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Abstract
Border tracking in binary images is an important operation in many computer vision 
applications. The problem consists in finding borders in a 2D binary image (where 
all of the pixels are either 0 or 1). There are several algorithms available for this 
problem, but most of them are sequential. In a former paper, a parallel border track-
ing algorithm was proposed. This algorithm was designed to run in Graphics Pro-
cessing units, and it was based on the sequential algorithm known as the Suzuki 
algorithm. In this paper, we adapt the previously proposed GPU algorithm so that it 
can be executed in multicore computers. The resulting algorithm is evaluated against 
its GPU counterpart. The results show that the performance of the GPU algorithm 
worsens (or even fails) for very large images or images with many borders. On the 
other hand, the proposed multicore algorithm can efficiently cope with large images.

Keywords  Border tracking · Computer vision · Parallel computing · GPU 
computing · OpenMP · Multicore computing

1  Introduction

Finding borders, in a 2D binary image (where all of the pixels are either 0 or 1) is 
an important tool for many applications of image processing, e.g., segmentation in 
medical applications [1, 2], automatic recognition of handwriting [3, 4], and many 
other applications, including applications with real-time requirements [5]. It can be 
used to find borders in color images or in grayscale images by applying appropriate 
thresholds to the image [6].
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There are many algorithms in the literature for border tracking. One of the most 
popular is the algorithm proposed in [7], which is commonly known as the Suzuki 
algorithm. This algorithm has been implemented in the findcontours function, which 
is part of OpenCV, the well-known library for computer vision [8].

The main idea of the Suzuki algorithm is to loop over all of the pixels in the 
image looking for pixels belonging to a (previously unexplored) border. When such 
a “border” pixel is found, the Suzuki algorithm provides a mechanism to follow this 
border until it has been fully tracked. The Suzuki algorithm is a sequential process.

A GPU parallel border tracking algorithm was proposed in [9]. This algorithm 
was developed to suit the requirements of a company that is devoted to the automatic 
detection of defects in car bodyworks. This algorithm, written in CUDA [10], was 
based on the Suzuki algorithm. The parallel algorithm proposed in [9] (which we 
will call the GPU version) proved to be very efficient for images with a small or 
medium number of borders (1–500). However, when the number of borders grows, 
the performance deteriorates. It has also been detected that, for large binary images 
(larger than 10000 × 10000 pixels), the memory needed to run the GPU version (on 
our computer) was too large. The main reason for the low performance for large 
images is that (as was acknowledged in [9]) some of the phases of the parallel algo-
rithm cannot take full advantage of the GPU. Some of the phases of the algorithm 
had to be implemented using CUDA blocks of a single thread.

In this paper, we study how to correct these shortcomings, by modifying the GPU 
version to run in multicore CPUs, using the standard parallelization library OpenMP 
[11]. (We call this our OpenMP version or CPU version). The OpenMP version 
obtained runs faster than the GPU version in some phases of the parallel algorithm, 
but slower in others. Overall, the performance of this new version improves on the 
GPU version when the images processed are large.

The structure of the paper is as follows. First, in Sect. 2, we describe the prob-
lem of border tracking for binary images, outline the original Suzuki method, and 
describe the GPU version. In Sect. 3, we describe the proposed multicore parallel 
algorithm. Section 4 is devoted to the evaluation of the proposed algorithm. Finally, 
the conclusions and possible future work are discussed in Sect. 5.

2 � Motivation and definition of the problem

The work described in [9] was driven by the need for a GPU implementation of 
border tracking in a real-time system for automatic detection of defects in car body-
works. The detection of the defects requires large binary images to undergo sev-
eral processes; an important part of these processes is to obtain the borders on the 
images. In that particular application, for the sake of efficiency, the whole process is 
carried out in the GPU.

The modifications proposed in this paper are based on the GPU version described 
in [9]. Therefore, we start by describing the GPU version with enough detail so that 
this paper is self-contained. We only consider rectangular binary images and 8-con-
nectivity, that is, the pixel (i, j) is neighbor (is connected) to every pixel that touches 
one of its edges or corners [12].
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The goal of border tracking (or border following) in 2D binary images is to obtain 
the borders, (sequences of nonzero pixels separating zones filled with pixels larger 
than zero, from zones filled with zeros). We assume that the “frame” of the image 
(the first and last rows, and the first and last columns) is padded with zeros. As a 
consequence, all of the borders of the image are closed.

The sequential Suzuki algorithm described in [7] examines all of the pixels in 
the input image using a standard double loop. (see the high-level description in 
Algorithm 1 ). The origin of coordinates is the top left corner of the image. When 
the standard Suzuki sequential algorithm finds a border pixel P in a border not yet 
tracked, the tracking starts by searching for its “former” pixel by rotating clockwise 
around the pixel P and then searching for the “next” pixel by rotating counterclock-
wise around the pixel P. Then, the new “next” pixel is added to the border and now 
becomes the center pixel, which is used as above to find a new “next” pixel. This 
procedure follows the border until it gets back to the initial pixel (i.e., the border is 
followed until it is closed). This way of following the border is clearly sequential 
and is difficult to parallelize.

Now, we turn to the parallel algorithm proposed in [9]. The main idea behind the 
proposal in [9] is to split the image into NX by NY rectangles of the same size. If the 
dimensions of the image are not multiples of NX and/or NY, then the dimensions of 
the image are increased (with zero-valued pixels) until the next multiples of NX and 
NY. Therefore, the new dimensions of the image divide the parameters NX and NY 
exactly. Figure 1 shows a typical test image, and Fig. 2 displays a possible splitting 
of the same image.

Then, similarly to the Suzuki algorithm, a process is launched for each rectangle, 
which tracks and stores all of the borders in its rectangle. Clearly, some borders can 
belong to more than one rectangle. The final step is to connect the borders from the 
different rectangles. A high level description of the algorithm proposed in [9] is por-
trayed in Algorithm 2.
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Fig. 1   Image 1, obtained synthetically, generating random dark zones

Fig. 2   Image 1, split into 4 × 4 rectangles
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Algorithm  2 has two different algorithmic levels: The “image” level (or high 
level) scheme (division of the image in rectangles, parallel processing of the borders 
in each rectangle, and organization of the connection of all rectangles), and the “rec-
tangle” level (or low level) details (preprocessing in each rectangle, tracking in each 
rectangle, and connection of the borders of two neighbor rectangles). In this paper, 
we are interested in obtaining an OpenMP version. For the OpenMP version, the 
low-level processing is virtually the same as in the GPU version. Therefore, we will 
only focus on the high-level details of the algorithm, which are the parts that need to 
be changed. The three main phases of the GPU version are briefly described below. 
These are preprocessing (Sect.  2.1), border tracking in rectangles (Sect.  2.2), and 
connection of the borders of all of the rectangles (Sect. 2.3).

2.1 � Preprocessing in GPU

The first step is to determine which pixels are part of at least one border. The pixel 
with coordinates (i, j) is part of a border if its value is greater than 0 and if there is a 
pixel with a value of 0 in any of the positions (i + 1, j ), (i − 1, j) , (i, j − 1) , (i, j + 1) . 
This check can be performed independently for all of the pixels in the image. There-
fore, this check can be carried out in parallel for all pixels, which is very appropri-
ate for GPU computing. This check is carried out easily and efficiently in the GPU 
by using a CUDA kernel called preprocessing_gpu. This kernel uses blocks of 32 
per 32 threads (each thread checks a single pixel) and as many blocks as needed to 
process the whole image. The result of this check is stored in an array of the same 
size as the image. We call this array “ is_border ”, so is_border(i, j) is equal to 1 if the 
pixel (i, j) is in a border, and 0 otherwise. This array is used to speed up the second 
phase, the parallel tracking.

2.2 � GPU border tracking in rectangles

As mentioned above, the key idea in the GPU version is to divide the image into 
small rectangles. The tracking of the borders in each rectangle can be carried out 
independently of the tracking in any other rectangle; hence, the tracking in all of the 
rectangles can be computed in parallel. In the GPU algorithm, we used a block of 
threads for the tracking of each rectangle. However, since the tracking must be done 
sequentially within each rectangle, we use a single thread for tracking the borders 
in each rectangle. Assuming a division of the image in NX per NY rectangles, the 
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tracking is launched with a kernel (called parallel_tracking) of NX per NY blocks 
with one thread in each block.

The implementation of the tracking phase in the parallel case is far more complex 
than in the sequential case. In the parallel version, a given border may be fully con-
tained in a rectangle (in this case, we say that this border is “closed”), or it may be 
distributed in several rectangles, passing through the limits of the rectangles. Each 
one of these pieces of a border is called an “open” border, which enters and leaves 
the rectangle. In order to obtain a full connection later, all of the borders in a rectan-
gle (closed or open) must be tracked and stored so that (in borders distributed across 
several rectangles) they can be properly connected in the final phase. The labeling 
needed is quite complex because a single pixel can be part of up to four different 
borders. In addition, it must be ensured that borders already tracked are not tracked 
again.

Another problem that can arise with large images is the potentially large storage 
required. It can happen that a given set of pixels can be part of two different bor-
ders. This can happen when the pixels are tracked n different order. This requires 
the borders to be stored as a sequence of “triads” (ordered sequences of coordinates 
of pixels), including the coordinates of the present pixel, the former pixel and the 
next pixel, plus another integer number pointing to the next triad. Then, the storage 
needed for a single “triad” is 7 integer values, (of 4 each), for a total of 28 bytes. 
Each pixel of the binary image is stored as an unsigned integer of 8 bits (1 byte), that 
is, each triad needs 28 times more storage than a pixel. Furthermore, for efficiency 
in GPUs, it is necessary to allocate enough static memory to hold all of the (possi-
bly many) borders. Because of this, the storage needed to store the borders in large 
images can be much larger than the storage needed for a binary image. This may 
be a limiting factor of the usability of the algorithm. All of the fine implementation 
details are described in [9].

2.3 � GPU connection of the borders of all of the rectangles

After the tracking stage, the thread that processes a given rectangle will have gen-
erated a data structure where the borders in that rectangle are stored as ordered 
sequences of “triads”. When the borders of all of the rectangles have been com-
puted, the connection between the open borders from different rectangles starts. The 
key for the parallel connection algorithm is that the connections between borders in 
two neighbor rectangles can be established independently from any other connection 
between other pair of neighbor rectangles. However, as in the tracking phase, the 
connection of two neighbor rectangles must be carried out sequentially. Therefore, 
we again used CUDA blocks with just one thread. The low-level process of connect-
ing the borders from two neighbor rectangles is quite complex, especially because 
some borders can exit and re-enter a rectangle several times. The low-level process 
of connecting the borders of two rectangles is described in detail in [9].

As described in [9], we wrote a CUDA kernel for the vertical connec-
tion vert_connection <<< X, Y >>> such that the only thread of the block 
(i, j), 1 ≤ i ≤ X, 1 ≤ j ≤ Y) connects the borders of rectangle (2(i − 1) + 1, j) 



9921

1 3

Parallel border tracking in binary images for multicore…

with the borders of the rectangle (2i,  j). We wrote a similar CUDA kernel for 
the horizontal connection: horz_connection <<< X, Y >>> such that the only 
thread of the block (i, j)(1 ≤ i ≤ X, 1 ≤ j ≤ Y) connects the borders of rectangle 
(i, 2(j − 1) + 1) with the borders of the rectangle (i, 2j).

There are many possible arrangements for a parallel connection. We have cho-
sen to use numbers of rectangles NX, NY in powers of two for ease of program-
ming and to use two sweeps, first a vertical sweep and then a horizontal sweep. 
If the number of rectangles is NX × NY  , with NX and NY power of two, then 
the vertical sweep will has log2(NX) stages and the horizontal sweep will have 
log2(NY) stages. Algorithm 3 outlines the high-level structure of the connection. 
When Algorithm 3 concludes, a single structure (that stores all of the borders of 
the image) is obtained.

For the sake of clarity, we want to show how the parallel connection would 
proceed using an example where the image is divided into 4 × 4 rectangles.

Figure 3, left, depicts a possible image divided into 4 × 4 rectangles. The bor-
ders of all of the rectangles in the image on the left have been obtained, so that 
the vertical connection can start. In the first stage of the vertical connection, the 
thread of block (1,1) would connect the borders from rectangles (1,1) and (2,1) 
and would store them as the borders in a larger rectangle union of rectangles (1,1) 
and (2,1) (rectangle (1,1) in the new structure, Fig. 3 right). Similarly, the thread 
of block (2,1) would connect the borders from rectangles (3,1) and (4,1), and 
store them as the borders in the rectangle union of rectangles (3,1) and (4,1) (rec-
tangle (2,1) in the image on the right). Then, in the example, the full stage can 
then be carried out with 8 blocks (8 threads) in parallel, resulting in 8 structures 
holding the borders of the new 8 rectangles depicted on the right in Fig. 3.

Fig. 3   Example of a vertical 
connection applied to an image 
divided into 4 × 4 rectangles, 
1st stage
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Another stage of the vertical connection can be applied, now using just 4 blocks 
(4 threads) in parallel, resulting in 4 structures, holding the borders of the 4 rectan-
gles on the right of the Fig. 4. This concludes the vertical connection.

Now, the horizontal connection must start (Fig. 5). The procedure is very similar 
to the vertical connection, connecting borders from neighbor rectangles, but now the 
horizontal neighbors will be connected. Since only 4 rectangles are left, only two 
stages are needed: the first stage involves only 2 blocks (2 threads) and the second 
(and last) stage involves only one block (one thread). The final structure holds all of 
the borders of the image.

3 � OpenMP implementation

The algorithm proposed in [9] can be modified to generate an OpenMP version 
through relatively straightforward changes. However, careful programming is 
needed in order to obtain an efficient version.

3.1 � Preprocessing in CPU

In the GPU version of preprocessing, each block of threads processes a rectangle. 
Our first approach for the CPU version was to use a similar structure, dividing the 
image in rectangles, and creating a high-level loop that runs through all of the rec-
tangles. This loop can be parallelized using the OpenMP construct “parallel for”.

However, we found out through experimentation that, in the CPU version, the 
subdivision into rectangles did not provide the most efficient organization. In this 
case, it was faster to use a double loop running through all of the pixels of the image, 
parallelizing the outer loop with OpenMP and vectorizing the inner loop by using 
AVX vector instructions [13].

In order to obtain an efficient implementation, an appropriate ordering of 
the loops must be chosen, so that the cache misses are minimized. This was not 

Fig. 4   Example of a vertical 
connection applied to an image 
divided into 4 × 4 rectangles, 
2nd stage

Fig. 5   Example of a horizontal connection (final two stages) applied to an example image
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important in the GPU version (because of the special features of the memory 
accesses in GPU), but it is crucial in the OpenMP version. In this case, the image 
is stored by columns; therefore, the inner loop must be the one that runs through 
rows of pixels (and, therefore, accesses the pixels of the image sequentially). Fur-
thermore, it is important to ensure the use of the best vectorizing instruction set 
available (AVX-512 in our computer). In this case, we were using the g++ com-
piler version 7.50, and we realized (using the compiler flag “-fopt-info-vec-opti-
mized”) that the standard optimizing flag “-O3” does not enforce the use of the 
instruction set AVX 512. We achieved this by additionally using the “-mavx512f” 
compiler flag.

3.2 � CPU border tracking in rectangles

In the GPU version, the border tracking in rectangles is launched with a kernel call, 
which uses one thread per rectangle. If the image is split into NX × NY  rectangles, 
then the kernel call creates NX × NY  blocks of threads, each of which has a single 
thread. Each thread processes and stores the borders in a rectangle. In order to per-
form the same task in a multicore computer, this kernel launch can be replaced with 
a loop that runs through the NX × NY  rectangles. Since the tracking in a rectangle 
is independent from the tracking in any other rectangle, this loop can be parallelized 
using OpenMP.

The cost of tracking borders in a rectangle may vary strongly from one rectangle 
to another (unlike in the preprocessing phase, where all of the pixels of all of the 
rectangles are processed, and the computational cost should be very similar for all of 
the pixels) if the number of borders or/and the length of the borders varies from one 
rectangle to another. Assuming that the number of rectangles is larger than the num-
ber of threads available, the default work distribution of the parallel loop assigns 
a fixed set of rectangles to each thread. If some rectangles with many borders are 
assigned to a thread, this thread may require a long time to process its set of rec-
tangles, penalizing the overall computational cost. Therefore, it becomes necessary 
to use the “dynamic” pragma of OpenMP. By using this pragma, the assignment of 
rectangles to threads is automatically readjusted so that the processing of rectangles 
not yet processed may be reassigned to threads that have already completed their 
assignment.

3.3 � CPU connection of the borders of all of the rectangles

The GPU connection phase described in Sect.  2.3 can also be adapted for execu-
tion in multicore CPUs by substitution of the kernel calls ( vert_connection and 
horz_connection ) with “parallel for” loops. For example, if the code for computing 
the vertical connection between rectangles (2(i − 1) + 1, j) and (2i, j) is embodied in 
the function vert_connection_cpu(i, j) , then the kernel call vert_connection in Algo-
rithm 3 can be replaced with the double loop in Algorithm 4:
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Both loops can be simultaneously parallelized using OpenMP. We collapsed both 
loops in one, in order to avoid unnecessary synchronization points.

The call to horz_connection can be similarly replaced. In the connection phase, 
the “dynamic” pragma has hardly any effect.

4 � Evaluation of the proposed OpenMP algorithm and comparison 
with the GPU algorithm

The experimental evaluation of the proposed algorithm (and the comparison with 
the GPU version) was carried out in our main computer (named Server1). This com-
puter is equipped with an Intel(R) Core(TM) i9-7960X CPU @ 2.80GHz (Turbo 
Boost enabled) with 16 cores and 64 GB and a Nvidia Quadro RTX 5000 GPU 
(with 48 multiprocessors and 64 CUDA cores per multiprocessor, for a total of 
3072 CUDA cores; the base clock frequency is 1620 MHz and the total memory is 
16 GB). The operating system in Server1 is Ubuntu 18.04.04 LTS, and the CUDA 
toolkit version is 10.2. The CPU version was compiled using g++ version 7.50 (the 
same version used by the nvcc CUDA compiler).

The comparison of performance between these two algorithms is troublesome 
because there are many factors that may influence the performance:

•	 The hardware used.
•	 The size of the images.
•	 The number of borders in the images.
•	 The number of nonzero pixels in the images.
•	 The borders may be concentrated in a few rectangles, affecting the work distribu-

tion.
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•	 The number of rectangles used to split the image.
•	 The inclusion (or not) of memory transfers from/to the GPU.

Furthermore, the proportional weight of the computational cost of the three phases 
(preprocessing, tracking, connection) is different in the two versions.

We have chosen to include only the computing times in CPU or in GPU, without 
including the memory transfers to/from GPU from/to CPU. We think that this is 
consistent with the study in [9], where the computation was part of other compu-
tations carried out in the GPU. We have chosen to split the image using 32 × 32 
rectangles in all of the experiments. We have tested this choice experimentally and, 
in our test cases, it is an optimal or nearly optimal choice. Interestingly enough, this 
result is similar for the CPU and for the GPU versions.

Our initial experiment was to evaluate both algorithms using two images of dif-
ferent properties, obtained in different sizes. This experiment was designed to bring 
out the differences in performance between the two algorithms. The images, (Image 
1 and Image 2), are shown in Figs. 1 and 6. Image 1 has 163 borders and 134398 
nonzero elements, while Image 2 is more complex. It has 502,26 borders and 
853,717 nonzero elements. The original size of the images is 1028 × 1232 pixels. 
We will name this initial image size as the 1× size. Using the function imresize from 
Matlab [14], we obtained versions of both images in six different sizes, i.e., 2× ver-
sions of both images were obtained by doubling the size to 2056 × 2464 . Then, we 
obtained 4× versions, of size 4112 × 4928 , and so on, until 12×.

The images are stored using a “byte” data type for each pixel. Therefore, the 
memory needed to store each image in original format is around 1 MB.

Both versions were tested with the two images in the six sizes. In Server 1, the 
GPU version failed to allocate enough GPU memory for the 12× images (and larger), 
while the CPU version worked correctly up to 24× size. In all of the cases without 
memory allocation issues, the borders were correctly obtained. For each case, the 
borders were obtained 20 times. The times obtained are the average times of the 20 
experiments.

Figure  7 shows the average computing time of both versions, for sizes of the 
images 1× , 2× , up to 12× . These times are the aggregated computing times of 

Fig. 6   Image 2, obtained 
combining a picture of a car 
bodywork with a synthetically 
obtained image with circles
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preprocessing, tracking, and connection. Tables 1, 2, and 3 show the separate com-
puting times of each phase for each image.

Many insights can be obtained from this experiment. First, when looking at the 
aggregated computing times (Fig.7), it can be observed that the GPU version does 
obtain some advantage for the simpler Image 1. However, the CPU version is clearly 
faster when both versions are applied to Image 2.

As can be seen in Table 3, the reason for the CPU version being faster when applied 
to Image 2 (Fig.  6) is that the connection phase is very slow in the GPU when the 
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Fig. 7   Computing times of the GPU and CPU versions applied to Image 1 and Image 2

Table 1   Average computing 
times of the preprocessing phase 
(milliseconds) in Server 1

1× 2× 4× 6× 8× 12×

GPU Image 1 0.04 0.16 0.58 1.23 2.23 F
CPU Image 1 0.14 0.35 1.24 2.72 4.8 12.48
GPU Image 2 0.04 0.14 0.55 1.23 2.2 F
CPU Image 2 0.14 0.35 1.45 3.44 6.0 15.53

Table 2   Average computing 
times of the tracking phase 
(milliseconds) in Server 1

1× 2× 4× 6× 8× 12×

GPU Image 1 0.44 1.23 3.15 6.34 10.09 F
CPU Image 1 0.37 0.82 2.47 5.0 8.7 16.87
GPU Image 2 1.94 5.38 11.18 19.9 28.1 F
CPU Image 2 2.85 5.08 11.44 20.8 28.3 42.87
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number of borders is large. This is consistent with the conventional wisdom regard-
ing GPU programming because these kernels were launched using blocks of a single 
thread. Furthermore, in the last stages of the connection phase, the number of threads 
diminishes. This clearly underutilizes the GPU. Additionally, it can also be observed 
that for both versions the connection time is independent from the size and greatly 
depends on the number of borders.

On the other hand, the computing times of the parallel tracking (see Table 2) are 
quite similar in both versions. This is an interesting result because this phase was also 
implemented in GPU using blocks with only one thread. The difference with the con-
nection phase lies in the fact that, in the final stages of the connection phase (horizontal 
connection in Algorithm 3), fewer and fewer threads are used, until only one is used. 
On the other hand, in our experiments, the parallel tracking kernel is always launched 
with 32 × 32 blocks of one thread. It seems that as long as the number of one-thread 
blocks launched is large, the performance of the one-thread blocks is acceptable and (to 
some extent) it compares reasonably well with the performance of CPU cores.

Table 1 shows that the preprocessing phase is faster in the GPU, but not enough 
to counter the slowness of the GPU connection phase. We considered the possibility 
of creating a “hybrid” version, with the preprocessing being executed in the GPU and 
the tracking and connection phases being executed in the CPU. However, in that case, 
the cost of the memory transfers (sending the image to the GPU and sending back the 
is_border array to the CPU) is too large. Table 4 displays the times needed to upload 
or download images of the considered sizes. The table shows that the upload/download 
times are larger than the preprocessing times in the CPU version in all of the cases.

The next experiment aims to highlight the effect on the computing times of vary-
ing the number of borders. For this purpose, we generated five synthetic images, all of 
which had the same size 4× and similar structure, with black squares that were regu-
larly spaced. An example of this kind of image is shown in Fig. 8.

Since the number and size of the black squares can be changed, the number of 
borders can be changed. We generated images with the following number of bor-
ders: 5576, 12,546, 22,468, 50,430, 89,872. The computational times are shown 
in Fig,  9. It is quite clear that an increase in the number of borders affects the 

Table 3   Average computing 
times of the connection phase 
(milliseconds) in Server 1

1× 2× 4× 6× 8× 12×

GPU Image 1 0.38 0.29 0.28 0.29 0.28 F
CPU Image 1 1.33 1.37 1.35 1.45 1.35 1.35
GPU Image 2 32.35 35.3 35.5 30 30.8 F
CPU Image 2 1.8 2.06 1.95 2.02 1.96 2.0

Table 4   Average image 
uploading/downloading times 
(milliseconds)

1× 2× 4× 6× 8×

Server1 0.21/0.19 0.70/0.52 2.36/2.53 5.56/5.37 8.94/8.48
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GPU version much more than the CPU version. Again, this is due to the larger 
cost of the connection phase in the GPU version.

We also studied the scalability of the CPU algorithm. For this experiment, we 
used a computer (named Server 2) equipped with 2 Intel(R) Xeon(R) E5-2698 
CPUs of 20 cores each, with hyperthreading activated, and 512 GB. We tested the 
scalability of the CPU algorithm by running it with 1, 2, 4, 8, 16, 32, 40 and 80 
OpenMP threads, using Image 2 in 4× size. Table 5 shows the computing times 

Fig. 8   Sample synthetic image 
with regularly spaced small 
black squares
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Fig. 9   Computing times of the GPU and CPU versions for synthetic images with varying number of bor-
ders
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of the different phases when the number of threads varies. Figure 10 shows the 
aggregated computing times.

It can be observed that the CPU version scales quite well. The case with 80 
threads makes use of hyperthreading.

Finally, we want to justify some of the choices described in the paper experimen-
tally, using Images 1 and 2 in 4× size.

The difference caused by the use of AVX512 instructions is especially relevant 
in the preprocessing phase. As an example, the computing time of the preprocessing 
phase using the flags “-O3” and “-mavx512f” is 1.24 ms. in Image 1 and 1.45 ms 
in Image 2, compared with 2.37 ms in Image 1 and 2.88 ms in Image 2 when only 
“-O3” is used.

The effect of the “dynamic” pragma in the tracking phase can be observed by 
checking the computational times with the “dynamic” pragma (2.51 ms in Image 1, 
and 11.4 ms in Image 2) or without it (2.88 ms in Image 1, and 14.28 ms in Image 
2).
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Fig. 10   Computing times of the CPU version varying the number of OpenMP threads (in Server 2)

Table 5   Detailed computing times (milliseconds) for the CPU version varying the number of OpenMP 
threads (in Server 2)

Phase/threads 1 2 4 8 16 24 32 40 80

Preproc. 167.2 89.0 46.6 34.1 23.0 16.7 13.0 10.4 9.8
Tracking 43.3 21.4 11.3 8.5 6.1 4.1 3.1 2.5 1.9
Connect 5.6 4.1 3.2 3.3 3.5 3.5 3.6 3.6 4.1
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We have generated a working version of the code so that readers can examine and 
execute it. The images used in the experiments are included in the downloadable 
file. The link can be found in Sect. 6.

5 � Conclusion

In this paper, we have described the implementation of a parallel border-tracking 
method for use in multicore machines. For images of small to moderate size, the 
GPU version described in [9] is faster than well-known sequential CPU implemen-
tations. However, the tracking and connection phases of the GPU algorithm could 
only be implemented in CUDA by using blocks of only one thread. This works 
quite well for moderate size images, but the situation is different when the images 
are very large or with many borders. In these cases, the performance of the GPU 
version deteriorates. This fact motivated the development of an OpenMP version 
that designed to run on multicore computers. The experiments described in Sect. 4 
show that the OpenMP version can cope efficiently with large images and also with 
images with a large number of borders.

As future work, we think that it is possible to improve the parallel efficiency of 
the OpenMP version by removing the implicit synchronization point between the 
parallel tracking and the connection. It should be possible to start the connection 
phase before finishing the tracking phase.
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