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Abstract: The introduction of exoskeletons in industry has focused on improving worker safety.
Exoskeletons have the objective of decreasing the risk of injury or fatigue when performing phys-
ically demanding tasks. Exoskeletons’ effect on the muscles is one of the most common focuses
of their assessment. The present study aimed to analyze the muscle interactions generated during
load-handling tasks in laboratory conditions with and without a passive lumbar exoskeleton. The
electromyographic data of the muscles involved in the task were recorded from twelve participants
performing load-handling tasks. The correlation coefficient, coherence coefficient, mutual information,
and multivariate sample entropy were calculated to determine if there were significant differences in
muscle interactions between the two test conditions. The results showed that muscle coordination
was affected by the use of the exoskeleton. In some cases, the exoskeleton prevented changes in
muscle coordination throughout the execution of the task, suggesting a more stable strategy. Ad-
ditionally, according to the directed Granger causality, a trend of increasing bottom-up activation
was found throughout the task when the participant was not using the exoskeleton. Among the
different variables analyzed for coordination, the most sensitive to changes was the multivariate
sample entropy.

Keywords: muscle interaction; passive industrial exoskeleton; electromyography; mutual informa-
tion; multivariate sample entropy; Granger causality

1. Introduction

Exoskeletons have become a popular technology in recent years due to their potential
to enhance human performance and protect against musculoskeletal injuries. These wear-
able devices are designed to improve or replace the function of the human musculoskeletal
system by providing external support, assistance, or resistance. However, the use of ex-
oskeletons could also have additional consequences, such as changes in muscle activation
patterns, that are yet to be studied and described.

In recent years, numerous studies have evaluated the impact of industrial exoskeletons
on ergonomics in the workplace [1–5]. These studies have generally focused on assessing
the effects of exoskeletons on the physical strain and discomfort experienced by workers
during tasks that involve repetitive or heavy lifting, bending, or reaching. The results
of these studies have been controversial, with some suggesting that exoskeletons can
effectively reduce muscle activity, joint forces, and fatigue, while others have indicated no
significant effect or even negative outcomes [6]. Previous works related to studying the
effects of industrial passive exoskeletons on users have included the assessment of muscles
through EMG [7,8]. These studies addressed the quantification of muscular activity and
fatigue, focusing only on the effects on each muscle individually.
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Studies on this topic start with the identification of the muscles affected by the use of
the exoskeleton. In the case of a passive lumbar exoskeleton, the lumbar muscle is selected
as the objective muscle of the device, as it should receive the most benefit. The authors
of [9–11] all found a reduction in the lumbar activity when assessing the same exoskeleton,
but this reduction was also observed in studies examining different back support exoskele-
tons to that used in the present study [8,12–14]. Furthermore, reductions in lumbar fatigue
have also been found in numerous works [9,15,16]. On the other hand, the quadriceps
muscle has also been studied, as it is potentially affected by compensating for reduced
lumbar muscle activity. Iranzo et al. [9] found reduced activity but no significant changes
in fatigue [9,17].

The interaction between exoskeletons and the human body is complex, and under-
standing the underlying mechanisms is critical for optimizing the design and effectiveness
of these devices. One important factor to consider is the interaction between muscles, which
refers to the coordinated activation of different muscles to produce a desired movement
or force [18]. Muscle interactions play a crucial role in human movement and could be
affected by exoskeleton use.

One of the most common ways to study muscle couplings in the literature consists
in calculating certain parameters, such as the correlation coefficient, coherence coefficient,
mutual information, and multivariate sample entropy [19,20]. These variables have been
proposed in the literature to evaluate muscular coupling for smooth and striated muscles,
though considering different muscles and applications to those studied in the present work.

The correlation coefficient can reflect the linear correlation between two signals in
the time domain. It has been used in the literature to characterize pairs of uterine muscle
synchronizations before labor [19,21], with a significant increase in its value as the delivery
approached. Furthermore, King [22] used it to find correlations during movement com-
pared to static poses, also obtaining higher values in dynamic versus static conditions.
The coherence coefficient can also reflect the linear correlations between time series in the
frequency domain, and it is widely used in the literature. De Marchis et al. [23] calculated
this variable to study the intermuscular synchronization in a free pedaling task, finding
peak values of coherence in the soleous and gastrocneminus medialis pair of muscles.
Coherence was also assessed for labor prediction in [21], with greater values obtained as
delivery approached. Coherence was computed to study post-stroke muscle interactions in
the deltoid and triceps muscles in [24], and the values of coherence were lower for patients
than for the control.

The mutual information coefficient (MI) is a general method for detecting linear and
nonlinear statistical dependencies between time series. This variable was also assessed in
the aforementioned work on uterine muscle synchronizations [19,21], with higher values
of MI as the delivery advanced. Furthermore, the authors of Wu et al. [25] proposed a
methodology based on MI to analyze intermuscular coupling during the movement of
the upper limbs, obtaining higher values for the triceps brachii and posterior deltoid pair
compared to static states. MI was also utilized to measure the inter-muscular coupling
between the biceps and triceps with aging [26], with decreased values of MI obtained as
aging progressed. The authors of Svendsen et al. [27] used MI to reflect the inter-muscular
coupling of four forearm muscles during static and dynamic tracking tasks, with greater
values obtained for static states.

The multivariate sample entropy (MSE) measures the structural complexity of real-
world multichannel data by examining nonlinear correlations within and between channels.
It provides a robust relative complexity measurement for multivariate data and has been
validated on real-world multivariate gait, physiological, and wind data [28]. It has also
been used to study uterine muscles during delivery progression [21], demonstrating very
low values with the approach of delivery. Muscle interactions between dynamic and resting
states were also addressed by MSE computation in [22], finding lower values and therefore
stronger couplings in the external oblique and transverse pair of muscles. In a different
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study, the authors calculated the MSE for pairs of muscles under different conditions of
gait and running speed [29].

Finally, besides the approach of studying the described parameters to find interactions
between pairs, the causal relationship between pairs is of great relevance. The conditional
Granger causality (CG-Causality) analyzes the directed functional coordination between
pairs of muscles. The authors of Ye-Lin et al. [20] used the CG-Causality from surface
electromyography signals to examine the directed functional coordination of various swal-
lowing muscles during the ingestion of different liquids in both healthy and dysphagic
subjects. The authors of Zhou et al. [30] implemented a method of PCA-based CG-Causality
to detect brain network connectivity. As a step further, the directed conditional Granger
causality (DCG-Causality) parameter adds information about the direction of the causality.
This calculation was performed in the study of uterine muscle synchronization to deter-
mine the direction in which the signals propagated, revealing that the majority of signals
propagated downward to expulse the fetus [1].

The present paper aimed to investigate the couplings and synchronization between
pairs of muscles when using an exoskeleton. To achieve this goal, we conducted EMG
recordings, processed them, and obtained the aforementioned parameters to assess cor-
relations and couplings between pairs of signals: the correlation coefficient, coherence
coefficient, mutual information, and multivariate sample entropy. Additionally, we used
the DCG-Causality parameter to examine the direction of causality. In summary, this
study sought to contribute to a better understanding of the complex interactions between
exoskeletons and the human body, providing insights into how to optimize the design and
use of these devices for various applications.

2. Materials and Methods

To participate in the study, individuals of both genders had to meet following criteria:
being between 30 to 45 years old and having a body mass index (BMI) within the range
of 18.5 kg/m2 to 25.5 kg/m2. Individuals with a history of musculoskeletal lesions or
respiratory or cardiovascular pathologies were excluded. Specifically, the study involved
8 volunteers, consisting of 4 women and 4 men, who visited the Instituto de Biomecánica
de Valencia (IBV) facilities and provided written consent for the use and publication of
their data. The average weight and height of the participants were 67.9 ± 7.8 kg and
175.6± 4.6 cm, respectively, with standard deviations indicated.

2.1. Setup Design

The task design aimed to replicate common manual handling tasks in industrial
and warehouse settings, which typically involve a high physical load and adheres to
ergonomic requirements. Although the designed tasks may not have encompassed all
possible postures involved in carrying heavy objects, they simulated a depalletizing job
that involves musculoskeletal risks from forced postures. The selected tasks recreated a
stationary workstation with limited dynamic movements that could necessitate minimal
support, as occurs in workstations that use passive exoskeletons. The task design was
based on ergonomic risk factors, and all the details can be found in our previous work [9].

In summary, the tasks consisted of depalletizing a block of four rows of four boxes.
Figure 1 shows the type of box over the destination table and a schematic drawing in white
of the initial configuration of the 16-box pallet.



Sensors 2023, 23, 9631 4 of 14

Figure 1. Picture of the laboratory configuration, showing the box over the destination table, and a
schematic drawing in white of the initial configuration of the 16-box pallet.

To ensure consistency across users, a predetermined pattern was followed when
moving the boxes from the pallet to the destination. The 16 boxes were numbered in
sequence from the top row (boxes 1 to 4) to the bottom row (boxes 13 to 16). The users
performed the depalletizing task six times. The first three repetitions were performed
without the exoskeleton, handling weights of 7 kg, 8 kg, and 9 kg, respectively. The second
three were performed with the exoskeleton, handling 7 kg, 8 kg, and 9 kg weights in each
repetition. Therefore, under the conditions of no exoskeleton, 48 boxes were moved in total,
and then 48 boxes were moved with the exoskeleton. Finally, the rhythm was indicated by
a metronome sound every 6 s (frequency of manipulation).

The recording protocol included a 10-min break between sessions with and without the
exoskeleton. This break, exceeding by 6 times the exercise execution time of approximately
60 s, allowed for recovery in case the subject experienced fatigue during the exercise
without the exoskeleton.

2.2. Equipment

The exoskeleton used was the commercial passive lumbar LaevoTM V2 exoskele-
ton [10,31,32].

EMG signals were measured using a Noraxon wireless electromyography system
(UltiumTM EMG) to monitor the muscular activity of the right side muscles: erector
spinae (LUMB), gluteus medius (GLUT), quadriceps femoris (QUAD), and semitendinosus
(SEMI). The signals were sampled at 2000 Hz. A clinical evaluator followed the SENIAM
guidelines [33] to place the bipolar electrodes.

The XsensTM MVN Analyze system in whole-body configuration was used for motion
capture; these data were collected to track the postures of the users in order to perform the
segmentation of the EMG signals at the desired positions. Both systems, EMG and MoCap,
were synchronized using the Noraxon Myosync channel.

2.3. Data Analysis
2.3.1. Signal Preprocessing

The EMG signal pre-processing consisted of two stages. First, a filtering stage was
implemented to clean and prepare the signals. Once the EMG signals were obtained, a zero-
phase bandpass Butterworth filter of order 10 was used for pre-processing. The cut-off
frequencies of 20 and 200 Hz were applied to suppress movement noise and limit the
study’s bandwidth.

Secondly, a segmentation task for selecting the fragments of muscular signal activation
when the user was holding the box, from lifting to downloading, was carried out, which
was the same for all muscle channels. In total, 48 fragments (three exercises of 16 boxes
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each) were selected for each muscle in both the with- and without-exoskeleton conditions.
The extended details of the segmentation methodology, which was based on calculating
the envelope of the EMG signals in the four muscles by rectifying and smoothing with a
4 Hz low-pass filter, can be found in a previous work [9].

2.3.2. Feature Extraction

The interaction among the erector spinae, gluteus medius, quadriceps femoris, and semi-
tendinosus muscles was analyzed by computing the correlations and information-theory-
derived parameters in pairs of EMG signals. Specifically, a set of five parameters was
calculated from each of the 48 common fragments of each muscle pair in both conditions,
with and without the exoskeleton. The first four corresponded to the non-directional pa-
rameters of the correlation coefficient, coherence coefficient, mutual information, and mul-
tivariate sample entropy.

The correlation coefficient (CORR) expressed the linear correlation between a pair
of EMG signals in the time domain. The CC ranged from −1 to 1 and equaled 0 when
there was no linear correlation between signals. With the use of the exoskeleton, the values
could be expected to be higher in specific muscle pairs because, due to the design of the
exoskeleton, some muscles were forced to be coupled.

The coherence quantifies the linear correlation between a pair of signals in the fre-
quency domain, being an extension of Pearson’s correlation coefficient in the frequency
domain. In this paper, the maximum value of this function was considered (coherence
coefficient, COH). The values of the COH ranged from 0 to 1, and the closer the coefficient
was to 1, the more linear the relation between both signals. The closer to 0, the less closely
related the signals were. As in the case of the CORR, with the use of the exoskeleton,
the values could be expected to be higher.

Mutual information (MI) measures the amount of information that one random vari-
able contributes to another variable [34,35]. The higher the correlation between the pair of
EMG signals, the higher the value of the MI, which was zero when the pair of signals were
statistically independent. The behavior of this parameter was expected to be comparable to
the CORR and COH parameters, i.e., the higher the MI the higher the muscle coupling.

Multivariate sample entropy characterizes the likelihood that similar patterns in a
time series will remain similar over time among multichannel data [36]. In this case, in
contrast to the CORR, COHM, and MI, the MSE values were expected to be lower for a
higher degree of coupling.

Furthermore, we computed the directional conditional Granger causality (CG-Causality).
This is defined as the power of prediction that the past of a signal Y has for a signal X,
in addition to the prediction of X made by its own past and the past of a conditioning
variable Z [37]. In the case of EMG signals, CG-Causality allowed us to detect interactions
between muscles and uncommon causal influences [37]. This parameter expresses direc-
tionality, and so the effect of the exoskeleton depended on the pair of muscles studied.
The results revealed the degree to which the device made one muscle the “director” of
another, in contrast to their relationship in the absence of the exoskeleton.

Figure 2 shows an example of the signals and parameters of a specific user. It also
depicts the corresponding EMG coupling parameters of this muscle pair in the conditions
with and without the exoskeleton. The four subplots at the top contain the EMG signal
fragments that belong to each of the raised boxes. In the four subplots, the two pairs
of measurements for the lumbar and gluteus muscles can be observed, with each pair
containing a signal in red, indicating recordings in which the exoskeleton was used, and one
in blue, for recordings without an exoskeleton.
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Figure 2. Subplots containing an example of a user’s signals and parameters calculated for the
lumbar (LUMB) and gluteus (GLUT) pair of muscles. In the first four rows, the 48 fragments of the
EMG signals for the lumbar and gluteus are concatenated (red—with exoskeleton, blue—without
exoskeleton). The last row shows each of the five parameters calculated for the EMG segments of the
GLUT-LUMB pair (light red dots—with exoskeleton, light blue dots—without exoskeleton). Over the
dots, the lines of the trends are represented (red—with exoskeleton, blue—without exoskeleton).

In the last row, the series of plots correspond to the parameter values calculated for
each of the fragments of the muscle pair. The trend lines in red correspond to the condition
with the exo, and those in blue the condition without the exo. With the purpose of analyzing
the parameters obtained from all users, a mixed model was built to calculate the trend lines
for the whole set. In the following section, the mixed model is described, together with the
post hoc analysis carried out to obtain the slopes and intercepts for each pair of muscles.

2.3.3. Mixed Model

The data treatment and posterior statistical analysis performed had the objective
of finding evidence of changes in the values and patterns of muscle synergies between
the conditions with and without the exoskeleton. The interactions per fragment were
characterized by the feature calculated for each muscle pair, as shown in the first row of
Figure 2.

The main hypothesis was that the exoskeleton could affect muscle couplings, and mus-
cle couplings could also be affected by fatigue components. For this reason, the data were
analyzed to find the significant differences (p < 0.05) in the values of the parameters under
each condition, as well as the significant differences in the evolution of the parameters
throughout the exercise and how the fatigue that appeared over time affected the possible
changes in the couplings.

The fatigue component was reflected in the trend of the parameters; therefore, the
order, understood as the position of the box (1 to 48), was considered as a numerical
factor. Furthermore, the interaction between the use of the exoskeleton and the order was
considered in the model. The user was introduced as a random factor in Model (1).

y( f eature, musclepair)∼exo ∗ order + (1|user) (1)
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This calculus was carried out for each y( f eature, musclepair), five features, and six
muscle combinations. The mixed model was built in R using the R package lme4 [38].

2.3.4. Statistical Analysis

A post hoc analysis was performed and adjusted by the Holm method using the phia
package in R [39,40].

Once the cases with significant differences (p < 0.05) were identified, the values of
the slopes and intercepts were extracted from the model. With the slopes and intercepts,
it was possible to appreciate whether the trend of the parameter values was increasing
or decreasing for each case and draw comparisons between conditions with and with-
out the exoskeleton.

3. Results

Figure 3 shows a matrix of representations of the coupling parameter trends for the
conditions with and without the exoskeleton. The graphical representation of the trends
was built using the obtained slopes and intercepts, with x-axis values from 1 to 48 rep-
resenting each of the 48 order positions of each box handled (16 7 kg boxes, followed
by 16 8 kg boxes and 16 9 kg boxes) under each condition. The slopes and intercepts
used to build the lines were obtained from the mixed model (1). The blue dashed lines
represent the condition without the exoskeleton, and the red solid lines represent the con-
dition with the exoskeleton. The columns indicate each of the four coupling parame-
ters: the correlation coefficient (CORR), coherence coefficient (COH), mutual information
(MI), and multivariate sample entropy (MSE). The rows contain each of the six muscle
combinations: semitendinosus–quadriceps (SEMI-QUAD), lumbar–quadriceps (LUMB-
QUAD), quadriceps–gluteus (QUAD-GLUT), gluteus–lumbar (GLUT-LUMB), lumbar–
semitendinosus (LUMB-SEMI), and gluteus–semitendinosus (GLUT-SSEMI).

Figure 3. Plots of the trends for the conditions with (solid red lines) and without (dashed blue lines)
the exoskeleton. The columns show each of the four parameters: CORR, COH, MI, and MSE. The
rows show each of the six muscle combinations. “V”—significant differences in the values between
conditions, “S”—significant differences in the slope between conditions, and “V & S”—significant
differences in both the values and the slope.
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In this matrix, the plots without grey shadowing are the ones that show significant
differences. Over each plot in the Figure 3, there is a tag with the type of significant
differences found. “V” corresponds to differences found between the conditions with and
without the exoskeleton, meaning that the condition produced a significant change in the
values of the interactions found. “S” corresponds to differences found in the slope between
the conditions, meaning that the conditions significantly changed the way that the coupling
evolved throughout the whole exercise (48 boxes). “V & S” corresponds to significant
differences for both the value and the slope. Table 1 includes the p-values corresponding to
each pair of muscles and variable.

Table 1. Matrix of p-values corresponding to the plots in Figure 3. Only significant differences are
included, with values of p ≤ 0.05.

CORR COH MI MSE

V S V S V S V S
SEMI-QUAD - - - 0.020 - - 0.000 0.000
LUMB-QUAD 0.040 - - - - - 0.000 0.000
QUAD-GLUT - - 0.012 - - - 0.000 0.000
GLUT-LUMB - - 0.001 0.040 0.000 0.016 0.000 0.000
LUMB-SEMI 0.030 - 0.050 - 0.000 - - -
GLUT-SEMI 0.050 - - - 0.000 - 0.005 0.06

For all the muscle pairs, significant differences were found between the conditions in
two or more parameters.

When observing the MSE and MI parameters in all cases, the evolution remained nearly
constant across all positions and boxes when using the exoskeleton. Conversely, in all cases,
an upward trend was observed when the task was carried out without the exoskeleton.
This observation holds significant implications for both parameters, particularly for the
GLUT-LUMB, SEMI-QUAD, LUMB-QUAD, and QUAD-GLUT pairs, which considered
the interaction of the quadriceps with other muscles in terms of the MSE.

The mutual information (MI) consistently exhibited lower values throughout almost
all of the exercise when no exoskeleton was used. Conversely, the MSE showed exactly
the opposite trend, and this distinction was more pronounced. These results aligned with
the theoretical expectations associated with the variables. Specifically, higher MI values
indicated stronger coupling between the muscle pairs, whereas lower MSE values signified
a higher degree of coupling.

It was also noticeable that the MI values for the LUMB-SEMI muscle pair when
the exoskeleton was used reinforced the mutual information of all boxes for this muscle
pair, with very subtle variations throughout the exercise. This could have been due to
“release” efforts from the lumbar to the semitendinosus muscle. The MI for the GS behaved
in a similar way. For the GLUT-LUMB pair, it is remarkable that the use of the exoskeleton
tended to maintain a constant coupling between muscles.

The correlation and the coherence parameters showed statistically significant differ-
ences in several combinations of muscles, although none of the pairs had the same results.
In the case of the CORR values, the differences were significant, and for all significant pairs,
the values between conditions agreed with those obtained for the MI parameter. For the
LUMB-QUAD and LUMB-SEMI pairs, the values of the CORR were higher when wearing
the exoskeleton, which indicated a higher degree of coupling in terms of linear correlation
between the LUMB and SEMI and QUAD muscles when using the exoskeleton, perhaps
due to the transfer of efforts that the exoskeleton caused. In the case of the GLUT-SEMI pair,
the exoskeleton kept the coupling almost constant in terms of linear correlation between the
GLUT and SEMI muscles, with similar values to those at the beginning of the exercise
without the exoskeleton. This effect was also present in the COH parameter for the pairs
QUAD-GLUT and GLUT-LUMB. Moreover, a significant difference was found for the slope
of the COH parameter for the GLUT-LUMB pair, in agreement with the differences found
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in the MI and MSE for the same pair of muscles, which were almost constant when wearing
the exoskeleton.

Figure 4 presents the results of the mixed model for the directional conditional Granger
causality feature. This parameter is presented separately due to its characteristic of ex-
pressing directionality, which is not applicable to the other parameters. In this case, each
combination of muscles is indicated in each plot, and the type of significant difference is
annotated in the plot where it was found, in the same way as in Figure 3. Table 2 includes
the p-values of the significant differences found in Figure 3. Here, the dashed line represents
the condition without the exoskeleton, and the solid line represents the condition with
the exoskeleton.

Figure 4. Matrix of representations of the slopes calculated for the DCG-Causality parameter under
conditions with (solid red line) and without (dashed blue line) the exoskeleton. In the graphs,
each of the six muscle combinations are shown as follows: semitendinosus to quadriceps minus
quadriceps to semitendinosus (SEMI-QUAD minus QUAD-SEMI). “V”—significant differences in
the values between conditions, “S”—significant differences in the slope between conditions, and “V
& S”—significant differences in both the values and the slope.

For this variable, there were statistically significant differences in the slope for the
SEMI-QUAD and GLUT-LUMB pairs, i.e., in the way that the parameter of the DCG-
Causality evolved throughout the exercise. In both cases, the values of the condition with
the exoskeleton evolved in a more steady way (as observed for the MSE, MI, and CORR),
and so the values of SEMI-QUAD minus QUAD-SEMI and GLUT-LUMB minus LUMB-
GLUT were more constant. In the case of the no-exoskeleton condition, these values
changed to either a negative value (SEMI-QUAD minus QUAD-SEMI) or positive value
(GLUT-LUMB minus LUMB-GLUT). The Granger causality values presented a down-
ward trend with negative values for GLUT-QUAD minus QUAD-GLUT and an upward
trend with positive values for GLUT-LUMB minus LUMB-GLUT. This indicated that the
exoskeleton tended to soften the evolution of the muscle interactions during the exercise.
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Table 2. Matrix of p-values corresponding to the plots in Figure 4; only significant differences
included, with values of p ≤ 0.05.

DCG-Causality

V S
SEMI-QUAD minus QUAD-SEMI - -
LUMB-QUAD minus QUAD-LUMB - -
GLUT-QUAD minus QUAD-GLUT - 0.04
GLUT-LUMB minus LUMB-GLUT - 0.03
LUMB-SEMI minus SEMI-LUMB - -
GLUT-SEMI minus SEMI-GLUT - -

4. Discussion

Although many studies have been reported in the last few years (Google Scholar
produced 1340 references on 28 November 2023 for the keywords Exoskeleton, EMG, and
Workplace), most of them were related to the comparison of individual muscle activation
with and without an exoskeleton [41–43].

In this study, we aimed to assess how the use of the exoskeleton affected the coupling
and synchronization (with and without directionality) between the pairs of muscles in-
volved. A number of findings on the effects of using the exoskeleton were derived from
the analysis.

Firstly, fatigue was evident in the MSE, and it was higher when there was no ex-
oskeleton because the entropy increased, indicating that the signal was less predictable
over time, and the COH decreased. This adds context to previous findings on the effects
of fatigue in the use of passive lumbar exoskeletons [9]. The impact in fatigue has been
addressed previously in several studies [44,45], mostly as an extrapolation on the effects
derived from the reduction of the EMG activity with the use of an exoskeleton. In our
study, fatigue without the exoskeleton also manifested in the increased predictability of the
gluteus relative to the erector spinae and the increased predictability of gluteus activation
relative to quadriceps activation, indicating that as fatigue increased the activation was
increasingly bottom-up.

However, the main purpose of this contribution was to understand how muscle coor-
dination was affected by the use of the exoskeleton, and how this coordination evolved
over time while wearing the exoskeleton. Very few previous studies have attempted to
measure this influence. Just one relevant study was found related to workplace exoskele-
tons. Tan et al. [7] studied synergies while performing tasks with exoskeletons. We also
found that muscle coordination differed when using the exoskeleton. In particular, the
coordination between muscle pairs was higher when the exoskeleton was used (higher MI,
lower MSE, and higher CORR).

The study of coordination and synergies is more common among rehabilitation ex-
oskeletons and assistive exoskeletons, but the purpose is different to that of our study.
For rehabilitation purposes, in some pathologies derived from brain injuries, the process of
patient recovery involves plastic neural re-wiring, establishing in some cases pathological
synergies that should be avoided to allow more functional movements [46–48].

The MSE exhibited remarkable consistency among almost all pairs of muscles. Mul-
tivariate entropy showed high variations when the exoskeleton was not used, but these
variations became slight when the exoskeleton was employed, resulting in a very flat
slope during the performance of the exercises, showing efforts to maintain the muscular
relationship with the exoskeleton. Similar to other studies that have utilized this parameter
to characterize muscle pair synchronization (e.g., [19,21,22]), lower values were associated
with a higher degree of coupling, and in the present case, this coupling was influenced by
the action of the exoskeleton.

The results obtained for MSE demonstrated its suitability for studying couplings
between pairs of muscles in this application. However, the remaining variables proved
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to be important for providing context for the information, partly because the MSE was
more challenging to interpret on its own, as it conveyed information related to signal
predictability and relationships.

Both the CORR and COH indicated very weak relationships between the considered
muscles, with values around 0.2. Only the COH between the quadriceps and gluteus was
somewhat higher (0.4), showing a closer causal relationship between these muscles.

The COH, MI, and MSE variables revealed that the exoskeleton tended to maintain
the degree of coupling throughout the exercise. This led us to think that the use of the
exoskeleton restricted the degrees of freedom of movement and the harmonization of the
redistribution of loads. Some muscles that fatigued without the exoskeleton did not fatigue
with the exo, and this displacement of the spectrum towards low frequencies no longer
occurred, therefore reducing the coherence (the linear similarity of their spectra decreased).

This study stands as an initial approach to characterizing the phenomena of coupling
differences between the conditions of wearing and not wearing an exoskeleton. Further
studies are required for a deeper understanding, including the design of a methodol-
ogy specifically for the study of couplings with more superficial muscles and pairs of
antagonists. Also, the study of synergies through NNMF would be of great interest.

5. Limitations and Future Work

The main limitations of the present work lie in the fact that we analyzed a specific
task, although common in industrial environments, with a single commercial exoskeleton,
which limited the generalizability of the results obtained. Furthermore, only a small set of
muscles were analysed in the study.

In our study, the tasks conducted with the users wearing the exoskeleton were always
performed after the tasks without the exoskeleton. This sequencing choice was made for
instrumentation purposes, as the removal of the exoskeleton could potentially cause slight
skin displacements of the EMG electrodes, complicating comparisons between conditions.
While acknowledging that this decision might have had an impact on the analysis of
the evolution of muscle activation, we believe its influence was minimal: the observed
trend when using the exoskeleton was largely contrary to the pattern identified without
its use, underscoring our confidence that any potential impact had little effect on the
study’s conclusions.

The consequences of the differences in muscle coordination when using or not using
the exoskeleton, i.e., whether they imply advantages or drawbacks, remain a subject for
further study. There is ample opportunity for investigating the long-term health effects
on users.

It is worth noting that the study primarily focused on the objective evaluation of tasks
with short durations and limited movement types. To comprehensively assess acceptance
and long-term effects, a longitudinal study encompassing a broader range of tasks will
be undertaken.

Furthermore, in the realm of future research, there are plans to explore alternative
models of passive lumbar exoskeletons to validate the obtained results. Additionally,
considering that one of the primary goals of occupational exoskeletons is a reduction in
musculoskeletal risks, it would be interesting to investigate the relationship between the
acquired parameters and their impact on musculoskeletal health.

6. Conclusions

The findings suggested that the use of a lumbar exoskeleton had an impact on the
synchronization of the monitored muscle pairs.

A notable decrease in the values of the MSE parameter, along with a general reduc-
tion in the slope, was observed in all muscle pairs analyzed, except for the LUMB-SEMI
pair, which indicated an increase in synchronization when the exoskeleton was utilized.
This was supported by the increased MI values, with statistically significant differences
found for the GLUT-LUMB pair. The results for the CORR and COH, which assessed
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the linear relationships between muscle pairs in the temporal and spectral domains, were
less pronounced.

The MSE proved to be a highly sensitive variable for identifying differences in muscle
coordination associated with exoskeleton use. While the results for the MSE and MI were
consistent with each other, more significant differences were identified with the MSE.

DGC provided insights into the changes in coordination as the task progressed and
could be a valuable tool for understanding how the users adjusted their strategy. In our
case, DCG revealed changes in coordination in the “without exoskeleton” condition, while
the coordination aspects remained relatively stable in the “with exoskeleton” condition.

Finally, as far as we are concerned, the changes in the directionality of muscular
coupling associated with the use of exoskeletons were a novel finding of the present work
and could provide a new tool in the assessment of occupational exoskeletons, allowing one
to predict the effects of medium- and long-term usage.
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