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Abstract: The combined use of weather generators (WG) and hydrological models (HM) in what is
called synthetic continuous simulation (SCS) has become a common practice for carrying out flood
studies. However, flood quantile estimations are far from presenting relatively high confidence levels,
which mostly relate to the uncertainty of models’ input data. The main objective of this paper is to
assess how different precipitation regimes, climate extremality, and basin hydrological characteristics
impact the uncertainty of daily flood quantile estimates obtained by SCS. A Monte Carlo simulation
from 18 synthetic populations encompassing all these scenarios was performed, evaluating the
uncertainty of the simulated quantiles. Additionally, the uncertainty propagation of the quantile
estimates from the WG to the HM was analyzed. General findings show that integrating the regional
precipitation quantile (XT,P) in the WG model calibration clearly reduces the uncertainty of flood
quantile estimates, especially those near the regional XT,P. Basin size, climate extremality, and the
hydrological characteristics of the basin have been proven not to affect flood quantiles’ uncertainty
substantially. Furthermore, it has been found that uncertainty clearly increases with the aridity of
the climate and that the HM is not capable of buffering the uncertainty of flood quantiles, but rather
increases it.

Keywords: weather generator; hydrological model; uncertainty; Monte Carlo simulation; daily
flood quantile

1. Introduction

Accurately designed flood estimation is required to make the best decision possible
in various applications, including infrastructure construction, land-use management, and
risk assessment [1,2]. Flood frequency analysis (FFA) includes all techniques that aim
to decipher the natural random processes that drive the occurrence and magnitude of
flood events [3]. Traditional techniques are based on fitting the available annual maxima
discharge data to a distribution function for gauged basins or deterministic approaches
for ungauged basins. The main problem of these methods is the lack of long systematic
observations, mainly concerned with hydrometric measurements, which characterize runoff
processes [4].

More recently, hybrid methods based on the use of the two abovementioned ap-
proaches, either through their combination or by adding other sources of information or
techniques [5], appear to be gaining an important audience. In this vein, a widely adopted
approach is the generation of long synthetic flood data series by combining the use of
stochastic weather generators (WG) coupled with a hydrological model (HM) in what is
called synthetic continuous simulation (SCS). This approach addresses the issue of the
short length of the available observations at the same time as it eliminates the problem
of the determination of the initial conditions of the basin and the characterization of the
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spatiotemporal distribution of the precipitation in the case of deterministic methods such
as design storms.

Despite the invaluable contribution that this approach makes to flood estimation, it
is true that quantile estimates still present high uncertainty, which becomes magnified
when dealing with low-frequency events [6,7]. WGs rely on the amount of information
available, meaning they require representative data series of observed extreme precipi-
tation in order to perform adequately [8]. The lack of this has led practitioners to seek
potential solutions to reduce the uncertainty of quantile estimations. In this sense, some
WG developers have opted for the use of heavy-tailed distribution functions to model
precipitation amounts, including Evin et al. [9] and Ahn [10]. Beneyto et al. [11] proposed
the incorporation of more robust and reliable studies (e.g., regional precipitation studies)
for the parameterization of WGs, obtaining a clear reduction in the uncertainty of the
low-frequency precipitation quantile estimates, although not quantifying this uncertainty
reduction. The quantification of hydrological prediction uncertainty is crucial in water
resource decision-making processes [12].

Major sources of uncertainty in hydrological modeling include input and calibration
data, model structures, and parameters [13], with model input data being the primary
source of uncertainty [14], especially in regions with limited data availability, such as arid
and semi-arid regions [15]. Moges et al. [16] categorized uncertainty analysis methods
into six broad classes: (i) Monte Carlo analysis, (ii) Bayesian statistics, (iii) multi-objective
analysis, (iv) least squares-based inverse modeling, (v) response surface-based techniques,
and (vi) multi-modeling analysis. Based on Monte Carlo analysis, Beneyto et al. [17]
evaluated reductions in the uncertainty of the integration of a regional study of annual
maximum daily precipitation in the WG parametrization entailed in the precipitation
quantiles, concluding that integrating these studies provides more information than longer
input data series.

In terms of discharges, many studies have focused on the quantification of input
data uncertainty. Sun et al. [18] calculated flood hydrographs for the Finniss River basin
in Darwin, Australia, using different approaches to estimate the input rainfalls from the
available radar and rain gauge data. Bardossy and Das [19] investigated the influence
of the spatial resolution of the rainfall input on the model calibration and application.
Moulin et al. [20] built, calibrated, and validated a realistic error model on mean areal
precipitation (MAP) estimates and undertook a detailed analysis of the links between MAP
estimation uncertainties, basin area, and streamflow simulation uncertainties. This latter
study concluded that a large part of the rainfall–runoff modeling errors could be explained
by the uncertainties in rainfall estimates, limiting their operational use for flood forecasting.

Therefore, reliable precipitation data series is key to obtaining accurate flood quantile
estimates. In the SCS approach, since the sample statistics set the generated precipitation
patterns, the precipitation regime may have a direct influence on the flood quantile esti-
mations, i.e., flood quantile estimations in arid or semi-arid climates, with effectively no
rain over the year with occasional intense precipitation events, might present different
degrees of uncertainty than in the case of humid climates, with less skewed and more
homogeneous precipitation.

In this context, and following in the footsteps of the previous work of Beneyto et al. [17],
the main objective of this paper is to quantify the uncertainty of flood discharge quantile
estimates obtained by SCS in a wide range of hydro-climatic scenarios through the combina-
tion of (1) different precipitation regimes, (2) different climate extremality, and (3) different
hydrological characteristics of the basin. In other words, we are trying to analyze the influ-
ence of hydro-climatic conditions on the uncertainty of the flood quantiles obtained with
the SCS approach presented in Beneyto et al. [17]. Additionally, a simple sensitivity analysis
for the basin size was conducted, as well as an assessment of the uncertainty transmission
from the precipitation to the discharge quantiles. We propose a framework that accounts
for all these different scenarios, which are represented by synthetic populations considered
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to be “truth” and used as benchmarks to evaluate the sample uncertainty through Monte
Carlo simulations.

Since the objective is the uncertainty of the proposed SCS methodology independently
of the selected models, and for the sake of simplicity, we will assume that both the me-
teorological and the hydrological models do not introduce any uncertainty beyond the
methodology itself. Specifically, (i) the WG does not present structural uncertainty, and (ii)
the HM perfectly reproduces the reality. In any case, this unconsidered uncertainty is much
smaller than that corresponding to the precipitation information usually available.

2. Methodology
2.1. Simulation Framework

Different daily precipitation populations were created with different climates and
different precipitation extremality, the latter being understood as the number of registered
extreme precipitation events per year. These populations were created from existing
observations and by handling the adequate WG parameters to increase or reduce the
annual precipitation, the annual maximum daily precipitation, and the number of wet days
per year. A Monte Carlo simulation was performed with 50 packages of 60-year samples
extracted from each of the populations. Following the approach in Beneyto et al. [17] and
assuming the population precipitation quantile (XT,P) to be perfect (i.e., no uncertainty),
the population X100,P was introduced in the WG for its parametrization. A long series of
precipitation and both maximum and minimum temperatures were then simulated, which
in turn fed a fully distributed HM with two different hydrological regimes (i.e., permanent
regime and ephemeral regime) to obtain the discharges and the corresponding flood
quantiles. Both basin hydrological regimes were obtained by varying the HM Correction
Factors (CF), as will be explained in the following sections.

Precipitation and discharge population quantiles X10, X100 , and X500 were compared
with those of the 50 packages, analyzing the uncertainty through the Relative Root Mean
Square Error (RRMSE), the Coefficient of Variation (CV), and the Relative Bias (RB).

Finally, the transmission of uncertainty from the WG to the HM was also evaluated. A
workflow diagram of the methodology can be seen in Figure 1.
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2.2. Stochastic Weather Generator: GWEX

The WG used to perform this study was GWEX [9], a stochastic multi-site WG focused
on extreme events. Among the many features this WG presents, and for the present study,
it should be highlighted that it incorporates the Extended Generalized Pareto Distribution
(E-GPD) function [21] for modeling the precipitation amount, which is basically obtained
by raising the Generalized Pareto Distribution to a power of k > 0 :

F(x; λ) =

[
1 −

(
1 +

ξx
σ

)
+

− 1/ξ

]κ

, x > 0 (1)

where λ = (k, σ, ξ) a vector of parameter, where k controls the shape of the lower tail, σ is
a scale parameter, and ξ controls the rate of the upper tail decay [22] as demonstrated in
Beneyto et al. [17].

This latter parameter was therefore set to three different values {0.05, 0.11, and 0.25}
to generate precipitation populations with different extremality, the population with a ξ
value of 0.05 being the least extreme, and the one with a ξ value of 0.25 the most extreme.
Similarly, this parameter was estimated in the WG calibration process for each realization
to obtain the closest value of the sample X100,P to the population one.

2.3. Eco-Hydrological Model: TETIS

The TETIS eco-hydrological model [23] is a conceptual (tank structure) model with
physically based parameters and fully distributed in the space. It incorporates an effective
split-parameter structure that facilitates the model implementation process, presenting only
nine CFs to be calibrated for the hydrological module. Rather than calibrating the value at
each cell, the estimated value of each of these CFs is multiplied by the value of each cell
in the corresponding input raster map. This considers the spatial and/or temporal effects
and the model or input errors, and allows for a quick and simple (manual or automatic)
calibration of the different processes represented, taking advantage of the information used
in the parameter estimation. The CFs of the TETIS model are as follows: CF1. Static storage;
CF2. Evapotranspiration; CF3. Infiltration; CF4. Overland flow; CF5. Percolation; CF6.
Interflow; CF7. Deep aquifer flow; CF8. Connected aquifer flow; and CF9. Kinematic
wave velocity.

In our case, and starting from an implemented model in previous studies, two different
synthetic basins with different hydrological behaviors were built up: ephemeral and
permanent. These basins were created by setting the values of CF3, CF5, CF6, CF7, and CF8
based on the authors’ expertise. It is worth highlighting that, for our study, we consider
our model to be “perfect”, i.e., no uncertainty is introduced in the quantile estimations by
the model.

3. Synthetic Case Study
3.1. Basin Description

The synthetic basin, obtained from an actual one to guarantee its natural behavior,
has a drainage area of approximately 180 km2. The altitude of the basin ranges from
1.061 m.a.s.l. at the headwaters to 226 m.a.s.l. at the outlet, presenting a main stream of
28.5 km in length and several short tributaries pouring on both sides of the main course
(Figure 2).
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Three synthetic flow gauges (hereafter Control Points (CP)) were defined within
the basin as follows: the Upper basin Control Point (U-CP), collecting the waters of an
approximately 24 km2 headwater tributary just before its confluence with the main stream;
the Mid-basin Control Point (M-CP), with a basin area of 101.5 km2; and the Outlet Control
Point (O-CP), at the outlet of the full synthetic basin (Figure 2).

Two different hydrological characteristics of the basin were analyzed to test the basin
response. The first one, reproducing an ephemeral regime, is characterized by 70% of
overland flow and 30% of interflow, being the aquifer disconnected. This regime is typ-
ical of arid or semi-arid regions, where rivers only present flow after high precipitation
events, remaining dry for most of the year. The second hydrological regime represents a
permanent discharge regime, typically found in humid climates where rivers never dry up
independently at that time of the year. This latest is characterized by 30% overland flow,
40% of interflow, and the remaining 30% feeds the aquifer or reaches the river channel.

Both hydrological responses were achieved by setting the abovementioned CFs, which
basically translates into increasing or decreasing the values of the hydraulic conductivity
of the soil maps (obtained from the European Soil Database (ESDB)). Additionally, the
infiltration capacity map (obtained from the ESDB) and the percolation capacity map
(obtained from the Spanish Geological and Mining Institute) were also slightly amended.
Slope, flow directions, and flow accumulation maps, derived from a digital elevation model
with a 100 m resolution obtained from the National Geographic Institute, are common for
both hydrological regimes.

3.2. Climate Description and Statistics

Two grid points from the Spain02-v5 reanalysis dataset [24,25] were initially used to
create the synthetic populations. Specifically, these were “grid3715”, representative of a
Spanish Mediterranean coast semi-arid climate, and “grid3314”, representative of a northern
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Spanish humid climate. From this information, six different 15,000 y populations were created
by modifying the WG parameters associated with the extremality and the percentage of
dry/wet days. Table 1 shows the basic statistics of the nine precipitation populations.

Table 1. Populations’ precipitation statistics.

Variable Statistic
Semi-Arid Humid Extremely Humid Units

0.05 0.11 0.25 0.05 0.11 0.25 0.05 0.11 0.25

Daily
Precipitation (Pd)

Mean 1.57 1.57 1.56 2.05 2.05 2.05 3.60 3.60 3.60 mm
Mean if Pd > 0.1 mm 6.32 6.32 6.29 6.59 6.54 6.42 6.20 6.21 6.20 mm

Standard Deviation (SD) 6.19 6.35 6.90 5.69 5.82 6.35 7.15 7.34 8.05 mm
SD if Pd > 0.1 mm 11.16 11.52 12.73 8.61 8.86 9.91 8.49 8.76 9.78 mm

% Pd > 0.1 mm 24.79 24.79 24.79 31.91 31.91 31.91 57.95 57.95 57.95 %
Max 249.51 373.15 846.69 173.80 238.80 805.50 208.37 263.20 677.65 mm

Annual
Precipitation Mean 572.46 572.62 569.76 748.94 748.91 748.23 1313.27 1315.27 1313.08 mm

Annual max.
Precipitation

Mean 59.56 62.96 70.77 47.61 50.88 60.88 53.51 58.07 72.18 mm
Coeff. Variation 0.43 0.48 0.67 0.33 0.39 0.60 0.31 0.36 0.57 -

C. Skewness 1.55 2.02 3.53 1.36 1.75 4.53 1.41 1.81 3.63 -
C. Kurtosis 7.25 10.68 27.61 6.25 8.62 52.26 6.91 9.54 30.82 -

All populations’ annual mean daily temperature and annual mean daily precipitation
were checked against De Martonne’s aridity index [26], each of them falling within the
climate types of semi-arid, humid, and extremely humid, respectively.

In summary, considering the two different basin hydrological regimes, the three
different climates, and the three different climate extremality, 18 possible combinations were
considered in the present study. Figure 3 below outlines all these considered combinations,
which represent 18 synthetic discharge populations with significantly different hydro-
climatic characteristics.

Water 2023, 15, x FOR PEER REVIEW 6 of 17 
 

 

Table 1. Populations’ precipitation statistics. 

Variable Statistic 
Semi-Arid Humid Extremely Humid Units 

0.05 0.11 0.25 0.05 0.11 0.25 0.05 0.11 0.25  

Daily Precipi-
tation (Pd) 

Mean 1.57 1.57 1.56 2.05 2.05 2.05 3.60 3.60 3.60 mm 
Mean if Pd > 0.1 mm 6.32 6.32 6.29 6.59 6.54 6.42 6.20 6.21 6.20 mm 
Standard Deviation 

(SD) 
6.19 6.35 6.90 5.69 5.82 6.35 7.15 7.34 8.05 mm 

SD if Pd > 0.1 mm 11.16 11.52 12.73 8.61 8.86 9.91 8.49 8.76 9.78 mm 
% Pd > 0.1 mm 24.79 24.79 24.79 31.91 31.91 31.91 57.95 57.95 57.95 % 

Max 249.51 373.15 846.69 173.80 238.80 805.50 208.37 263.20 677.65 mm 
Annual Pre-

cipitation 
Mean 572.46 572.62 569.76 748.94 748.91 748.23 1313.27 1315.27 1313.08 mm 

Annual max. 
Precipitation 

Mean 59.56 62.96 70.77 47.61 50.88 60.88 53.51 58.07 72.18 mm 
Coeff. Variation 0.43 0.48 0.67 0.33 0.39 0.60 0.31 0.36 0.57 - 

C. Skewness 1.55 2.02 3.53 1.36 1.75 4.53 1.41 1.81 3.63 - 
C. Kurtosis 7.25 10.68 27.61 6.25 8.62 52.26 6.91 9.54 30.82 - 

All populations’ annual mean daily temperature and annual mean daily precipitation 
were checked against De Martonne’s aridity index [26], each of them falling within the 
climate types of semi-arid, humid, and extremely humid, respectively. 

In summary, considering the two different basin hydrological regimes, the three dif-
ferent climates, and the three different climate extremality, 18 possible combinations were 
considered in the present study. Figure 3 below outlines all these considered combina-
tions, which represent 18 synthetic discharge populations with significantly different hy-
dro-climatic characteristics. 

 
Figure 3. Synthetic populations outline. 

4. Results 
This section presents the results of the uncertainty analysis of flood quantile esti-

mates in the three different scenarios considered: different basin hydrology, different cli-
mate, and different climate extremality. Flood quantiles for return periods of 10, 100, and 
500 years were analyzed, representing moderate, low, and very low probability of occur-
rence. 

Figure 3. Synthetic populations outline.

4. Results

This section presents the results of the uncertainty analysis of flood quantile estimates
in the three different scenarios considered: different basin hydrology, different climate, and
different climate extremality. Flood quantiles for return periods of 10, 100, and 500 years
were analyzed, representing moderate, low, and very low probability of occurrence.
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Additionally, the results of a preliminary analysis assessing the influence of the basin
size in the quantile estimates are presented. Finally, the uncertainty transmission through
the HM from the precipitation quantile estimates to the flood quantile estimates was also
analyzed and quantified.

For better clarity, all RRMSE, RB, and CV values (expressed in percentage) are shown
at the end of the section.

4.1. Preliminary Analysis

This analysis was first undertaken to find out whether the size of the drainage area
influences the flood quantile uncertainty or not. The analysis was carried out considering
a semi-arid climate, medium extremality (ξ = 0.11), and an ephemeral behavior of the
basin. Results in the three CPs (24 km2, 101.5 km2, and 180 km2, respectively) are shown in
Figure 4, where each boxplot represents the relationship between the population quantile
and the simulated quantiles for the 50 realizations. A similar negative value of the RB was
obtained for X10,Q and X100,Q for all three CPs, being again similar but positive in the case
of X500,Q. This latter quantile presented the higher errors, with RRMSE and CV values of
up to 8.19% and 6.10%, respectively.
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Nevertheless, these values tend to vary slightly with the basin size and without a clear
pattern. These variations are almost negligible, and they could be attributable to the sample
variability or the methodology uncertainty itself. Therefore, only the CP located at the
basin outlet (i.e., O-CP) will be considered in further analyses.

4.2. Hydrological Characteristics of the Basin

Two different hydrological characteristics of the basin were analyzed, reproducing an
ephemeral (i.e., 70% of overland flow and 30% of interflow) and a permanent discharge
regime (i.e., 30% of overland flow, 40% of interflow, and 30% feeding the aquifer or reaching
the river channel).

The aim of this analysis was to evaluate if the basin behavior could have a significant
influence on the uncertainty of quantile estimations. As with the previous analysis, Figure 5
represents the boxplots for the quantile estimates in a semi-arid climate for medium
extremality (ξ = 0.11), both for an ephemeral and a permanent regime. Although flood
quantiles in a permanent river present slightly lower values of RRMSE and CV for all
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three return periods, again, no significant differences in terms of uncertainty can be found
between either discharge regime. Additionally, quantiles for return periods of 10 and
100 years tend to be underestimated (negative RB), whereas quantiles for a return period of
500 years are overestimated (positive RB).
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It can be concluded that the hydrological characteristics of the basin are not a significant
factor in terms of quantile estimates’ uncertainty. Thus, only results for the ephemeral
regime will be presented in successive analyses.

4.3. Precipitation Regime

Having set the river regime as ephemeral, three rainfall regimes according to De
Martonne’s aridity index were analyzed: semi-arid, humid, and extremely humid. As
shown in Table 1, the main differences between all three climates relate to the percentage
of wet days (ca. 25%, 32%, and 58%, respectively) and the mean annual precipitation (ca.
570 mm, 750 mm, and 1300 mm, respectively). Figure 6 shows the boxplots of the quantile
estimates in an ephemeral river with medium climate extremality (ξ = 0.11) for the three
climates. In this case, significant differences can be observed. Flood quantiles for return
periods of 10 years and 100 years present less uncertainty as the climate turns more humid,
reducing the values of RRMSE from 7.31% in a semi-arid climate to 4.59% in a very humid
climate and from 4.17% to 1.42%, respectively. A similar reduction can be observed for the
value of the CV, this being more evident in the case of a very humid climate. Conversely,
for return periods of 500 years, both values of RRMSE and CV increase rapidly as the
climate turns less arid, reaching values of up to 24.75% and 4.60%, respectively. Although
X100,Q is fairly well represented, especially in the case of a very humid climate, X10,Q is
systematically underestimated and X500,Q presents a positive RBs for all three climates.
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4.4. Climate Extremality

The aim of this analysis is to assess whether the extremality of the population has
an impact on the flood quantile estimations. This extremality, understood as the number
of registered extreme precipitation events per year, has been synthetically introduced in
the populations by means of modifying the shape parameter ξ of the E-GPD, obtaining
three climate extremality: low extremality (ξ = 0.05); medium extremality (ξ = 0.11);
and high extremality (ξ = 0.25). Figure 7 shows the boxplots of the quantile estimates
for an ephemeral river for return periods of 10, 100, and 500 years in the three analyzed
climates before, and the three climate extremalities. Results show that X100,Q are generally
well estimated independently of the climate extremality, albeit RRMSE and CV values
slightly increase as the climate is more extreme. Still, RRMSE values range from 1.42%
to 4.17%, which indicates a very good estimation. X10,Q are underestimated for all three
climate extremalities, presenting RRMSE values quite similar for all climates and climate
extremality, except for the semi-arid climate, where the value increases considerably. In the
case of X500,Q, and with the only exception of the semi-arid climate with low extremality
where the RRMSE value is satisfactory (i.e., 4.66%), quantile estimates systematically
overestimate the population quantiles. This is more evident as the population is more
extreme, and especially as the climate becomes more humid, reaching RRMSE values of up
to 37.43% and CV values of up to 10.50%.
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4.5. Uncertainty Propagation

This section analyzes the uncertainty propagation of the quantile estimates from the
WG to the HM. Respective precipitation quantiles to those flood quantiles shown in Figure 7
are now represented in Figure 8.
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Figure 8. Boxplots of precipitation quantile estimates for an ephemeral river for return periods of 10,
100, and 500 years in the three analyzed climates and climate extremality.

At first glance, it can be appreciated how the size of the boxplots and the distances to
the red dashed line are lower, which means that, in general, XT,P present lower uncertainties
than their respective XT,Q. Table 2 shows the RRMSE, CV, and RB values for precipitation
and flood quantiles for all analyses undertaken in this research. As can be observed, there
is a systematic increase (or decrease in the case of negative RB) for all scenarios, which
means that uncertainty clearly propagates through the HM. Therefore, it can be concluded
that the rainfall–runoff transformation, far from acting as a buffer, increases the uncertainty
of the flood quantile estimates.

In a more illustrative way, Figure 9 shows the mean (considering all scenarios) value
of RRMSE, CV, and RB for both precipitation and flood quantile estimates for the three
considered return periods. RRMSE, CV, and RB values are considerably lower for return
periods of 100 years, as expected, since X100,T was used for the WG calibration. However,
it can be seen an increase in RRMSE and CV for all return periods. In the case of the RB,
this presents an increase for return periods of 500 years and a decrease for return periods
of 100 years, which indicates an increase in uncertainty. Lastly, the almost-negligible mean
RB values are explained by the WG calibration procedure.
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Table 2. RRMSE, CV, and RB values for the estimated precipitation and flood quantiles for return
periods of 10, 100, and 500 years, the three climate extremality (ξ = 0.05, 0.11, and 0.25), and the three
analyzed climates.

RRMSE CV RB

Climate ξ
Return Period

(Years)
Precipitation

(%)
Discharge

(%)
Precipitation

(%)
Discharge

(%)
Precipitation

(%)
Discharge

(%)

Semi-arid

0.05
10 4.8 7.1 2.8 6.0 −4.0 −4.3
100 2.9 3.8 1.9 3.7 −2.2 −0.9
500 5.2 4.7 4.5 4.7 2.5 −0.1

0.11
10 5.5 7.3 2.4 4.8 −5.0 −5.8
100 2.4 4.2 1.0 3.4 −2.2 −2.6
500 6.9 8.2 6.0 6.1 3.2 5.2

0.25
10 5.4 12.4 3.7 9.5 −4.1 −9.1
100 1.4 5.3 1.4 5.3 −0.1 0.8
500 9.7 13.9 8.0 10.8 5.0 7.8

Humid

0.05
10 3.4 5.0 2.0 3.8 −2.7 −3.4
100 1.7 3.3 1.5 2.9 −0.7 1.5
500 5.8 7.5 3.7 5.1 4.3 5.3

0.11
10 3.3 5.0 2.2 3.8 −2.6 −3.4
100 1.9 3.3 1.8 2.9 −0.6 1.5
500 11.1 13.7 5.4 6.9 9.5 11.4

0.25
10 3.5 5.5 2.9 4.4 −2.1 −3.5
100 2.2 3.8 2.1 3.2 −0.7 −2.1
500 13.5 13.5 9.3 10.5 9.0 7.5

Extremely
humid

0.05
10 3.6 4.8 1.0 1.9 −3.4 −4.4
100 0.8 2.2 0.8 1.3 0.1 1.8
500 12.2 17.1 4.0 4.6 11.3 16.2

0.11
10 3.5 4.6 1.3 2.0 −3.3 −4.2
100 1.0 1.4 0.9 1.4 −0.3 −0.2
500 20.9 24.8 4.1 4.6 20.3 24.1

0.25
10 4.9 5.3 1.6 2.0 −4.7 −5.0
100 1.3 1.8 1.3 1.8 −0.4 −0.5
500 31.5 37.4 6.8 6.9 30.3 36.2
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Figure 9. Difference between mean (considering all scenarios) RRMSE, CV, and RB values for the
estimated precipitation and flood quantiles.
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5. Discussion

SCS is a widely adopted hybrid approach to determine flood quantile estimates,
which resolves the issues of former purely statistical or deterministic methodologies (i.e.,
characterizing the initial conditions of the basin and adequately representing the spatiotem-
poral distribution of the precipitation) [27]. Nevertheless, low-frequency flood quantile
estimates still present high uncertainty. The length of the input data series and the low
density of monitoring stations constitute the main source of uncertainty and one of the
main challenges to be faced in FFA, especially in arid and semi-arid regions [15]. Longer
available input data series would ideally contribute to reducing estimates’ uncertainty,
but, unfortunately, this is something that only the passage of time can mitigate. Instead,
incorporating additional sources of information or improving the model set-up can lead to
considerable improvements in the reliability of flood estimates. Moreover, quantifying the
uncertainty is required for decision-makers to understand the implications of limited data,
model uncertainties, changes in the flooding system over the long term, incommensurate
scales of appraisal, and potentially conflicting decision objectives [28]. Recognizing this
importance, no studies could be found in the literature quantifying the uncertainty of
quantile estimates by SCS associated with the amount of available input information, which
is precisely the objective of this paper. Being aware of the different precipitation patterns
and basin characteristics around the world and drawing from the previous research by
Beneyto et al. [17], this study intends to elucidate how different precipitation regimes,
climate extremality, or basin hydrological characteristics impact the uncertainty of the flood
quantile estimates.

Results initially obtained in three CPs of the basin through Monte Carlo simulations
with samples of 60 years, which is double the 30 years set as a standard reference by the
World Meteorological Organization [29], showed no major differences in terms of quantile
estimates’ uncertainty. This follows the line of the results obtained by Moulin et al. [20],
and it can be concluded that the basin size has no major influence on the accuracy of
the estimations.

An ephemeral and perennial river were also compared. Far from these authors’ initial
thoughts, results show again that no significant differences could be found with regard
to the quantile estimates accuracy. Ephemeral rivers, usually located in less populated
arid or semi-arid areas, pose unique challenges to researchers and practitioners due to
the generally limited data records, these being poorly gauged and usually sporadically
active, which result in the most hazardous types of floods [15,30]. In view of the results
obtained, the difficulties in accurately modeling ephemeral rivers stem from the gauge data
availability rather than the few no-zero observations since it has been proven that, under
the same conditions (i.e., same sample size), flood quantile estimates in ephemeral rivers
present the same degree of uncertainty as in the case of permanent rivers.

In arid and semi-arid areas, with long periods of drought conditions with no flow
followed by short, intense precipitation events leading to flash floods, few models are
considered adequate for modeling hydrologic processes due to the difficulty in effectively
modeling infiltration-excess runoff processes as the dominant generation mechanism [31].
Compared to humid regions, where the information on the internal state of the basin
is obtained from streamflow records, most models perform well, mainly because the
dominant runoff generation mechanism is saturation excess runoff [32,33]. For this reason,
hydrological prediction is more challenging for arid or semi-arid regions than for humid
regions [34]. The results obtained in the present study analyze three different climates
according to De Martonne’s index: semi-arid, humid, and very humid point in the same
direction. As shown in Figure 6, both values of RRMSE and CV decrease as the climate turns
more humid. This is more evident in the case of the CV, which is explained by the higher
precipitation homogeneity of humid and very humid climates, where the internal basin
fluxes remain more stable than in semi-arid climates. An exception is found here for X500,Q,
which is systematically overestimated for all return periods, especially as climate becomes
wetter. In fact, this problem originates from the meteorological modeling (Figure 8) and it
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is dragged into discharges. After different analysis, it was determined that the problem lay
with the high number of non-zero precipitation, and especially with the shape of the E-GPD.
Humid and very humid climates, with much more days of low precipitation events than
in semi-arid climates, added more information to the left tail of the distribution functions,
which resulted in these data governing the fit in detriment of the right tail observations,
thus and given the shape of the E-GPD, misrepresenting the higher quantiles.

In terms of climate extremality, three different populations with different extremality
were analyzed. This analysis was repeated for the three abovementioned climate types
(Figure 7). Apart from the already commented overestimations of X500,Q, in general, RRMSE
and CV values remain similar for the three climates. There are not many differences between
the uncertainty obtained in X10,Q and X100,Q for low extremality and medium extremality
(i.e., ξ = 0.05 and ξ = 0.11, respectively); however, for high extremality (ξ = 0.25), RRMSE
and CV values increase considerably, which means that the more extreme the climate is the
more uncertainty the flood quantile estimates present.

It is worth noting that, following the same methodology as in Beneyto et al. [17], WG
calibration was made using the regional X100,T . This is the reason the best results in terms
of flood quantile uncertainty are presented for X100,Q. Practitioners willing to better capture
higher flood quantiles should use a different XP,T for the WG calibration (e.g., X500,T).

It is expected that for a well-calibrated HM that adequately represents the important
runoff processes within the basin, the major factor contributing to the uncertainty in the
predicted flows is the uncertainty in rainfall [35]. In our case, having a “perfect” HM, the
intention of the analysis was to assess if the uncertainty of the estimated precipitation
quantiles propagates through the HM, evaluating if the HM could buffer the uncertainty
of flood quantiles. In similar studies, Butts et al. [35] determined the propagation of
uncertainty due to uncertainties in the measured rainfall using a Monte Carlo approach,
using a total of 200 samples. They concluded that a 50% relative standard deviation in the
precipitation estimate (R = 0.5) has only a limited impact on the accuracy of the hydrological
simulation when compared to the flow measurement uncertainty and the other sources of
uncertainty. Gabellani et al. [36] explored the impact of uncertainties in the spatiotemporal
distribution of rainfall on the prediction of peak discharge in a typical mountain basin,
concluding that uncertainties in the small-scale statistical properties of forecasted rain fields
propagate along the rainfall–runoff chain and affect the prediction of peak discharge. In our
case, and as observed in Figure 8, similar results were obtained: RRMSE, CV, and RB values
systematically increased for all nine precipitation populations, indicating that the HM, far
from acting as a balance component in the SCS approach, magnified the uncertainty of
the estimates.

6. Conclusions

SCS has increasingly gained popularity as a means to extend the existing limited
hydro-meteorological records. However, this approach heavily relies on the available
observations, which in practice are rarely sufficiently long. This may lead to systematic
under- or overestimation of flood quantiles, particularly when trying to adequately model
extreme events in basins with a lack of hydro-meteorological data.

In a previous study carried out by Beneyto et al. [17], it was proven the necessity to
incorporate additional information in the WG calibration process, especially when esti-
mating low-frequency precipitation quantiles. This former work presented the reduction
in uncertainty in the precipitation quantile estimates based on the available information
used for the model calibration. The present paper presents an extension of this work aimed
at analyzing the uncertainty of flood quantiles estimated by SCS in different scenarios:
(1) different precipitation regimes, (2) different climate extremality, and (3) different hydro-
logical characteristics of the basin. Thus, 18 “base” populations were used as benchmarks
to analyze the flood quantile uncertainty using Monte Carlo simulations.

The findings of this study highlight the significant influence of the precipitation regime
on the estimated flood quantile uncertainty. Although it appears that the basin size and
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the hydrological characteristics of the basin do not substantially impact flood quantiles’
uncertainty, it has been found that uncertainty clearly increases with the aridity of the
climate, which should be considered by practitioners when dealing with flood studies in
arid and semi-arid climates. Climate extremality has been proven not to be as significant
as expected; however, very low-frequency flood quantiles presented a higher degree of
uncertainty when the climate was more extreme. Finally, flood quantiles presented higher
uncertainty than their precipitation quantile counterparts, indicating that the HM does
not act as a balance component in the SCS approach as expected. Additionally, despite
the aim of this study not being to evaluate the performance of either the WG or the HM,
some doubts have emerged as to the use of the E-GPD distribution function, which will be
studied in further research. The general findings of this research reveal that low-frequency
flood quantile estimates by SCS are still far from presenting adequate levels of uncertainty
for flood studies if additional information is not integrated into the WG implementation.
Integrating a regional XP,T (with a relatively high reliability) in the WG model calibration
clearly reduces the uncertainty of flood quantile estimates independently of the climate,
the extremality, the drainage area, and the hydrological characteristics of the basin (i.e., in a
broad range of hydro-climatic conditions). This uncertainty reduction is greater for flood
quantiles with return periods near the regional precipitation quantile used XP,T .

These findings carry significant implications for advancing the efficiency of flood risk
management, particularly in areas with a lack of hydro-meteorological data and in arid and
semi-arid climates characterized by substantial variability in their flood patterns. Results
from this research will help practitioners using SCS to obtain more accurate flood quantiles
should they be working in an extremely arid climate or a mild continental humid region.

Author Contributions: Conceptualization, C.B., J.Á.A., G.V. and F.F.; Data curation, C.B., J.Á.A. and
G.V.; Formal analysis, C.B., J.Á.A., G.V. and F.F.; Investigation, C.B., J.Á.A. and F.F.; Methodology,
C.B., J.Á.A. and F.F.; Project Administration, F.F.; Resources, C.B. and J.Á.A.; Software, C.B. and J.Á.A.;
Supervision, C.B., J.Á.A., G.V. and F.F.; Visualization, C.B. and J.Á.A.; Writing—Original draft, C.B.,
J.Á.A., G.V. and F.F.; Writing—review and editing, C.B., J.Á.A., G.V. and F.F. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Spanish Ministry of Science and Innovation through the
research projects TETISCHANGE (RTI2018-093717-B-100) and TETISPREDICT (PID2022-141631OB-
I00). Funding for the open-access charge has been provided by Universitat Politècnica de València.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors thank AEMET and the UC for the data provided to carry out this
work (Spain02 dataset).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kidson, R.; Richards, K.S. Flood frequency analysis: Assumptions and alternatives. Prog. Phys. Geogr. 2005, 29, 392–410.

[CrossRef]
2. Kim, D.; Cho, H.; Onof, C.; Choi, M. Let-It-Rain: A web application for stochastic point rainfall generation at ungaged basins and

its applicability in runoff and flood modeling. Stoch. Environ. Res. Risk Assess. 2017, 31, 1023–1043. [CrossRef]
3. Gaume, E. Flood frequency analysis: The Bayesian choice. Wiley Interdiscip. Rev. Water 2018, 5, e1290. [CrossRef]
4. Grimaldi, S.; Nardi, F.; Piscopia, R.; Petroselli, A.; Apollonio, C. Continuous hydrologic modelling for design simulation in small

and ungauged basins: A step forward and some tests for its practical use. J. Hydrol. 2021, 595, 125664. [CrossRef]
5. Salazar-Galán, S.; García-Bartual, R.; Salinas, J.L.; Francés, F. A process-based flood frequency analysis within a trivariate statistical

framework. Application to a semi-arid Mediterranean case study. J. Hydrol. 2021, 603, 127081. [CrossRef]
6. Verdin, A.; Rajagopalan, B.; Kleiber, W.; Katz, R.W. Coupled stochastic weather generation using spatial and generalized linear

models. Stoch. Environ. Res. Risk Assess. 2015, 29, 347–356. [CrossRef]
7. Cavanaugh, N.R.; Gershunov, A.; Panorska, A.K.; Kozubowski, T.J. On the Probability Distribution of Daily Precipitation

Extremes. Geophys. Res. Lett. 2015, 42, 1560–1567. [CrossRef]
8. Soltani, A.; Hoogenboom, G. Minimum data requirements for parameter estimation of stochastic weather generators. Clim. Res.

2003, 25, 109–119. [CrossRef]

https://doi.org/10.1191/0309133305pp454ra
https://doi.org/10.1007/s00477-016-1234-6
https://doi.org/10.1002/wat2.1290
https://doi.org/10.1016/j.jhydrol.2020.125664
https://doi.org/10.1016/j.jhydrol.2021.127081
https://doi.org/10.1007/s00477-014-0911-6
https://doi.org/10.1002/2015GL063238
https://doi.org/10.3354/cr025109


Water 2023, 15, 3489 16 of 16

9. Evin, G.; Favre, A.C.; Hingray, B. Stochastic generation of multi-site daily precipitation focusing on extreme events. Hydrol. Earth
Syst. Sci. 2018, 22, 655–672. [CrossRef]

10. Ahn, K.H. Coupled annual and daily multivariate and multisite stochastic weather generator to preserve low- and high-frequency
variability to assess climate vulnerability. J. Hydrol. 2020, 581, 124443. [CrossRef]

11. Beneyto, C.; Aranda, J.Á.; Benito, G.; Francés, F. New approach to estimate extreme flooding using continuous synthetic simulation
supported by regional precipitation and non-systematic flood data. Water 2020, 12, 3174. [CrossRef]

12. Tegegne, G.; Kim, Y.O.; Seo, S.B.; Kim, Y. Hydrological modelling uncertainty analysis for different flow quantiles: A case study
in two hydro-geographically different watersheds. Hydrol. Sci. J. 2019, 64, 473–489. [CrossRef]

13. Pluntke, T.; Pavlik, D.; Bernhofer, C. Reducing uncertainty in hydrological modelling in a data sparse region. Environ. Earth Sci.
2014, 72, 4801–4816. [CrossRef]

14. Faramarzi, M.; Abbaspour, K.C.; Ashraf Vaghefi, S.; Farzaneh, M.R.; Zehnder, A.J.B.; Srinivasan, R.; Yang, H. Modeling impacts of
climate change on freshwater availability in Africa. J. Hydrol. 2013, 480, 85–101. [CrossRef]

15. Metzger, A.; Marra, F.; Smith, J.A.; Morin, E. Flood frequency estimation and uncertainty in arid/semi-arid regions. J. Hydrol.
2020, 590, 125254. [CrossRef]

16. Moges, E.; Demissie, Y.; Larsen, L.; Yassin, F. Review: Sources of hydrological model uncertainties and advances in their analysis.
Water 2021, 13, 1–23. [CrossRef]

17. Beneyto, C.; Ángel, J.; Francés, F. Exploring the uncertainty of Weather Generators’ extreme estimates in different practical
available information scenarios. Hydrol. Sci. J. 2023, 1203–1212. [CrossRef]

18. Sun, X.; Mein, R.G.; Keenan, T.D.; Elliott, J.F. Flood estimation using radar and raingauge data. J. Hydrol. 2000, 239, 4–18.
[CrossRef]

19. Bárdossy, A.; Das, T. Influence of rainfall observation network on model calibration and application. Hydrol. Earth Syst. Sci. 2008,
12, 77–89. [CrossRef]

20. Moulin, L.; Gaume, E.; Obled, C. Uncertainties on mean areal precipitation: Assessment and impact on streamflow simulations.
Hydrol. Earth Syst. Sci. 2009, 13, 99–114. [CrossRef]

21. Papastathopoulos, I.; Tawn, J.A. Extended generalised Pareto models for tail estimation. J. Stat. Plan. Inference 2013, 143, 131–143.
[CrossRef]

22. Naveau, P. Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection. Water Resour. Res. 2016,
52, 2753–2769. [CrossRef]

23. Francés, F.; Vélez, J.I.; Vélez, J.J. Split-parameter structure for the automatic calibration of distributed hydrological models. J.
Hydrol. 2007, 332, 226–240. [CrossRef]

24. Herrera, S.; Fernández, J.; Gutiérrez, J.M. Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation:
Assessing the effect of the interpolation methodology. Int. J. Climatol. 2016, 36, 900–908. [CrossRef]

25. Kotlarski, S.; Szabó, P.; Herrera, S.; Räty, O.; Keuler, K.; Soares, P.M.; Cardoso, R.M.; Bosshard, T.; Pagé, C.; Boberg, F.; et al.
Observational uncertainty and regional climate model evaluation: A pan-European perspective. Int. J. Climatol. 2017, 3730–3749.
[CrossRef]

26. De Martonne, E. L’indice d’aridité. Bull. L’association Géographes 1926, 9, 3–5. [CrossRef]
27. Cameron, D.S.; Beven, K.J.; Tawn, J.; Blazkova, S.; Naden, P. Flood frequency estimation by continuous simulation for a gauged

upland catchment (with uncertainty). J. Hydrol. 1999, 219, 169–187. [CrossRef]
28. Hall, J.; Solomatine, D. A framework for uncertainty analysis in flood risk management decisions. Int. J. River Basin Manag. 2008,

6, 85–98. [CrossRef]
29. WMO. Guide to Climatological Practices; WMO: Geneva, Switzerland, 2011; ISBN 9789263101006.
30. Ortega, J.A.; Razola, L.; Garzón, G. Recent human impacts and change in dynamics and morphology of ephemeral rivers. Nat.

Hazards Earth Syst. Sci. 2014, 14, 713–730. [CrossRef]
31. Pilgrim, D.H.; Chapman, T.G.; Doran, D.G. Problèmes de la mise au point de modèles pluie-écoulement dans les régions arides et

semi-arides. Hydrol. Sci. J. 1988, 33, 379–400. [CrossRef]
32. Dunne, T.; Black, R.D. Partial Area Contributions to Storm Runoff in a Small New, England Watershed. Water Resour. Res. 1970,

6, 1296–1311. [CrossRef]
33. Hongwei, Z.; Xuehua, Z.; Bao’an, Z. Application of Developed Grid-GA Distributed Hydrologic Model in Semi-Humid and

Semi-Arid Basin. Trans. Tianjin Univ. 2009, 15, 70–74.
34. Bafitlhile, T.M.; Li, Z. Applicability of ε-Support Vector Machine and artificial neural network for flood forecasting in humid,

semi-humid and semi-arid basins in China. Water 2019, 11, 85. [CrossRef]
35. Butts, M.B.; Payne, J.T.; Kristensen, M.; Madsen, H. An evaluation of the impact of model structure on hydrological modelling

uncertainty for streamflow simulation. J. Hydrol. 2004, 298, 242–266. [CrossRef]
36. Gabellani, S.; Boni, G.; Ferraris, L.; von Hardenberg, J.; Provenzale, A. Propagation of uncertainty from rainfall to runoff: A case

study with a stochastic rainfall generator. Adv. Water Resour. 2007, 30, 2061–2071. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5194/hess-22-655-2018
https://doi.org/10.1016/j.jhydrol.2019.124443
https://doi.org/10.3390/w12113174
https://doi.org/10.1080/02626667.2019.1587562
https://doi.org/10.1007/s12665-014-3252-3
https://doi.org/10.1016/j.jhydrol.2012.12.016
https://doi.org/10.1016/j.jhydrol.2020.125254
https://doi.org/10.3390/w13010028
https://doi.org/10.1080/02626667.2023.2208754
https://doi.org/10.1016/S0022-1694(00)00350-4
https://doi.org/10.5194/hess-12-77-2008
https://doi.org/10.5194/hess-13-99-2009
https://doi.org/10.1016/j.jspi.2012.07.001
https://doi.org/10.1002/2015WR018552
https://doi.org/10.1016/j.jhydrol.2006.06.032
https://doi.org/10.1002/joc.4391
https://doi.org/10.1002/joc.5249
https://doi.org/10.3406/bagf.1926.6321
https://doi.org/10.1016/S0022-1694(99)00057-8
https://doi.org/10.1080/15715124.2008.9635339
https://doi.org/10.5194/nhess-14-713-2014
https://doi.org/10.1080/02626668809491261
https://doi.org/10.1029/WR006i005p01296
https://doi.org/10.3390/w11010085
https://doi.org/10.1016/j.jhydrol.2004.03.042
https://doi.org/10.1016/j.advwatres.2006.11.015

	Introduction 
	Methodology 
	Simulation Framework 
	Stochastic Weather Generator: GWEX 
	Eco-Hydrological Model: TETIS 

	Synthetic Case Study 
	Basin Description 
	Climate Description and Statistics 

	Results 
	Preliminary Analysis 
	Hydrological Characteristics of the Basin 
	Precipitation Regime 
	Climate Extremality 
	Uncertainty Propagation 

	Discussion 
	Conclusions 
	References

