced and atmospherically corrected at bottom of atmosphere
(BOA). Considering the different spatial resolutions of the image bands, we resampled to
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10 m the bands with resolution of 20 m per pixel. Vegetation indices and water indices
were considered, with formulas as described in Table 1.

Table 1. Spectral indices obtained from Sentinel-2 images and formulas with the band numbers.

Spectral Index Formula with Band
Number for Sentinel-2 Reference

Vegetation Indices

Enhanced Vegetation Index EVI = 2.5 × (B8 − B4)/(B8 + 6 × B4 −
7.5 × B2 + 10000) [31]

Optimized Soil Adjusted
Vegetation Index

OSAVI = (1 + 0.16) × (B8 − B4)/(B8 +
B4 + 1600) [32]

Transformed Chlorophyll
Absorption Index

TCARI = 3 × ((B5 − B4)/10000) − 0.2
× ((B5−B3)/10000) × (B5/B4)) [33]

Vegetation Index-Green Vgreen = (B3 − B5)/(B3 + B5) [34]

Visible Atmospherically
Resistant Index VARI = (B3 − B4)/(B3 + B4 − B2) [33]

Water Indices

Moisture Stress Index MSI = B11/B8 [35]

Normalized Multi-Band
Drought Index

NMDI = (B8A − (B11 − B12))/(B8A +
(B11 − B12)) [36]

The values of the indices NMDI, OSAVI, Vgreen, EVI, VARI, MSI, and TCARI were
calculated for each plot on all sampling dates, considering an approximation of ±5 days be-
tween field data collection and the Sentinel-2 image acquisition date. Initially, a broader set
of indices were considered, but those in Table 1 were the ones showing greater relationship
with the LFMC data. In addition, the mean values of these spectral indices (period: June
2020–November 2021) were also calculated to obtain information about intersite vegetation
differences. This is, the mean value of all dates considered was calculated for each index, in
order to help characterize differences in greenness, photosynthetic activity of vegetation,
and vegetation water content across sites. For example, Mean_EVI_10mS denotes the EVI
average calculated in each plot using 10 m resolution Sentinel-2 data for all available dates
within that period of time.

2.4. Meteorological Data

Daily mean surface air temperature and cumulative daily precipitation, collected
from the Spanish Meteorological Agency (AEMET) at weather stations for the years 2020
and 2021, were used in this study. These values were interpolated in field plots using
the Meteoland package [37]. The interpolation method used by Meteoland is similar to
the inverse distance weighted (IDW) method but uses a truncated Gaussian filter for the
selection of weather stations. The following variables were obtained: p60 (cumulative
precipitation in the 60 days prior to field LFMC data acquisition) and t60 (average mean
daily air temperatures in the 60 days prior to field LFMC data acquisition). Both are
representative variables used in previous studies on live fuel moisture prediction [30].

The day of the year (DOY) was also considered, to describe seasonal variations of
the LFMC. DOY was normalized to a range between [−π, π] and the sine (DOY_SIN)
and cosine (DOY_COS) were calculated for use as predictors. These curves only vary in
time, with values between −1 and 1, and describe the wettest or driest times of the year,
respectively [38].

2.5. Statistical Analysis

The following methodological steps were used for the statistical analysis:
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1. Analysis of the temporal variation of field LFMC data of several species in the period
from June 2020 to November 2021 for the 50 sample plots distributed throughout
the study area. Analysis of LFMC differences between shrub and tree strata and its
influence on the weighted LFMC mean, using the fraction of canopy cover (FCC) of
each species as weights;

2. Application of stepwise linear regression to compute the LFMC weighted average,
considering the fuel models described in Table A1 and the groups of plots defined
in Table A2. Moreover, a LFMC model for the Rosmarinus officinalis species was
also calculated using LFMC data of that species in shrub plots where this was the
dominant species. The spectral indices described in Table 1, together with time
average of spectral indices in each plot, cumulative precipitation (p60), mean surface
air temperature (t60), the sine and cosine of the DOY, slope, aspect, and altitude were
used as predictor variables. The variance inflation factor (VIF) was calculated to
analyze the collinearity of the variables. Predictor variables were revised when the
VIF was greater than five, choosing only variables that were statistically significant
with a VIF less than or equal to 5;

3. Application of generalized additive models with splines (GAMs). The data analyzed
in this study were also fitted with generalized additive models (GAMs, “mgcv” R
package), considering a gamma error distribution. In the designed models, spatial
effects such as “2D smooth function (s(Xcoord,Ycoord)) of site locations” were added
and a spatial term was also included, to lead to more precise estimates of the other
model terms. According to this, site random effects (s(site, bs = “re”)) were considered.
In this case, the zone code (“Zone Code”, Table A1) was used to identify the plot
locations where LFMC samples were collected. On the other hand, for the time
factor, the predictor for day of year (doy) was represented as a cyclic cubic spline
(bs = “cc”), which allowed the models to explore the potential shape of the fitted trend
more flexibly. For the analysis, in addition to the new spatial and temporal variables
described, the same variables used in the linear regression were considered, since they
had been previously selected based on a criterion of multicollinearity and correlation.
However, for the final design of the model, only those significant variables within
each group of plots studied were taken into account. In addition, the AIC (Akaike
information criterion) value of all the candidates of each group was analyzed and
compared, to determine the best model. This measure seeks to balance the goodness
of fit of the model and its complexity, to avoid overfitting;

4. Evaluation of the linear regression and GAM models using the leave-one-out cross-
validation method, analyzing the LFMC errors between observed and predicted
results with these methodologies. Models were evaluated using adjusted R2, RMSE
(root mean square error), MAE (mean absolute error), and MBE (mean bias er-
ror) parameters [29]. Testing plots from other areas and dates were also used for
additional evaluation;

5. Mapping LFMC estimates of a burnt area of the Valencian region using the designed model.

3. Results
3.1. Differences between Species in Field-Observed LFMC

Figure 2a shows the temporal evolution of the field-measured LFMC of two shrub
species, Rosmarinus officinalis and Ulex parviflorus, in three different plots from the thermo-
Mediterranean group. Plot numbers 34 and 35 are located less than a kilometer apart in
the same zone code (Table A1). Rosmarinus officinalis usually shows higher values of LFMC
than Ulex parviflorus, although the LFMC of both species presented a seasonal behavior.
Figure 2b, represents the LFMC evolution for other shrub species, Cistus albidus and Quercus
coccifera, in plots of the meso-Mediterranean group. In plots 11 and 33, Cistus albidus coexists
with other shrub and tree species, while Quercus coccifera is one of the dominant species
in plots 28 and 72. The measured LFMC of Cistus albidus was higher than that of Quercus
coccifera, except for a few dates in the dry season. In addition, the LFMC of Cistus albidus
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showed seasonal variations, while the LFMC of Quercus coccifera presented a flatter series.
In this way, in our study area, shrub species with different patterns of temporal variation
of LFMC coexist with other species of trees. In addition, there is a spatial variation of
LFMC in the same shrub species, even between plots of the same bioclimatic group. This
demonstrates the need for an explicit spatial term in the GAM models (see Section 3.5).
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(a) Shrub species in plots of the thermo-Mediterranean group; (b) shrub species in plots of the meso-
Mediterranean group; (c) tree species in plots of the meso-Mediterranean group; (d) LFMC weighted
average in tree plots of the thermo-Mediterranean group.

Figure 2c represents the evolution of LFMC for the tree species Pinus halepensis, Pinus
pinaster, and Quercus ilex in two different plots with the same zone code. The differences in
LFMC values between these species are noticeable. The Quercus ilex LFMC values were
the lowest in the entire time series, while the species Pinus Pinaster presented the highest
values and Pinus halepensis had intermediate LFMC values, although with some differences
between plots. In this way, the proportion of species present in each site marked the spatial
differences in the values of the LFMC weighted average; in particular, this was noted in
the plots with the highest presence of tree species. Figure 2d shows the evolution of the
LFMC weighted average in several plots dominated by the tree stratum from the thermo-
Mediterranean group, where two plots belong to the same zone code. Plots that contain
the Pinus Pinaster species had a higher LFMC weighted average than plots where Pinus
halepensis predominates or this species coexists with Quercus ilex. This can be interpreted as
Pinus pinaster retaining more moisture. In addition, its LFMC behavior is more constant
throughout the year.

Figure 3 shows the differences in the field-observed LFMC weighted average between
shrubs plots from different bioclimatic zones. Plots of the thermo-Mediterranean group
(Table A2) had slightly higher LFMC values during the winter and slightly lower during
the summer, compared to the values of plots from the meso-Mediterranean group. These
differences were partly due to the rainfall and average temperature regimes in each group
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area but also due to the dominant species present in each zone and their proportion of the
FCC (fraction of canopy cover).
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Figure 3. Temporal evolution of field-observed LFMC weighted average for shrub plots of the
thermo-Mediterranean (G1) and meso-Mediterranean groups (G2). Field-observed data of several
plots were averaged for each field date. Time series were designed based on the monthly average of
the LFMC weighted mean, including intervals with standard errors.

3.2. Models—LFMC Observed Values vs. LFMC Predicted Values

The models described in Table 2 were calculated using field-observed LFMC values
from June 2020 to November 2021. Based on the bioclimatic groups of Table A2 in which
the plots have been grouped, linear regression models were defined for the predictions
of LFMC (LFMC weighted average and LFMC of Rosmarinus officinalis) in the fuel types
considered in Table A1. Thus, three models were obtained for each plot group in Table A2:
two in shrubs (one for the LFMC weighted average and another for LFMC of Rosmarinus
officinalis species) and one in trees (LFMC weighted average). Table 2 shows the model
coefficients by group, fuel type, and species considered to calculate the LFMC.

The number of explanatory variables used in the models in Table 2 varied between
4 and 6, highlighting NMDI, p60, and DOY_SIN as the most important. However, the
spectral index used in the model depended on the fuel type and the LFMC prediction
being considered (weighted average of all species or only Rosmarinus officinalis species).
Information of spatial differences between plots was obtained using the average of each
spectral index per plot for all available dates, or through topographic factors, such as
elevation or slope. All predictors were statistically significant at a 95% confidence level,
and the VIF (variance inflation factor) was less than 5 for all of them, which is indicative
of non-multicollinearity.

Figure 4 shows comparative graphs of the LFMC predictions and field-observed LFMC
values for the different study groups. The black line represents slope 1 and the origin at 0,
while the red line represents the regression line. The equations obtained for each case are
described in the graphs. In all the models, the slope is very close to 1, while the intercept
is close to zero. The coincidence of the linear regression line and the line representing
slope 1 indicates that there was no significant bias in the model. However, in some plots,
there seems to be a slight increase of the variance in the observed LFMC values as the
mean increases.
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Table 2. Regression model coefficients, parameters, and statistics in the shrub and tree study plots.
Statistics were computed using the leave-one-out cross validation method.

G 1 Ft 2 Sp 3 Formula Coef 4 p Value R2 adj 5 (%) RMSE MAE VIF MBE 6

1 Sh 7 Wa 9

Intercept
NMDI_10mS
Mean_EVI_10mS
Mean_VARI_10mS
DOY_SIN
p60
altitude

117.8
86.1

−298.2
110.1
−11.2

0.1
0.03

<2×10−16

8.2×10−11

<2×10−16

<2×10−16

<2×10−16

<2×10−16

<2×10−16

55.5 13.1 10.5

-
1.5
3.9
3.6
1.1
1.3
1.3

−0.01

1 Sh Ro 10

Intercept
OSAVI_10mS
Mean_EVI_10mS
DOY_SIN
p60

104.9
281.6
−389.2
−27.1

0.2

<2×10−16

<2×10−16

<2×10−16

<2×10−16

<2×10−16

59.2 27.1 21.8

-
2.5
2.2

1.04
1.2

0.01

1 T 8 Wa

Intercept
p60
slope
Mean_MSI_10mS
Mean_TCARI_10mS

131.7
0.03
−3.2
−80.5
847.8

<2×10−16

3.9×10−8

<2×10−16

<2×10−16

<2×10−16

74.4 7.4 5.9

-
1.1
3.6
1.3
3.5

−0.01

2 Sh Wa

Intercept
NMDI_10mS
DOY_COS
p60
t60
slope

28.9
144.9

8.9
0.1
−0.6
−0.8

3.7×10−6

<2×10−16

<2×10−16

3.0×10−9

2.6×10−11

<2×10−16

54.8 10.0 7.9

-
1.2
1.5
1.1
1.6

1.02

0.01

2 Sh Ro

Intercept
Vgreen_10mS
NMDI_10mS
DOY_SIN
p60
slope

32.9
68.9

198.2
−23.4

0.1
−1.3

0.03
0.0004

2.5×10−10

<2×10−16

8.5×10−10

5.5×10−11

52.1 22.9 18.5

-
1.1
1.3
1.1
1.1
1.1

−0.02

2 T Wa

Intercept
DOY_SIN
p60
Mean_TCARI_10mS
EVI_10mS

156.2
−5.9
0.1

−867.8
43.1

<2×10−16

1.2×10−12

2.4×10−8

<2×10−16

0.0005

54.2 9.7 7.7

-
1.1
1.2
1.1
1.1

0.01

1 G: group; 2 Ft: fuel type; 3 Sp: species; 4 Coef: model coefficients; 5 R2 adj: adjusted R2; 6 MBE: mean bias error;
7 Sh: shrub; 8 T: tree; 9 Wa: LFMC weighted average; 10 Ro: LFMC of Rosmarinus officinalis.

3.3. Cross-Validation and Extrapolation to Other Plots and Dates

Multiple linear regression and GAMs models were validated using the leave-one-out
cross validation method. The graphs and results obtained for the GAMs are explained
in Section 3.5. Therefore, this section specifically refers to the models designed using
linear regression.

The adjusted R2 values of the models ranged from 52.1% to 74.4% (Table 2). The
highest percentage was presented by the model of Group 1 in the prediction of LFMC
weighted average where tree species were dominant. Regarding the error metrics, the
RMSE values were between 7.4 and 27.7 and MAE varied between 5.9 and 23.0. The highest
values of RMSE and MAE were obtained in the prediction of the LFMC of Rosmarinus
officinalis, which is one of the shrub species with the greatest variability. In addition, MBE
varied between −0.021 and 0.006, which reflects a good fit.
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Figure 5 shows the temporal evolution of the field-observed LFMC values and LFMC
predicted values in several plots using the models described in Table 2. Different LFMC
behaviors were observed according to fuel types (shrub or tree) and type of LFMC pre-
diction (Rosmarinus officinalis or weighted average of all species). Shrub species showed
clear seasonal variations (Figure 5a–h) compared to tree species, whose LFMC behavior
was flatter, with almost no seasonal variability (Figure 5i,j). However, in both cases the
models may be able to describe the changes that occur between plots at the spatial level.
The proportion of species existing in each plot influenced the value of the LFMC weighted
average and our models could reproduce the changes observed between plots of the same
group. The lower temporal variation of LFMC in the tree plots led to lower values of RMSE
and MAE.

In the shrub plots of Figure 5a–h, we can observe how the proposed models reproduced
a sharp decrease in LFMC values during the months of June, July, August, and September
(dry season). Notice that, depending on the species considered, the LFMC range values in
the Y-axis scale changes. The LFMC values of Rosmarinus officinalis were greater than those
of the weighted average (obtained by considering all the species present in the plots and
their fraction of canopy cover).

On the other hand, in order to provide more robust evidence of predictive power of
the linear regression models described in Table 2, an independent validation using data
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from different geographical locations in the same time period was performed. Figure 6
shows the results obtained in some plots located in areas classified in the shrub fuel model
type. Plot id numbers 15 and 18 are in the thermo-Mediterranean zone and their predicted
LFMC weighted average was calculated using the first model described in Table 2. The R2

between the predicted and observed LFMC in these plots was similar to the R2 adjusted of
this model, while the RMSE and MAE values were slightly lower. The LFMC predictions of
the Rosmarinus officinalis species reached values greater than the LFMC weighted averages,
and since most of the errors occurred at extreme values then RMSE and MAE values were
higher (Figure 6b). In any case, the values obtained for these statistics are similar to those
shown in Table 2 for the model used in the predictions (G = 2, Ft = Sh, Sp = Ro).
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Moreover, an alternative evaluation was carried out with additional independent 
samples in other time periods outside the range of dates used to calibrate the models. 
Thus, the LFMC measurements not used to train the models were collected in additional 
plots during the year 2022, in order to evaluate the temporal extrapolation of the models. 
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Figure 5. Temporal evolution of observed values (green line) and predicted values (orange line)
of LFMC. (a–d): Group 1—Shrub—Weighted average (Wa); (e–h): Group 2—Shrub—Rosmarinus
officinalis (Ro); (i,j) Group 1—Tree—Weighted average (Wa). The 95% confidence limits (upper and
lower) for the prediction are included in magenta and blue, correspondingly.
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Figure 6. Field-observed LFMC values versus predicted LFMC, and line y = x (black) in some validation
plots described in Table A3. (a) LFMC weighted average in plot id numbers 15 and 18 of Table A3;
(b) LFMC values for Rosmarinus officinalis species in plot id numbers 10, 65, and 81 of Table A3.

Moreover, an alternative evaluation was carried out with additional independent
samples in other time periods outside the range of dates used to calibrate the models.
Thus, the LFMC measurements not used to train the models were collected in additional
plots during the year 2022, in order to evaluate the temporal extrapolation of the models.
Figure 7a shows a comparison between the field-observed and predicted LFMC weighted
averages in one of the plots located in a shrub area in the Chelva zone code. The errors
for various dates in 2022 were within the 95% confidence limits for the mean response. In
addition, LFMCs of Rosmarinus officinalis species were measured in three plots during a
wildfire near Bejís municipality in August 2022. Figure 7b compares these values observed
in the field with those predicted on a date prior to the fire. The predicted LFMC values
were higher than those observed, but it should be noticed that the latter were collected a
few days later. Despite this, the LFMCs observed in field were within the 95% prediction
limits for new observations.
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response of LFMC weighted average model in a shrub plot of the Chelva zone code; (b) observed
and predicted values of LFMC for Rosmarinus officinalis species in three plots near Bejís municipality.
Observed values in (b) were collected on 17 August 2022, while predicted values were obtained in
the same plots on August 8, 2022, before the start of a wildfire. Predicted, observed, and prediction
limits (95% of confidence) of LFMC for Rosmarinus officinalis in plot id numbers 151, 152, and 153.

3.4. Prediction Maps

The models described in Table 2 were used to obtain LFMC prediction maps in an area
where a forest fire occurred in August 2022 (Figure 8), around the municipality of Bejís,
located in an inland zone of our study area, south of Montanejos zone and north of Chelva
(see Figure 1). For the elaboration of the maps, we used the model corresponding to the
meso-Mediterranean bioclimatic zone.
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Figure 8. Predicted LFMC maps of the Bejís area (Spain). First two lines correspond to the LFMC
weighted average model and lines 3 and 4 belong to LFMC of Rosmarinus officinalis species for months
January, May, July, and August of years 2021 and 2022. Estimates were only applied to those areas
corresponding to the shrub fuel type.

The LFMC predicted values obtained with the weighted average model were low in
January 2021, although they later increased for May 2021, after the rainy season. They
decreased during the dry season, reaching very low values (LFMC weighted average <66)
in August 2021. A similar behavior was observed for 2022. The lowest values (yellow
color) were observed in August 2022, showing the dry condition of the vegetation prior
to the forest fire that started on 15 August 2022. The LFMC predictions obtained with
Rosmarinus officinalis model showed higher range of variation (Figure 8). Their values were
high (LFMC > 200) in May 2021, which reflects very humid vegetation, while in July 2021
low LFMC values were observed, corresponding to a dry situation that became extremely
dry in August. Similar behavior was observed in 2022.
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3.5. GAM (Generalized Additive Models)

When applying the GAMs, a notable improvement was obtained in the fit of the data,
except in the cases of tree zones in Groups 1 and 2. In these cases, the difference with
respect to the linear model was almost imperceptible (0.3%–0.8%, R2). Table 3 shows the
coefficients of the models by group, fuel type, and species considered to calculate the
LFMC, along with the corresponding results and error metrics. The adjusted R2 values of
the models ranged from 53.4% to 74.1% (Table 3). The highest percentage was presented by
the model of Group 1 in the prediction of LFMC weighted average where tree species were
dominant. Regarding the error metrics, the RMSE values ranged from 7.6 to 24.8, and MAE
from 5.9 to 19.6. The highest values of RMSE and MAE were obtained in the prediction
of the LFMC of Rosmarinus officinalis, as in the case of the linear models. Finally, the MBE
varied between −0.081 and 0.023.

Table 3. GAM models coefficients, parameters, and statistics in the shrub and tree study plots.
Statistics were computed using the leave-one-out cross validation method.

G 1 Ft 2 Sp 3 Formulation Parameters 4 p
Value

5 R2 adj. (%) RMSE MAE MBE 6

1 Sh 7 Wa 9

LFMC = f(a,
s(NMDI_10mS),
s(Mean_EVI_10mS),
s(Mean_VARI_10mS),
s(DOY_SIN),
s(p60),
s(altitude))

a = 4.59
s(NMDI_10mS)
s(Mean_EVI_10mS)
s(Mean_VARI_10mS)
s(DOY_SIN)
s(p60)
s(altitude)

<2×10−16

<2×10−16

<2×10−16

0.0078
<2×10−16

<2×10−16

<2×10−16

65.7 11.8 9.2 −0.012

1 Sh Ro 10

LFMC = f(a,
s(OSAVI_10mS),
s(Mean_EVI_10mS),
s(doy),
s(p60),
s(Xcoord,Ycoord))

a = 4.77
s(OSAVI_10mS)
s(Mean_EVI_10mS)
s(doy)
s(p60)
s(Xcoord,Ycoord)

<2×10−16

3.4×10−5

0.0004
<2×10−16

<2×10−16

8.6×10−7

67.1 24.8 19.6 −0.081

1 T 8 Wa

LFMC = f(a,
s(p60),
s(slope),
s(Mean_MSI_10mS),
s(Mean_TCARI_10mS))

a = 4.73
s(p60)
s(slope)
s(Mean_MSI_10mS)
s(Mean_TCARI_10mS)

<2×10−16

<2×10−16

<2×10−16

<2×10−16

<2×10−16

74.1 7.6 5.9 −0.001

2 Sh Wa

LFMC = f(a,
s(NMDI_10mS),
s(doy),
s(p60),
s(Xcoord,Ycoord),
s(slope))

a = 4.51
s(NMDI_10mS)
s(doy)
s(p60)
s(Xcoord,Ycoord)
s(slope)

<2×10−16

4.4×10−7

<2×10−16

<2×10−16

<2×10−16

<2×10−16

69.0 8.5 6.4 0.01

2 Sh Ro

LFMC = f(a,
s(Vgreen_10mS),
s(NMDI_10mS),
s(doy),
s(p60),
s(Zone code),
s(Xcoord,Ycoord))

a = 4.62
s(Vgreen_10mS)
s(NMDI_10mS)
s(doy)
s(p60)
s(Zone code)
s(Xcoord,Ycoord)

<2×10−16

0.0069
5.6×10−5

<2×10−16

<2×10−16

<2×10−16

<2×10−16

65.0 19.7 15.3 0.023

2 T Wa

LFMC = f(a,
s(Xcoord,Ycoord),
s(doy),
s(p60),
s(Mean_TCARI_10mS),
s(Zone code))

a = 4.68
s(Xcoord,Ycoord)
s(doy)
s(p60)
s(Mean_TCARI_10mS)
s(Zone code)

<2×10−16

0.0015
<2×10−16

<2×10−16

5.4×10−7

3.5×10−5

53.4 10.0 7.9 −0.022

1 G: group; 2 Ft: fuel type; 3 Sp: species; 4 Parameters: model coefficients; 5 R2 adj: adjusted R2; 6 MBE: mean bias
error; 7 Sh: shrub; 8 T: tree; 9 Wa: LFMC weighted average; 10 Ro: LFMC of Rosmarinus officinalis.
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As shown in Table 3, the variable DOY_SIN (used in the linear analysis) was only
considered in the model of one of the groups: (G1—Shrub—Weighted average) based on the
analysis of the AIC criteria. In all other cases, the values of this parameter (AIC) were lower
when using the variable “doy” than when using the sine and cosine transformations. “G1-
Tree-Weighted average” was the only group that did not use the “doy” parameter, as it was
not significant. On the other hand, Table 3 shows that the “Zone_code” variable, despite
the fact that it was considered in the analysis of all six groups, was discarded in four groups
and accepted in two groups, with these corresponding to the “G2—Shrub—Rosmarinus
officinalis” and the “G2—Tree—Weighted average”.

According to this GAM analysis, Figure 9 shows comparative graphs of the LFMC
predictions and field-observed LFMC values for the different study groups. The black
line represents slope 1 and the origin at 0, while the red line represents the regression line.
The equations obtained for each case are described in the graphs and reflect the good fit
provided by this type of model.
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Figure 9. Field-observed LFMC values versus predicted LFMCs, line: y=x (black), regression line of
the points (red line) and equation in the upper left. Graphs on the first row correspond to Group 1
and those on the second to Group 2 described in Table A2. The gray shaded area represents the 95%
confidence intervals.

Additionally, predictions for each plot—analyzed with the previous method—from
fitted GAMs were generated, and they are shown in Figure 10, along with their respective
bounds (upper and lower).
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Figure 10. Temporal evolution of the observed values (green line) and predicted values (orange line)
of LFMC. (a–d): Group 1—Shrub—Weighted average (Wa); (e–h): Group 2—Shrub—Rosmarinus
officinalis (Ro); (i,j) Group 1—Tree—Weighted average (Wa). The 95% confidence limits (upper and
lower) for the prediction are included in magenta and blue, respectively.
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4. Discussion

Different species coexist in the plots of our study area in different proportions. There
are certain species that are prone to large fluctuations in LFMC, which, upon changes of
atmospheric conditions, tend to gain and lose water more easily and faster than others.
Thanks to the modification of their leaves, stems, and roots, they are able to absorb or retain
water for long periods of time, in order to survive extreme climate conditions. Xerophytic
plants have long roots and usually very small leaves, which prevent unnecessary water
loss. For example, Rosmarinus officinalis, Cistus albidus, and Quercus coccifera are xerophytic
species adapted to drought conditions, each of them in a different way. Ulex parviflorus is a
species that dries out very quickly and does not retain as much moisture, which makes it
very dangerous in terms of fire spread. Some xerophytic plants are pyrophilous, adapted to
suffer from fires, and they are common in our study area. On the other hand, tree species
of the Mediterranean forest are adapted to drought, and their moisture tends to be constant
throughout the year. Quercus ilex has hard toothed leaves, which retain moisture. Pinus
pinaster and Pinus halepensis are characterized by their needle-shaped leaves, which absorb
moisture and lose very little water. Thus, the sampled species in each plot (Table A1) were
averaged to represent the LFMC for the same date and location, using the FCC information
for each species. In this way, the composition of species at each site directly influenced
the value of LFMC considered to train our models. Such an LFMC weighted average
can be used as a measure of potential fire risk. However, in our study region, it was also
interesting to calculate LFMC values in individual common species that dry out quickly,
such as Rosmarinus officinalis, which are found in a high number of plots with an FCC
greater than 10. Since this is one of the most representative xerophytic species in our study
area, the LFMC for Rosmarinus officinalis was also predicted in shrub areas. There were
26 plots with Rosmarinus officinalis representing an FCC greater than 10%. Ulex parviflorus
and Rosmarinus officinalis coincided in 21 plots. However, there were only 7 plots where
Ulex parviflorus represented an FCC greater than 10%.

A model calculated for the LFMC weighted average in tree zones had the highest
adjusted R2 (74.39%). This must have been due to the fact that the spatial variability was
much greater than the temporal variability in these tree areas, as we mentioned before when
analyzing the LFMC changes in the tree species. Therefore, three of the four predictors
considered in this model only changed at the spatial level (slope, mean of MSI, and mean
of TCARI). This also implies that smaller values of RMSE and MAE were obtained in the
models for tree areas. On the other hand, the highest errors between the observed and
mean predicted values occurred in the estimation of the LFMC of Rosmarinus officinalis
species, in which the temporal variability was much greater, with LFMC values above
200 in the humid season, but below 60 in the dry season. Table A5 in Appendix A shows
the proportion of observations that were within the 50% bounds on the predictions, using
size 20 LFMC intervals. There was a greater proportion of data at the extreme intervals of
LFMCs that were outside these prediction limits, but in the case of the prediction of LFMC
of the species Rosmarinus officinalis, there were many more values measured in the field
below 60 and above 140.

We explored the effect of introducing a categorical variable into the models, consider-
ing mixed models that take into account the zone code with random effects. The RMSE
and MAE values obtained in the estimation models of the LFMC of Rosmarinus officinalis
species with these mixed models (see Table A4 in Appendix A) were slightly lower than
those obtained in Table 2 with linear models, while the adjusted R2 increased. However,
these mixed models are more difficult to apply for generating cartography in areas that
do not have data to calibrate the models, such as the one used in Figure 8. We tested the
inclusion of the latitude and longitude variables in the linear models. In the case of the
linear models that predicted the LFMC weighted average, our methodology discarded both
spatial coordinates, as they were not significant. However, in the LFMC estimation of the
Rosmarinus officinalis species, latitude could be introduced in the thermo-Mediterranean
group (group 1), whereas longitude could be selected in the meso-Mediterranean group
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(group 2). Thus, spatial effects were considered for inclusion in the generalized additive
models with splines via a 2D smooth function of site locations, together with a term with
site random effects.

In this paper, empirical models were developed using spectral indices from Sentinel-
2 images and meteorological data (cumulative precipitation and averaged surface air
temperature). Additional topographic and static seasonal variables were also considered
and tested. Six models were fitted to estimate the LFMC weighted average, and the LFMC
of the Rosmarinus officinalis species, attending to two vegetation types and two bioclimatic
zones, which showed the great potential of using empirical models with remote sensing
data, together with topographic and meteorological data, to spatially monitor the LFMC
of shrub and tree species at a spatial resolution of 10 m. Moreover, a seasonal trend was
considered using the functions DOY_SIN or DOY_COS, which are defined as the sine and
cosine of the day of the year. These predictors had a significant influence on the LFMC
estimates, especially on the shrub models, due to the seasonal variation in LFMC. Cunill-
Camprubí et al. [27] commented that DOY_SIN reflects the average annual pattern in soil
water availability, while DOY_COS is more related to changes in the surface air temperature.
The sine and cosine of the day of the year are useful variables to reflect typical seasonal
trends, but they do not provide real information about a date, so all models described in
this paper included a cumulative precipitation variable (p60) to extrapolate to years with
different meteorological conditions. Moreover DOY_COS was used in combination with a
mean surface air temperature variable (t60).

NMDI was the spectral index with the highest correlation with LFMC in shrub areas
within the period from June 2020 to November 2021. NMDI is related to the humidity of
the vegetation, and it is highly linearly related to the NDMI index, which was used in [30]
to predict LFMC averages and to obtain a model in shrub areas, but only in the dry season.
Moreover, the model described in [30] was obtained in a smaller yet similar study area. In
our work, the stepwise process we followed to select variables did not include the NDMI in
the models. However, other spectral indices related to vegetation and water content (EVI,
OSAVI, and Vgreen) were used to estimate the weighted mean of LFMC in shrub zones or
wooded areas, as well as of Rosmarinus officinalis species in shrub plots. Likewise, the means
of spectral indices were used (Mean_EVI, Mean_VARI, Mean_MSI, and Mean_TCARI),
improving the performance of the model, as in [39]. These averages took a constant value
in each plot and allowed modifying the intercept in each site considering its spectral
characteristics. Along with these variables, morphological variables (slope, altitude) were
added, further improving the performance of the model. In the case of shrub plots, the
means of vegetation indices together with the altitude appeared as predictors in the models
of the thermo-Mediterranean group. In contrast, in the meso-Mediterranean group, the
slope intervened to modify the constant of the model but only at the spatial level.

Among the meteorological variables, the cumulative rainfall in the previous 60 days
(p60) was part of all the models obtained for the estimation of LFMC. Other time periods (7,
15, and 30 previous days) were also tested, but p60 was always the precipitation variable
with the highest correlation with LFMC and the one chosen using the stepwise regression
method. Precipitation provides relevant information for the models at a temporal and
spatial level. The interpolation process used to estimate precipitation also marks the
differences in plots very close to each other. Spectral variables were also able to represent
the LFMC changes, both at the spatial and temporal levels, even in plots located in nearby
areas. In order to obtain a good fit, it seems to be convenient to use both types of information:
spectral and meteorological [20,23,24]. The average air temperatures in the previous 7, 15,
30, and 60 days were also considered, and the latter (t60) was selected in a shrub model,
completing the seasonal information introduced through the cosine of the day of the year.
Variable t60 also varies spatially; in our case, point values were interpolated from surface
air temperature data obtained from a set of surrounding weather stations.

Different models were built in two bioclimatic strata for the prediction of LFMC in
grouped plot locations. The evaluation of the models for the study groups presented
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sound results in each of the locations analyzed, since the predicted values were mostly
within the range of the field data for the complete study period (June 2020–November
2021). The extrapolation of these models for mapping LFMC in other subsequent time
periods was also tested, analyzing the LFMC maps obtained in an area where a major
forest fire occurred in 2022. Historically, the largest average monthly burned area and the
highest number of fires in the period 2002–2019 in our study area occurred from June to
October (see: https://gwis.jrc.ec.europa.eu/apps/country.profile/charts, last accessed 30
November 2022), which coincides with the dry season. One of the main benefits of covering
all seasons of the year is being able to predict LFMC values for any date, which is important
in fire risk monitoring and fire prevention planning, especially considering the scenario of
our study area.

Regarding previous studies using Sentinel-2 data, our results are similar to those
obtained in [25,40]. However, the models in [25] were only applied to a monospecific
shrubland site, and the models in [40] used time series acquired from active (Sentinel-1) and
passive (Sentinel-2) sensors. In [25], it is stated that Sentinel-2 may be a good alternative to
MODIS if daily estimations are not a priority but where higher spatial resolution is needed
(e.g., patchy vegetation areas). To build our models, we used 50 plots, some of which
were less than 1 km apart, aiming to obtain maps with a high spatial resolution (10 m).
Accurate results were obtained when extrapolating the models to estimate LFMC in the
dry season of the next year from the one used for training. Despite this, it is important to
consider an annual model calibration phase (prior to use) for predicting LFMC values more
accurately at different sites and in different years, due to the changes in climatic conditions,
particularly in evidence in recent years.

This study has some limitations that must be considered when interpreting its results.
First, it is important to note that the study was carried out in a specific geographical
region and ecosystem, meaning that the results may not be applicable to other areas with
different climatic and ecological conditions. Second, the study focused on a limited number
of species and fuel types (trees (24%) and shrubs (46%)), which may not reflect the full
diversity of vegetation present in the area. However, the moisture content of the most
characteristic and representative species of the Mediterranean forest, and which are the
most influential in the spread of forest fires, were sampled. In each plot and date, only from
one to three LFMC samples of each species were taken, due to logistic limitations on drying
the samples. Thus, we were not able to study possible variations between individuals
of the same species in the same plot. Fourth, the introduction of variables defined from
other environmental factors, such as the speed of the maximum gusts of wind or the
relative humidity, may have slightly increased the precision of the models, as this was
verified in the preliminary study described in [30]. However, many meteorological stations
with precipitation and temperature data do not have data on these variables, increasing
the errors in the interpolation of such meteorological data. For this reason, in this work,
only meteorological data of cumulative precipitation and surface air temperature were
considered. In addition, the study only covered a period of 1.5 years, which may not be
sufficient to capture long-term trends in moisture content variability and establish robust
models. Finally, the study did not consider the effects of anthropogenic factors such as land
use change and fire suppression on the LFMC, because we used fuel model mapping with
a publication date of 23 February 2021, which could have influenced the accuracy of the
models. It is important to take into account these potential limitations and deficiencies
when mapping other areas of our study region and in other periods of time.

5. Conclusions

In this study, an analysis of the combination of Sentinel-2, topographic, and mete-
orological data to predict LFMC with a spatial resolution of 10 meters was carried out
in a Mediterranean ecosystem with different types of vegetation coexisting. Empirical
models for estimating LFMC were obtained using stepwise linear regression and gener-
alized additive models with splines (GAMs), using data obtained during the period June

https://gwis.jrc.ec.europa.eu/apps/country.profile/charts
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2020–November 2021, in 50 plots organized into 2 groups, and defined based on bioclimatic
zones. Two LFMC models were differentiated: those for shrub species and those for tree
dominant plots. Models were calculated considering the weighted average of LFMC values
for the dominant species of shrubs or trees. Since Rosmarinus officinalis is one of the most
representative species in the area, LFMC models considering only this species were also
obtained in the shrub plots.

The number of independent variables used in models was between 4 and 6; among
these, the cumulative rainfall in the previous 60 days (p60) was part of all the models. The
results obtained showed that the spectral indices, especially the NMDI, were sensitive
to LFMC changes at a temporal and spatial level. The topographic variables (slope and
altitude) and the means of various spectral indices (static variables) also played a very
important role in models, since they marked spatial differences and contributed to the
reduction of model errors.

This study is an extension of that described in [30] over a longer study period, in-
cluding the dry and humid seasons, considering a broader set of sampling points in shrub
areas but also applied to areas with tree dominant species. The proposed models were
adapted to the seasonal changes of LFMC, and maps were created to visualize the LFMC
spatial evolution several months before the occurrence of a major wildfire. Although GAMs
models are capable of predicting LFMC with greater precision, models obtained with
multiple linear regression may also be adequate for mapping LFMC with a 10 m resolution
using Sentinel-2 images, due to their easy implementation and speed of calculation.
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Appendix A

Table A1. Study plots of the Valencian region, sampled species with their FCC (fraction of canopy cover)
and fuel types (T (tree); Sh (shrub)) based on Scott and Burgan models (source: http://agroambient.gva.
es/es/web/prevencion-de-incendios/models-de-combustible, accessed 16 December 2022).

Plot
id

Zone
Code

Slope
(◦)

Aspect
(◦)

Altitude
(m) Species (% FCC) Fuel

Types

1 Gilet 26.47 0.24 267.56 Pinus halepensis (99), Juniperus oxycedrus (7), Pistacia lentiscus (10),
Quercus coccifera (10), Erica multiflora (7), Ulex parviflorus (3), T

2 Gilet 25.19 166.35 254.76 Pinus halepensis (35), Rosmarinus officinalis (25), Quercus coccifera
(20), Erica multiflora (20), Pistacia lentiscus (20), Sh

http://agroambient.gva.es/es/web/prevencion-de-incendios/models-de-combustible
http://agroambient.gva.es/es/web/prevencion-de-incendios/models-de-combustible
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Table A1. Cont.

Plot
id

Zone
Code

Slope
(◦)

Aspect
(◦)

Altitude
(m) Species (% FCC) Fuel

Types

3 Gilet 16.23 229.44 309.87 Pinus halepensis (70), Rosmarinus officinalis (40), Pistacia lentiscus
(30), Phillyrea angustifolia (20), Erica multiflora (3), Sh

5 Gilet 25.87 109.90 295.04 Pinus halepensis (20), Rosmarinus officinalis (30), Quercus coccifera
(10), Phillyrea angustifolia (12), Pistacia lentiscus (17), Sh

6 Bétera 7.79 162.32 212.29 Pinus halepensis (20), Juniperus oxycedrus (10), Rosmarinus officinalis
(30), Pistacia lentiscus (7), Sh

7 Bétera 3.67 115.97 201.77 Pinus halepensis (40), Juniperus oxycedrus (20), Rosmarinus officinalis
(35), Quercus coccifera (5), Pistacia lentiscus (3), Stipa tenacissima (30), Sh

9 Bétera 7.25 232.11 182.60 Pinus halepensis (75), Rosmarinus officinalis (25), Quercus coccifera
(10), Juniperus oxycedrus (15), Pistacia lentiscus (30), Sh

11 Chelva 2.56 301.57 976.01 Pinus halepensis (35), Pinus pinaster (35), Cistus albidus (10),
Juniperus oxycedrus (30), Juniperus phoenicea (25), T

12 Chelva 4.67 190.52 751.25 Pinus halepensis (20), Rosmarinus officinalis (10), Arbutus unedo (20),
Juniperus oxycedrus (30), Erica multiflora (15), Ulex parviflorus (10), Sh

13 Chelva 12.83 351.48 950.85 Pinus halepensis (10), Quercus ilex (35), Rosmarinus officinalis (15),
Quercus coccifera (40), Juniperus oxycedrus (15), Juniperus phoenicea (10), Sh

17 Llombai 16.57 291.88 233.48 Pinus halepensis (7), Rosmarinus officinalis (30), Quercus coccifera (45),
Juniperus oxycedrus (5), Erica multiflora (15), Sh

19 Llombai 12.71 57.57 265.09 Pinus halepensis (15), Rosmarinus officinalis (25), Quercus coccifera
(35), Erica multiflora (20), Sh

20 Buñol 24.42 103.56 547.70 Pinus halepensis (20), Rosmarinus officinalis (30), Ulex parviflorus (10),
Juniperus oxycedrus (15), Quercus coccifera (5), Erica multiflora (30), Sh

21 Buñol 8.74 226.00 679.45 Rosmarinus officinalis (50), Quercus coccifera (50), Ulex parviflorus (5),
Juniperus oxycedrus (20), Erica multiflora (7), Sh

24 Buñol 14.26 338.90 678.31 Pinus halepensis (10), Rosmarinus officinalis (30), Quercus coccifera
(50), Juniperus oxycedrus (30), Erica multiflora (7), Sh

26 Cortes 2.27 23.90 878.46
Pinus halepensis (15), Pinus pinaster (25), Quercus ilex (4),

Rosmarinus officinalis (30), Quercus coccifera (3), Juniperus oxycedrus
(15), Ulex parviflorus (3), Cistus albidus (3),

Sh

27 Cortes 3.94 0.73 888.48 Pinus halepensis (5), Quercus ilex (10), Rosmarinus officinalis (20),
Quercus coccifera (20), Juniperus oxycedrus (10), Cistus albidus (3), Sh

28 Cortes 11.36 107.12 889.76 Quercus ilex (15), Rosmarinus officinalis (10), Quercus coccifera (30),
Juniperus oxycedrus (10), Cistus albidus (3), Sh

29 Cortes 1.34 35.61 888.53 Pinus pinaster (25), Rosmarinus officinalis (15), Ulex parviflorus (10),
Juniperus oxycedrus (15), Cistus albidus (5), T

30 Cortes 6.11 37.02 914.79 Pinus pinaster (40), Quercus ilex (10), Rosmarinus officinalis (20),
Quercus coccifera (5), Juniperus oxycedrus (10), T

31 Cortes 1.29 45.73 923.08 Pinus halepensis (10), Pinus pinaster (30), Rosmarinus officinalis (5),
Ulex parviflorus (30), Juniperus oxycedrus (15), T

32 Cortes 3.91 2.85 871.40 Quercus ilex (15), Rosmarinus officinalis (7), Quercus coccifera (10),
Ulex parviflorus (3), Juniperus oxycedrus (20), Sh

33 Cortes 5.10 12.81 847.77 Pinus pinaster (30), Quercus ilex (15), Rosmarinus officinalis (5),
Quercus coccifera (20), Cistus albidus (15), Ulex parviflorus (15), Sh

34 Gandía 8.50 182.50 565.68 Quercus ilex (20), Ulex parviflorus (30), Cistus ladanifer (20), Quercus
coccifera (30), Sh
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Table A1. Cont.

Plot
id

Zone
Code

Slope
(◦)

Aspect
(◦)

Altitude
(m) Species (% FCC) Fuel

Types

35 Gandía 22.52 92.12 574.48 Quercus ilex (20), Erica multiflora (10), Quercus coccifera (60),
Rosmarinus officinalis (30), Cistus ladanifer (5), Sh

36 Gandía 16.12 359.45 387.20 Pinus pinaster (30), Pinus halepensis (40), Pistacia lentiscus (10), Ulex
parviflorus (5), Erica multiflora (5), T

38 Gandía 15.51 337.72 522.84 Quercus ilex (30), Pinus halepensis (30), Rosmarinus officinalis (5),
Pistacia lentiscus (20), T

39 Gandía 23.92 357.03 539.78 Quercus ilex (50), Ulex parviflorus (5), Quercus coccifera (30), Erica
multiflora (10), Pistacia lentiscus (10), Sh

41 Gandía 27.93 346.48 398.71 Quercus ilex (20), Erica multiflora (20), Quercus coccifera (40), Pistacia
lentiscus (5), Ulex parviflorus (10), Sh

42 Gandía 17.11 164.26 537.48 Pinus halepensis (60), Pinus pinaster (40), Rosmarinus officinalis (5),
Quercus coccifera (70), Pistacia lentiscus (10), T

43 Montanejos 10.44 179.61 633.96 Pinus halepensis (50), Rosmarinus officinalis (10), Juniperus oxycedrus
(10), Juniperus phoenicea (5), Ulex parviflorus (5), T

44 Montanejos 10.63 292.88 659.67 Pinus halepensis (50), Rosmarinus officinalis (10), Juniperus oxycedrus
(10), Juniperus phoenicea (5), Ulex parviflorus (5), T

46 Montanejos 4.55 271.80 779.02 Pinus halepensis (30), Rosmarinus officinalis (20), Juniperus oxycedrus
(5), Ulex parviflorus (20), T

63 Sant
Mateu 16.81 335.56 419.00 Quercus ilex (3), Quercus coccifera (80), Pistacia lentiscus (5), Sh

64 Sant
Mateu 20.85 246.80 550.00 Quercus coccifera (70), Sh

68 Sant
Mateu 8.29 120.96 497.00 Rosmarinus officinalis (3), Quercus coccifera (90), Pistacia lentiscus (3), Sh

71 Torre
Maçanes 11.22 189.46 1006.54 Quercus ilex (30), Quercus coccifera (30), Cistus albidus (10), Sh

72 Torre
Maçanes 13.38 148.38 1048.40 Rosmarinus officinalis (30), Quercus coccifera (30), Juniperus oxycedrus

(10), Ulex parviflorus (10), Erica multiflora (30), Quercus ilex (30), Sh

74 Vall de
Gallinera 11.85 103.90 697.20 Rosmarinus officinalis (50), Ulex parviflorus (10), Erica multiflora (30),

Cistus ladanifer (10), Sh

75 Vall de
Gallinera 11.83 179.03 648.86 Rosmarinus officinalis (30), Ulex parviflorus (10), Erica multiflora (30),

Cistus ladanifer (10), Pistacia lentiscus (20), Sh

76 Vall de
Gallinera 9.50 150.83 558.85 Rosmarinus officinalis (30), Ulex parviflorus (20), Erica multiflora (20),

Pistacia lentiscus (10), Sh

77 Vall de
Gallinera 9.34 112.17 571.10 Rosmarinus officinalis (40), Ulex parviflorus (20), Erica multiflora (20),

Cistus ladanifer (10), Pistacia lentiscus (5), Sh

78 Vall de
Gallinera 4.47 222.46 512.08 Pinus halepensis (30), Pinus pinaster (20), Rosmarinus officinalis (20),

Ulex parviflorus (5), Pistacia lentiscus (20), T

79 Vall de
Gallinera 7.95 204.62 496.05 Pinus pinaster (20), Quercus ilex (10), Ulex parviflorus (5), Pistacia

lentiscus (20), Erica multiflora (5), T

82 Biar 18.21 234.81 873.23 Pinus halepensis (10), Rosmarinus officinalis (2), Quercus coccifera (20),
Juniperus oxycedrus (2), Ulex parviflorus (5), T

83 Biar 8.57 318.89 847.36 Pinus pinea (45), Quercus coccifera (10), Juniperus oxycedrus (15),
Ulex parviflorus (30), T

84 Biar 6.51 35.49 829.15 Pinus halepensis (70), Rosmarinus officinalis (10), Juniperus oxycedrus
(5), Ulex parviflorus (10), T
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Table A1. Cont.

Plot
id

Zone
Code

Slope
(◦)

Aspect
(◦)

Altitude
(m) Species (% FCC) Fuel

Types

86 Bernia 15.41 316.73 618.69 Cistus ladanifer (20), Quercus coccifera (30), Pistacia lentiscus (10),
Cistus albidus (20), Ulex parviflorus (10), Sh

87 Bernia 23.69 176.65 533.21 Rosmarinus officinalis (20), Juniperus oxycedrus (20), Pistacia lentiscus
(20), Cistus albidus (10), Ulex parviflorus (5), Cistus ladanifer (5), Sh

88 Bernia 17.81 102.51 619.54 Pinus halepensis (30), Rosmarinus officinalis (20), Juniperus oxycedrus
(20), Ulex parviflorus (10), Sh

Table A2. Groups of study plots of the Valencian region, according to bioclimatic zone.

Code Fuel
Types Plots (Number of Table A1)

Group 1:
Thermo-Mediterranean

Shrub 2, 3, 5, 6, 7, 9, 17, 19, 34, 35, 39, 41, 74, 75, 76, 77, 86, 87, 88
Tree 1, 36, 38, 42, 78, 79

Group 2:
Meso-Mediterranean

Shrub 12, 13, 20, 21, 24, 26, 27, 28, 32, 33, 63, 64, 68, 71, 72
Tree 11, 29, 30, 31, 43, 44, 46, 82, 83, 84

Table A3. Validation plots of the Valencian region, sampled species with their FCC (fraction of canopy
cover) and fuel types (T (tree); Sh (shrub)) based on Scott and Burgan models (source: http://agroambient.
gva.es/es/web/prevencion-de-incendios/models-de-combustible, accessed 16 December 2022).

Plot
Id

Zone
Code

Slope
(◦)

Aspect
(◦)

Altitude
(m) Species (% FCC) Fuel

Types

10 Chelva 28.5 201 951 Pinus halepensis (55), Juniperus oxycedrus (20), Quercus coccifera (20),
Rosmarinus officinalis (15), Juniperus phoenicea (15), Sh

15 Llombai 19.7 226 320 Pinus halepensis (70), Rosmarinus officinalis (20), Quercus coccifera
(35), Erica multiflora (20), Rhamnus lycioides (10), Sh

18 Llombai 10.6 206 290 Pinus halepensis (75), Rosmarinus officinalis (10), Quercus coccifera
(15), Pistacia lentiscus (20), Ulex parviflorus (7), Erica multiflora (25), Sh

65 Sant
Mateu 12.6 63 564 Rosmarinus officinalis (30), Quercus coccifera (60), Sh

81 Biar 23.4 256 946 Juniperus oxycedrus (5), Rosmarinus officinalis (15),
Ulex parviflorus (5), Sh

137 Chelva 17.92 230.89 839.95 Pinus halepensis (30), Quercus ilex (5), Rosmarinus officinalis (50),
Quercus coccifera (5), Ulex parviflorus (1), Juniperus oxycedrus (20) Sh

Table A4. Regression model coefficients, parameters, and statistics for the Rosmarinus officinalis
species in the shrub study plots using a mixed model considering the zone code as a factor with
random effects.

G 1 Ft 2 Sp 3 Formula Coef 4 p Value R2 adj 5 (%) RMSE MAE VIF

1 Sh 6 Ro 7

Intercept
Bernia
Betera
Gandía
Gilet
Llombai
OSAVI_10mS
Mean_EVI_10mS
DOY_SIN
p60

91.32
8.31
−8.30
−10.76
−4.41
5.45
215.45
−253.3
−27.61
0.25

<2×10−16

<2×10−16

<2×10−16

<2×10−16

<2×10−16

<2×10−16

<2×10−16

0.001
<2×10−16

<2×10−16

59.50 27.56 21.45

-
2.47
3.03
6.55
2.00
2.42
2.85
5.06
1.04
1.44

http://agroambient.gva.es/es/web/prevencion-de-incendios/models-de-combustible
http://agroambient.gva.es/es/web/prevencion-de-incendios/models-de-combustible
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Table A4. Cont.

G 1 Ft 2 Sp 3 Formula Coef 4 p Value R2 adj 5 (%) RMSE MAE VIF

2 Sh Ro

Intercept
Buñol
Chelva
Cortes
Sant Mateu
Vgreen_10mS
NMDI_10mS
DOY_SIN
p60
slope

40.45
−11.28
−7.38
10.72
13.93
79.05
163.67
−23.58
0.15
Re 8

<2×10−16

<2×10−16

<2×10−16

<2×10−16

<2×10−16

<2×10−16

<2×10−16

<2×10−16

<2×10−16

>0.05

55.42 22.28 17.67

-
1.25
1.23
1.23
1.45
1.16
1.35
1.14
1.13

-
1 G: group; 2 Ft: fuel type; 3 Sp: specie; 4 Coef: model coefficients; 5 R2 adj: adjusted R2; 6 Sh: shrub; 7 Ro: LFMC
of Rosmarinus officinalis; 8 Re: this variable has been removed from the model.

Table A5. Proportion of observations that were within the 50% bounds on the predictions. These
were calculated within the intervals of LFMC.

Intervals of LFMC Field
Measures

Proportion of Observations
within 50% Bounds of

Predictions for
Shrub—Rosmarinus
officinalis—Group 2

Proportion of Observations
within 50% Bounds of

Predictions for
Shrub—Weighted
average—Group 2

35–59.9 100% 100% (with a single data)

60–79.9 58.54% 61.86%

80–99.9 25.86% 31.76%

100–119 47.12% 20.39%

120–139.9 48.94% 92.86%

140–159.9 39.13% 100% (with a single data)

160–179.9 64.52% without any data

180–199.9 100% without any data

200–220 100% without any data
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