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Abstract: In the team orienteering problem, a fixed fleet of vehicles departs from an origin depot
towards a destination, and each vehicle has to visit nodes along its route in order to collect rewards.
Typically, the maximum distance that each vehicle can cover is limited. Alternatively, there is a
threshold for the maximum time a vehicle can employ before reaching its destination. Due to this
driving range constraint, not all potential nodes offering rewards can be visited. Hence, the typical
goal is to maximize the total reward collected without exceeding the vehicle’s capacity. The TOP can
be used to model operations related to fleets of unmanned aerial vehicles, road electric vehicles with
limited driving range, or ride-sharing operations in which the vehicle has to reach its destination on
or before a certain deadline. However, in some realistic scenarios, travel times are better modeled as
random variables, which introduce additional challenges into the problem. This paper analyzes a
stochastic version of the team orienteering problem in which random delays are considered. Being
a stochastic environment, we are interested in generating solutions with a high expected reward
that, at the same time, are highly reliable (i.e., offer a high probability of not suffering any route
delay larger than a user-defined threshold). In order to tackle this stochastic optimization problem,
which contains a probabilistic constraint on the random delays, we propose an extended simheuristic
algorithm that also employs concepts from reliability analysis.

Keywords: team orienteering problem; probabilistic constraints; simheuristics; reliability analysis

MSC: 68T20; 90-08; 90-10; 90Bxx; 90B06; 62Nxx

1. Introduction

The team orienteering problem (TOP) has been used to model operational challenges
related to unmanned aerial vehicles (UAVs) [1] as well as road electric vehicles and ride-
sharing mobility actions in smart cities [2]. In this paper, we tackle the team orienteering
problem with probabilistic delays (TOP-PD). As illustrated in Figure 1, we consider the
realistic situation in which travel times Tij between any pair of nodes i and j (i 6= j) in a set
V might be subject to uncertainty due to the existence of a random delay δij > 0. Using
historical data, it will be assumed that we have been able to model each δij by a best-fit
probability distribution. Thus, Tij is composed of the minimum time required to travel
from node i to node j (tij) under ideal circumstances (e.g., no traffic jams, excellent weather
conditions, etc.) which will be positive and a δij. In our TOP-PD, a fixed fleet of k > 1
vehicles departs from a common origin location o ∈ V and has to reach a common finish
location f ∈ V on or before a given deadline d strictly greater than the maximum of the
expected values of Tij, ∀i, j ∈ V. Vehicles can visit some of the available nodes in V along
their trip, thus collecting the corresponding reward. Thus, a reward ri > 0 is obtained
the first time node i ∈ V \ {o, f } is visited by any vehicle (notice that re-visiting a node
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does not provides any further reward; hence, it only makes sense to include a node in at
most one route). Therefore, our main goal is to maximize the total reward collected by the
fleet. However, while designing our routing plans, we will also need to guarantee a certain
reliability level, i.e., the proposed solution is required to have a low probability of suffering
delays under a user-specified threshold, p. This probabilistic constraint, which might appear
in many real-life applications, introduces noticeable challenges in the optimization problem.

Figure 1. A team orienteering problem with probabilistic delays.

As an effective way to solve such a challenging optimization problem, we propose the
hybridization of a simheuristic algorithm [3] and concepts from reliability analysis [4,5].
Using this extension of the simheuristic concept, we can generate the survival function
associated with each TOP-PD solution. This function shows the probability that the routing
plan experiences a delay of any size.

When using historical observations about delays in travel times, censored data might
appear. Thus, for instance, we might know that a certain trip between two nodes suffered a
delay between 5 and 10 min, but the exact value of that delay might not have been recorded.
In the presence of such censored data, it is usual to employ the Kaplan–Meier method to
obtain the survival function. Specifically, Kaplan–Meier is a non-parametric statistic used
to estimate the survival function of censored time-to-event data [6].

The main contributions of this paper are summarized next: (i) It proposes a new
stochastic version of the TOP in which a probabilistic constraint linked to the delay times is
included in the model; and (ii) it proposes a solving approach that combines a simheuristic
algorithm with reliability concepts so that probabilistic information on delays can be
considered even in the presence of censored data. The remaining sections of the paper
are structured as follows: Section 2 briefly reviews related articles on the TOP as well
as on simheuristic algorithms in routing problems. Section 3 provides a formal model
of the considered problem. Section 4 describes the proposed simheuristic algorithm and
its structure. Section 5 carries out a series of computational experiments to illustrate the
performance of the proposed algorithm, while Section 6 analyzes the obtained results.
Finally, the main findings and future research lines are given in Section 7.

2. Related Work

This section briefly reviews the existing literature on the team orienteering problem
and also on the use of simheuristics to solve routing problems.
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2.1. The Team Orienteering Problem

The Team Orienteering Problem is a variant of the well-known Vehicle Routing Prob-
lem (VRP). The main difference between the TOP and the VRP is that in the latter, a fleet
of vehicles has to service all the customers trying to minimize the total cost, while the
TOP aims to maximize the reward from a team of vehicles visiting a selection of nodes
where there is a constraint on either the distance each vehicle can travel or the time that
they are traveling [7,8]. It is likely that not all the customers can be visited; thus, the
proper selection of the customers to be included in each vehicle’s route, as well as the
order in which they have to be visited, constitute a challenge for the decision maker.
Golden et al. [9] introduced the Orienteering Problem, and Chao et al. [10] proposed the
classical version of TOP, a multi-vehicle extension of the original problem. These problems
are NP-hard, and the the literature shows that deterministic versions of the TOP are chosen
by many researchers, employing both exact [11] or approximate [12] methods. On the other
hand, stochastic versions have not gained as much coverage to date mostly because of the
increased difficulty entailed.

The following are some of the papers that focus on the exact methods for solving
deterministic TOPs: Branch-and-Cut [13,14], Branch-and-Price [11,15–17], Branch-And-Cut-
And-Price [11], Cutting Planes [18], and Column Generation [19], In the last case, optimal
solutions were also for mid-sized problems with up to 100 vertices. The main problem
with exact methods is that the size of the TOP instances it can solve is usually reduced to a
few hundred nodes, so many proposed metaheuristics can cope with large instances and
reduce computational times to find near optimal solutions for the TOP problem. It includes
Tabu Search [12,20], Variable Neighborhood Search algorithms [21], Greedy randomized
adaptive search procedure with path re-linking [22], Ant Colony [23], Particle Swarm
Optimization [13], Lion Optimization Algorithm [24], Simulated Annealing [25], Memetic
Algorithm [26], Pareto Mimic Algorithm [27], Guided Local Search [21], Hybrid Harmony
Search [28], or Genetic Algorithms [29,30]. These approaches improve the results obtained
by the former heuristics, but the computational time to obtain a near-optimal solution
also increases.

Although the stochastic TOP is more realistic than its deterministic alternative, it has
been minimally studied in recent years. The case of a TOP with stochastic travel times is
discussed in Panadero et al. [31], and they also suggest a simheuristic algorithm, which
combines a Variable Neighbourhood Search (VNS) metaheuristic with a Monte Carlo simu-
lation to handle stochastic TOP efficiently. Similarly, a genetic programming hyperheuristic
to solve a stochastic TOP with time windows is proposed in Mei and Zhang [32], where
the service times at each node are then modeled as random variables. A subscription
delivery problem as a stochastic TOP with time windows and consistency in the driver
assigned to each customer is analyzed in Song et al. [33]. Some studies also refer to the
Orientation Problem (OP) with stochastic approximations, given it is a simplified version
of the TOP but considering only one path. In this direction, Bian and Liu [34] discuss the
stochastic orientation problem at the operational level, where travel and service times are
stochastic. The routing schedule can be refined in real time so that the collected reward and
the probability of the vehicle arriving on time can be enhanced. Another extension of the
OP with stochastic travel times is discussed in Dolinskaya et al. [35], in which it is feasible to
boost the probability of gathering a higher reward by adapting the routes between reward
nodes as travel times are revealed. In addition, Dolinskaya et al. [35] discuss an extension
of the OP by considering stochastic travel times, increasing the probability of obtaining
more reward as soon as travel times are known and then adapting the routes between
reward nodes.

2.2. Using Simheuristics in Routing Problems

There is a lot of research conducted on the combination of simulation and metaheuristic
optimization, also called simheuristics. Hence, for instance, Quintero-Araujo et al. [36]
apply simheuristics and a horizontal collaboration strategy to analyze the cost reduction of
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urban transportation modes under uncertainty. Two scenarios are defined: collaborative
(modeled as one multi-depot VRP) and non-collaborative (modeled as a set of VRPs). As an
example, garbage collection can be posed as a deterministic problem, and Gruler et al. [37]
studied how to provide a solution for collecting waste in smart cities. For this purpose, they
developed a metaheuristic algorithm based on a variable neighborhood search framework.
This problem could be extended to a stochastic version and use simheuristics to solve
it, including a risk analysis taking into account the variance of the waste levels and the
maximum capabilities of the vehicle.

VRP has variants, such as the two-dimensional vehicle routing problem (2L-VRP)
and Guimarans et al. [38] solved its stochastic version. For the case of electric vehicles,
Reyes-Rubiano et al. [39] solved the VRP problem. In this case, the constraints additionally
included a limited driving range, and both the driving range of an electric vehicle and
the travel time were considered stochastic. A fuzzy layer can also be considered, as in
Tordecilla et al. [40], so it combines simulation, metaheuristics, and fuzzy logic to handle
the fuzzy uncertainty of travel times and customer demands. Other uncertainty in problem
features could be characterized as a correlation between different elements of the problem.
Stochastic and correlated customer demand in the VRP is analyzed in Latorre-Biel et al. [41],
and simheursitics are used to solve it. Optimization problems often use simulation, but
it is an expensive tool. This is why simulation should be used only when necessary to
reduce the overall computational time and still obtain promising solutions. Rabe et al. [42]
reviewed many ideas about the number of simulation runs and the need for them. Although
their work focuses on a manufacturing system, analogous work is possible to have similar
approaches in transportation and logistics.

3. Modeling the TOP with Probabilistic Delays

The TOP with probabilistic delays that was introduced before can be formalized as
follows. Let us assume an undirected graph G = (V, E), where: (i) V = {1, 2, . . . , n} ∪
{o, f } includes a set of n nodes, a starting node o, and an end node f ; and (ii) E is the
set of edges (i, j), with i 6= j, connecting nodes i ∈ V \ { f } and j ∈ V \ {o}. There is a
fixed fleet of k ≥ 1 vehicles initially located at o. In addition, there is a maximum time or
deadline, d > 0, for completing each route (from o to f ). The first time a node i ∈ V \ {o, f }
is visited, a reward ri > 0 is collected, while ro = r f = 0. Each edge (i, j) ∈ E has an
associated travel time, Tij = tij + δij > 0, where tij > 0 is the minimum time required to
traverse the edge in ideal travel conditions, and δij ≥ 0 is a random variable representing a
possible delay time. It is assumed that tij = tji and also that δij and δji are the same random
variable. Notice, however, that the proposed approach could still be employed even if
these assumptions were not made (they simply allow us to reduce the size of the problem
and are frequently employed in the related literature). A solution to the TOP is a set of
routes departing from o, visiting a subset of nodes in a specified order and arriving at f .
In order for a solution to be feasible, the probability that the maximum time employed
by any route does not exceed the deadline d, plus a user-defined delay ε ≥ 0, has to be
lower than a user-defined threshold p ∈ (0, 1), which represents an upper bound to the
probability of suffering delays in a specific routing plan. Let us consider the binary decision
variable xij, which takes the value 1 if the edge (i, j) ∈ E is used by a vehicle to collect
the reward at node j, and 0 otherwise. In addition, let us define the random variable Wj,
which represents the total travel time that the vehicle has spent after visiting node j. We
will assume that Wj can be modeled according to a non-negative probability distribution,
such as the Weibull, Gamma, or Log-Normal ones. Since uncertainty is present in most
real-life processes and systems, considering random processing times represents a more
realistic scenario than simply considering deterministic times. Then, the objective function
is given by the maximization of the collected reward:

max ∑
(i,j)∈E

ri xij (1)
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This objective function is subject to the following constraints:

∑
j∈V\{o}

xij ≤ 1 ∀i ∈ {1, 2, . . . , n} (2)

∑
i∈V\{ f }

xij ≤ 1 ∀j ∈ {1, 2, . . . , n} (3)

∑
j∈N\{ f }

xji = ∑
j∈N\{o}

xij ∀i ∈ {1, 2, . . . , n} (4)

n

∑
j=1

xoj =
n

∑
i=1

xi f (5)

∑
j=1

xoj ≤ k (6)

P(Wj > d + ε) < p ∀j ∈ V \ {o} (7)

Wi xij + Tij xij −Wj xij = 0 ∀i ∈ V \ { f }, ∀j ∈ V \ {o, i} (8)

∑
i∈V

xii + xo f = 0 (9)

xij ∈ {0, 1} ∀(i, j) ∈ E (10)

Wi > 0 ∀i ∈ V \ {o} (11)

If we denote as intermediate nodes those that differ from o and f , Constraints (2)
and (3) impose that each intermediate node has at most one edge departing from it or
entering it, respectively. In addition, Constraint (4) imposes that, for each intermediate
node, the number of incoming edges is equal to the number of outgoing edges (due to
the previous constraints, this value will be either 0 or 1). Constraint (5) ensures that the
number of routes starting at the origin node is the same as the number of routes arriving at
the sink node. Constraint (6) forces that the number of routes must be less than or equal
to the number of available vehicles k. Two constraints, (7) and (8), are introduced for both
the connectivity of the solution and the probabilistic constraint on the maximum delay
allowed. Constraint (9) avoids degenerated routes with undesirable loops and connections.
Finally, Constraints (10) and (11) define the range of the model variables.

4. An Extended Simheuristic with Reliability Concepts

To tackle the stochastic optimization problem described in the previous section, we pro-
pose a simheuristic algorithm. Our method combines biased-randomized techniques [43]
with simulation techniques to deal with the stochastic nature of the problem. The main
characteristics of our approach are explained next.

4.1. A Biased-Randomized Algorithm for the Deterministic TOP

In order to address the deterministic version of the problem, we use a constructive
heuristic that employs biased randomization techniques, allowing us to extend the de-
terministic heuristic into a probabilistic one while still preserving the logic behind the
heuristic. Given the graph G previously described, the heuristic starts by generating an
efficiency list of edges (i, j) ∈ E. Notice that each edge has two different arcs depending
on the direction in which the edge is traversed. Afterwards, this list is sorted using an
efficiency criterion, defined as a linear combination of the travel time required to traverse
each edge (i, j) and the aggregated reward generated by visiting the two extreme nodes, i
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and j. Algorithm 1 depicts the main procedure to compute the efficiency list. This function
receives as parameters the set of nodes (including the origin and destination nodes) and
a tuning parameter α ∈ (0, 1). This parameter is set for each instance, and its value will
depend upon the heterogeneity level of the reward values in each particular instance. Thus,
for instances with a high heterogeneity level, α will tend to be chosen close to zero, while
for instances with a low heterogeneity level, α will be close to one. The function starts by
assigning the starting and destination nodes. Next, the edges connecting node o with each
node i ∈ V \ {o, f }, as well as edges connecting each node i with the destination node f ,
are defined. At this point, the heuristic computes the ‘enriched savings’ value (efficiency
criterion) for each pair of nodes (i, j) ∈ E, with i, j ∈ V \ {o, f }, as follows. First, the cost of
the edge is computed using the Euclidean distance. Then, the aggregated reward of the
edge is computed as well. The formula to compute the efficiency value associated with an
edge (i, j) is expressed as sij = α(ti f + toj − tij) + (1− α)(ri + rj), where tij represents the
traveling time between i and j, and (ri + rj) accounts for the aggregated reward. Finally,
the efficiency list is sorted from higher to lower.

Algorithm 1 Computing the efficiency list.
1: input:
2: V: list of nodes without origin and end nodes
3: o: starting node
4: f: destination node
5: end input
6: efficiencyList← ∅
7: k← getLength(V)
8: for n ∈ {1, . . ., k} do
9: node← getNode(n)

10: onEdge← Edge(o, node)
11: nfEdge← Edge(node, f)
12: onEdgeCost← computeEuclideanDistance(o, node)
13: nfEdgeCost← computeEuclideanDistance(node, f)
14: end for
15: for i ∈ {1, . . ., k− 2} do
16: iNode← getNode(i)
17: for j ∈ {i + 1, . . ., k− 1} do
18: jNode← getNode(j)
19: ijEdge← Edge(iNode, jNode)
20: jiEdge← Edge(jNode, iNode)
21: ijEdgeCost← computeEuclideanDistance(iNode, jNode)
22: setCost(ijEdge,ijEdgeCost)
23: setCost(jiEdge,ijEdgeCost)
24: ijEfficiency← computeEfficiency(iNode, jNode)
25: jiEfficiency← computeEfficiency(jNode, iNode)
26: efficiencyList← appendEdges(ijEdge, jiEdge)
27: sortEfficiencyList
28: end for
29: end for
30: return efficiencyList

Once the efficiency list has been computed, the heuristic generates an initial ‘dummy’
solution, which assigns one ‘virtual’ vehicle per pick-up node, using as many of these
virtual vehicles as the number of nodes in the problem. Specifically, in this ‘dummy’
solution, each virtual vehicle starts from the origin node o, visits a pick-up node, and then
continues its trip towards the destination node f . Next, an iterative merging process starts:
edges are selected from the sorted list, and the associated routes are merged as long as this
merge does not violate any capacity or time constraint. Finally, the list of merged routes
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is decreasingly sorted according to the total reward. Routes with the highest rewards are
selected, and the number of selected routes equals the number of available vehicles in the
fleet. This constitutes an initial routing plan for the deterministic version of the problem.

The greedy heuristic described above can be extended into a probabilistic algorithm by
using a skewed probability distribution during the edge-selection process. Hence, higher-
efficiency edges are more likely to be ranked at the top of the list. This process lets edges be
selected in a different order at each iteration of the process, while still preserving the flavor
of the heuristic. In our case, a geometric probability is used to induce this skewed behavior.
This allows us to quickly generate a huge number of good alternative solutions based on
the efficiency criterion defined by the heuristic [43].

4.2. A Simheuristic for the Stochastic TOP-PD

To solve the stochastic version of the problem, the biased-randomized heuristic de-
scribed previously was extended into a complete simheuristic approach. Thus, the biased-
randomized algorithm was integrated into a multi-start framework and combined with
a Monte Carlo simulation (MCS) to efficiently estimate the expected time employed by
each ‘promising’ solution proposed by the optimization component. First, a feasible initial
solution was generated using the greedy version of the heuristic. Then, during a second
stage, the muti-start schema tried to improve the initial solution by iteratively exploring
the search space using the biased-randomized algorithm. The solutions generated using
this methodology are deterministic and do not consider uncertainty. To deal with the
stochastic nature of the problem, we include two simulation processes in different stages
of our algorithm. In the first case, we conducted a short number of MCS runs to compute
the expected travel time whenever the deterministic cost of the new generated solution
improved the best-found solution so far. If the new solution also improved the stochastic
cost of the best solution, the latter was updated and added to the pool of ‘elite’ solutions,
i.e., those solutions that are among the best in stochastic cost. We limited the size of this
pool to ensure that we only keep the elite solutions as the algorithm evolves.

This TOP-PD contains a probabilistic constraint, which allows the user to specify a
delay parameter p, so that solutions have a probability smaller than p to experience a
delay. If Tv represents the total time invested by vehicle v ∈ {1, 2, . . . , k} in completing
its assigned route, then P(max{T1, T2, . . . , Tk} > d′) < p, where d′ = d + ε and ε ≥ 0.
For its implementation, a parameter γ will be introduced in the construction phase of the
algorithm; γ represents an amount of time that will be subtracted from the allowed duration
of any route. This ‘safety stock’ of time will help to satisfy the probabilistic constraint, i.e.,
that the probability of delay remains under p. Taking into account that our initial deadline
is d′, if one of the routes in a solution takes longer than d′ to finish, that extra time is the
delay the solution is incurring. Altogether, the procedure goes as follows:

1. The heuristic provides the deterministic solution for a γ = 0. This is, we allow the
routes to have maximum duration.

2. If after a short simulation the probability of the solution incurring in a delay is greater
than p, we will slightly increase γ. Therefore, the new deadline taken to construct the
solutions will be d′′ = d′ − γ, with γ < d′ and γ ≥ 0. Note that when a γ is found
such that P(max{T1, T2, . . . , Tk} > d′) < p, it will be saved (best_γ), so the future
solutions created by the algorithm will have deadline d′ − best_γ.

This procedure is represented in Figure 2. In conclusion, by limiting the routes’ maxi-
mum time, the probability of delay is reduced, since we force the algorithm to create routes
with a tighter deadline d′′ ≤ d′, thus including less nodes and reducing the probability
of having routes with a duration greater than d′. At the final phase of the simheuristic,
only solutions with probability of delay smaller than p will be included in the elite pool of
best solutions.
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P(max{T , T ,..., T } > d') < p?

best_γ = 0
γ = 0

best_γ = γ

Deterministic solution
given by the heuristic

with deadline d'

Yes

No

Short simulation

Start

End

Increase γ slightly
d' = d' − γ

1 2 k

Figure 2. γ flowchart.

Algorithm 2 provides an example of how a ‘promising’ solution could be evaluated
under a stochastic scenario to compute the expected reward collected by the fleet of vehicles.
First, the function initializes the auxiliary variables to compute the expected profit of the
solution totalProfit. Then, the simulation runs are performed. Notice that the number
of runs is an input parameter defined by the user. For each run, the function computes
the time to complete each route of the solution, as well as its associated expected profit.
Thus, the expected travel time is a summation of the deterministic travel time (tij) to cross
an edge eij and an estimated travel delay (δ), which is a random value according to the
corresponding probability distribution. This result is accumulated into the route travel time.
Notice that under stochastic travel times, the routes’ duration might be long enough to
exceed the deadline, therefore incurring certain delay. Since we are interested in avoiding
this behavior, every time a route exceeds the deadline we will force it to lose all of its profit.
This way, the algorithm will prioritize solutions that are not that likely to experience delays,
since after the simulation they will obtain a smaller reward and therefore be excluded.
Back in Algorithm 2, the average reward is computed and stored. Rabe et al. [42] offer a
discussion on how more advanced simheuristic algorithms can be designed.

Once the first stage of the algorithm is finished, we carry out a large number of MCS
runs to better assess the elite solutions of the pool before reporting the final results. Finally,
the pool of solutions is sorted by the stochastic reward and the solution with the highest
expected reward is returned. Since the number of generated solutions during the search
can be large, and the simulation process is time-consuming, we limited the number of MCS
runs in the first stage. In particular, we set up the number of runs for the exploratory and
intensive MCS stages to 100 and 10,000, respectively.
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Algorithm 2 Simulating a solution.
1: input:
2: numberSimulations: simulations runs
3: solutionRoutes: routes of the solution
4: deadline: upper time limit for all the routes
5: end input
6: stochasticProfit← 0
7: totalProfit← 0
8: k← getLength(solutionRoutes)
9: for i ∈ {1, . . ., numberSimulations} do

10: simProfit← 0
11: for r ∈ {1, . . ., k} do
12: route← getRoute(r)
13: routeEdges← getEdges(route)
14: profit← 0
15: routeDuration← 0
16: n← getLength(routeEdges)
17: for e ∈ {1, . . ., n} do
18: edge← getEdge(routeEdges, e)
19: customer← getEndNodeInEdge(edge)
20: customerProfit← getCustomerProfit(customer)
21: if customerProfit > 0 then
22: δ← getStochasticValue
23: edgeDuration← getDuration(edge)
24: routeStochasticDuration← edgeDuration + δ
25: routeDuration← routeDuration + routeStochasticDuration
26: profit← profit + customerProfit
27: end if
28: end for
29: if routeDuration > deadline then
30: profit← 0
31: end if
32: simProfit← simProfit + profit
33: end for
34: totalProfit← totalProfit + simProfit
35: end for
36: totalProfit← totalProfit/numberSimulations
37: stochasticProfit← totalProfit
38: return stochasticProfit

5. Computational Experiments

The proposed simheuristic was implemented in Python 3.8 and executed in a worksta-
tion with an Intel(R) Xeon(R) processor at 3.2 GHz with 64 GB of RAM memory. To carry
out the experiments, we adapted the well-known deterministic benchmarks proposed in
Chao et al. [10]. These benchmark contain a total of 320 instances, which are divided in
7 different subsets. The instances are identified following the nomenclature ‘pa.b.c’, where
‘a’ represents the subset, ‘b’ defines the number of available vehicles, and ‘c’ identifies
the specific instance under study. To adapt them to the stochastic context, we considered
random travel times, Tij, instead of the original deterministic travel times, tij > 0. These
random travel times increase the deterministic ones by adding a random delay associated
with each edge, δij > 0, i.e., Tij = tij + δij. Due to their characteristics, the Weibull, Gamma,
and Log-Normal probability distributions are frequently used to model positive processing
times [44]. Still, among these, the Weibull distribution is usually preferred in reliability
analyses due to its extraordinary flexibility [45]. For this reason, in our experiments we
assumed that delays will follow a Weibull distribution with parameters α = 5 and β = 5.
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In a real-life scenario, the specific probability distribution can be fitted from historical data,
which allows for obtaining the best-fit probability distribution as well as its parameters.

Table 1 shows a summary of the computational results. We calculated the solutions
under the constraint that the probability of delay cannot exceed p = 0.4. In practice, this
means that the solution’s routes will finish on time with a probability of 0.6 or higher. It can
be seen that under a deterministic scenario with fixed travel times, the best deterministic
solution always obtains the maximum reward (OBD column). However, when we simulate
the best deterministic solution with stochastic travel times, the results change; it can be
seen in column OBD-S that the reward decreases drastically. On the other hand, under a
stochastic scenario, the best stochastic solution (OBS) outperforms the OBD-S. This effect
can be clearly visualized in Figure 3.

Table 1. Computational results.

Instance
Deterministic Stochastic Gap w.r.t. OBD (%)

OBD OBD (time) OBD-S OBS OBS (time) OBD-S OBS

p2.3.h 160.0 2.2 53.1 140.5 30.8 66.8 13.8
p2.3.j 200.0 0.0 38.5 176.0 1.1 80.7 13.6
p2.4.e 70.0 0.0 62.6 69.6 17.0 10.6 0.6
p3.3.g 250.0 8.9 130.0 240.0 30.3 48.0 4.2
p3.3.m 440.0 15.7 126.9 410.0 0.5 71.2 7.3
p3.4.e 140.0 0.0 139.1 139.2 0.0 0.7 0.6
p3.4.m 370.0 0.2 191.1 360.0 126.9 48.3 2.8
p4.3.e 312.0 38.9 94.0 293.4 16.7 69.9 6.4
p4.3.g 427.0 0.1 297.0 385.6 0.0 30.4 10.7
p4.4.f 253.0 0.4 198.1 237.3 22.4 21.7 6.6
p4.4.g 291.0 0.5 212.7 255.5 8.3 26.9 13.9
p4.4.h 393.0 47.5 175.0 355.2 144.1 55.5 10.6
p4.4.m 625.0 0.2 527.8 535.6 0.0 15.6 16.7
p5.3.e 95.0 0.1 61.8 81.7 0.0 35.0 16.3
p5.3.h 230.0 0.8 178.9 209.1 2.0 22.2 10.0
p5.3.m 590.0 172.5 170.0 495.0 6.2 71.2 19.2
p5.3.n 660.0 1.3 169.6 575.5 37.7 74.3 14.7
p5.4.m 540.0 2.1 238.9 479.7 47.6 55.8 12.6
p6.3.m 612.0 1.8 450.8 577.0 3.0 26.3 6.1
p6.3.n 870.0 18.1 210.0 719.5 80.8 75.9 20.9
p6.4.m 486.0 2.5 469.1 480.0 2.1 3.5 1.3
p7.4.t 876.0 56.2 420.9 834.8 114.7 52.0 4.9

Average 404.1 16.8 209.8 365.9 31.5 43.7 9.7

OBD-S OBS
0

10

20

30

40

50

60

70

80

Ga
p 

w.
r.t

. O
BD

 (%
)

Figure 3. Percentage gaps of OBD-S and OBS with regard to OBD.
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6. Analysis of Results

The methodology we are presenting in this paper aims to offer decision makers
three powerful mathematical possibilities when scheduling routes under uncertain travel
times: (i) to define how much delay is acceptable taking into account the total reward
collected; (ii) to choose a solution from the elite group of solutions; and (iii) to define a
probabilistic constraint such that routes will not have a probability greater than a user-
defined threshold p of incurring delays. Each of these dimensions will be discussed in the
following subsections.

6.1. Impact of Delay Selection

In this first analysis, the impact of the ‘accepted’ delay ε will be addressed. The main
idea is to show how increasing ε will produce a rise on the total reward collected. Through
a graph that shows the trade-off between delay accepted and reward collected, the decision
maker may decide to exchange the initial deadline d for a soft deadline d′ = d + ε in order
to increase the reward.

Figure 4 shows the aforementioned trade-off graph for the instance p7.4.t. As we
allow a higher delay, the routes will have more room to pick up additional passengers,
therefore offering a bigger total reward. It can be seen that at ε = 95, the total reward that
the solution can provide reaches the maximum possible reward.

0 20 40 60 80 100
epsilon

900

1000

1100

1200

1300

1400

to
ta

l s
to

ch
as

tic
 re

wa
rd

maximum reward

Figure 4. Trade-off between accepted delay and total stochastic reward.

6.2. Probability of Incurring Different Delays

In order to choose a solution from the elite group of solutions, a survival function of
each routing plan is obtained. To build this function, it was necessary to obtain the Kaplan-
Meier estimator from the simulation outcome. The survival function offers the probability
of incurring delays of different solutions or routing plans. In this way, we can compare
different routing plans both in terms of the expected reward and the probability that they
will finish for a certain target moment. For our analysis, we will focus on the top 3 solutions
that our approach generated for instance p7.4.t. Figure 5 represents the Kaplan–Meier
survival curves associated with each of the top 3 stochastic solutions obtained for the same
expected reward. Note that Sol3 clearly underperforms both Sol1 and Sol2 at any target
time. On the other hand, Sol1 outperforms Sol2 until t = 97.7. At this point, both curves
meet, having around 90% survival probability (or probability that the routing plans can
finish on or before the target time). After this moment, Sol2 is the one whose curve falls
faster, meaning that the probability of its routing plan being finished is smaller than the
other two solutions.
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Figure 5. Survival function for instance p7.4.t.

6.3. Reliability of a Solution

In this subsection, we will implement the probability constraint that will allow the
solutions to have a low probability of suffering delays for a soft deadline d′ = d + ε,
under a user-specified threshold p. If Tv represents the total time invested by vehicle
v ∈ {1, 2, . . . , k} in completing its assigned route, then P(max{T1, T2, . . . , Tk} > d′) < p,
where d′ = d + ε and ε ≥ 0. For the sake of simplifying the experimentation process, we
will consider ε = 0. Nevertheless, the decision maker can choose any ε ≥ 0. Figure 6
shows the trade-off between gamma and the probability of delay for the instance p7.4.t
with d′ = 100 time units. When gamma increases, limiting the routes’ maximum duration,
the probability of delay decreases, reaching a value close to 0 when we allow routes to have
a maximum duration of 85 (γ = 15). If, for example, the decision maker states that only
solutions with a probability of delay under 30% are allowed, then the algorithm will set
γ = 10, allowing routes to have a duration of only 90 time units.
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Figure 6. Trade-off between gamma and probability of delay.

7. Conclusions and Future Work

In this paper, a stochastic version of the ride-sharing problem with random travel
times is considered. Ride-sharing operations are modeled as a team orienteering problem.
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Here, drivers have to select which customers should be picked up in order to maximize
the expected reward collected. At the same time, drivers should be able to reach their
destination on or before a pre-established deadline. Of course, the existence of random
travel times might be the source of delays in some routing plans. Depending on their
size, these delays might be associated with a penalty cost that jeopardizes the benefits of
the driver.

In order to provide high-quality solutions to this challenging stochastic optimization
problem, we combine a simheuristic algorithm with concepts from survival analysis. Thus,
our optimization-simulation approach is not just able to generate ‘elite’ solutions with
high expected rewards, but it also offers probabilistic information about the size of the
delays associated with each of these elite solutions. This information might be valuable
for managers since they have a more complete understanding of the probabilistic behavior
or each proposed routing plan. Hence, questions such as “what is the probability that a
specific routing plan causes some of our customers to be late by more than 10 min” can be
properly answered.

Regarding future work, we plan to carry out the following extensions: (i) to consider
a scenario in which correlations among delays might occur—e.g., when a geographical
area becomes congested, all paths in the area will be subject to high delays; (ii) to extend
the simheuristic approach by including a machine learning component that makes use of
the simulation feedback to better guide the metaheuristic search in the space of solutions;
(iii) apply a parametric Weibull model to fit a survival function and compare its fit with the
non-parametric Kaplan–Meier model; and (iv) to predict with the best-fit survival model.
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