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Abstract: The growth of micromobility transport in cities has created a new mobility paradigm, but 

this has also resulted in increased traffic conflicts and collisions. This research focuses on under-

standing the impacts of micromobility vehicles on pedestrian injury severity in urban areas of Spain 

between 2016 and 2021. The Random Forest classification model was used to identify the most sig-

nificant factors and their combinations affecting pedestrian injury severity. To address the issue of 

unbalanced data, the synthetic minority oversampling technique was employed. The findings indi-

cate that pedestrians’ age, specifically those 70 years or older, is the most important variable in de-

termining injury severity. Additionally, collisions at junctions or on weekends are associated with 

worse outcomes for pedestrians. The results highlight the combined influence of multiple factors, 

including offenses and distractions by micromobility users and pedestrians. These factors are more 

prevalent among younger micromobility users and those riding for leisure or on weekends. To en-

hance micromobility road safety and reduce pedestrian injuries, separating micromobility traffic 

from pedestrian areas is recommended, restricting micromobility vehicle use on sidewalks, provid-

ing training and information to micromobility users, conducting road safety campaigns, increasing 

enforcement measures, and incorporating buffer zones in bike lanes near on-street parking. 

Keywords: injury severity; micromobility crashes; random forest; pedestrian;  

Personal Mobility Devices (PMDs); road safety 

 

1. Introduction 

In recent years, the growth of micromobility transport in cities has led to a paradigm 

shift in mobility, especially since the COVID-19 pandemic [1]. Micromobility vehicles in-

clude bicycles and other personal mobility devices (PMDs), such as hoverboards, seg-

ways, electric wheelchairs, and especially stand-up electric scooters (e-scooters) [2,3]. 

These vehicles have been recognized as effective alternative modes of transportation 

for short-distance travel [4]. They offer environmental benefits and can help reduce traffic 

congestion [3]. Furthermore, micromobility transport has emerged as a suitable mobility 

alternative during the COVID-19 pandemic [5]. However, micromobility transport and 

vehicles face several challenges: (i) Traffic regulations are not uniformly established and 

differ across countries [6–8]; (ii) these vehicles interact with various road users due to the 

lack of dedicated infrastructure in many cities [9,10]; and (iii) the increased use of micro-

mobility vehicles has led to a rise in the number of crashes involving them [11,12]. 

To address these issues, several countries have implemented measures to regulate 

the use of micromobility vehicles and reduce collisions. For instance, France, Germany, 

the United Kingdom, and Spain have banned the use of e-scooters on sidewalks [13,14]. 

However, in many cities and urban environments, the circulation space for micromobility 

vehicles remains undefined, forcing them to share infrastructure with other road users, 
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such as motor vehicles and pedestrians, which increases the occurrence of traffic conflicts 

[15,16]. Additionally, the shared road space has not been thoroughly analyzed [17]. 

From a road safety perspective, it is necessary to analyze the impacts of increased 

micromobility vehicles use on other road users. Most studies have focused on crashes be-

tween micromobility and motorized vehicles, as they are more frequent and often result 

in severe injuries [18,19]. However, pedestrians are the most vulnerable road users, and 

they have received less attention in research [15]. Pedestrians suffer more severe injuries 

than micromobility users [20], and collisions between pedestrians and micromobility ve-

hicles are expected to increase in the coming years [21]. Consequently, there is growing 

concern about the risks that micromobility vehicles pose to pedestrians [7,22]. Moreover, 

some pedestrian injuries resulting from collisions with micromobility vehicles may go un-

reported, leading to an underestimation of these incidents [22]. Understanding the im-

pacts of the rising use of micromobility vehicles on public health is crucial for enhancing 

road safety in cities [8]. This entails conducting in-depth analyses of crashes involving 

micromobility vehicles and pedestrians. 

Several studies have been conducted to analyze pedestrian injuries resulting from 

collisions with micromobility vehicles. First, some of the studies use medical data from 

patients who sustain injuries because of impacts with micromobility vehicles. One study 

focused on the safety risks and incidence of pedestrian injuries associated with electric 

scooters, using a case involving a sixty-year-old female pedestrian [10]. They concluded 

that future studies should include all pedestrian injuries because these studies can inform 

future policy proposals to improve pedestrian safety. Another study aimed to characterize 

injuries associated with e-scooter use, finding that 8.4% of e-scooter injuries involved pe-

destrians who were hit by an e-scooter [8]. However, the use of hospital datasets has some 

limitations. On the one hand, sometimes there exists the inability to generalize results be-

cause only specific cases are analyzed [10]. On the other hand, these studies are limited to 

the analysis of the available clinical variables, and some patients may not be considered. 

For instance, in [8], some data were not considered because researchers did not know with 

certainty that the injuries had been produced by collisions with micromobility vehicles. In 

addition, hospital data may present special limitations in minor injuries, which are often 

not treated in hospital settings [21]. 

Secondly, other studies analyzed traffic conflicts between pedestrians and micromo-

bility vehicles. The researchers in [7] studied illegal and risky behaviors and interactions 

between e-scooters and pedestrians in six sites in Brisbane (Australia). They pointed out 

that, despite conflict rates being low, further studies are recommended to better under-

stand the factors influencing the perceptions and behaviors of e-scooters and pedestrians. 

Another study examined traffic conflicts between bicycles and pedestrians in shared 

spaces, observing that there is a positive correlation between the traffic volume and the 

number of conflicts [23]. The main limitations of the studies that analyzed traffic conflicts 

is that the data collection was very limited to specific locations, making it challenging to 

generalize the findings [7,23]. In addition, data collection is usually limited to specific 

times of the day and/or specific days (peak hour, weekday, ...), and the characteristics and 

behaviors of road users may be different in other circumstances [7]. 

Other studies utilized traffic simulations and controlled experiments to assess the 

impacts of micromobility vehicles on pedestrians. Ref [17] used a traffic simulation model 

to evaluate the safety of mixed traffic flow between pedestrians and standing-type PMDs. 

Their results showed that the objective risk was affected by sidewalk width, traffic de-

mand, and PMD movement parameters, and they concluded that a further analysis of 

intersections is required. Additionally, Ref [15] conducted controlled experiments to as-

sess conflicts between pedestrians and PMDs. These studies provide valuable insights, 

but are constrained by the ability to simulate real-world scenarios [17]. 

Furthermore, some studies rely on crash databases to analyze the impacts of micro-

mobility vehicles on pedestrians. One of these studies was conducted to improve the 

safety of micromobility users and pedestrians by identifying factors that affect these 
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crashes [24]. The researchers pointed out that individual-level factors such as age, gender, 

and injury severity should be explored in future studies to provide better insights. An-

other study analyzed pedestrian injuries resulting from collisions with cyclists in Mel-

bourne (Australia) [21]. The researchers used police report crash data and medical rec-

ords, and concluded that pedestrian injuries were less severe in collisions with bicycles 

than with motor vehicles, although significant injuries have also been identified in colli-

sions with bicycles. The use of crash databases to analyze the impacts of micromobility 

vehicles also face limitations. On the one hand, the underreporting problem has been ob-

served in collisions between pedestrians and micromobility vehicles that do not report 

any physical harm to both road users [21]. On the other hand, due to the lack of data on 

collisions with micromobility vehicles (other than bicycles), some studies identified these 

types of collisions from news reports that reported these incidents. This approach pro-

vides limited and sometimes biased information [25]. 

This research focused on analyzing collisions between micromobility vehicles and 

pedestrians on urban roads in Spain from 2016 to 2021. The crash dataset, provided by the 

Spanish General Directorate of Traffic, contains information on crashes involving micro-

mobility vehicles that resulted in at least one slightly injured road user. 

The aim of this study is to identify the key factors and their combinations that con-

tribute to the severity of pedestrian injuries. The Random Forest methodology was em-

ployed to create a classification model for this analysis. To address the issue of imbalanced 

data in pedestrian injury severity, the synthetic minority oversampling technique 

(SMOTE) was applied. This technique helped to address the lower representation of fatal 

and seriously injured pedestrians compared to slightly injured ones in the dataset. 

The study yields several decision rules that enable the assessment of the collective 

influence of various factors on pedestrian injury severity. These factors encompass aspects 

related to the collision itself, the micromobility vehicle and user, the pedestrian, and the 

infrastructure. The findings offer relevant insights for authorities in formulating road pol-

icies aimed at reducing the severity of these collisions from the perspective of pedestrians, 

who are the most vulnerable users of the road. 

The remaining sections of this study are structured as follows: section 2 presents the 

crash database and the methodology used in this research. In section 3, the results are 

presented and discussed. Finally, section 4 concludes the study, outlines directions for 

future research, and discusses the practical applications of the findings. 

2. Materials and Methods 

2.1. Data Description 

The Spanish crash databases, provided by the Spanish General Directorate of Traffic, 

include information about the collisions and vehicles involved, the drivers, and the pe-

destrians, from 2016 to 2021. To create a comprehensive dataset, the five initial crash da-

tabases were merged, resulting in a single database with 363,381 collisions that occurred 

in urban areas during the specified time frame. 

From this merged database, only crashes involving at least one micromobility vehicle 

were selected, resulting in 38,092 crashes. Subsequently, collisions involving one micro-

mobility vehicle and one pedestrian were identified, leading to a subset of 3212 crashes. 

To ensure data quality, a thorough debugging procedure was conducted to remove rec-

ords with inconsistent or incomplete information. As a result, the final database consisted 

of 3205 crashes involving one micromobility vehicle and one pedestrian. 

Between 2016 and 2021, a total of 82,529 pedestrians were involved in collisions with 

motor vehicles or micromobility vehicles in Spain. The number of pedestrian collisions in 

Spain remained relatively stable over the years, both in urban areas (around 13,200 colli-

sions) and interurban areas (around 869 collisions), until 2020. However, in that year, there 

was a significant decrease in the number of pedestrian collisions (around 8300 in urban 

areas and 636 in interurban areas), which can be attributed to the COVID-19 lockdown. 
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More than 90% of the injured pedestrians were involved in collisions on urban roads; 

thus, the data analysis in this study focused exclusively on this area. Throughout the 2016–

2021 period, most pedestrian collisions were due to motor vehicles (on average about 

94.6%). However, there is an average of 532 collisions between micromobility vehicles and 

pedestrians on urban roads in Spain each year, which, on average, indicates that over 8% 

of micromobility collisions occur with pedestrians. Figure 1 displays the annual trend for 

all micromobility collisions, and the trend for collisions between one PMD and one pedes-

trian.  

 

Figure 1. Trends in micromobility collisions vs. 1 PMD-1 pedestrian collisions in Spain (2016–

2021). 

Collisions involving motor vehicles are associated with the most severe conse-

quences for pedestrians, with approximately 16% resulting in serious or fatal injuries, as 

depicted in Figure 2. However, more than 7% of collisions between micromobility vehicles 

and pedestrians also lead to serious or fatal injuries (Figure 2). This percentage should not 

be overlooked, as it affects a significant number of pedestrians. Moreover, it is expected 

that this percentage may further increase in the coming years, due to the expected rise in 

the use of micromobility vehicles. Therefore, it is essential to address this type of collision 

to mitigate its consequences, especially from the perspective of the most vulnerable road 

users. 

 

Figure 2. Pedestrian injury severity by collision type in Spain (2016–2021). 

2.2. Variables 

The model in this study considers the pedestrian injury severity as the dependent 

variable, categorized into “slightly injured” (value 0) and “fatal and seriously injured” 
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(value 1). The category “slightly injured” encompasses pedestrians who have sustained 

minor injuries in micromobility vehicle collisions. Conversely, the “fatal and seriously in-

jured” group pertains to pedestrians with severe injuries (hospitalization exceeding 24 h) 

and fatalities resulting from such collisions. 

The independent variables are defined as binary variables, where a value of 0 indi-

cates the absence of the condition represented by the variable, and a value of 1 indicates 

its presence. The exception to this rule is seen in the gender variables, where the value 0 

represents women and the value 1 represents men. Additionally, the variable indicating 

the type of micromobility vehicle (“Bicycle”) takes the value 0 to represent PMDs, mainly 

e-scooters, and the value 1 to represent bicycles. 

Table 1 presents all of the variables used in this research, along with their respective 

categories. It also includes the number of crashes resulting in fatal/serious injuries, and 

slightly injured pedestrians for each value of the variable. 

Table 1. Variables description. 

 Variables Coded Variable Values Fatal/Seriously Injured Slightly Injured 

 Weekend WEEKEND 
0—Weekday 153 2323 

1—Weekend 48 681 

 Night NIGHT 
0—No 171 2614 

1—Yes 30 390 

 Junction JUNCTION 
0—No 163 2338 

1—Yes 38 666 

 Bicycle BICYCLE 
0—PMD 33 471 

1—Bicycle 168 2533 

 Bad pavement BAD_PAVEMENT 
0—No 191 2860 

1—Yes 10 144 

Crash location 

Vehicle lane VH_LANE 
0—No 144 2403 

1—Yes 57 601 

Shoulder SHOULDER 
0—No 201 3000 

1—Yes 0 4 

Sidewalk SIDEWALK 
0—No 184 2771 

1—Yes 17 233 

Bike sidewalk BIKE_SIDEWALK 
0—No 195 2864 

1—Yes 6 140 

Bike lane BIKE_LANE 
0—No 179 2703 

1—Yes 22 301 

Bus lane BUS_LANE 
0—No 201 2996 

1—Yes 0 8 

Rider 

Characteristics 

Young (<18 years) m_YOUNG18 
0—No 166 2553 

1—Yes 35 451 

Older (≥65 years) m_OLDER64 
0—No 200 2934 

1—Yes 1 70 

Rider gender m_GENDER 
0—Female 27 631 

1—Male 174 2373 

Leisure m_LEISURE 
0—No 117 2278 

1—Yes 84 726 

Commute m_COMMUTE 
0—No 185 2828 

1—Yes 16 176 

Professional m_PROFESSIONAL 
0—No 199 2983 

1—Yes 2 21 

Alcohol m_ALCOHOL 
0—No 196 2991 

1—Yes 5 13 

Not respecting priority signs m_NPRIORITY 
0—No 149 2604 

1—Yes 52 400 
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Unsafe ride m_UNSAFERIDE 
0—No 169 2601 

1—Yes 32 403 

Speed offense m_SPEED 
0—No 185 2884 

1—Yes 16 120 

Distraction m_DISTRACTION 
0—No 179 2889 

1—Yes 22 115 

Pedestrian 

Characteristics 

0–14 years p_0_14 
0—No 184 2657 

1—Yes 17 347 

15–44 years p_15_44 
0—No 187 2245 

1—Yes 14 759 

45–69 years p_45_69 
0—No 130 1894 

1—Yes 71 1110 

≥70 years p_70_more 
0—No 114 2366 

1—Yes 87 638 

Pedestrian gender p_GENDER 
0—Female 125 1799 

1—Male 76 1205 

Exit vehicle p_EXITVH 
0—No 190 2901 

1—Yes 11 103 

Cross vehicle lane p_CROSSVHLANE 
0—No 138 2417 

1—Yes 63 587 

In vehicle lane p_VHLANE 
0—No 185 2812 

1—Yes 16 192 

Burst into the vehicle lane p_BURST 
0—No 197 2918 

1—Yes 4 86 

In sidewalk p_SIDEWALK 
0—No 154 2382 

1—Yes 47 622 

Not respecting traffic lights p_NOTRAFFICLIGHTS 
0—No 190 2934 

1—Yes 11 70 

Not respecting pedestrian cross p_NOPEDCROSS 
0—No 175 2800 

1—Yes 26 204 

Distraction p_DISTRACTION 
0—No 171 2771 

1—Yes 30 233 

Other pedestrian offenses p_OTHEROFFENCE 
0—No 186 2806 

1—Yes 15 198 

The information presented in Table 1 is derived from the original databases. How-

ever, certain variables had to be created based on the available information. For instance, 

the “WEEKEND” variable was established by considering the crash date, categorizing it 

as a weekend or weekday. Similarly, the “NIGHT” variable distinguishes between 

nighttime (from sunset to sunrise) and daytime. 

Regarding the micromobility vehicle type, the databases only indicate whether the 

vehicle is a bicycle or not, lacking specific information on PMDs. To address this, the ve-

hicle brand and model data were utilized to identify the other types of micromobility ve-

hicles, predominantly electric scooters. Consequently, the “BICYCLE” variable in this 

study includes two categories: “bicycle” (value 1) and “PMDs” (value 0). 

Concerning the behaviors and offenses of micromobility users, the “m_NPRIORITY” 

variable encompasses offenses related to not respecting priority rules or traffic signals. On 

the other hand, the “m_UNSAFERIDE” variable includes other offenses such as partial 

lane invasion, zigzag riding, unnecessary braking, failure to maintain a safe distance, and 

more. 

Additionally, the “m_DISTRACTION” and “p_DISTRACTION” variables were cre-

ated to indicate distractions specific to micromobility users and pedestrians, respectively. 

Some distractions are common to both, such as mobile phone use, headphone use, observ-

ing the surroundings (landscape, advertising, signs), and being lost in thought. Exclusive 
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distractions for micromobility users include GPS use, smoking, and engaging in simulta-

neous activities while riding, such as eating or drinking. 

Regarding the age ranges for pedestrians, an analysis of fatal and serious crashes by 

age group was conducted. The selected age distribution ensures a balanced representation 

of serious and minor crashes. It is worth noting that if all age variables are zero, it indicates 

that the pedestrian’s age is unknown, which applies to 5% of the analyzed collisions. For 

micromobility users, when both “m_YOUNG18” and “m_OLDER64” variables are zero, 

it signifies a micromobility user is aged between 18 and 64 years. 

Lastly, the p_OTHEROFFENCE variable encompasses other pedestrian offenses not 

mentioned previously, including walking illegally, disregarding traffic agent instructions, 

and other offenses not specified in the database. 

2.3. Methodology 

The Random Forest methodology was employed to develop a classification model 

and identify the most significant variables and their combinations affecting pedestrian 

injury severity. The model’s decision rules provide valuable insights into this severity. To 

address the issue of unbalanced data, the synthetic minority oversampling technique was 

applied. 

2.3.1. Synthetic Minority Oversampling Technique (SMOTE) 

In this study, pedestrian injury severity was selected as the response variable, and 

was categorized into “slightly injured” (value 0) and “fatal and seriously injured” (value 

1). However, a data imbalance issue arose, as the number of crashes with fatal and seri-

ously injured pedestrians (201 crashes) is significantly lower than the number of crashes 

with slightly injured pedestrians (3004 crashes). This imbalance can lead to biased models 

[26,27], which often result in classification errors, and lack accuracy in predicting the mi-

nority class [26,28]. Simply relying on overall accuracy can be misleading in imbalanced 

data scenarios [28]. 

Furthermore, uncommon values of the target variable (the minority class) often rep-

resent significant events, such as rare diseases or more severe collisions [29]. Thus, accu-

rately predicting the minority class, despite its scarcity, is of utmost importance [30]. 

To address the data imbalance problem, undersampling and oversampling tech-

niques are commonly employed. Among them, the synthetic minority oversampling tech-

nique (SMOTE) is a widely applied and recognized oversampling technique [31,32]. 

The SMOTE technique was applied in this study to create new minority data from 

the original data. The new data, which are the random synthetic examples, were generated 

through an interpolation among nearest neighbors of each minority class instance, and 

from the original features [26,27,31,32]. 

2.3.2. Random Forest 

Random Forest is a powerful and widely recognized supervised machine learning 

technique for classification problems [33]. It outperforms simpler methods like classifica-

tion and regression trees (CART), due to its ability to build multiple individual decision 

trees and aggregate their predictions [34–37]. 

In Random Forest, each tree is trained on a bootstrap sample, a random subset of the 

original data, and only a subset of independent variables is considered at each split [37]. 

The inclusion of out-of-bag (OOB) samples, which are data points not used in the training 

of a specific tree, allows for performance evaluation and estimation of the model’s accu-

racy [36,38]. 

In this study, the Random Forest model underwent a second validation step. The 

model was initially trained using the training set, which comprised 70% of the final data-

base, and then validated using the remaining 30%, called the validation set. It has been 

demonstrated that the 70:30 training-to-test data ratio consistently yields the highest 
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performance scores across all tree-based machine learning models, making it the most 

frequently recommended choice [39]. 

Additionally, there are two variable importance measures that can be used for rank-

ing variables [40,41]. The first one is the Mean Decrease Gini (GINI), which quantifies the 

total decrease in node impurity attributed to a given variable when creating splits in the 

Random Forest. This value is normalized by the number of trees. The second measure is 

the Mean Decrease Accuracy (MDA), which assesses variable importance based on the 

change in prediction accuracy (measured by the OOB error) when the variable values are 

randomly permuted relative to the original data [41]. The GINI index typically provides 

more stable and reliable results compared to the MDA [41]. 

The Random Forest model was created using the variables described in section 2.1. 

The performance of the model was evaluated by analyzing the evolution of the out-of-bag 

(OOB) errors as the number of trees created (ntree) varied. Classification error 1 represents 

the OOB error related to the misclassification of crashes involving slightly injured pedes-

trians, while Classification error 2 represents the OOB error associated with the incorrect 

classification of crashes involving fatal and seriously injured pedestrians. The OOB error 

curve depicts the average evolution of this error for the model. Figure 3 provides a visual 

representation of these OOB errors and their variations. 

 

Figure 3. OOB Errors. 

Figure 3 illustrates that the OOB errors reach a stable state at approximately 50 trees. 

For this study, a value of ntree = 200 was chosen as the selected hyperparameter, resulting 

in stable OOB errors. The model achieved an overall OOB error rate of 5.97%, indicating 

an accuracy of approximately 94% on the training set. Furthermore, the classification error 

for crashes involving slightly injured pedestrians (error 1) is 9.98%, while the classification 

error for crashes involving fatal and seriously injured pedestrians (error 2) is 1.92%. Alt-

hough both errors are relatively small, the model demonstrates better performance in clas-

sifying crashes with fatal/seriously injured pedestrians, which is crucial for road safety as 

the cost of error 2 is higher than that of error 1. 

The second validation procedure used the validation set to predict the response var-

iable of the model, namely pedestrian injury severity. These predictions were utilized to 

assess the model’s performance through the construction of a confusion matrix and ROC 

curve. 
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Figure 4 displays the confusion matrix, where the diagonal represents correctly clas-

sified data, and the values outside the diagonal indicate classification errors made by the 

Random Forest model trained solely on the training set. 

 

Figure 4. Confusion matrix for the Random Forest model. 

The validation data accuracy of the model is 93.08%, indicating high predictive accu-

racy. The confusion matrix further demonstrates that the classification errors for crashes 

involving fatal and seriously injured pedestrians are lower compared to those for slightly 

injured pedestrians. 

The performance of the model was also evaluated through the ROC curve, which 

depicts the sensitivity (true positive rate, TPR) and specificity (false positive rate, FPR) of 

the model. These measures are represented by Equations (1) and (2), and can be visualized 

in Figure 5. The area under the curve (AUC) serves as an estimate of the model’s classify-

ing ability [34]. 

Sensitivity = TPR = 
True Positives

True Positives + False Negatives
, (1) 

Specificity = FPR = 
False Positives

False Positives + True Negatives
, (2) 

 

Figure 5. ROC curve. 
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A perfect classifier would have an AUC of 1, indicating flawless classification. As the 

AUC decreases, the classifier’s performance deteriorates. In the case of the Random Forest 

model, it achieved an AUC of 0.98, which is very close to 1. This high AUC score indicates 

that the RF model performed exceptionally well in classifying crashes based on pedestrian 

injury severity.  

Consequently, the Random Forest model was successfully validated for its accurate 

classification of crashes according to the severity of pedestrian injuries. 

3. Results and Discussion 

In this study, the Random Forest model developed in the previous section was uti-

lized to analyze collisions between one micromobility vehicle and one pedestrian. The aim 

is to identify the key factors influencing pedestrian injury severity in these crashes, and to 

examine different combinations of these factors through the most important decision 

rules. This analysis will provide valuable insights into understanding these types of colli-

sions, enabling authorities to implement effective measures to mitigate their impact on 

pedestrians. 

3.1. Variable Importance Ranking 

In this subsection, the importance rankings of variables as determined by Random 

Forest were analyzed. To ensure the robustness of the results due to the random initiali-

zation of the model, the Gini and MDA rankings were obtained multiple times (more than 

10). The analysis reveals the following conclusions: (i) The Gini and MDA rankings pro-

duce similar results for the most and least relevant variables, indicating that they provide 

consistent information; (ii) the Gini index exhibits greater stability in its results compared 

to the MDA criteria, which is consistent with the findings of previous studies [41]. There-

fore, the Gini index ranking of variable importance, as shown in Figure 6, was used in this 

study. 

 

Figure 6. Variable importance ranking by GINI criteria. 
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Figure 6 shows the importance of various factors related to the pedestrian, micromo-

bility user, collision, and micromobility vehicle in determining the severity of pedestrian 

injuries during collisions with micromobility users. 

Regarding pedestrian factors, an age equal to or greater than 70 years (p_70_more) 

emerged as a highly significant variable impacting injury severity. Additionally, pedes-

trian gender (p_GENDER) and the action of crossing the road (p_CROSSVHLANE) were 

identified as influential factors. 

Among the micromobility user factors, the variables m_LEISURE, m_YOUNG18, and 

m_NPRIORITY were the three most significant. The variable “m_LEISURE” denotes 

whether the micromobility user rides for leisure, probably implying that those riding for 

leisure may exhibit different riding patterns compared to other purposes. 

Furthermore, collision-related factors also contributed to pedestrian injury severity. 

The variables WEEKEND (indicating whether the crash occurred on a weekend), JUNC-

TION (indicating collision at an intersection), and NIGHT (representing crashes occurring 

during nighttime) were identified as the three most relevant factors. 

Finally, from the perspective of the micromobility vehicle, the type of vehicle, repre-

sented by the BICYCLE variable (distinguishing between bicycles and PMDs, especially 

e-scooters), also played a role in influencing the severity of pedestrian injuries. 

Table 2 provides a summary of the three most relevant variables in relation to the 

response variable (pedestrian injury severity) for each factor. 

Table 2. The most important variables obtained with Random Forest. 

Most Important Variables 

Rider factors 

m_LEISURE 

Pedestrian factors 

p_70_more 

m_YOUNG18 p_GENDER 

m_NPRIORITY p_CROSSVHLANE 

Crash factors 

WEEKEND 

Vehicle factors BICYCLE JUNCTION 

NIGHT 

Understanding the joint influence of multiple factors in pedestrian injury severity is 

crucial for effective resource management and decision-making by the authorities. While 

identifying the most and least important variables is valuable, it is the combined effect of 

these variables that provides highly relevant information. The decision rules generated by 

the Random Forest model aid in this task, enabling a comprehensive understanding of the 

simultaneous impact of various factors [35]. This knowledge can guide authorities in im-

plementing targeted interventions and strategies to mitigate pedestrian injuries during 

collisions with micromobility users. 

3.2. Decision Rules 

In the Random Forest model, over 4000 decision rules (DRs) were generated. How-

ever, not all of these rules are unique, and their frequency of appearance and misclassifi-

cation rates vary. Out of these, a set of 1795 unique decision rules was identified, and the 

model highlights the rules with the highest frequency (48 DRs). Table 3 presents the deci-

sion rules with higher frequencies and lower error rates. The Random Forest model’s pre-

dictions, which are based on variable combinations (found in the ‘Decision rule’ column), 

are displayed in the ‘THEN’ column of Table 3. This table also provides the frequency (%) 

and estimated error (%) associated with each decision rule generated by the model.  
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Table 3. Decision rules with higher frequencies and lower errors. 

Num-

ber 
Decision Rule THEN Frequency (%) 

Error 

(%) 

1 

IF (NIGHT = 0) AND (SIDEWALK = 0) AND (p_15_44 = 1) 

AND (p_CROSSVHLANE = 0) AND (p_VHLANE = 0) 

AND (p_NOPEDCROSS = 0) 

Slightly 

injured 
6.89 0 

2 

IF (BAD_PAVEMENT = 0) AND (m_NPRIORITY = 1) 

AND (m_DISTRACTION = 1) AND (p_15_44 = 0) AND 

(p_70_more = 1) AND (p_CROSSVHLANE = 0) 

Fatal or 

seriously 

injured 

1.27 0 

3 

IF (BICYCLE = 0) AND (BIKE_LANE = 0) AND (m_LEI-

SURE = 1) AND (p_15_44 = 1) AND (p_CROSSVHLANE = 

1) 

Fatal or 

seriously 

injured 

1.12 0 

4 
IF (BICYCLE = 1) AND (m_LEISURE = 0) AND (p_15_44 = 

1) AND (p_CROSSVHLANE = 1) 

Slightly 

injured 
1.12 0 

5 

IF (JUCTION = 1) AND (m_LEISURE = 0) AND (m_COM-

MUTE = 1) AND (p_15_44 = 0) AND (p_70_more = 0) 

AND (p_SIDEWALK = 0) 

Fatal or 

seriously 

injured 

1.00 3.33 

6 

IF (VH_LANE = 0) AND (SIDEWALK = 0) AND (m_LEI-

SURE = 0) AND (m_SPEED = 0) AND (p_15_44 = 1) AND 

(p_NOTRAFFICLIGHTS = 0) 

Slightly 

injured 
1.79 4.67 

7 

IF (WEEKEND = 1) AND (m_GENDER = 1) AND (m_LEI-

SURE = 1) AND (m_SPEED = 1) AND (p_15_44 = 0) AND 

(p_70_more = 0) 

Fatal or 

seriously 

injured 

1.24 6.76 

8 

IF (BIKE_LANE = 0) AND (m_OLDER64 = 0) AND 

(m_LEISURE = 1) AND (m_DISTRACTION = 1) AND 

(p_15_44 = 0) AND (p_SIDEWALK = 1) 

Fatal or 

seriously 

injured 

2.22 8.27 

9 

IF (m_LEISURE = 1) AND (m_UNSAFERIDE = 0) AND 

(p_15_44 = 0) AND (p_70_more = 0) AND (p_GENDER = 

0) AND (p_EXITVH = 1) 

Fatal or 

seriously 

injured 

1.67 9.00 

10 

IF (VH_LANE = 0) AND (m_LEISURE = 0) AND 

(m_NPRIORITY = 0) AND (p_15_44 = 0) AND 

(p_CROSSVHLANE = 1) AND (p_DISTRACTION = 1) 

Fatal or 

seriously 

injured 

1.56 11.83 

11 

IF (WEEKEND = 0) AND (m_LEISURE = 0) AND 

(m_COMMUTE = 0) AND (p_0_14 = 1) AND (p_70_more 

= 0) 

Slightly 

injured 
2.54 15.79 

12 

IF (WEEKEND = 1) AND (m_YOUNG18 = 1) AND 

(m_LEISURE = 1) AND (p_15_44 = 0) AND (p_70_more = 

0) AND (p_SIDEWALK = 1) 

Fatal or 

seriously 

injured 

1.10 18.18 

13 

IF (NIGHT = 0) AND (m_SPEED = 0) AND (p_15_44 = 1) 

AND (p_CROSSVHLANE = 0) AND (p_NOTRAFFIC-

LIGHTS = 0) AND (p_OTHEROFFENCE = 1) 

Fatal or 

seriously 

injured 

1.30 20.51 

14 

IF (SIDEWALK = 0) AND (m_OLDER64 = 0) AND 

(m_LEISURE = 1) AND (m_DISTRACTION = 0) AND 

(p_15_44 = 0) AND (p_EXITVH = 1) 

Fatal or 

seriously 

injured 

1.00 23.33 

15 

IF (m_OLDER64 = 0) AND (m_LEISURE = 1) AND 

(m_DISTRACTION = 0) AND (p_15_44 = 0) AND 

(p_NOPEDCROSS = 0) AND (p_OTHEROFFENCE = 1) 

Fatal or 

seriously 

injured 

2.63 26.75 

16 

IF (BAD_PAVEMENT = 0) AND (m_LEISURE = 0) AND 

(m_NPRIORITY = 0) AND (p_15_44 = 0) AND (p_45_69 = 

1) AND (p_DISTRACTION = 0) 

Slightly 

injured 
9.38 41.00 

17 

IF (VH_LANE = 0) AND (BIKE_LANE = 0) AND (m_LEI-

SURE = 0) AND (m_NPRIORITY = 0) AND (p_15_44 = 0) 

AND (p_70_more = 1) 

Fatal or 

seriously 

injured 

4.87 42.61 

The analysis of decision rules provides valuable insights into the influence of various 

factors and their combinations on pedestrian injury severity in collisions with 
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micromobility vehicles. These rules shed light on the joint effect of multiple factors, which 

is crucial for understanding the severity of these collisions and informing decision-mak-

ing processes for authorities. Therefore, decision rules and the model’s predictions offer 

valuable insights to aid traffic authorities, and can serve as practical guidelines for imple-

menting effective road safety measures and policies. 

The pedestrian’s age emerged as a significant factor. For pedestrians aged 0–14, there 

is limited evidence to determine the influence on injury severity (DR 11). Pedestrians aged 

15–44 are more likely to sustain minor injuries in crashes (DRs 1, 4, 6, and other DRs not 

included in Table 3). Specific conditions, such as crossing the road, involvement of a PMD 

rider traveling for leisure, and the presence of offenses or distractions, can elevate the 

likelihood of serious injuries (DRs 3, 13, and other DRs not included in Table 3). The con-

clusions regarding offences and distractions can be extended to other age groups as well 

(DRs 10, 15, and other DRs not included in Table 3). Studies have shown that distracted 

pedestrians are less attentive to their surroundings and take more risks [42]. 

For pedestrians aged 45–69, also only one decision rule was shown with an error of 

41% that is not conclusive (DR 16). Therefore, there is insufficient evidence to draw con-

clusive results due to the absence of specific decision rules. However, some rules may 

indirectly refer to this age group, along with other age ranges, making it challenging to 

isolate their impact. Further analysis with more segregated age categories may be neces-

sary, although the smaller sample size could limit the conclusiveness of the results. 

Pedestrians aged 70 and above have a significantly higher likelihood of suffering se-

vere injuries (DR 17 and other DRs not included in Table 3). More than 80% of the decision 

rules classify pedestrians of this age group as fatal or seriously injured in collisions with 

micromobility vehicles. These findings align with previous studies on pedestrian–cyclist 

collisions [43]. 

In addition, regarding elderly pedestrians, there are other factors that could further 

increase the probability that the collision would be considered serious, reducing the deci-

sion rule error. For example, it was observed that when the micromobility rider does not 

respect the priority rules (m_NPRIORITY = 1) or is distracted (m_DISTRACTION = 1), and 

has a collision with a pedestrian aged 70 or over (p_70_more = 1), the pedestrian is more 

likely to be seriously injured or die as a consequence of the crash (DRs 2 and other DRs 

not included in Table 3), with an error that oscillates between 0 and 0.33, depending on 

all variables present in the decision rule. 

Factors related to the micromobility user, such as riding for leisure, show a correla-

tion with increased distractions and speeding violations (DRs 7, 8, and other DRs not in-

cluded in Table 3). Leisure trips are more prevalent among younger riders (under 18 years 

old) and on weekends (DRs 7, 12 and other DRs not included in Table 3). The severity of 

pedestrian injuries is observed to increase when the rider is traveling for leisure (DRs 3, 

7, 8, 12, 15, and other DRs not included in Table 3). This may be attributed to differences 

in rider behavior, with more occurrences of speeding violations and distractions. Offenses 

and distractions heighten the risk of pedestrians suffering severe injuries. Previous re-

search also highlights the increased risk of fatal crashes for pedestrians associated with 

these offenses [44]. 

Regarding collision-related variables, crashes occurring on weekends tend to have 

worse outcomes for pedestrians compared to those on weekdays (DRs 7 and 12). This can 

be attributed to a higher number of leisure trips and an increased occurrence of offenses. 

Collisions at intersections also tend to result in greater severity for pedestrians than those 

outside of intersections (DR 5 and other DRs not included in Table 3). In addition, it has 

also been observed that collisions occurring when the pedestrian is on the sidewalk in-

crease the severity of their injuries (DRs 8, 12, and DRs not listed in Table 3). 

Furthermore, collisions between micromobility users and pedestrians exiting vehi-

cles tend to have more severe consequences, especially when the micromobility user is 

traveling for leisure (DRs 9 and 14). This finding is consistent with the result of another 

study that indicates a higher likelihood of sustaining severe injuries when cyclists use 
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roads with on-street parking compared to roads without parking [45]. Therefore, it is im-

portant to incorporate a noticeable buffer zone when establishing a bike lane next to 

parked vehicles [46]. 

While some factors demonstrate a clear influence on pedestrian injury severity (e.g., 

p_70_more, m_DISTRACTION), there are others whose individual impacts remain un-

clear. Variables such as the type of micromobility vehicle (bicycle or PMD) and the NIGHT 

factor (indicating nighttime collisions) appear in several decision rules. However, their 

effects are inconclusive when combined with other more significant factors, particularly 

“p_70_more”. Further analysis is necessary to explore the influence of these factors and 

their interactions with other variables. 

It is important to note that the influence of certain factors may depend on their inter-

action with other variables involved in the collision. Isolating the impact of individual 

variables may not fully determine pedestrian injury severity, as the collective influence of 

all contributing factors is more significant. Decision rules, therefore, provide valuable in-

sights by considering the joint effects of multiple factors, enhancing the value of this re-

search. 

4. Conclusions 

The increasing use of micromobility vehicles in urban areas has led to a rise in colli-

sions involving these vehicles. Pedestrians, being the most vulnerable road users, are par-

ticularly susceptible to serious injuries in such collisions. In this study, a Random Forest 

classification model was developed and validated to identify the key variables and their 

combinations that influence pedestrian injury severity in collisions with micromobility 

vehicles on urban roads in Spain between 2016 and 2021. 

The model provided insights into the individual impacts of the analyzed factors on 

pedestrian injury severity, and examined their joint influence through decision rules. 

These decision rules are a valuable contribution to research, as they consider the simulta-

neous occurrence of multiple factors, which is often the case in traffic collisions, and de-

termines the severity of the injuries sustained. 

The results highlight several variables that significantly influence pedestrian injury 

severity in collisions with micromobility vehicles on urban roads. Age, particularly for 

pedestrians aged 70 and above, emerged as the most important variable. Collisions at 

junctions and on weekends also exhibited a higher severity prognosis for pedestrians. Ad-

ditionally, pedestrian injuries are also more severe when offenses and distractions are pre-

sent from both road users, when the collision between the micromobility user and pedes-

trian occurs on the sidewalk, and when the crash occurs while the pedestrian is exiting a 

parked vehicle. 

Furthermore, the decision rules demonstrate the combined influence of various fac-

tors on the severity of pedestrian injuries. In cases where pedestrians aged 70 and above 

are involved, the severity is further intensified when offenses and distractions linked to 

micromobility users and pedestrians are involved, particularly among younger micromo-

bility users and those engaged in leisure activities or weekend travel. 

However, this study has certain limitations. The influence of some factors remains 

unclear due to their interactions with other variables in the collision. Further research is 

needed to gain a better understanding of these factors and their impacts. 

The findings from this study provide valuable insights to authorities regarding the 

significance of specific factors and their combinations in pedestrian injuries resulting from 

collisions with micromobility vehicles. This information can guide the development of 

new measures, the modification of existing ones, and the implementation of road safety 

campaigns aimed at minimizing the negative consequences for vulnerable road users. By 

addressing the identified risk factors and promoting safer behaviors among micromobil-

ity users and pedestrians, authorities can work towards creating a safer urban environ-

ment for all road users. 
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Based on the findings, several recommendations can be made to mitigate the severity 

of injuries to pedestrians involved in collisions with micromobility vehicles. Firstly, in ar-

eas with a significant elderly pedestrian population, it is advisable to separate the flow of 

micromobility vehicles from pedestrian traffic as much as possible. This can help reduce 

the likelihood of severe injuries, particularly among pedestrians aged 70 and above. 

Secondly, it is advisable to restrict the circulation of micromobility vehicles on side-

walks in order to reduce collisions with pedestrians on the sidewalk, as these collisions 

tend to result in severe injuries. 

Furthermore, providing training and information to micromobility users, especially 

younger users, could be beneficial, since no special permits or traffic education are cur-

rently required for their operation. Road safety campaigns could also raise awareness 

about these collisions, and be accompanied by increased enforcement measures for micro-

mobility users to prevent offenses, speeding, and distractions. 

Lastly, to prevent crashes when a micromobility vehicle collides with a pedestrian 

exiting a parked vehicle, it is essential to incorporate buffer zones for vehicle door opening 

in bike lanes located near on-street parking. 
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