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ON THE DEGREE OF CURVES WITH PRESCRIBED

MULTIPLICITIES AND BOUNDED NEGATIVITY

CARLOS GALINDO, FRANCISCO MONSERRAT, CARLOS-JESÚS MORENO-ÁVILA,
AND ELVIRA PÉREZ-CALLEJO

Abstract. We provide a lower bound on the degree of curves of the projec-
tive plane P2 passing through the centers of a divisorial valuation ν of P2 with
prescribed multiplicities, and an upper bound for the Seshadri-type constant
of ν, µ̂(ν), constant that is crucial in the Nagata-type valuative conjecture. We
also give some results related to the bounded negativity conjecture concern-
ing those rational surfaces having the projective plane as a relatively minimal
model.

1. Introduction

The goals of this article are twofold. The �rst one is, on the one hand, to
determine a lower bound on the degree of curves of the projective plane P2 going
through a simple chain of in�nitely near points with prescribed multiplicities. On
the other hand, since this chain provides a divisorial valuation ν of P2, we obtain
an upper bound of the Seshadri-type constant µ̂(ν). The second goal consists
of supplying bounds on values, proposed by Harbourne in [21], that give an
asymptotic approach to bounded negativity on rational surfaces whose relatively
minimal model is P2. For proving our results, we note that any divisorial valuation
of the projective plane can also be regarded as a non-positive at in�nity valuation
of a suitable Hirzebruch surface and use the fact that the last mentioned class of
valuations, introduced in [16], determines rational surfaces with nice geometrical
properties. This last argument gives a nexus between our goals.
These goals are related to interesting open conjectures. Nagata's conjecture

on linear systems states that, given n ≥ 10 very general points p1, . . . , pn of the
complex projective plane and n non-negative integers m1, . . . ,mn, the degree d
of any curve C of P2 such that multpi(C) ≥ mi for all i = 1, . . . , n satis�es
d > 1√

n

∑n
i=1mi [24]. In Section 3 we consider a similar problem but within a

di�erent framework, where the points pi form the con�guration of centers of an
arbitrary divisorial valuation ν centered at a closed point p1 of P2. Then, our
�rst main result gives a bound on the degree d which depends on the prescribed
multiplicities, the maximum t(ν) of the set {ν(φS) | S is a line of P2}, where φS

stands for an element of the local ring OP2,p1 giving rise to a local equation of S,
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and combinatorial data that can be obtained from the dual graph of ν. These
combinatorial data are β0(ν), which is the value (by ν) of a general element of the
maximal ideal m of OP2,p1 , and the volume vol(ν) of the valuation. Speci�cally,
our result (Theorem 3.3 in the paper) is the following.

Theorem A. Let ν be a divisorial valuation of P2 whose con�guration of centers
is Cν = {p1, . . . , pn}. Set non-negative integers m1, . . . ,mn and let C be a curve
of P2 passing through (Cν , (mi)

n
i=1) (see De�nition 3.1). Then

deg(C) ≥ 1

β̄0(ν) + (1 + δ0(ν)) t(ν)

n∑
i=1

vimi,

where (vi)
n
i=1 is the sequence of multiplicities of ν, δ0(ν) = −1 if ν is the m-adic

valuation and, otherwise,

δ0(ν) :=

⌈
vol(ν)−1 − 2β̄0(ν)t(ν)

t(ν)2

⌉+

,

⌈x⌉+ being the ceiling of a rational number x if x ≥ 0, and 0 otherwise.

The dual graph and some equivalent combinatorial data are useful tools for the
study of plane valuations and related problems (see for instance [30, 5, 6]).
A Nagata-type conjecture within the framework of valuation theory was stated

in [18] (see also [12]). It implies the Nagata classical conjecture and states that
any very general divisorial (or irrational) valuation centered at a closed point
of the projective plane whose inverse normalized volume is larger than or equal
to 9 is minimal. A divisorial valuation ν is minimal when the square of the
Seshadri-type constant µ̂(ν) equals the inverse of the volume of ν. The value
µ̂(ν) was introduced in greater generality in [4] and, in our context, µ̂(ν) =

limd→∞
µd(ν)

d
, where µd(ν) := max{ν(h) | h ∈ k[u, v] and deg(h) ≤ d}, {u, v}

being a�ne coordinates around the point p1. The Seshadri-type constant for
divisorial valuations is, generally speaking, very di�cult to compute and it can be
found in di�erent contexts as, for instance, the computation of Newton-Okounkov
bodies of surfaces (see [23, 22] as introductory papers and [8, 19, 15] for the two-
dimensional case).
As a consequence of Theorem A, in Corollary 3.5 we consider any divisorial

valuation ν of P2 and, with the above notation, we complete our �rst goal by
providing the following bound on the value µ̂(ν):

µ̂(ν) ≤ β̄0(ν) + (1 + δ0(ν)) t(ν).

As we explained, this bound depends on combinatorial data that can be extracted
from the dual graph of the valuation ν and the value (by ν) of the germ of a
suitable line of P2. In addition, we give a sequence of divisorial valuations (νn)
such that the sequence of bounds (of µ̂(νn)) provided in Corollary 3.5 approaches
asymptotically the actual values µ̂(νn).
Section 4 is devoted to prove our second goal on the asymptotic approach to

bounded negativity. The bounded negativity conjecture is a folklore conjecture
which states that any smooth projective surface Z over the complex numbers
has bounded negativity, which means that there is a non-negative integer b(Z),
depending only on Z, such that C2 ≥ −b(Z) for any reduced and irreducible
curve on Z [21, 2, 3, 29, 25]. The origin of this conjecture is unclear but it was
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already on the mind of important mathematicians as Artin and Enriques (see
more details in the introduction of [2]). It is worth to add that the conjecture (if
true) gives a partial answer to a question by Demailly [11, Question 6.9] and fails
in positive characteristic [21, 2]. A close conjecture, which implies the Nagata
conjecture and is implied by the SHGH conjecture [9], states that if C is a reduced
and irreducible curve on the surface obtained by blowing-up the projective plane
at very general points, then C2 ≥ −1 and, if C satis�es C2 = −1, then it is a
(−1)-curve. A weak bounded negativity conjecture was stated in [1, 2] and proved
in [20]; this conjecture asserts that for any smooth complex projective surface Z
and any integer g, there is a non-negative integer b(Z, g), depending only on Z
and g, such that C2 ≥ −b(Z, g) for any reduced curve in Z with geometric genus
of each irreducible component less than or equal to g. The bounded negativity
conjecture can also be stated by replacing reduced and irreducible curves by
arbitrary reduced divisors [2]. Moreover, if Z is a surface coming from successive
blowups of a surfaceX, for obtaining very negative curves on Z, it is worthwhile to
consider curves on Z giving very singular images in X. In this way, several recent
papers [3, 27, 29, 26] have considered special types of transversal arrangements of
curves on X, that is, reduced divisors whose components are smooth and intersect
pairwise transversally (the intersection points provide the singularities). In this
article we take a di�erent approach to force the emergence of singularities by
considering proximity relations among in�nitely near points.
Let us state our main result in Section 4, Theorem 4.1 in the paper, which

considers a surface Xν obtained by blowing-up at the sequence of centers of a
divisorial valuation ν of the projective plane. It uses the concept of tangent line
of ν introduced before Section 2.3.

Theorem B. Let ν be a divisorial valuation of P2 and set Z := Xν. If C is an
integral curve of P2 di�erent from the tangent line of ν (if it exists) then

C̃2

deg(C)2
≥ −(1 + δ0(ν)),

where C̃ is the strict transform of C on Z and δ0(ν) is as in Theorem A.

Corollary 4.2 gives a more general bound which holds for curves C̃ on any
smooth rational surface having P2 as a relatively minimal model.
Since no general lower bound on the self-intersection of negative curves is

known, in [21, Section 1.3] (see also [1, Conjecture 3.7.1]) it is proposed an as-
ymptotic approach. Given a nef (big and nef, according to [1]) divisor F on Z,
this approach asks for a lower bound on the values C2/(F · C)2, where C runs
over the integral curves on Z with F · C > 0. In Corollary 4.3 we provide such
a bound for smooth rational surfaces Z having P2 as a relatively minimal model
and divisors F = L∗, where L∗ is the total transform on Z of a general line L of
P2. Corollary 4.5 gives, in the case of surfaces Xν attached to a unique divisorial
valuation of P2, a slightly rougher bound that depends only on purely combina-
torial information associated with ν. Finally, Corollary 4.7 shows the existence
of in�nite families of rational surfaces having P2 as a relatively minimal model,
with an arbitrarily big Picard number, that share the same bound as given in
Corollary 4.3.
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Most of the literature on this subject only considers particular cases of blowups
of surfaces. However, our results allow blowups at any family of in�nitely near
points.
It only remains to add that Section 2 is expository and is devoted to present

the main concepts and tools that we will use to prove our results. All the results
of this paper are valid for surfaces over an algebraically closed �eld k, without
any further assumption on the characteristic.

2. Divisorial valuations

2.1. Plane divisorial valuations. Let (R,m) be a regular local ring of dimen-
sion 2 and K its quotient �eld. A valuation ν of K is centered at m when
R ∩ mν = m where mν = {h ∈ K∗ | ν(h) > 0} ∪ {0} and K∗ = K \ {0}. The
set of these valuations is bijective to the set of simple sequences of point blowups
starting with the blowup π1 of SpecR at the closed point p de�ned by m [30].
A sequence of point blowups is simple when each blowup center belongs to the
exceptional divisor created by the previous blowup.
Divisorial valuations ν are those de�ning (and de�ned by) �nite simple se-

quences of the form

π : Zn
πn−→ Zn−1 → · · · → Z1

π1−→ Z0 = SpecR, (2.1)

where, we set p = p1 and πi+1, 1 ≤ i ≤ n − 1, is the blowup of Zi at the unique
point pi+1 in the exceptional divisor Ei created by πi such that ν is centered at
the local ring OZi,pi+1

. A center pi precedes another center pj if pi is mapped to pj
by the composition of the associated sequence of blowups. The proximity relation
on the set of centers of ν (or π), Cν = {p = p1, . . . , pn}, works as follows: pi → pj
(pi is proximate to pj) if i > j and pi belongs to the strict transform of Ej on
Zi−1, also represented by Ej. Moreover, a center pi (or an exceptional divisor Ei)
of π is named satellite whenever pi → pj for some j < i − 1. Otherwise, points
and exceptional divisors are called free.
Many interesting properties of ν are encoded in the dual graph of ν, Γν , which

is the labelled tree whose vertices represent the exceptional divisors Ei (labelled
with i) and whose edges join the vertices i and j in case Ei ∩ Ej ̸= ∅.
The set Cν is called the con�guration of centers of ν and it can be written as

a union of sets

Cν = C1 ∪ · · · ∪ Cg+1,

where g = 0 when all the points in Cν are free and g > 0 otherwise. In this last
case Cj = {pℓj−1

, . . . , pℓj}, j = 1, . . . , g, are such that ℓ0 := 1, the indices of the
centers in each Cj are consecutive, there exists rj ∈ {ℓj−1 + 1, . . . , ℓj − 1} such
that pi is free (respectively, satellite) if ℓj−1 < i ≤ rj (respectively, rj < i ≤ ℓj),
and the last set Cg+1 consists of pℓg and a sequence (possibly empty) of free points
pℓg+1, . . . , pn. Notice that the centers pℓj+1, 1 ≤ j ≤ g, are the �rst free points
after a block of satellite points and that pℓg+1 exists only when n ̸= ℓg.
Denote by mi the maximal ideal of the local ring OZi,pi+1

, 0 ≤ i ≤ n − 1, and
de�ne ν(mi) := min{ν(x) |x ∈ mi \ {0}}. The sequence of Puiseux exponents of

ν is an ordered set of rational numbers
(
β′
j(ν)

)g+1

j=0
such that β′

0(ν) = 1 and, for
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j ∈ {1, . . . , g + 1}, β′
j(ν) is de�ned by the continued fraction

⟨aj1; a
j
2, . . . , a

j
sj
⟩,

where ajk, 1 ≤ k ≤ sj, successively counts the number of points in Cj with the
same value ν(mi). Notice that β

′
g+1(ν) is a positive integer.

The ordered set (ν(mi))
n
i=1 is called the sequence of multiplicities of ν. Following

[30] (or [10]), one can deduce that, for a divisorial valuation ν, its dual graph Γν

and its sequence of Puiseux exponents
(
β′
j(ν)

)g+1

j=0
are equivalent data.

The sequence of maximal contact values of ν,
(
βj(ν)

)g+1

j=0
, has an important role

in this paper. Its values can be de�ned as follows:

β0(ν) = ν(m) and βj(ν) = ν(φrj), 0 ≤ j ≤ g + 1 (with r0 := 1), (2.2)

where φrj is an analytically irreducible element of R whose strict transform on Zrj

is non-singular and transversal to the exceptional divisor Erj at a general point

and prj is the last free point in Cj. Notice that when Cg+1 = {pℓg}, β̄g+1 = ν(φℓg).
This sequence generates the semigroup of values of ν, ν(R \ {0}) ∪ {0}. It can
be computed from the sequence of Puiseux exponents of ν and conversely. The
last maximal contact value, β̄g+1, has the following expression in terms of the
sequence of multiplicities:

β̄g+1 =
n∑

i=1

ν(mi)
2. (2.3)

More details can be found in [30, 10].
The volume of ν (see [13]) is de�ned as

vol(ν) := lim sup
m→∞

2 length(R/Pm)

m2
, (2.4)

where Pm := {h ∈ R|ν(h) ≥ m} ∪ {0}. Using [7, Section 4.7], one can prove that
vol(ν) = 1/βg+1(ν) (see [18]).
Sometimes it is useful to consider the so-called normalized valuation of ν, which

is de�ned as νN := (1/β0(ν))ν and gives rise to the normalized volume

volN(ν) := vol(νN) =
β0(ν)

2

βg+1(ν)
.

2.2. Divisorial valuations of P2. Let k be an algebraically closed �eld. If X is
a smooth projective surface over k, p is a closed point of X, and ν is a divisorial
valuation of the function �eld of X, centered at the maximal ideal m of OX,p, the
triple (ν,X, p) is named divisorial valuation of X centered at p, although most of
the times we simply say that ν is a divisorial valuation of X.
Throughout the paper, given a divisorial valuation (ν,X, p) of a surface X as

above, and a curve C of X, we denote by φC the germ at p de�ned by the image
of C in R := OX,p. Abusing the notation, φC also denotes an element in OX,p

de�ning the germ. Divisorial valuations ν of X correspond one-to-one to simple
complete m-primary ideals Iν of OX,p [30, Theorem 4.3]. Abusing the notation
again, in this paper a general element of Iν is named a general element of ν.
Moreover, a germ ψ at p is a general element of ν if it is de�ned by an element of
OX,p which is irreducible in the m-adic completion ÔX,p and its strict transform
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(by the sequence (2.1) provided by ν) meets the divisor En at a general point [30,
De�nition 7.1].
Consider the projective plane over k, which we denote by P2. Fix a closed

point p ∈ P2 and consider a divisorial valuation ν of P2 centered at p. According
to the above subsection, ν de�nes a rational surface Xν through the sequence π
of blowups given by ν:

π : Xν = Xn
πn−→ Xn−1 → · · · → Z1

π1−→ X0 = P2. (2.5)

The Seshadri-type constant µ̂(ν) was introduced in [4] for real valuations ν
of projective normal varieties. In our context, if L denotes a general line of P2

and a(mL) is the last value of the vanishing sequence of H0(mL) along ν, then
µ̂(ν) := limm→∞m−1a(mL).
Consider projective coordinates (X : Y : Z) on P2 and, without loss of general-

ity, set p = (1 : 0 : 0). Take the open subset UX := Spec(k[Y/X,Z/X]) de�ned by
the complement of the line with equationX = 0 and, considering indeterminates u
and v, identify Spec(k[u, v]) with UX via the isomorphism k[u, v] → k[Y/X,Z/X]
de�ned by u 7→ Y/X, v 7→ Z/X. Then the valuation ν can be regarded as a val-
uation of the quotient �eld of k[u, v] centered at the local ring k[u, v](u,v). The
value µ̂(ν) can be computed as

µ̂(ν) = lim
d→∞

µd(ν)

d
,

where, for each positive integer d,

µd(ν) := max{ν(h) | h ∈ k[u, v] and deg(h) ≤ d}.

(See [18, Sections 2.5 and 2.6]).

A divisorial valuation ν of P2 always satis�es µ̂(ν) ≥
√

[vol(ν)]−1 and ν is
called minimal when the equality in the above expression holds. The minimality
is a key concept for the Nagata-type valuative conjecture [18] (which implies the
Nagata conjecture) and states that, if k = C, ν is a very general valuation and
[volN(ν)]−1 ≥ 9, then ν is minimal (see [12] for the particular case of valuations
where g = 0, or g = 1 and are de�ned by a satellite divisor). We conclude this
section by recalling that each non-minimal divisorial valuation admits a unique
supraminimal curve, that is, a curve de�ned by an irreducible polynomial h ∈
k[u, v] such that µ̂(ν) = ν(h)/ deg(h). A proof of this fact is given in [15, Section
3.4], and in [12] for the above mentioned particular case. These proofs were given
for the case k = C, but they are valid for any algebraically closed �eld k.
Notice that ν is the m-adic valuation if and only if Cν has only one point and

that, otherwise, there exists a unique projective line H, which we call tangent
line of ν, such that ν(φH) > β̄0.

2.3. Non-positive at in�nity special divisorial valuations of Fδ. As above,
k stands for an algebraically closed �eld. Set P1 the projective line over k. We
denote by Fδ := P(OP1 ⊕ OP1(−δ)) the δth Hirzebruch surface over the �eld k,
where δ ≥ 0 is an integer.
Following [28, Section 2.2], Fδ = (A2∗

k )2/ ∼, where A2∗
k := A2

k \ {(0, 0)}, A2
k is

the a�ne plane over k and ∼ is given by the action of k∗ × k∗, k∗ := k \ {0},
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de�ned as follows:

(λ, µ)(X0, X1;Y0, Y1) = (λX0, λX1;µY0, λ
−δµY1)

and (λ, µ) ∈ k∗ × k∗.

Notice that the a�ne open sets Uij := Fδ \ V(XiYj), 0 ≤ i, j ≤ 1, cover the
Hirzebruch surface.
In this article we consider two prime divisors F andM on Fδ such that F ·M =

1, F 2 = 0, M2 = δ and their classes generate the Picard group Pic(Fδ). When
δ > 0, the unique prime divisor of Fδ with self-intersection −δ (called special
section) will be denoted byM0, and those points onM0 are named special. When
δ = 0, M0 denotes a prime divisor linearly equivalent to M .
Fix a point p ∈ Fδ and let ν be a divisorial valuation of Fδ centered at p. As

mentioned before, the valuation ν determines a unique sequence of blowups and
then a unique rational surface Yν :

π : Yν := Yn
πn−→ Yn−1 → · · · → Y1

π1−→ Y0 = Fδ. (2.6)

The following concept was introduced in [16, De�nition 3.1].

De�nition 2.1. The valuation ν is said to be special (with respect to Fδ and p)
when one of the following conditions holds:

(1) δ = 0.
(2) δ > 0 and p is a special point.
(3) δ > 0, p is not a special point and there is no integral curve in the

complete linear system |M | whose strict transform on Yν has negative
self-intersection.

We are only interested in a particular type of special divisorial valuations of Fδ

which was introduced in [16, De�nition 3.5]. As we will see in the forthcoming
Theorem 2.3, these valuations give rise to rational surfaces with nice geometrical
properties (see also [17]). Let us recall the de�nition; set F1 the �ber of the
projection morphism Fδ → P1 that goes through p.

De�nition 2.2. A special divisorial valuation ν of Fδ is called non-positive at
in�nity whenever ν(h) ≤ 0 for all h ∈ OFδ

(Fδ \ (F1 ∪M0)).

Let Yν be the rational surface given by a special valuation ν of Fδ (centered
at p). Denote by F ∗, M∗, and E∗

i , 1 ≤ i ≤ n, the total transforms on Yν of the
above introduced divisors F and M , and the exceptional divisors appearing in
the sequence (2.6). Given two germs at p, φ and φ′, we denote by (φ, φ′)p (re-
spectively, multpi(φ)) the intersection multiplicity of φ and φ′ at p (respectively,
the multiplicity of the strict transform of φ at pi). Consider the following divisor
on Yν :

Λn := anF
∗ + bnM

∗ −
n∑

i=1

multpi(φn)E
∗
i , (2.7)

where an := (φn, φM0)p, bn := (φn, φF1)p and φn is a general element of the
divisorial valuation de�ned by the divisor En. Then the following result, proved
in [16, Theorem 3.6], holds.
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Theorem 2.3. Let ν be a special divisorial valuation of Fδ centered at a point
p. Set Yν the rational surface that ν de�nes. Then the following conditions are
equivalent:

(a) The valuation ν is non-positive at in�nity.
(b) The divisor Λn is nef.
(c) The inequality 2anbn + b2nδ ≥ [vol(ν)]−1 holds.
(d) The cone of curves NE(Yν) is generated by the classes of the strict trans-

forms on Yν of the �ber passing through p, the special section and the
irreducible exceptional divisors associated with the map π given by ν.

3. A lower bound on the degree of a curve of P2 with prescribed

multiplicities

We start with a de�nition and a lemma which will be useful to state our �rst
main result.

De�nition 3.1. Let ν be a divisorial valuation of P2, Cν = {p1, . . . , pn} its con-
�guration of centers and Xν the surface that it de�nes. Set non-negative integers
m1, . . . ,mn. We say that a curve C of P2 passes through the pair (Cν , (mi)

n
i=1)

if C∗ −
∑n

i=1miE
∗
i ≥ 0, C∗ (respectively, E∗

i ) being the total transform (pull-
back) of the curve C (respectively, the exceptional divisor Ei) by the associated
sequence of blowups (2.5).

Lemma 3.2. Let ν be a divisorial valuation of P2 and let Cν = {p1, . . . , pn} be
its associated con�guration of centers. Fix non-negative integers m1, . . . ,mn and
let C be a curve of P2 passing through (Cν , (mi)

n
i=1). Then

ν(φC) ≥
n∑

i=1

vimi,

where (vi)
n
i=1 is the sequence of multiplicities of ν.

Proof. Let ψ be an element of the local ring OP2,p1 de�ning a general element of
the valuation ν. By the virtual Noether formula [7, 4.1.3] we have that

ν(φC) = (ψ, φC)p1 ≥
n∑

i=1

multpi(ψ)mi =
n∑

i=1

vimi.

□

For the reader's convenience, we recall some notation which has been intro-
duced in Section 1. Consider any divisorial valuation ν of P2 and let p be the
closed point of P2 where ν is centered. We de�ne t(ν) := 1 and δ0(ν) := −1
if ν is the m-adic valuation, m being the maximal ideal of OP2,p. Otherwise
t(ν) := ν(φH), H being the tangent line of ν, and

δ0(ν) :=

⌈
vol(ν)−1 − 2β̄0(ν)t(ν)

t(ν)2

⌉+

,

where ⌈x⌉+ is de�ned as the ceiling of a rational number x if x ≥ 0, and 0
otherwise.
Next, we state our �rst main result (Theorem A in the introduction).
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Theorem 3.3. Let ν be a divisorial valuation of P2 (centered at the closed point
p) and let Xν be the surface that ν de�nes. Set non-negative integers m1, . . . ,mn

and let C be a curve of P2 passing through (Cν , (mi)
n
i=1). Then

deg(C) ≥ 1

β̄0(ν) + (1 + δ0(ν)) t(ν)

n∑
i=1

vimi,

where (vi)
n
i=1 is the sequence of multiplicities of ν.

Proof. If ν is the m-adic valuation, the result holds trivially. Otherwise, with the
notation as in Subsection 2.2, and without loss of generality, we can assume the
following three conditions:

(1) p is the point (1 : 0 : 0) ∈ UX .
(2) Using the isomorphism described in Subsection 2.2, k[u, v](u,v) is identi�ed

with the local ring of P2 at p.
(3) The local equation of the line H at p is u = 0.

Let f(u, v) = 0 be an a�ne equation of the restriction of C on UX . The strict
transform C̃ on Xν is linearly equivalent to the divisor

deg(C)L∗ −
n∑

i=1

multpi(C)E
∗
i ,

where L∗ (respectively, E∗
i ) denotes the total transform on Xν of a general line L

of P2 (respectively, of the exceptional divisor Ei created by πi).
Consider, for an arbitrary integer δ ≥ 0, the Hirzebruch surface F := Fδ and

homogeneous coordinates (X0, X1;Y0, Y1) as de�ned in Subsection 2.3. The open
subset U00 := Spec(k[X1/X0, X

δ
0Y1/Y0]) is de�ned by the complement of the curve

on F with homogeneous equation X0 · Y0 = 0. We can identify Spec(k[u, v]) with
U00 via the isomorphism k[u, v] → k[X1/X0, X

δ
0Y1/Y0] de�ned by u 7→ X1/X0,

v 7→ Xδ
0Y1/Y0. This isomorphism gives rise to an isomorphism of function �elds

θ : K(P2) → K(F) and thus the previous valuation ν of P2 can also be regarded
as a valuation of F centered at the point q := (1, 0; 1, 0). Then, its con�guration
of centers Cν becomes a con�guration of in�nitely near points over F. Within
this setting, f(u, v) = 0 is the a�ne equation in U00 of a curve D on F that is
linearly equivalent to a divisor a(δ, f)F + b(δ, f)M , where a(δ, f) and b(δ, f) are
non-negative integers depending on δ and f , and u = 0 (respectively, v = 0) is
the a�ne equation of the �ber F1 that contains p (respectively,M0). By Theorem
2.3, the valuation ν is a non-positive at in�nity (special) valuation of F if and
only if

2ν(φM0)ν(φF1) + ν(φF1)
2δ ≥ [vol(ν)]−1 . (3.1)

Observe that

ν(φM0) = β̄0(ν) and ν(φF1) = ν(u) = t(ν)

and then Inequality (3.1) is true if δ = δ0(ν).
In the rest of the proof, F will represent the Hirzebruch surface Fδ0(ν) and ν

will be regarded as a non-positive at in�nity valuation of F, π : Yν → F being
the composition of the sequence of blowing-ups centered at the points of Cν .
There is no confusion if we denote the associated exceptional divisors and its
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total transforms on Yν as before, that is, Ei and E
∗
i . Then, since ν is non-positive

at in�nity, the divisor on Yν

Λn := β̄0(ν)F
∗ + t(ν)M∗ −

n∑
i=1

viE
∗
i ,

given in (2.7), is nef (by Theorem 2.3). As a consequence, Λn · D̃ ≥ 0, where D̃
denotes the strict transform on Yν of D which is linearly equivalent to the divisor

a(δ0(ν), f)F
∗ + b(δ0(ν), f)M

∗ −
n∑

i=1

multpi(C)E
∗
i .

Therefore, using the forthcoming Lemma 3.4,[
β̄0(ν) + t(ν) (1 + δ0(ν))

]
deg(C)− ν(φC)

≥ β̄0(ν) degv(f)+t(ν) degu(f)+t(ν) degv(f)δ0(ν)−
n∑

i=1

vi multpi(C) ≥ Λn·D̃ ≥ 0.

Hence

deg(C) ≥ 1

β̄0(ν) + (1 + δ0(ν)) t(ν)

n∑
i=1

vi multpi(C)

≥ 1

β̄0(ν) + (1 + δ0(ν)) t(ν)

n∑
i=1

vimi,

where the last inequality holds by Lemma 3.2. This �nishes the proof.
□

Lemma 3.4. With the above notations, let f(u, v) = 0 be the equation of a curve
de�ned in the a�ne open set U00 of Fδ. Suppose that its closure D in Fδ is linearly
equivalent to a(δ, f)F + b(δ, f)M . Then

a(δ, f) ≤ degu(f) and b(δ, f) ≤ degv(f).

Proof. Let F (X0, X1, Y0, Y1) = 0 be an homogeneous equation of D and consider
the set M of monomials

Xα
0X

β
1 Y

γ
0 Y

µ
1

appearing in the expression of F (X0, X1, Y0, Y1) with non-zero coe�cient. Since
X0 (respectively, Y0) does not divide F (X0, X1, Y0, Y1) there exists a monomial
in M with α = 0 (respectively, γ = 0); hence degu(f) ≥ β ≥ β − δµ = a(δ, f)
(respectively, degv(f) ≥ µ = b(δ, f)).

□

Theorem 3.3 provides a universal upper bound on the Seshadri-type constant
µ̂(ν) of a divisorial valuation ν of P2. This bound depends only on the dual graph
and the value (by ν) of the tangent line of ν. Let us state the result.

Corollary 3.5. For any divisorial valuation ν of P2 it holds that

µ̂(ν) ≤ β̄0(ν) + (1 + δ0(ν)) t(ν).
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Generally speaking it is a hard task to compute the value µ̂(ν). The next
example considers a case where µ̂(ν) can be obtained and gives a family of divi-
sorial valuations {νa}a∈N≥3

such that the bounds of µ̂(νa) obtained in Corollary
3.5 approach asymptotically the actual values µ̂(νa).

Example 3.6. Assume in this example that k is the �eld of complex numbers.
Let e be any non-negative integer. For any integer a ≥ 3, let Ca be the unicuspidal
curve of P2 whose equation in the homogeneous coordinates (X : Y : Z) is

(f1Y + bXa+1)
a − fa+1

1

Xa−1
= 0,

where f1 = Xa−1Z + Y a and b ̸= 0. Notice that Ca is a Tono curve of Type I
with n = a− 1 and s = 2 (see [31, 14]) whose degree is a2 + 1.
Consider the con�guration of in�nitely near points C = {p1, . . . , pn} such that

the composition π : Y → P2 of the sequence of point blowups at C gives rise to a
minimal embedded resolution of the singularity of Ca. Now consider a sequence
q1, . . . , qs of s := (e + 1)a4 − 2a3 − 2a2 − a free in�nitely near points belonging
to the successive strict transforms of Ca and such that q1 (respectively, qi) is
proximate to pn (respectively, qi−1 for i = 2, . . . , n). Set νa the divisorial valuation
whose associated con�guration is Cνa = C ∪ {qi}si=1. The sequence of maximal
contact values of νa is β̄0(νa) = a2 − a, β̄1(νa) = a2, β̄2(νa) = a3 + 2a + 1 and
β̄3(νa) = (e+ 2)a4 − 2a3.
Then, on the one hand, the curve Ca is a supraminimal curve of the the valua-

tion νa [18, De�nition 2.3] because νa(φCa) >
√
β̄3(νa) deg(Ca) which means [19,

Lemma 3.10] that

µ̂(νa) =
νa(φCa)

deg(Ca)
=

(e+ 2)a4 − 2a3

a2 + 1
.

On the other hand, the bound in Corollary 3.5 is β̄0(νa) + (e + 1)t(νa) =
(e+ 2)a2 − a because δ0(νa) = e. Therefore,

lim
a→+∞

µ̂(νa)

(e+ 2)a2 − a
= 1.

4. Asymptotic approach to bounded negativity

In [21, Section 1.3] (see also [1, Conjecture 3.7.1]), it is proposed an asymptotic
approach to bounded negativity. This approach consists of, given a nef (big and
nef, according to [1]) divisor F on a surface Z, obtaining a lower bound on
C2/(F · C)2 for all integral curves C such that F · C > 0.
In this section we provide such a bound for surfaces Z obtained from P2 by a

�nite sequence of point blowups π : Z → P2 and F = L∗, the total transform on
Z of a general line L of P2. More speci�cally, we bound from below the following
number:

λL∗(Z) := inf

{
C2

(C · L∗)2
| C is an integral curve of Z such that C · L∗ > 0

}
.

Notice that

λL∗(Z) = inf

{
C̃2

deg(C)2
| C is an integral curve of P2

}
,
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where C̃ denotes the strict transform of C on Z. We also prove that surfaces Z
as above can be grouped into packages (with in�nitely many elements) sharing
the same bound for the value λL∗(Z). Our results do not assume any condition
on the characteristic of the ground �eld k.
Let us state and prove the second main result of this paper (Theorem B in the

introduction) and some consequences.

Theorem 4.1. Let ν be a divisorial valuation of P2 and set Z := Xν (see (2.5)).
If C is an integral curve of P2 di�erent from the tangent line of ν (if it exists)
then

C̃2

deg(C)2
≥ −(1 + δ0(ν)),

where C̃ is the strict transform of C on Z and δ0(ν) the value de�ned in Theorem
A.

Proof. Suppose that ν is centered at p ∈ P2. We can assume without loss of
generality that ν is not the m-adic valuation, m being the maximal ideal of OP2,p

(otherwise the bound holds trivially). Set Cν = {p1, . . . , pn} the con�guration of
centers of ν and notice that C̃ is linearly equivalent to the divisor

deg(C)L∗ −
n∑

i=1

miE
∗
i ,

where mi denotes the multiplicity of the strict transform of C at pi, 1 ≤ i ≤ n.
Let f(u, v) = 0 be an equation of the restriction of C to the a�ne chart

UX of P2 (see Subsection 2.2) and assume, without loss of generality, that we
are under Conditions (1), (2) and (3) of the proof of Theorem 3.3. Then, by
the arguments (and notations) of that proof, f(u, v) = 0 can be viewed as the
equation of an a�ne irreducible curve in the a�ne chart U00 of F := Fδ0(ν). Then
it is the restriction to U00 of an integral curve D on F that is linearly equivalent to
a(δ0(ν), f)F +b(δ0(ν), f)M , the valuation ν is a non-positive at in�nity valuation
of F, and we can assume that it is centered at the point with homogeneous
coordinates (1 : 0; 1 : 0). The strict transform D̃ of D on the surface Yν given in
(2.6) is linearly equivalent to the divisor

a(δ0(ν), f)F
∗ + b(δ0(ν), f)M

∗ −
n∑

i=1

miE
∗
i .

Now we distinguish two cases:

• Case 1: D̃2 < 0. Then, since D̃ is integral and non-exceptional, it holds
by Theorem 2.3 that either D̃ = F̃1 or D̃ = M̃0, which implies that C has
degree 1. In the �rst case we get a contradiction since C is di�erent from
the tangent line of ν. In the second case, the strict transform of C passes
through p = p1 but not through p2; hence C̃

2 = 0 and the inequality given
in the statement is true.

• Case 2: D̃2 ≥ 0. Then

2 degu(f) degv(f) + [degv(f)]
2 δ0(ν)−

n∑
i=1

m2
i ≥ 0



CURVES WITH PRESCRIBED MULTIPLICITIES AND BOUNDED NEGATIVITY 13

by Lemma 3.4. As a consequence

(δ0(ν) + 2) deg(C)2 ≥ 2 degu(f) degv(f) + [degv(f)]
2δ0(ν) ≥

n∑
i=1

m2
i

and, therefore,

C̃2 = deg(C)2 −
n∑

i=1

m2
i ≥ −(δ0(ν) + 1) deg(C)2.

□

Some of the following results consider an arbitrary �nite set V = {ν1, . . . , νN}
of divisorial valuations of P2. Each valuation νi is equipped with a morphism
πi : Xνi → P2 given by the composition of the blowups at its con�guration
of centers Cνi . Set CV := ∪N

i=1Cνi and denote by XV the surface obtained by
the composition of the blowups centered at the points of CV (after a suitable
identi�cation of points). Notice that any rational surface having P2 as a relatively
minimal model is isomorphic to XV for some set V as above.

Corollary 4.2. Let V = {ν1, . . . , νN} be a �nite set of divisorial valuations of
P2 and set Z := XV . If C is an integral curve of P2 that is not the tangent line
of νi (whenever it exists) for all i = 1, . . . , N , then

C̃2

deg(C)2
≥ −

N∑
i=1

δ0(νi)− 2N + 1,

where C̃ denotes the strict transform of C on Z and δ0(νi) is the value de�ned in
Theorem A.

Proof. Notice that

C̃2

deg(C)2
= 1− 1

deg(C)2

∑
p

multp(C)
2,

where p runs over the set Cν1 ∪ · · · ∪ CνN . Hence

C̃2

deg(C)2
≥

N∑
i=1

(
1− 1

deg(C)2
mi

)
− (N − 1) =

N∑
i=1

(C̃Xνi )2

deg(C)2
− (N − 1),

where mi :=
∑

p∈Cνi
multp(C)

2 for all i = 1, . . . , N and C̃Xνi denotes the strict

transform of C on Xνi . Then the result follows by Theorem 4.1.
□

Given a �nite family {ν1, . . . , νN} of divisorial valuations of P2, we say that the
points of a subset S in ∪n

i=1Cνi are aligned if there exists a line of P2 whose strict
transforms pass through the points in S.

Corollary 4.3. Let V = {ν1, . . . , νN} be any �nite set of divisorial valuations of
P2 and set Z := XV . Then

λL∗(Z) ≥ min

{
1− µ,−

N∑
i=1

δ0(νi)− 2N + 1

}
,
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where µ denotes the maximum cardinality of the subsets of aligned points in⋃N
i=1 Cνi and δ0(νi) is de�ned as in Theorem A.

Proof. Let C be an integral curve of P2. If C is a line of P2 then its strict transform

C̃ on Z satis�es C̃2 ≥ 1 − µ. Otherwise C̃2

deg(C)2
≥ −

∑N
i=1 δ0(νi) − 2N + 1 by

Corollary 4.2.
□

As before, we give an example showing the asymptotic sharpness of our bound
in some cases.

Example 4.4. Assume the same situation and notations as in Example 3.6. If
C̃a denotes the strict transform of the curve Ca in Xνa then

C̃2
a

deg(Ca)2
=

(a2 + 1)2 − (e+ 2)a4 + 2a3

(a2 + 1)2
.

Hence −(e + 1) ≤ λL∗(Xνa) ≤ (a2+1)2−(e+2)a4+2a3

(a2+1)2
because −(e + 1) is the lower

bound of λL∗(Xνa) (for all a ≥ 3) provided by Corollary 4.3. This implies that

lim
a→+∞

λL∗(Xνa) = −(e+ 1).

The following corollary provides, for any divisorial valuation ν of P2, a bound
for the value λL∗(Xν) depending only on the dual graph of ν (that is, from purely
combinatorial information given by the valuation ν).

Corollary 4.5. Let ν be a divisorial valuation of P2 admitting a tangent line and
with associated con�guration Cν = {p1, . . . , pn}.

(a) If n ≥ 3 and p3 is satellite, then

λL∗(Xν) ≥ −1−

⌈(
β̄0(ν)

β̄1(ν)

)2 [
volN(ν)

]−1 − 2
β̄0(ν)

β̄1(ν)

⌉+

.

(b) Otherwise,

λL∗(Xν) ≥ min

{
1−

⌈
β̄1(ν)

β̄0(ν)

⌉
,−1−

⌈
1

4

[
volN(ν)

]−1 − 2
β̄0(ν)

β̄1(ν)

⌉+
}
,

where ⌈ ⌉ denotes the ceiling function and ⌈ ⌉+ is de�ned as in Theorem
A.

Proof. Keep the notations as in Corollary 4.3. To prove (a), assume that n ≥ 3
and p3 is satellite. Then it is clear that t(ν) = β̄1(ν) and µ = 2. Thus, by
Corollary 4.3, λL∗(Xν) ≥ −1− δ0(ν). The fact that

δ0(ν) =

⌈
vol(ν)−1 − 2β̄0(ν)β̄1(ν)

β̄1(ν)2

⌉+

=

⌈(
β̄0(ν)

β̄1(ν)

)2 [
volN(ν)

]−1 − 2
β̄0(ν)

β̄1(ν)

⌉+

�nishes the proof in this case.
To prove (b), assume that either n = 2 or p3 is free. This implies that 2β̄0(ν) ≤

t(ν) ≤ β̄1(ν). Then

δ0(ν) ≤
⌈
1

4

[
volN(ν)

]−1 − 2
β̄0(ν)

β̄1(ν)

⌉+

.
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This inequality, together with Corollary 4.3 and the fact that µ ≤ ⌈β̄1(ν)/β̄0(ν)⌉,
proves Part (b).

□

Remark 4.6. Let ν be a divisorial valuation of P2 such that #Cν ≥ 2 (where #
means cardinality), the bound of λL∗(Xν) provided in Corollary 4.5 is not less than

1−
⌈[
volN(ν)

]−1
⌉
. Since

⌈[
volN(ν)

]−1
⌉
≤ #Cν (a consequence of Equality (2.3)),

the mentioned bound is not worse than the trivial bound λL∗(Xν) ≥ 1−#Cν . In
fact one can �nd valuations where our bound improves the trivial one as much
as one desires because, for any real number α > 1, the set{

#Cν | ν is a divisorial valuation of P2 such that
⌈[
volN(ν)

]−1
⌉
≤ α

}
is unbounded. Reasoning along the same lines, a similar statement holds for the
more general bound given in Corollary 4.3.

We conclude this section by showing the existence of families of in�nitely many
rational surfaces Z, obtained from the projective plane by sequences of blowing-
ups and with arbitrarily big Picard number, sharing the same bound for λL∗(Z).

Corollary 4.7. Let V = {ν1, . . . , νN} be any �nite family of divisorial valuations
of P2. Set Z(1) = XV . Assume that ν1, . . . , νk (with 1 ≤ k ≤ N) admit a
tangent line and that, for all i = 1, . . . , k, the last point pni

of Cνi = {p1, . . . , pni
}

is free. For each i = 1, . . . , k, consider any set of in�nitely near points Dνi =
{pni+1, . . . , pmi

} such that, pni+1 is proximate to pni
and pni−1 and, for all j =

nj + 2, . . . ,mi, pj is satellite and belongs to the �rst in�nitesimal neighbourhood
of pj−1. Set Z(2) = XV ′ , where

V ′ = {ν ′1, . . . , ν ′k, νk+1, . . . , νN},

ν ′i, 1 ≤ i ≤ k, being the divisorial valuation of P2 whose associated con�guration
is Cνi ∪ Dνi. Then λL∗(Z(2)) is not lower than the bound of λL∗(Z(1)) provided
by Corollary 4.3, that is,

λL∗(Z(2)) ≥ min

{
1− µ,−

N∑
i=1

δ0(νi)− 2N + 1

}
,

where µ denotes the cardinal of a maximal subset of aligned points in
⋃N

i=1 Cνi
and δ0(νi) is de�ned as in Theorem A.

Proof. Pick i ∈ {1, . . . , k} and set (β̄j(νi))
g
j=0 the sequence of maximal contact

values of the valuation νi. Since we add satellite points, the sequence of maximal
contact values of the valuation ν ′i, (β̄j(ν

′
i))

g+1
j=0, has g + 2 elements. In addition,

de�ning eg−1(ν
′
i) := gcd(β̄0(ν

′
i), β̄1(ν

′
i), . . . , β̄g−1(ν

′
i)), by (2.2) it holds that

β̄j(ν
′
i) = eg−1(ν

′
i)β̄j(νi), 0 ≤ j ≤ g − 1,

β̄g(ν
′
i) = eg−1(ν

′
i)β̄g(νi)− a, where a < eg−1(ν

′
i)

and

β̄g+1(ν
′
i) = eg−1(ν

′
i)
(
eg−1(ν

′
i)β̄g(νi)− a

)
.
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Also t(ν ′i) = eg−1(ν
′
i)t(νi). Then, straightforward computations prove that the

di�erence
[vol(νi)]

−1 − 2β̄0(νi)t(νi)

t(νi)2
− [vol(ν ′i)]

−1 − 2β̄0(ν
′
i)t(ν

′
i)

t(ν ′i)
2

is positive (and less than one). This fact implies the inequality δ0(ν
′
i) ≤ δ0(νi)

which, considering Corollary 4.3, concludes the proof. □
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