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Abstract

Among the wide range of medical services, prehospital health care
is one of the most relevant, as it usually involves an emergency situ-
ation. The qualified medical team is dispatched to the scene of the
incident as soon as possible. One of the most influential factors in
response time depends on where the ambulances are stationed, how-
ever, when a medical vehicle is attending an emergency, it becomes
unavailable for other calls. Increasing the ambulance fleet is a costly
option that does not guarantee efficiency. An alternative solution is
the relocation of available ambulances to increase the population cov-
ered by them. Obtaining the optimal solution in real time is not
feasible for this problem. Therefore, this work addresses the problem
of dynamic relocation of ambulances through the design and develop-
ment of heuristic tools. The isochron overlap analysis defines possible
scenarios that may occur when ambulances become unavailable for
emergencies and determines the appropriate conditions to carry out
the relocation of ambulances. Computational experiments are run us-
ing a benchmark of instances based on the characteristics of a real
Emergency Medical Service. Based on the results of the study, we can
conclude that the designed relocation algorithms perform better than
if there was no relocation strategy.

Keywords: Ambulances, Relocation, Heuristics, Isochron, Emergency.

1 Introduction

Providing qualified medical care to avoid death would be the main objective
of the prehospital Emergency Medical Services (EMS). The time that elapses
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from when an emergency call is made until it is answered at the scene of the
event is known as response time. This period of time is extremely important
and some countries have defined the performance standards of an ambulance
explicitly in their national regulations (United States (Gendreau et al., 2001),
Canada (Cabral et al., 2018), United Kingdom (UK, visited October 6, 2021),
Slovakia (Jánoš́ıková et al., 2019)). The World Health Organization and
the European Union recommend that the response time for an emergency
should not exceed 480 seconds (Reuter-Oppermann et al. (2017), Cabral
et al. (2018)).

There are many factors that influence response time: quantity and quality
of resources, dispatch policies, population density, frequency of calls, socio-
economic factors and, obviously, location of ambulance bases. Even with the
optimal location of the bases, as soon as the ambulances begin to attend the
calls, some areas could be left without coverage and it would be difficult to
maintain the adequate level of assistance. In this context, the coverage is the
amount of people who are in an area that can be reached by an ambulance
in a given time. Once an ambulance is moved from the base due to an
emergency, all the people in this area are without coverage. To solve this
problem, the amount of resources could be increased, but this solution would
be expensive, somewhat inefficient and a lengthy process to carry out. An
alternative solution would be to relocate the vehicles that are still available
to achieve the highest possible coverage.

There are two types of relocations: multi-period relocation, due to changes
in demand caused by population movements, for example, at different times
of the day, and dynamic relocation, due to variations in the state of the
system when the number of available ambulances changes (this number de-
creases when a vehicle moves to attend an emergency and increases when an
ambulance completes a service). In this work, a set of heuristic algorithms
for the dynamic relocation of ambulances in real time is developed, using a
tool called isochron. An isochron is the area that covers all the points that
can be reached within a given time from a specific location and with a spe-
cific mode of transport: on foot, by bicycle, by car. Figure 1 shows different
examples of isochrons. Each colored area is covered by an isochron from the
same starting point, using different means of transport and in a given travel
time. In this work, the mean of transport will be an ambulance, then the
isochron is obtained according to a driving time.

The isochron concept has been used in some studies related to health
emergencies (Peleg and Pliskin (2004), Lam et al. (2015), Otamendi and
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Figure 1: Isochron example

Garćıa-Heredia (2015)). The main contribution of this work, which combines
geographic optimization and heuristic techniques, is to tackle the dynamic
relocation problem applying a new approach to the concept of isochron. The
isochron overlap analysis defines possible scenarios that may occur when
ambulances become unavailable for emergencies and determines the suitable
conditions to carry out the relocation of ambulances. The objective of the
algorithms is to maximize coverage. In addition, the heuristic technique not
only provides the location of the ambulances to maximize coverage, but also
determines which ambulances are candidates for relocation and, therefore,
the dispatchers do not have to deal with these issues. On the other hand, it
is shown that the proposed technique favors the balance in the workload of
different emergency vehicles. With a suitable study of any emergency service,
the proposed heuristic algorithms could be easily adapted and applied to the
dynamic relocation of ambulances in different health areas, both national
and international.

The use of geographic information systems (GIS) is very important in
solving the problem of relocation of ambulances, since it allows obtaining
reliable information in real time. While many studies validate the proposed
methodologies using the discrete event simulation, for this work we rely on
the GIS for this purpose. Additionally, the possibility of visualizing the
coverage status on a map can help managing EMS. In this study we use the
free georeferencing software QGIS Desktop 3.12.2 and the Openrouteservice
plugin.1

1© openrouteservice.org by HeiGIT — Map data © OpenStreetMap contributors
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Finally, note that the designed algorithm in this work can help to achieve
sustainable human development. The 2030 Agenda for Sustainable Devel-
opment adopted by all the Member States of the United Nations in 2015
determines 17 objectives, which not only focus on the problems of the en-
vironment, underwater or terrestrial ecosystems, but also cover problems
of inequality, unemployment problems or health among others (UN, visited
May 24, 2022). This work contributes to the accomplishment of the following
Sustainable Development Goals (SDG):

- Goal 3: Ensure healthy lives and promote well-being for citizens of any
age.

- Goal 9: Build resilient infrastructure, promote inclusive and sustainable
industrialization and foster innovation.

The remainder of this paper is organized as follows. In Section 2 related
studies are reviewed and in Section 3 the problem is described. The designed
heuristic algorithm is described in Section 4. The computational results are
presented and discussed in Section 5, where the proposed approach is applied
to a real case as well. Finally, Section 6 presents the conclusions of the study
and outlines future work.

2 Literature review

In the last two decades there have been many advances in solving the problem
of relocation of medical emergency vehicles. The first static models have
evolved into dynamic models, which have incorporated both the complexity
and the realism of the ambulance management process. There is currently a
wide range of relocation models, but one of the more generic classifications
separates them into multi-period relocation models and dynamic relocation
models. Multi-period models capture the changes that occur in demand
at different periods of the day (or week) and relocate ambulances based
on these changes to provide better service in each period. As an example
of multi-period models we can cite Rajagopalan et al. (2008), Schmid and
Doerner (2010), Andrade and Cunha (2015), van den Berg and Aardal (2015),
Boujemaa et al. (2020). On the other hand, dynamic relocation models
capture the changes that occur in the state of the system due to the variation
in the number of ambulances available.
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There are many approaches to solving the problem of dynamic relocation.
There are models that recalculate the new positions in real time for the en-
tire fleet (although with some restrictions) as soon as there is a change in the
number of available vehicles (Gendreau et al. (2001), Moeini et al. (2015),
Enayati et al. (2018)). There are models that pre-calculate the positions for
each number of available vehicles generating compliance tables (Gendreau
et al. (2006), Alanis et al. (2013), Sudtachat et al. (2016), van Barneveld
(2016), Sudtachat et al. (2020)). There are models that use dynamic pro-
gramming (Maxwell et al. (2010), van Barneveld et al. (2017), Nasrollahzadeh
et al. (2018)). Reviews for the dynamic relocation problem can be found in
Bélanger et al. (2015), Bélanger et al. (2019).

Although many authors formulate the ambulance relocation problem with
mathematical models, one of the most common techniques to solve this
problem in real time is the heuristic technique (Gendreau et al. (2001), Ra-
jagopalan et al. (2008), Schmid and Doerner (2010), Jagtenberg et al. (2015)).
The application of heuristic algorithms has experienced exponential growth
in the last 30 years due to its ability to provide quality solutions in real
time. Among other advantages of heuristic techniques, we can mention the
possibility of easily incorporating realistic aspects and the ease of explaining
them to users, since these techniques can be a very intuitive tool. In health
emergency problems, heuristics have been used for the allocation of resources
(Fogue et al., 2013) and for the location of health centers (Landa-Torres et al.,
2013), among others.

One of the first models of dynamic ambulance relocation to use a heuristic
was the Gendreau et al. (2001), in which the relocation problem is solved as
a location problem every time the number of available vehicles changes. The
authors add a penalty coefficient in the objective function to control the
number of relocations. The heuristic used in this case is the Tabu Search.

Another work in which the authors try to optimize at all times the posi-
tions of all the ambulances still available is the Billhardt et al. (2014), but
in this case using a completely different method, the geometric optimization
approach. The authors minimize the expected time to reach potential new
patients by using Voronoi tessellations.

Among the first studies to use an indicator to relocate ambulances is the
Andersson and Värbrand (2007). The system automatically detects the area
in which the level of the indicator, “Preparedness”, is below a critical level
and an algorithm is implemented to relocate the ambulances to this area.
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The “Preparedness” in a zone i can be calculated as:

pi =
1

di

Li∑
l=1

γl

til
, (1)

where Li is the number of ambulances that contribute to “Preparedness” in
zone i, til is the travel time of ambulance l to zone i and γl is the contribution
factor for the ambulance l such that:

ti1 ≤ ti2 ≤ . . . ≤ tiLi

γ1 > γ2 > . . . > γLi
i

(2)

The objective is to minimize the maximum travel time necessary to relo-
cate the ambulances until the level of “Preparedness” in each zone is at an
acceptable level.

The technique proposed by Andersson and Värbrand (2007) has been the
basis of development for many other works. Lee (2011) incorporates different
social welfare functions to obtain the critical level of “Preparedness”. Liu
et al. (2013) introduces the term of probability of availability of a vehicle
to cover an area. Paz Roa et al. (2020) modifies the index introducing the
probability of a vehicle being available based on the multi-server queue model.

The most recent work related to the concept of “Preparedness” is Car-
valho et al. (2020). The index is determined not for each zone, but for the
set of available ambulances A in the period τ :

pτA =
1∑

i∈V

dτi (1 +mink∈A{tτki})
, (3)

where dτi represents the demand for ambulances in area i in the period τ
and tτki represents the travel time between the ambulance location k and the
location of the zone i in the period τ . The authors propose a mathematical
model and a heuristic algorithm to solve the relocation problem, trying to
maximize the preparation of the system at each moment.

In the works cited above, the relocation algorithm takes into account the
entire fleet available for relocation, although there are always restrictions
that reduce the number of movements. The study proposed by Jagtenberg
et al. (2015) only considers relocating the vehicle that has just completed a
service. The destination base for each ambulance that has become available
is determined based on the marginal coverage, defined by Daskin (1983).
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Authors such as van Barneveld et al. (2016) use the concept of “unpre-
paredness” to relocate ambulances. This indicator is the sum of the travel
times of the inactive ambulances closest to each demand area, weighted by
the probability of an incident occurring in each zone. Relocation is done from
an origin base to a destination base, but only if the indicator falls below a
specific level, and chain relocations are also allowed.

The work of van Barneveld et al. (2018) considers the two previous heuris-
tics, that of Jagtenberg et al. (2015) and that of van Barneveld et al. (2016).
The first is taken as a basis, where only the vehicles are relocated at the end
of a service, but some concepts from the second are added.

In this article we use a heuristic approach to solve the problem of dy-
namic relocation of ambulances. This choice is due to the fact that the main
objective of our work is to develop relocation algorithms applicable to real
services (there are many theoretical models of relocation, but few of them
have actually been implemented). Furthermore, heuristic algorithms allow
many realistic aspects of the problem to be incorporated. Heuristics can
be very intuitive and more effective than mathematical programming (see
Carvalho et al. (2020)).

Most of the works that solve the problem of dynamic relocation in real
time consider the entire fleet to be relocated, that is, both the ambulances
that finish a service and those that are inactive in their bases. According
to Bélanger et al. (2016), better results are obtained when the system is
absolutely dynamic. But the same authors indicate that relocation costs,
especially intangible costs, must be controlled. The managers of the EMS
are very reluctant to send the ambulances to bases other than the usual
ones and they are even more opposed to relocating the ambulances that are
inactive in the bases. For these reasons, we have decided to only relocate the
ambulances that finish a service, such as in Maxwell et al. (2010), Schmid
(2012) and Jagtenberg et al. (2015).

Both Maxwell et al. (2010) and Schmid (2012) use dynamic programming.
To find the parameters of the models, iterative simulation based on historical
data is used. These parameters cannot be applied to all models, that is, they
have to be adjusted to each particular case and that can take, as Jagtenberg
et al. (2015) says, up to a year. On the other hand, the authors of Jagtenberg
et al. (2015) propose a heuristic, which is used in urban areas, that is, where
the occupancy fraction is the same for all ambulances. However, in our case
there are mixed (urban and rural) areas, where ambulances do not have the
same workload. We explicitly study the balance in the workload of the crews
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of different ambulances. Furthermore, the authors of Jagtenberg et al. (2015)
indicate that using a strategy (their strategy) where the concept of ”usual
base” does not exist can be difficult. Taking this into account, we propose a
heuristic, where each crew has its usual base, where the turn starts, where it
returns if the conditions for relocation are not met, and even where the crew
could return at the end of their turn (the algorithm can be easily adapted
under instructions from EMS managers).

Like in other works that automatically evaluate the state of coverage
(Andersson and Värbrand (2007), Paz Roa et al. (2020), Carvalho et al.
(2020)), our algorithm is activated when some areas have been left without
sufficient coverage. However, unlike these works, which use an indicator to
calculate the readiness of the system (see Equation 1 or 3), our algorithm
is based on the use of Geographic Information Systems tools, which is very
widespread, but, in our opinion, its full potential in modeling the relocation
problems of health emergency vehicles and in the real management of these
services has not yet been exploited. The definition of the scenarios based on
the analysis of the isochrons is a technique that until now had not been used
for the problem in question. Another point to highlight is the possibility
of showing the real coverage in different scenarios provided by these tools,
which can be very important in managing the service.

3 Problem Description

Emergency Medical Services (EMS) have a fleet of ambulances (A) to carry
out their activity. Each ambulance a is located at a base denominated usual
base (bua). The set B is integrated by all the bases. Ambulances leave its
usual base to assist an emergency and come back when the service has fin-
ished. The assignment of bases to ambulances is carried out by EMS and
aims to cover the maximum population. This problem is known as static
ambulance location problem. The authors also have worked with the static
problem and a mathematical model has been proposed and is accepted for
publication in Vecina Garćıa et al. (2022). However, the configuration of
this initial coverage changes as emergencies arise and ambulances leave their
bases. Note that we should cover the demand for emergency services, that is,
it is necessary to model the demand. Developing a demand model requires
a lot of data and information and it is not always easy to collect. Several
analysis show that there is a high and direct correlation between population
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and demand for emergency services. Therefore, there are many authors who
use the population as a good indicator of the demand, since the population
covered by an ambulance from a base at a given time is known in advance
(Andersson and Värbrand (2007), Gendreau et al. (2001), van Barneveld
et al. (2016)). Then, after a statistical analysis using data related to popu-
lation and the demand for emergency services, we consider that the covered
demand is maximized when we maximize the covered population.

There are several steps involved in managing an emergency. A call acti-
vates a series of actions where a brief recognition of the event is made (triage)
and the need for a specific resource sent to the emergency site is evaluated.
Once the ambulance has arrived, healthcare is carried out on the scene. When
the patient is stabilized, the need to transfer to the assigned hospital center
is considered. In the event that the patient does not require hospitalization,
the ambulance can be assigned to another emergency or return to its usual
base. Otherwise, the vehicle goes to the assigned hospital. The ambulance
crew remains with the patient until they are treated by the hospital’s medical
team. When the service has been completed, the ambulance can be assigned
to another call or return to its usual base. When the ambulances move and
are not at their usual bases, the initial coverage changes. This fact can af-
fect the quality of services and EMS management is needed. The relocation
problem appears in this context. This problem is dynamic and its objective
is to assign each free ambulance at a base in order to maximize the coverage.
The relocation occurs when the assigned base is different from the usual one.

According to several studies, there are two ways of dynamic ambulance
relocation: relocating vehicles that have just completed a service and relo-
cating any available vehicle, even if it is idle at the base. The relocation
of any ambulance usually gives better results, but at the same time gener-
ates higher costs. Relocation costs are understood as the number of trips,
the kilometers traveled, the operating costs (fuel and vehicle maintenance)
and the intangible costs (annoyances suffered by the staff with the continu-
ous movements). In this paper, we propose relocating only ambulances that
have just completed a service. In this way, good results can be obtained
while keeping costs down (Bélanger et al., 2016).

Table 1 shows some notation needed for the different methods proposed
that will be introduced in the following subsections.

In our problem and in general, each base has its usual ambulance (aub ).
Each ambulance is associated with a base, known as usual base (bua), where
the vehicle returns after a service if relocation is not carried out. Note that
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A Set of ambulances
A∗ Set of ambulances waiting to be sent to a base
B Set of location bases
bua Usual base (home base) of the ambulance a, bua ∈ B
aub Usual ambulance of the base b, aub ∈ A
N Work shift period
tmax Maximum driving time for isochron calculation
cbj Population covered by an ambulance from bj in tmax

E Set of possible relocation scenarios
e Scenario of relocation e ∈ E

Table 1: Notation

we suppose one ambulance per base. Then, one base is free when its usual
ambulance is absent and part of the population is not covered.

4 Heuristic algorithm

Figure 2 shows the general steps of the process (operating algorithm) used to
manage a medical emergency call. This algorithm is linked to a period of time
of N units, for example a shift. It starts at m = 0 and finishes when m = N .
The operating algorithm manages the call queue, ambulances assigned to
emergencies, hospitals to patients and, when the conditions for relocation
are met, the relocation algorithm is activated. The following subsections
introduce the concepts needed to understand how the relocation algorithm
works.

4.1 Conditions to relocate

Relocation algorithm will be activated when the following two conditions are
satisfied simultaneously:

• Condition 1. An ambulance could be relocated to a different base from
its usual if the vehicle belongs to the set of ambulances waiting to be
sent to a base (A∗).

• Condition 2. An ambulance that meets the condition 1 could be relocated
if there is at least one relocation scenario.
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Figure 2: General diagram of the operating algorithm

The first condition indicates which ambulances can be relocated at a
different base from its usual. The set A∗ consists of those that meet the
following conditions:

1. The ambulance has completed a service at a hospital. According to
various studies, around 75-80% of patients need to be transferred to a
hospital (75% Maxwell et al. (2010), 77% Enayati et al. (2018)). Since
this work only deals with medical emergencies (known as maximum
severity), the cases in which a patient is stabilized after an on-site
intervention and does not need to be transferred to the hospital are
not included in this study. Therefore, any medical vehicle that has just
completed a service will be in a hospital center.

2. The hospital where the ambulance has finished service is not the usual
base of this ambulance. If the ambulance terminates in a hospital that
is its usual base, the ambulance will not move from there.

3. The ambulance is not assigned to another emergency.

If A∗ subset is not empty, the first condition is met (step 4 in Figure 2).
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4.2 Relocation scenarios

According to condition 2, an ambulance can be relocated if a relocation
scenario is given (step 5 in Figure 2).

A relocation scenario (e) can occur when a geographic area and, conse-
quently, its population are uncovered. A zone must be covered from one or
more bases depending on its density of population. Zones with a big concen-
tration of people have more probability to generate emergencies in a more
continuous way and they need to be covered by more than one ambulance
(from more than one base). We identify a relocation scenario when a zone
covered by more than one base (zone with multiple coverage) is total or par-
tially uncovered. Our procedure is focused on this kind of zones because we
do not carry out the simple exchange of ambulances between two bases.

Each relevant zone is covered by a base referred to as the pivot base and
one or more similar bases which generate additional coverage for that same
zone. Note that a zone with simple coverage (just from one base) is not a
possible scenario in our case.

All the elements that are essential to design our strategy of relocation
(procedure to build the relocations scenarios, relocation algorithm...) have
been designed considering the following reflections. Relocation involves changes
on the usual configuration of the emergency service. Depending on the
amount and frequency of these changes, the emergency system can undergo
stress. Therefore, relocation should be carried out when the advantages of
relocation could be greater than the costs associated with this relocation.
Our strategy is used when a zone with multiple coverage is uncovered, since
it is highly likely an emergency may occur and, as a consequence, no nearby
ambulance is available to answer the call.

Procedure to identify scenarios

The algorithm 1 shows the steps to build each scenario e that makes up the
set of possible relocation scenarios E. The set E is a catalog of scenarios
that an EMS identifies as relevant and if one occurs it must be covered. In
the following, a description of algorithm 1 is given:

• Each base bj ∈ B is considered as pivot base (bp). An isochron for
a maximum driving time tmax is calculated (ISbp) and the population
covered from this base (cbp), that is, population inside of the area rep-
resented by an isochron, is stored. Figure 3 shows four examples of an
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isochron (colored area) for each base. To identify if a base bi is similar
to the pivot base bp, the level of overlap of the isochron from bi on the
isochron from bp (OV(bi,bp)) is calculated. This parameter shows the
percentage of the population covered by isochron from bp that is also
covered by the isochron from bi. If this level is higher than a minimum
value (OVmin) then, bi will be similar to bp and it will be included in
its set of similar bases (Similarp). Determining the value of OVmin is
relevant because it relates to the size of the relocation scenario. OVmin
is an indicator of prudence. A very high value, for example, 90%, would
result in a few similar bases considered. It would imply that a base only
would be considered as similar to a pivot base if 90% of the population
of the pivot base is also covered. Otherwise if OVmin is small, the size of
Similarp set is increased. In the most extreme case when OVmin ≈ 0%
for each pivot base the rest of the bases would be similar bases.

Therefore, a value between 50-60% can be a good decision. Figure
3 shows two examples of overlap. If we suppose OVmin = 60%, we
can note b2 would not be similar base of the pivot base b1 (Figure
3a) because the level of overlap is less than 60%. If the base b4 were
the pivot base then, b3 will not be its similar base (see Figure 3b)
because the violet isochron covers 56.45% of the population covered by
the brown one. However, if the pivot base were b3, the b4 would be its
similar because the brown isochron covers the 71.29% of the population
covered by the violet one.

• If the Similarp set is not empty, we define two cases to identify sce-
narios. These cases depend on the relative importance, that is, the
percentage of covered population from each pivot base in tmax units of
time (Cbp) according to the expression 4.

Cbp =
cbp∑

bj∈B

cbj
(4)

- Case1: If Cbp ≥ Cmin and all bases from set Similarp are free
(without ambulances) then a scenario appears. That is, if a pivot
base covers more percentage of population than a minimum given
(Cmin), it means this zone is important, therefore we have to an-
ticipate the situation when the entire zone is left without coverage.
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Then we should relocate an available ambulance to a base from
set Similarp, even when the pivot base is not empty.

- Case2: If Cbp < Cmin, a scenario will appear if both the pivot base
and all bases from set Similarp are free. In this case, the pivot
base covers less percentage of population than the minimum given
and the scenario occurs when the pivot base is also free (without
an ambulance).

The set E will be updated with each new scenario. Section 5.1 shows an
example about building the set E for a real Spanish emergency medical
service. Table 4 shows different scenarios for this real case. Note that,
all the scenarios are composed by a pivot base bp and its set Similarp.
For example, scenario e1 is composed by {b3, (b7, b4)} that is, b3 is pivot
base and (b7, b4) is the set Similar3 of this pivot base.

• After building the set E, it is ordered in non increasing order of Cbp
from each pivot base that belongs to each scenario in E. The aim
is to give more priority to the scenarios such that the probability of
emergency is greater, since there are more population to cover.

Algorithm 1: Pseudocode of build relocation set()

1 for j = 1, ..., |B| do
2 bp=bj
3 Calculate ISbp
4 Similarp = null
5 for i = 1, ..., |B| do
6 if i! = j then
7 Calculate ISbi
8 OV(bi,bp)=:Calculate Overlap (ISbi , ISbp)
9 if OV(bi,bp) ≥ OVmin then

10 Update Similarp(bi)

11 if Similarp != null and Case1 or Case2 is found then
12 e=:Generate relocation scenario

13 Update E(e)
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(a) Base b1 and Base b2 (b) Base b3 and Base b4

Figure 3: Isochron overlap

4.3 Relocation algorithm

This algorithm is activated inside the operating algorithm (Figure 2) when
the conditions 1 and 2 are satisfied, that is, sets A∗ and E∗ are not empty
at time m. E∗ is composed by the scenarios of E that exist at time m. The
algorithm 2 shows the steps of this procedure.

The process starts from the most important scenario, the first one in the
set E∗. Note that, E∗ is ordered with the same criterion as E. Each scenario
involves more than one free base. Therefore it is necessary to select among
these bases one where a free ambulance of A∗ has to be sent. This base is
identified as destination base, bd. We select as bd the base from where more
population is covered.

After choosing bd the procedure assigns an ambulance from A∗ to base
bd. All bases have a usual ambulance, so we can find two cases:

- Case 1: bd is the usual base of one ambulance a of A∗. Then this
ambulance a will be send to bd and the set A∗ and E∗ will be updated.

- Case 2: bd is not the usual base of any ambulance from A∗. Then,
a set named candidate ambulances of base d, A∗d is created. This set
is composed by the ambulances of A∗ which meet the following two
conditions:

2a. The ambulance a ∈ A∗ will be part of A∗d if its driving time to
arrive at bd from its current location is less than a maximum re-
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location time (tR). This time parameter has to be a small value,
since our algorithm does not consider an ambulance available while
it is “en route”.

2b. The ambulance a ∈ A∗ will be part of A∗d if from the destination
base bd covers more population than from the base where it would
return to provided that no relocation was required. However, this
usual base could be occupied by a different ambulance because of a
previous relocation movement. In that case, it would be necessary
to identify another base to return to, referred to as alternative
base (b∗d). Finally, the ambulance a ∈ A∗ will be part of A∗d if
from the destination base covers more population than from the
alternative base, that is if Cbd > Cb∗d . The algorithm identify
alternative base() shows the process to find the b∗d. If the usual
base of the ambulance a is free, this base is the alternative base.
If the usual base of the ambulance a is not free, it is necessary
to identify the ambulance (n) that is at the usual base of a. If
the usual base of ambulance n is free, it is the alternative base,
otherwise the closest free base of usual base of a is considered the
alternative base.

If the set A∗d is not empty, the ambulance closer to bd will be sent to
this base. Otherwise the selected relocation scenario can not be covered
and the process starts again for the next relocation scenario. The set
E∗ is updated in both cases.

Note that more than one scenario can have the same destination base
(bd), then, when one scenario is covered the remaining scenarios with
the same bd are covered as well.

The algorithm of relocation finishes when the sets E∗ or A∗ are empty.
Then, if there are ambulances that need assigning to bases but no
relocation scenarios, the algorithm assign return base() starts to work.

4.4 Assignment of return base algorithm

An ambulance is always assigned to a base when it finishes a service at
the hospital unless it has been to another emergency. If the ambulance is
not relocated, it should go to the usual base. However, this base could be
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Algorithm 2: Pseudocode of relocation()

1 while A∗!= null and E∗!= null do
2 e = E∗[0]
3 Determine bd
4 for i = 1, ..., |A∗| do
5 Determine bui
6 if bui == bd then
7 Send ai to bd
8 AmbulUsual = True
9 Break

10 if AmbulUsual == False then
11 A∗d = null
12 for i = 1, ..., |A∗| do
13 if ai meets conditions 2a and 2b then
14 Update A∗d (ai)

15 if A∗d!= null then
16 Send the closest ambulance to bd

17 Update A∗ and E∗

18 if A∗!= null and E∗== null then
19 assign return base()

Algorithm 3: Pseudocode of identify alternative base()

1 if bua is free then
2 b∗d=b

u
a

3 else
4 Identify ambulance n in bua
5 if bun is free then
6 b∗d=b

u
n

7 else
8 b∗d is the closest unoccupied base to bua
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occupied by another ambulance as a result of a previous relocation movement,
in which case, it is necessary to find a return base for this ambulance.

Algorithm 4 is applied when any of the following situations occurs. Both
cases are very common in dynamic environments.

1. It is not possible to carry out the relocation because both conditions
are not met. As a result, the ambulance has to return to its usual base
and it is occupied by another ambulance. In this case we have to assign
a new base to the ambulance.

2. The relocation algorithm stops because there are not pending scenarios
of relocation but there are pending ambulances to assigned (line 18 of
pseudocode 2). In this case, we also have to decide on a base where the
ambulances will be sent.

The algorithm is active as long as there are pending ambulances to be
assigned to a base, that is the set A∗ is not empty. The algorithm 4 shows
the pseudocode of this procedure. Each ambulance a is assigned to its usual
base (bua) if it is free. Otherwise, the process identifies the usual base of the
ambulance n which occupies bua. If bun is free, the ambulance a is sent to bun,
if not a will be sent to the closest free base to bua.

Algorithm 4: Pseudocode of assign return base()

1 while A∗!= null do
2 a = A∗[0]
3 Determine bua
4 if bua is free then
5 Send a to bua
6 else
7 Identify ambulance n in bua
8 Determine bun
9 if bun is free then

10 Send a to bun
11 else
12 Send a to the closest unoccupied base to bua

13 Update A∗
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5 Computational Results

Several studies of the dynamic ambulance relocation problem show that there
is not a unique solution for all EMS. The legislation, the structure and the
quantity of the resources of each health area and the geographical elements
have an important influence on the solutions obtained. For these reasons,
a proposed model is usually accompanied by the resolution of a particular
case (Schmid (2012), Jagtenberg et al. (2015), Carvalho et al. (2020)) to
analyze its effectiveness. Therefore, to check the performance of the designed
algorithm, it is necessary to generate different instances related to a specific
EMS.

To analyze the performance of the designed heuristic, it is applied to a
real case of the EMS in the region of Valencia (Spain). Then, we use relevant
information and data related to this EMS to build the necessary framework
and generate instances.

All the experiments have been run on a Intel Core i7, 3.2 GHz and 8
GB RAM. Python 3.7. has been used to code the different methods. QGIS
Desktop 3.12.2 and the Openrouteservice plugin have been used to draw
isochrons, calculate travel times and covered population.

5.1 A realistic case study

This section shows the information used to identify the set of possible re-
location scenarios and the characteristics that describe the emergency man-
agement environment. All this information is necessary to specify how the
operating algorithm works and, consequently, to check the performance of the
proposed relocation algorithm using the instance benchmark (section 5.3).

The EMS in Valencia area is part of the regional public health system.
Access to emergency services is guaranteed 24 hours a day by calling 112.
The calls are classified into different groups: medical emergencies (Priority
1 or Priority 2 calls, if it is a process with imminent or non-imminent vital
risk, respectively), medical urgencies (Priority 3, Priority 4 or Priority 5
calls, depending on whether or not care can be delayed) and, finally, other
calls (medical consultation or request for information).

This work is focused on medical emergencies (Priority 1 and 2). This type
of calls is handled by the Advanced Life Assistance (AVA) medical vehicles,
whose crew consists of medical, nursing, health technician and / or driver
personnel.
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(a) Valencia area population (b) Location of vehicles and hospitals

Figure 4: Vehicles’ service area

The region of Valencia is a mixed area, with urban and rural zones and
with more than 1.5 million population. Figure 4a shows the 58 municipalities
near Valencia and 19 neighborhoods of the city of Valencia.

Ten AVA vehicles operate in the Valencia area (five ambulances in the
city of Valencia, called a2, a3, a4, a6, a7, and another five, a1, a5, a8, a9 and
a10, in nearby municipalities).2 The usual bases of the vehicles have the same
numbering, that is, b1 is the usual base of ambulance a1, b2 is the usual base
of ambulance a2 and so on. Bases b3 and b7 have the same location. In most
cases, bases are located in health centers or hospitals, where the necessary
material can be replaced after assisting an emergency and where the staff
can rest until the next service. The location of the ambulances can be seen
in Figure 4b. The same Figure shows the 7 hospitals in Valencia area.

Table 2 shows values for the parameters used in this study. In most
countries there are recommendations about a maximum response time (T )
to an emergency (urban areas between 8 and 10 minutes, rural areas between
12 and 15 minutes). Since in our case urban and rural areas are served by
the same EMS, a maximum limit of 10 minutes has been established for the
response time.

Since the historical data obtained has not allowed for the modeling of
demand for emergency services and given that the correlation coefficient be-
tween the number of calls answered and the population in each municipality is
more than 95%, the population will be considered as an indicator of demand.

2Data from Valencia EMS
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T 10 min
tmax 7 min
ttriage 3 min
ton−site random between 15 and 30 min
ttransfer 0 min
N 720 min
Cmin 10%
OVmin 50%

Table 2: Parameters

When isochrons are performed, the Openrouteservice plug-in estimates the
population cbj that is within the area of the isochron. The Global Human
Settlement raster layer (UE, visited July 2, 2021) has been used to estimate
the population in any polygon that is not an isochron.

Both, idle ambulances on their bases and those that have finished a ser-
vice, could be assigned to attend an emergency. The closest ambulance is
always assigned (based on travel time). When there is no ambulance available
to answer a call, a queue is generated, which is served by the FIFO method
(first in, first out). Ambulances heading to a base cannot be assigned to
calls until they get there. Only one patient is considered in each emergency
and the closest hospital is always assigned. Once the ambulance arrives at
the hospital, the patient is transferred to the hospital’s medical team. There
are quite a few differences with respect to the transfer time of the patient to
the hospital. In the American continent this period can last up to an hour
(Paz Roa et al. (2020)), while in Europe it is much shorter (10-30 minutes).
In this work we are going to consider that hospitals have unlimited capacity
and the transfer time (ttransfer) of the patient is equal to zero.

We determine Cmin as the half of the maximum value of the relative
importance (Cbp). Table 3 shows that in our case the maximum value of the
relative importance is equal to 20%, therefore Cmin is 10%.

We define the maximum relocation time (tR) as the average travel time
between each hospital and each destination base. To calculate the response
time is necessary to set the triage time. We suppose that this time is equal
to 3 minutes. The maximum driving time for isochron calculation is equal
to 7 minutes.

We consider that emergencies can occur during a shift (N) of 720 minutes.
The time an ambulance can spend attending the patient at the site of the
emergency (ton−site) is randomly generated between 15 and 30 minutes.
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Pivot
Bases
(bp)

Covered
Population

(cbp)

Relative
Importance

(Cbp)

Similar bases

b3 b7 b4 b2 b6 b8 b10 b1 b5 b9

b3 454341 20%
b7 454341 20%
b4 445122 19%
b2 361106 16%
b6 208231 9%
b8 124808 5%
b10 103288 5%
b1 92864 4%
b5 36735 2%
b9 9708 0%
TOTAL 2290544

Table 3: Pivot and Similar bases

5.1.1 Determination of relocation scenarios

The steps of algorithm 1 are followed to build the set of possible relocation
scenarios (E). The determination of the scenarios begins with the determi-
nation of the pivot bases and their similar bases (see Table 3).

We obtain the scenarios comparing Cbp with Cmin. For the cases where
Cbp ≥ 10%, the scenario arises when similar bases are left free. In these cases
we want to anticipate the situation when the entire zone (pivot and similar
bases) is left without coverage. While for the cases with Cbp ≤ 10%, the
scenario arises when both the pivot base and the similar bases are left free.
Table 4 shows, in the first column, the seven scenarios that make up the
set of possible relocation scenarios (E). The importance of the scenarios is
determined by the order of Cbp in Table 3 (non-increasing order). The second
column shows the bases that must be free to activate the relocation algorithm
and, the last column shows the destination base where an ambulance must
be sent to cover that scenario.

5.2 Different relocation algorithms

One of the most common procedures to evaluate the proposed strategies is
to compare them with the current strategy used in EMS, without relocation
(Maxwell et al. (2010), Schmid (2012), Billhardt et al. (2014), Enayati et al.
(2018)). In addition to analyzing the performance of the relocation versus
non-relocation strategy (in the section 5.3), we aim to examine the effect
on performance of the relocation algorithm if some elements are changed.
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Scenario {bp, (Similarp)}
Free
bases

Destination
base (bd)

e1 : {b3, (b7, b4)} b7 , b4 b7

e2 : {b7, (b3, b4)} b3 , b4 b3

e3 : {b4, (b3, b7)} b3 , b7 b3

e4 : {b2, (b3, b7)} b3 , b7 b3

e5 : {b6, (b2)} b6 , b2 b2

e6 : {b8, (b1)} b8 , b1 b8

e7 : {b1, (b3, b7, b4, b8)} b1, b3, b7, b4 , b8 b3

Table 4: Scenarios and Destination bases

Four versions of the relocation algorithm (see Table 5) have been proposed.
Depending on the maximum value for tR we have two pairs of algorithms:
Alg 1 and Alg 3 with 12 minutes and Alg 2 and Alg 4 with 10 minutes. The
aim is to study how affects the increase in the maximum relocation time to
the relocation strategy. The relocation algorithm according to pseudocode 2
sends to bd, if it is possible, the ambulances of A∗ whose usual base was bd
(lines 4-9 of the pseudocode). This strategy is followed by Alg 1 and Alg 2.
Alg 3 and Alg 4 changes the criterion and they always send the ambulance
closest to bd.

Algorithms tR (min)
Ambulance
to be send

Alg 1 12 Usual

Alg 2 10 Usual

Alg 3 12 Nearest

Alg 4 10 Nearest

Table 5: Relocation algorithms

5.3 Benchmark of instances

The validation of the proposed heuristic technique is not trivial. To test the
performance of the four relocation algorithms, their results will be compared
with those of the static model, when there is no relocation (Alg 0). As
performance measures we propose to use:
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• The number of calls with response time T ≤ 10 minutes. T is the result
of adding the triage time, the time it takes for the ambulance to arrive
at the scene of the emergency and the waiting time. The latter appears
when there are no ambulances available to assist the emergency.

• Average lateness in minutes. To calculate this measure we select the
calls with T> 10 minutes.

• % of relocations of total displacements.

• Standard deviation of displacements of each ambulance.

Based on historical data, 5 types of instances are generated (30, 40, 50,
60 and 80 emergencies for a period of 12 hours). For each type of instance,
5 replicas are obtained with the location of each of the 30, 40, 50, 60 and 80
emergencies. To obtain the location, the tool for generating random points
within the polygons of the QGIS software is used. The usual service area
in this case is a mixed (urban and rural) area. Instead of considering the
entire municipalities (Figure 4a), areas of possible demand for emergency
services are generated considering continuous urban network, discontinuous
urban network, industrial and / or commercial areas, sports and recreational
facilities, urban green areas and roads. Random points are generated based
on the population of the municipalities / neighborhoods. For example, Figure
5 shows the locations of the fifty emergencies for instance named 50 1.

The Openrouteservice plugin provides the distance matrix calculation ser-
vice. Travel time is calculated taking into account speed limits and different
road surfaces. The fastest route is selected. Since the traffic lights are not
taken into account (only the maximum speed allowed), we consider that these
times would be quite similar to those of an ambulance, when it is on the way
to an emergency or a hospital, with sirens and lights on. When an ambu-
lance travels without a patient back to a base, the times obtained with the
Openrouteservice are increased by 10% because the ambulances will travel
under the same conditions as the rest of the vehicles (see Jagtenberg et al.
(2015)).

For each of the five instances of each type, another 5 replicas are gener-
ated in turn, preserving the same location of the emergencies, but modifying
the moment in which the call occurs and the time of on-site assistance. This
results in a total of 125 instances (5×5×5). The arrival time of the calls (be-
tween 1 and 720, a period of 12 hours) and the duration of on-site assistance
(between 15 and 30 min) are randomly generated.
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Figure 5: Example of location of emergency calls for an instance

Instances of 80 emergencies represent a saturated system, which is un-
likely, but not impossible (we have seen this in the current pandemic). Note
that this saturation level depends on the characteristics, number of ambu-
lances and size of the emergency system used to generate instances.

Table 6 shows the results for the five types of instances obtained with
each algorithm.

The algorithm without relocation (Alg 0) shows better behavior with re-
spect to the number of calls answered within the time limit of 10 minutes
in the instances of 30 emergencies, while, in the instances of 40, 50, 60 and,
especially, 80 emergencies the four algorithms with relocation outperform the
algorithm without relocation. It can be observed that relocation is more ef-
fective with a greater workload. For a better visualization, Figure 6a shows
the percentage of calls with response time within 10 minutes for each al-
gorithm with respect to the algorithm without relocation. In the case of
instances of 80 emergencies, the improvement can be greater than 4%.

Relocation algorithms do not provide a substantial improvement in the
average lateness in the instances of 30, 40, 50 and 60 emergencies (see Figure
6b). In a saturated system (80 emergencies) the delay average increases
sharply, which is a fairly obvious result. However, it is important that, in
the case of the algorithm without relocation, this increase is larger than in the
algorithms with relocation. In this case, when relocation is carried out, not
only does the number of calls answered within the 10-minute limit increase,
but also the average lateness decreases.
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Alg 0 Alg 1 Alg 2 Alg 3 Alg 4

In
st
a
n
c
e
s

Number of calls with response time ≤ 10 min

30 emergencies 349 345 345 345 345
40 emergencies 439 445 446 445 446
50 emergencies 592 605 605 604 604
60 emergencies 679 685 687 686 689
80 emergencies 749 782 778 785 777

Average lateness (min)

30 emergencies 2.94 2.97 2.97 2.97 2.97
40 emergencies 3.21 3.26 3.24 3.26 3.24
50 emergencies 3.23 3.21 3.21 3.21 3.21
60 emergencies 3.47 3.53 3.52 3.52 3.51
80 emergencies 5.00 4.71 4.67 4.67 4.66

% of relocations of total displacements

30 emergencies 0.0 32.3 31.3 32.7 32.0
40 emergencies 0.0 37.0 36.8 35.5 35.3
50 emergencies 0.0 39.4 39.0 40.5 40.0
60 emergencies 0.0 41.9 39.7 43.7 41.5
80 emergencies 0.0 45.9 43.6 46.9 44.2

Standard deviation of displacements of each
ambulance

30 emergencies 37 29 29 29 28
40 emergencies 47 37 37 40 39
50 emergencies 56 46 46 46 45
60 emergencies 57 39 41 38 39
80 emergencies 58 44 45 41 41

For instances of 80 emergencies

Number of calls in
queue

84 43 43 49 47

% of calls in queue 4.2 2.2 2.2 2.5 2.4

Average (SD) of km
traveled per vehicle in
the 25 instances

172 (49,0) 170 (43,5) 170 (44,5) 171 (44,4) 171 (45,5)

Total km traveled in
the 25 instances

38618 38180 38217 38368 38494

Table 6: Numerical results
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(a) Percentage variation of the number of calls with respect to Alg 0

(b) Average lateness (c) Imbalance in the workload

Figure 6: Numerical results
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Since relocations are only performed at the end of a service, the number of
movements in each instance is the same as in a static model. The difference
is that instead of going to usual base, the ambulances travel to other bases.
Table 6 shows the percentage of trips (out of the total number) made by
ambulances to another base, different from their usual base. The number
of relocations is not very high (the percentage of relocations of the total
displacements does not reach 50% in any case).

Table 6 shows the standard deviation of the number of trips for each type
of instance in each of the algorithms. Small deviation means less difference in
workload of different ambulances. In Figure 6c it is observed that in the four
algorithms with relocation in all types of instances the deviation is smaller
than in the algorithm without relocation.

If we compare the relocation algorithms between them, we observe that
the variation of the maximum relocation time influences the % of relocations
of total displacements. As expected, in all types of instances with Alg 1
and Alg 3 (with tR = 12 min) the number of relocations is higher than
with Alg 2 and Alg 4 respectively, but this increase in relocations does not
provide a clear improvement in the number of calls answered within the time
limit. While in the instances of 40 and 60 emergencies the algorithms with
lower tR are better, in the instances of 80 emergencies the algorithms with
higher tR show better behavior. With respect to the average of lateness, the
algorithms with higher tR show somewhat worse performance than ones with
lower tR. This could be due to the ambulances moving towards a base do
not participate in the assignment to emergencies. In general terms, we can
conclude that there is no difference in the behavior of algorithms with tR =
12 min and tR = 10 min for our case study.

If we compare the algorithms regarding the preferences for sending the
ambulances to the destination bases (usual or closest), we cannot conclude
that some are better than others.

With respect to the difference in workload, although there are not many
differences between the four relocation algorithms, in the instances of 60 and
80 emergencies the strategy of sending the closest ambulance provide the
best balance of the workload of different medical vehicles.

We end the presentation of the results with a data, which has emerged
in the instances of 80 emergencies (saturated system). It is the number of
calls that have not been answered immediately due to a lack of available
ambulances and, therefore, have had to be put in the queue. Out of a total
of 2000 calls answered in the instances of 80 emergencies, 84 were queued in
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the algorithm without relocation (see Table 6), while in the four algorithms
with relocation this value is low (almost halfway). Furthermore, these results
are obtained without increasing the kilometers traveled. Note, in Table 6,
the values of the average and of the standard deviation of the kilometers
traveled by vehicle and the values of the total of kilometers traveled in the
25 instances are smaller if the ambulance relocation is carried out.

6 Conclusions and future research

In this work, motivated by the need to reduce the response time to emer-
gencies and by the unavailability of vehicles to assist emergencies while an-
swering other calls, heuristic algorithms are developed to help prehospital
care services in dynamic ambulance relocation decision making. Based on
the analysis of isochron overlaps, Scenarios are generated, which are suitable
conditions for the relocation of medical vehicles.

The results obtained in this study show that the advantages of carrying
out the relocation of ambulances are obtained thanks to the better allocation
of vehicles to the bases and not due to the increase in additional costs. The
dynamic relocation of medical emergency vehicles increases the number of
calls with response time within 10 minutes. This increase is especially notable
in instances with a high workload, where there is also an important advantage
over the static model (without relocation) in the average of lateness. The
proposed model provides balance in the workload of the different ambulances.
This fact is seen not only in the number of services attended, but also in the
number of kilometers traveled by each ambulance. There are no obvious
disadvantages of saturation of the system: the number of trips made by
ambulances is the same as in a static model, there is no increase in the total
number of kilometers traveled, same as in the study by Billhardt et al. (2014).
The unique disadvantage is that ambulances do not always return to their
usual base, but the occurrence of this fact does not exceed 50% in any case.

It has also been observed that it is not always necessary to relocate ve-
hicles, but only when an emergency threshold is exceeded in a certain time.
In the analyzed case, this threshold is approximately 30 emergencies in a
12-hour shift.

The prognosis of pathologies that are classified as emergencies (cardiac
arrest, severe respiratory failure, severe trauma, cerebrovascular accident,
etc.) is related to the time elapsed since they occur until they are treated.
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The greater number of emergencies attended within a certain time can have
a direct impact on the survival of patients. This fact is an example of a way
to meet the Goal 3 of the SDG (Ensure healthy lives and promote well-being
for citizens of any age). The proposed tools can help in the management
of the EMS avoiding many inconveniences in a work environment that is
already stressful. The relocation of medical emergency vehicles promotes a
more efficient use of resources to build resilient infrastructure and promote
sustainable industrialization (the Goal 9 of the SDG).

In the future research we intend to corroborate the results obtained in this
paper with the most exhaustive analysis of historical data and the simulation
of discrete events with the incorporation of different emergency generation
distributions. The possibility of modifying or developing other relocation
algorithms is contemplated based on the results of future analyzes.

Acknowledgments
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