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Abstract 
Between 150 and 200 words briefly specifying the aims of the work, the main 
results obtained, and the conclusions drawn 

AdNetwork companies are very much a part of today's new digital marketing 
methods. This paper aims to develop an algorithm that solves the problems of 
AdNetwork companies in setting optimal floor prices. Establishing the optimal 
starting price for the bid is equivalent to setting the price that maximises 
revenue, which is optimal for the publisher and the AdNetwork company. In 
this market, that price will balance two opposite scenarios: a high floor price 
could lead to some impressions unsold, while a low floor price could be 
insufficient to reach profit margins. The contribution is twofold. First, this 
paper extends the problem of optimal price flor in real time bidding auctions 
for advertising in current scenarios where a DSP (Demand Side Platform) acts 
as a filter and only one bid is received by the AdNetwork and thus, the price 
paid corresponds to the reserve price. and, moreover, it is implemented in 
reality with a pseudo-algorithm (not provided for commercial reasons). It 
allowed to be implemented in a real case scenario for three publishers, 
obtaining an average increase of revenue of 127%. 
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1. Introduction 

Digital marketing has become companies' primary advertising tool and has changed how 
firms communicate with customers (Chaffey &  Ellis-Chadwick, 2019). Within this field, 
some companies operate through what is known as an 'AdNetwork'. An AdNetwork can 
essentially be defined as a network that acts as a link between advertisers and publishers 
(sites or websites that sell their advertising space), thus generating income for publishers and 
placing advertisers' resources in the most appropriate places for the advertising content 
(D'Annunzio & Russo, 2020; Tahaei & Vaniea, 2021). An AdNetwork has a dual revenue 
source: on the one hand, it generates income from the advertising campaigns it sells or 
manages for advertisers. On the other hand, it administers the publishers' advertising space 
and takes a share of the revenue generated by the advertisements shown (impressions) for 
offering the technology, posting and linking. The revenue share determines this part of the 
price. 

The management of publisher inventory is done by purchasing advertising impressions in 
this inventory. The AdNetwork will then seek advertisers who will pay the price ("revenue" 
from now on) to advertise in that inventory by purchasing those impressions. It does this 
through blinded second-price real-time auctions (Myerson, 1981) in which the auction to 
acquire those inventory impressions is won by the advertiser who bids the most but pays the 
price of the second highest bid, which is the final "revenue". These auctions have a floor or 
reserve price built into them, which is the minimum price the publisher will receive for ad 
impressions in its inventory. Impressions are the number of times an ad appears in that 
inventory, and the price is usually per thousand impressions.  

To this "revenue" is applied the share agreement so that the publisher will receive the agreed 
percentage of the revenue, and if this percentage results in a value below the floor price, the 
floor price is paid, and the company (AdNetwork) reduces its profit margin. Thus, if there is 
a revenue share commitment of 70/30 (70% corresponds to the publisher while the remaining 
30% is the AdNetwork company's profit for its services), this means that Adnetwork auctions 
the impressions from the publisher's inventory at a price where at least 70% of that price 
corresponds to the floor price set by the publisher. Thus, for example, if a publisher sets a 
floor price of 7 euros, Adnetwork will put it up for auction at 10 euros in order to maintain 
its revenue share of 70/30 and will not accept bids below that price, which is the price that 
allows it to meet the publisher's floor price and maintain its profit. 

Therefore, establishing the optimal starting price for the bid is equivalent to setting the one 
that maximizes revenue, which is optimal for the publisher and the "AdNetwork" company. 
In this market, that price will balance two opposite scenarios: a high floor price could lead to 
some impressions unsold, while a low floor price could be insufficient to reach profit 
margins. The development of the article is as follows. In Section 2, The proposed approach 

250



David Gávez, Víctor Dugo 

  

  

and different scenarios are presented. In Section 3 the problem is mathematically formalized 
and developed. Section 4 presents some particular cases due to different auction platform 
practices. Finally, Section 5 provides some actual results and conclusions. 

2. Justification of the approach and scenarios. 

2.1. Justification of the approach 

The reliability of the algorithm is established according to the concept of regret. This concept 
answers the question: at the end of T iterations of the algorithm, where we have all the 
information of what happened, what would happen if it had simply applied the same decision 
rule h at each iteration? One could calculate the loss of this fixed hypothesis by adding the 
personal loss of the T iterations. If this value is less than the loss incurred by doing different 
actions, the decision maker is incurring regret, which is the difference between these two 
losses because we could have chosen a single action each iteration and obtained better results 
than we did. Typically, the regret is calculated with respect to the optimal strategy known 
after the period is over, i.e. ex-post, so, at each iteration, it is necessary to choose the action 
that is understood to minimize the regret (although this is not known until the end of the 
period). 

Let us assume that each loss for each iteration of T is between 0 and 1, so the total loss at the 
end of the period will be between 0 and T. For a hypothesis and a loss function, if the 
algorithm guarantees that for all possible states, the regret is Ꝺ(T), it means that as T tends 
to infinity, the average regret per iteration tends to zero (since Ꝺ(·) is the rate at which regret 
converges to zero in each iteration), and there are T iterations. 

In other words, if we design an algorithm and implement it T times, it incurs a loss after that 
period. The goal is to avoid the situation where seen in retrospect (a posteriori), the algorithm 
has incurred a lower loss with a constant rule of decision. Thus, the regret of an algorithm is 
the difference between the loss of the algorithm and the loss from using the constant 
alternative.  

Translating this to our problem, the algorithm sets a floor price. After the period, the revenue 
obtained is compared with the one that would have resulted from applying the optimal price 
calculated a posteriori based on the actual data and the loss is obtained for having set that 
price and not the optimal one in that period. This comparison is the regret. The algorithm has 
been set to have a regret Ꝺ(T1/2), which is a good result and means that when T tends to 
infinity, the regret converges to zero in T1/2, which implies that it needs a smaller number of 
steps for the regret to converge.  
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2.2. Scenarios 

2.2.1. Initial scenario 

In an initial scenario, AdNetwork companies faced repeated auctions as a seller, each with a 
different number of bidders. Each bidder will submit a bid, which will be an unknown and 
random value to other bidders' eyes. The "revenue" is the second highest bid price, and the 
aim is to maximize the profit by considering only the "revenues" from previously recorded 
bids. A fair starting price (reserve or floor price) must be set to do this. The algorithm 
established a mechanism to find the optimal starting price that maximizes "revenue" by 
accessing only two pieces of information: the final "revenues" of the previous auctions and 
the number of bidders that finally participate in each auction (both pieces of information are 
obtained as outputs given by the digital ad auction platforms). After the algorithm's 
development, the game's initial rules changed. 

2.2.2. Current scenario 

In the current scenario, the different bidders have been replaced, and bids are now placed 
through Google's DSP, and Google only sends the winning bid. Under these new conditions, 
there is only access to one bid above the floor price; therefore, whatever the bid's value is, it 
ends up paying the floor price with the consequent loss of profitability. This is why it is 
necessary to create a new algorithm to establish an optimal price within the new market rules. 

3. Formal problem statement and development 

3.1. Mathematical formulation 

Without loss of generality, the algorithm has been designed for prices between 0 and 1, with 
0 being the minimum price and 1 the maximum possible price. This only requires rescaling 
the actual prices according to these limits. The algorithm launches a reserve price, observes 
what happened and does the necessary calculations. Based on these calculations, it chooses 
a new price to maximize the expected revenue and launches it, repeating the process. The 
algorithm was first proposed in (Cesa-Bianchi et al., 2015) as follows. 

The firm conducts an auction to sell an item. In the initial scenario, after the auction, it 
collects 𝑚 ≥ 2 bids: 𝐵1, 𝐵2, . . . , 𝐵𝑚, which are observations of 𝑚 independent and identically 
distributed (i.i.d.) random variables. As indicated, prices will be between zero and one, so 
𝐵𝑖  ∈  [0,1],  𝑖 = 1, . . . , 𝑚. These random variables have a common distribution function 
(since they are i.i.d) 𝐹, arbitrary and unknown, which will show the probability that a bid is 
below a certain value. We will denote 𝐵(1), 𝐵(2), . . . , 𝐵(𝑚) by the statistical order of the bids 
such that 𝐵(1) ≥ 𝐵(2) ≥ ⋯ ≥ 𝐵(𝑚). 
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The algorithm will set a starting price (reserve price hereafter) 𝑝 ∈ [0,1] for the auction, and 
after the auction is conducted, it observes the revenue 𝑅(𝑝), which will depend on the chosen 
reserve price, and the values of the bids, i.e. 𝑅(𝑝) = 𝑅(𝑝;𝐵1, 𝐵2, . . . , 𝐵𝑚) which is defined 
as: 

𝑅(𝑝) =

{
 
 

 
 
𝐵(2) 𝑖𝑓 𝑝 ≤ 𝐵(2)

𝑝 𝑖𝑓 𝐵(2) < 𝑝 ≤ 𝐵(1)

0 𝑖𝑓 𝑝 > 𝐵(1)

 

That is, if bids are received below 𝑝 (or no bids are received), the item is not sold, and the 
"revenue" is zero, and if bids are received above that price, the item is sold to the bidder who 
bids 𝐵(1) at the price of the second highest bid, i.e. 𝐵(2), this 𝐵(2) being the revenue. If the 
item is sold, the middle condition guarantees that the revenue will always have the reserve 
price as the minimum price. However, this information is only obtained a posteriori. When 
the algorithm launches a price 𝑝, it does so, expecting a revenue 𝜇(𝑝) = 𝐸[𝑅(𝑝)], which is 
the expected revenue when the algorithm uses the price 𝑝. With the appropriate mathematical 
manipulations, the expected revenue can be rewritten as: 

𝜇(𝑝) = ∫  
1

𝑝

 𝑥 𝑑𝐹2(𝑥) + 𝑝𝑃(𝐵
(2) < 𝑝 ≤ 𝐵(1)) = 𝐸[𝐵(2)] + ∫  

𝑝

0

 𝐹2(𝑡) 𝑑𝑡 − 𝑝(𝐹(𝑝))
𝑚 

where 𝐹2(𝑥) denotes the probability that 𝐵(2), is less than or equal to 𝑥 (distribution function 
of 𝐵(2) and (𝐹(𝑝))𝑚 is the joint distribution function of 𝐵(1), 𝐵(2), . . . , 𝐵(𝑚) and the price that 
maximizes it:                              𝑝∗ = arg 𝑚𝑎𝑥

𝑝∈[0,1]
 𝜇(𝑝) 

This expected revenue will depend on the bid distribution function, i.e. 𝐹. The algorithm 
allows for cases where more than one bid is received as long as this number constitutes a 
percentage less than the parameter α to be defined later.  

However, in the current scenario where the platform registers only one bid (winning bid in a 
DSP where there are several bidders) and therefore the advertiser always pays the floor price, 
and there is only  access to the value of the winning bids, which are always (or 1-α% of the 
total number of times) the only one above the floor price and to the number of bidders in the 
DSP, if 𝑃𝐹  is the advertiser floor price agreed with the publisher, the revenue function is: 
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𝑅(𝑝) = {

𝑃𝐹 𝑖𝑓 𝐵(1) ≤ 𝑃𝐹

0 𝑖𝑓 𝑃𝐹 > 𝐵
(1)

 

And the scenario differs from the one analyzed in (Cesa-Bianchi, Gentile and Mansour, 
2015). It is different in that information is only available for the highest bid and not for the 
second bid, as the floor price is always paid when only one bid is received from the Demand 
Side Platform. That is, everything must be inferred from the distribution function of the 
highest bid 𝐹1. Let 𝐹1 denote the distribution function of 𝐵(1). This function will indicate the 
probability that the winning bid is less than or equal to a certain value. Thus, 𝐹1(𝑥) indicates 
the probability that the value of the highest bid, i.e. 𝐵(1), is less than or equal to 𝑥, while 
𝐹2(𝑥), as indicated, indicates the probability that 𝐵(2), is less than or equal to 𝑥. 

At this point, it is necessary to establish a lemma whose demonstration has been developed 
but can also be mathematically intuited. The algorithm is going to raise the floor price in 
order to receive it as revenue constantly. It will raise it according to the values of the first 
bids and the revenue it obtains from the net increase in impressions that it stops obtaining 
when advertisers are unwilling to pay these higher floor prices. In this circumstance, if the 
algorithm can only access the winning bids on the floor price and the number of bidders in 
the DSP, it is possible to establish the revenue function and optimal price as: 

𝑝∗ = arg 𝑚𝑎𝑥
𝑝∈[0,1]

 𝜇(𝑝) = arg 𝑚𝑎𝑥
𝑝∈[0,1]

 𝐸[𝐵(2)] + ∫  
𝑝

0

𝐹2(𝑡)𝑑𝑡 − 𝑝(𝐹(𝑝))
𝑚

 

≡ arg 𝑚𝑎𝑥
𝑝∈[0,1]

 𝐸[𝐵(1)] + ∫  
𝑝

0

𝐹1(𝑡)𝑑𝑡 − 𝑝(𝐹(𝑝))
𝑚 = arg 𝑚𝑎𝑥

𝑝∈[0,1]
 𝜇(1)(𝑝) 

As the function (𝐹(𝑝))𝑚 is not available, an approximation is computed from what is 
available, which is the distribution 𝐹(1).  

𝐹1(𝑝) = 𝛽((𝐹(𝑝))
𝑚) = 𝑚((𝐹(𝑝))𝑚)

𝑚−1

𝑚
− (𝑚 − 1)((𝐹(𝑝))𝑚) for 𝑚 ≥ 2 

So:                          𝜇(1)(𝑝) = 𝐸[𝐵(1)] + ∫  
𝑝

0
 𝐹1(𝑡) 𝑑𝑡 − 𝑝𝛽

−1(𝐹1(𝑝)) 

If 𝑚 = 1, then the joint distribution function (𝐹(𝑝))𝑚 corresponds to the observed 
distribution, i.e. 𝐹1(𝑝). 

254



David Gávez, Víctor Dugo 

  

  

From here, the designed algorithm works in each auction as follows. In auction 𝑡, it will set 
the price 𝑝𝑡 , and will have a revenue after the auction of 𝑅𝑡(𝑝𝑡) = 𝑅(𝑝𝑡; 𝐵𝑡,1, 𝐵𝑡,2, . . . , 𝐵𝑡,𝑚) 
which is a function of the random variables 𝐵𝑡,1, 𝐵𝑡,2, . . . , 𝐵𝑡,𝑚 in the auction or time 𝑡. The 
price given by the algorithm will depend on the previously observed 𝐵(1) and the floor price, 
and therefore on the past bids, as it learns and updates from them. 

Thus, given a sequence of reserve prices 𝑝1, 𝑝2, . . . , 𝑝𝑇  set by the algorithm, the cumulative 
regret up to 𝑇 will be given by:   

Σ1
𝑇(𝜇(𝑝∗) − 𝜇(𝑝𝑡)) 

Therefore, the regret (the reliability or goodness of an algorithm) will be a random variable 
since it depends on 𝑝𝑡 , which will depend on the previous revenues that will depend on 
𝐵1, 𝐵2 , . . . , 𝐵𝑚. 

It is important to note that we do not have access to the actual distribution of 𝐵(1), which is 
unknown, but to its empirical distribution function, which allows us to calculate the 
equivalent revenue 𝜇(1)(𝑝) that provides the same maximizer as the expected revenue 𝜇(𝑝). 

The algorithm works in stages. In each stage, the algorithm is run a certain number of times 
with the same reserve price. This is necessary to obtain the empirical distribution function of 
𝐵(1), i.e. 𝐹1. In principle, it is assumed that the algorithm will run a total number of 𝑇 times. 

• Stage 1 will contemplate 𝑇1 auctions (implementations of the algorithm), and 
therefore the price it will use will be 𝑝𝑡 = �̂�1;  𝑡 = 1, . . . , 𝑇1. 

• Stage 2 will contemplate 𝑇2 auctions (implementations of the algorithm), and 
therefore the price it will use will be 𝑝𝑡 = �̂�2;  𝑡 = 𝑇1 + 1, . . . , 𝑇1 + 𝑇2. 

• And so on. 

In this way, the algorithm will produce reserve prices of 0 = �̂�1 ≤ �̂�2 ≤. . . ≤ 1. They are set 
from an interval built according to a signification level α, choosing the price from this interval 
that minimizes risk subject to constraints related to the distribution function. The total number 
of stages is denoted as S (stages). It is shown mathematically that for the algorithm to have 
the agreed regret, each stage must have a number of implementations or auctions 𝑇𝑖 = 𝑇1−2

−𝑖 . 
From here, the number of stages, or at least their upper limit, can be determined so that 𝑆 ≤
⌈2log2 log2 𝑇⌉, i.e. it shall be set to the smallest integer not less than 2log2 log2 𝑇. The total 
cumulative regret of the algorithm shall be:       

Σ1
𝑆(𝜇(𝑝∗) − 𝜇(𝑝𝑖))𝑇𝑖  
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4. Special cases 

4.1 Treatment of the algorithm when the number of bids is not known 

In this case, the number of bids is not known. However, a limited number of different floor 
prices can be set for different advertisers. In this way, each advertiser who wants to advertise 
sees a different price set, depending on the algorithm that predicts how much they are willing 
to pay. According to empiric approaches (Seljan et al., 2014; Ballesteros et al., 2015), it could 
be assumed that the number of bidders follows a discrete normal distribution: 

𝐻(𝑚) = 𝑃(𝑀 = 𝑚) =
𝑒
−1
2𝜎2

(𝑚−𝜇𝑚)
2

Σ𝑚𝑖
𝑒
−1
2𝜎2

(𝑚𝑖−𝜇𝑚)
2
,𝑚𝑖 = −∞,… ,−1,0, +1,… ,+∞ 

Thus, the expected revenue will be:    𝜇(𝑝) = 𝐸𝑀𝐸[𝑅
𝑀(𝑝)] = 𝐸𝑀𝐸[𝐵𝑀

(2)
] +

∫  
𝑝

0
𝐸𝑀[𝐹2, 𝑀](𝑡)𝑑𝑡 − 𝑝𝐸𝑀[𝐹

𝑀](𝑝) 

Where 𝐸𝑀[𝐹𝑀](𝑝) can be estimated from the support function 𝑇(𝑥) = Σ𝑚=2
∞ 𝐻(𝑚)𝑥𝑚 and 

its auxiliary function 𝐴(𝑥) = 𝑇(𝑥)(1 − 𝑥)𝑇′(𝑥) with the appropriate mathematical steps 
(Cesa-Bianchi et al., 2015). 

5. Conclusions 

This paper extends the problem of optimal price flor in real time bidding auctions for 
advertising in current scenarios where a DSP acts as a filter and only one bid is received by 
the AdNetwork and thus, the price paid corresponds to the reserve price. It also materialized 
the case in which the number of bidders is unknown using the normal discrete distribution. 
After an evaluation period carried out by an Andalusian digital marketing agency (Creafi), 
the revenue after using the algorithm described in section 4 increased by 127% compared to 
the revenue obtained if the default price agreed with the publisher had been used. 
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