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Abstract  1 

The flow over uneven topography is a problem of interest in environmental fluid flow 2 

modeling, including flows over river bedforms, exchange flows over oceanic sills or 3 

the airflow over mountains. The common experimental procedure to investigate these 4 

flows, moving a small obstacle in a laboratory flume, yields experimental difficulties, 5 

whereas modeling using non-linear shallow flow equations does not explain all the 6 

flow phenomena. Novel alternative procedures are presented for the experimentation 7 

and shallow water representation of flow interaction with obstacles. A large-scale 8 

obstacle model is constructed in a dam-break set-up, and used to generate flow 9 

phenomena over topography, including dispersive and broken surges, wave reflection, 10 

hydraulic jumps and non-hydrostatic sill overflows. Simulations are conducted with a 11 

shallow-water weighted-averaged residual flow software for turbulent flows. The 12 

proposed software reproduces the experiments satisfactorily, supporting its use in 13 

modeling, whereas the new experimental database can be used by modelers to test their 14 

software. 15 

 16 

Keywords: non-hydrostatic flows; laboratory experiments; weighted-averaged 17 

residual equations; lee-side waves; obstacles  18 
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Highlights 19 

 A novel experimental procedure to study wave interaction with obstacles is 20 

presented 21 

 A new experimental database of utility for software validation by 22 

environmental fluid flow modelers is generated 23 

 A new weighted-averaged residual flow software for turbulent flow over 24 

obstacles is presented 25 

Software availability 26 

- Name of software: Waves Transformation Model Software 27 

- Contact emails: ag2gaojp@uco.es, z12cachf@uco.es, ag2caoro@uco.es  28 

- Requirements: MATLAB  29 

- Availability: The software platform is freely available at 30 

https://github.com/Frncch/Waves_Transformation_Model_Software 31 

1. Introduction 32 

The study of two-dimensional shallow-water flows over obstacles is relevant in 33 

several branches of environmental mechanics, as in the river flow over bedforms, like 34 

dunes and antidunes, in oceanographic exchange flows over a seamount, or in the 35 

mesoscale atmospheric flow past a steep mountain (Nadiga et al., 1996; Zhu and 36 

Lawrence, 1998). A common mathematical procedure to study these flows consists in 37 

set instantaneously an obstacle into an initially steady and uniform stream, and then 38 

study the time-dependent flow adjustment that takes place and the ensuing asymptotic 39 

steady-state (Long, 1954; 1970; Pratt, 1984; Nadiga et al., 1996), typically using either 40 

the shallow-water dispersionless Saint-Venant equations (Houghton and Kasahara 41 

1968, Pratt 1984; Cea et al., 2011) or the dispersive Serre–Green–Naghdi (SGN)  42 

equations (Nadiga et al. 1996). The experimental procedure to generate these flows 43 

consists in rapidly accelerate up to a target constant velocity an obstacle initially at rest 44 

in a flume filled with water (Long, 1954; 1970). In Long’s (1970) experiments, the 45 
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obstacle was moved in the flume by a thin line wrapped around a cylindrical winder 46 

driven by a motor. The velocity of obstacle displacement was experimentally 47 

determined by counting the revolutions, and then this velocity was used to deduce the 48 

flow patterns observed moving with the obstacle, e.g., the equivalent flow with a static 49 

obstacle (Long, 1970). This experimental procedure is however not simple, and is 50 

prone to large number of problems. First, the experimental design is only economical 51 

thus feasible using small obstacles, e.g., in Long’s (1970) experiments rather small 52 

ones, only of 9.1 and 2 cm high, were installed. Second, the wave-generation around 53 

the obstacle is induced by moving it, thereby producing leakage at the joins with the 54 

flume sidewalls and at the obstacle bottom. These problems are hardly solvable, 55 

especially for high Froude numbers involving supercritical flows (Long, 1970). In 56 

addition to the experimental configuration problems, the quality and type of 57 

experimental data that can be extracted from this set-up are limited. For example, 58 

instantaneous free surface profile measurements of these flows are not available in the 59 

literature, which would be especially desirable to compare with the theoretical 60 

predictions of shallow-water models. The typical data extracted from Long’s 61 

experiments consists only in the upstream and crest flow depths, as well as the Froude 62 

number (Long 1970). Further, the flow over a curved obstacle involves vertical 63 

accelerations and thus non-hydrostatic bed pressures (Nadiga et al., 1996; Zhu and 64 

Lawrence, 1998; Gamero et al., 2020), which should be experimentally determined. 65 

However, in Long’s (1970) set-up, the obstacle was moving, thus it would have been 66 

a very challenging task to take bed-pressure measurements for the asymptotic steady 67 

flow over the obstacle by installing pressure taps at the obstacle surface. Note that the 68 

instantaneous appearance of an obstacle in a stream is not a realistic mechanism of 69 

forcing in geophysical fluid flows, despite its wide use by environmental flow 70 

modelers (Pratt, 1984). Thus, an alternative method to study wave interaction with 71 

obstacles in environmental flows was considered, as commented below. 72 

During the time-dependent flow adjustment towards a steady flow over an obstacle, 73 

shocks are formed moving upstream and downstream of it (Long, 1954; 1970; 74 
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Houghton and Kasahara, 1968; Pratt, 1984; Nadiga et al., 1996), with a transition from 75 

subcritical to supercritical flow conditions occurring in the vicinity of the obstacle crest 76 

(Naghdi and Vongsarnpigoon, 1986; Zhu and Lawrence, 1998). At the lee-side of the 77 

obstacle the flow typically changes from supercritical to subcritical flow conditions 78 

trough a moving shock displacing away from the obstacle. The shocks at the lee-side 79 

of the obstacle may be either undular or broken, depending on the Froude number. 80 

These instantaneous waves are hardly characterized experimentally in the literature, 81 

and simulations using SGN models (Nadiga et al., 1996) showed inability of this 82 

shallow-water representation to mimic the turbulent flow processes occurring, given 83 

that wave breaking (Bayon et al., 2016; Gualtieri and Chanson, 2021) is not modeled. 84 

If the Froude number at the lee-side face of the obstacle is high, turbulent breaking 85 

occurs, and the undular waves predicted by SGN models become unrealistic (Nadiga 86 

et al., 1996; Castro-Orgaz and Chanson, 2017). Turbulent breaking at the lee-side of 87 

obstacles is important, as for example in a oceanographic flow of salt water moving 88 

over a sill in a fresh water environment (Farmer and Denton, 1985; Denton, 1987). In 89 

these flows, turbulent breaking of the lee-side waves induces mixing between layers 90 

and, thus, provides nutrients and dissolved oxygen for the deep water; it further affects 91 

the dispersion of any pollutant. Therefore, a shallow-water turbulent flow model with 92 

ability to simulate both undular and broken waves is needed to simulate flow over 93 

obstacles. The main aim of this research is to characterize the complex features of 94 

open-channel flows downstream of a bottom hump, which cannot be simulated by the 95 

standard shallow water equations. 96 

Given that the lee-side obstacle waves are neither characterized with detailed 97 

experiments nor simulated with shallow-water turbulent non-hydrostatic models, the 98 

experimental and numerical modeling of these flows are the two major objectives of 99 

this work.  100 

 101 
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As described in section (ii) of this work, lee-side obstacle waves are generated 102 

experimentally in a large-scale obstacle model with a new and entirely different 103 

procedure from that of Long’s: A dam-break-like set-up was installed in a long 104 

experimental flume, consisting in a gate installed downstream of the obstacle and 105 

equipped with an instantaneous opening mechanism, thereby permitting to generate 106 

lee-side waves once the gate was opened instantaneously. The type of waves generated 107 

at the lee face of the obstacle depends on the upstream water depth at the gate, which 108 

was an experimental parameter to generate the flows. This new experimental 109 

procedure is different from that of Long, but it permits to generate waves at the lee-110 

side of obstacles and study their interaction with it, which was the major objective in 111 

Long’s set-up. This new experimental set-up has the major advantage of permitting to 112 

execute accurate experiments at a large-scale obstacle model and collecting high-113 

quality data, including the instantaneous free surface profiles and the steady bed-114 

pressures over the obstacle. Note that the instantaneous appearance of an obstacle in a 115 

stream as in Long’s approach is not a realistic flow; however, this experimental 116 

procedure, in addition to serve to study the flow adjustment over an obstacle in 117 

response to the generated waves, conceptually represents an abrupt drop in the water 118 

levels around the obstacle in response to a downstream forcing. The value of the new 119 

experimental dataset generated in this work relies on two major aspects: (1) In Long’s 120 

(1970) experiments, the free surface profiles are presented only qualitatively using 121 

photos, but measurements are not available, given the complications to take such 122 

readings with a moving obstacle; and (2) there is no previous work in the literature to 123 

the authors’ knowledge, where waves over a curved obstacle are generated with a dam-124 

break like setting. 125 

 Shallow-water modeling is considered in section (iii); A shallow-water non-126 

hydrostatic flow model was constructed from the Reynolds-Averaged Navier-Stokes 127 

equations by using a weighted-averaged residual method of Galerkin type. The model 128 

accounts for a non-hydrostatic fluid pressure, which has the ability to model undular 129 

waves. Further, the turbulent velocity profile and turbulent stresses are modeled in the 130 
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weighted-averaged equations, permitting to simulate broken waves during the flow 131 

adjustment over the obstacle. A high-resolution finite volume-finite difference 132 

numerical solver is developed and extensively verified in section (iv) using both 133 

benchmark numerical tests and the new experimental measurements conducted in this 134 

work. Conclusions are presented in section (v). The model software is freely available 135 

on GitHub (https://github.com/Frncch/Waves_Transformation_Model_Software), 136 

whereas the experimental database is provided as supplementary material in the file 137 

“Experiments_EMS2022.xls”. 138 

2. Experimental characterization 139 

2.1 Experimental flume and equips 140 

The experiments were conducted in a 15-m-long, 1-m-high, 1-m-width tilting 141 

experimental flume in the Hydraulics laboratory at the University of Córdoba, Spain. 142 

A reduction of the flume width to 0.405 m was accomplished by a moving division 143 

wall (Fig. 1), and the flume slope for the experimental series conducted was 0.0015 144 

m/m. The tailwater portion of the flume from 9.634 m to 15 m downstream the inlet 145 

section was structurally a cantilever, and the beam deformation, though small, was 146 

considered in the simulations to accurately define the actual bed profile of the flume.  147 

The flume was equipped with a recirculation pump of 0.078 m3/s maximum 148 

discharge connected to a downstream water tank, allowing to work in closed-circuit. 149 

A water tank with flow straightener was located at the flume inlet to reduce flow 150 

disturbances. The tailgate of the flume was fully open or closed, depending on the type 151 

of experiment, e.g., with or without reflection at the flume end. A large-scale obstacle 152 

of Gaussian profile zbG = 0.209∙exp[−1/2∙((x − xcrest)/0.254)2], where zbG is the local 153 

obstacle height above the flume bed and xcrest the longitudinal location of the crest, was 154 

installed at xcrest = 6.565 m. A Gaussian obstacle shape was selected because it permits 155 

to mathematically adjust their parameters in the design phase prior to construction. In 156 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/Frncch/Waves_Transformation_Model_Software


8 

 

this way, it was possible to adjust the crest curvature until producing the desired degree 157 

of non-hydrostaticity in the flow over the obstacle. Further, this shape is easy to 158 

construct in metal by a manufacturer. Along the longitudinal symmetry axis of the 159 

obstacle 17 piezometric tapings were installed to take bottom pressure head reading in 160 

a piezometric panel. 161 

The flume was equipped with a dam-break like set-up consisting in a sluice gate of 162 

high-speed release induced by a pneumatic drive system. The gate opening time was 163 

less than 0.15 s in all the experiments conducted in this work, thus the opening 164 

operation can be considered instantaneous. A high-speed camera Fastec Ts5 with 50 165 

mm focal length lens to avoid image distortion capturing at up to 253 fps at maximum 166 

resolution was used to characterize the movement of the gate and ensure that the 167 

operation can be considered fast enough to reproduce dam-break like waves. 168 

 169 

Fig. 1. Sketch of experimental set-up, showing static water levels at initiation of 170 

unsteady flow experiments 171 
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Flow visualization during the experiments was accomplished through the eight 172 

lateral crystal windows, 1.875-m-wide by 0.975-m-high, of the flume. Each window 173 

was monitored by a camera perpendicularly installed in front of the flume (Fig. 1). The 174 

monitoring video system comprises eight Basler Ace acA1920-40uc cameras, with 6 175 

mm focal length lens to allow capturing the whole width of each lateral crystal 176 

window, recording 40 frames-per-second (fps) maximum at full resolution, and a 177 

laptop Intel® Core™ i7-9750H with software for image capture, synchronization, 178 

assembling and processing. The system automatically assembles the images collected 179 

by the 8 cameras in a synchronized way, correcting distortion errors and thereby 180 

providing instantaneous experimental images of the 15 meters of flume.  181 

The novelty of this experimental research is in the experimental procedure and set-182 

up used to generate waves evolving over obstacles. In Long’s (1970) classical 183 

experiments, an obstacle is moved in a flume filled with initially still water (Pratt and 184 

Whitehead 2007), whereas in this work we have generated the unsteady waves over a 185 

fixed obstacle using a dam-break like set-up. 186 

2.2 Experimental series 187 

Two kinds of experimental series were produced. The first series consisted of dam-188 

break wave experiments generated by using the high-speed sluice gate with no inlet 189 

flow (Q = 0), and the tailgate fully closed to allow wave reflection. The second series 190 

consisted of steady flow experiments with various Q up to the maximum discharge, 191 

with the high-speed gate deactivated (no operation, positioned above the flume) and 192 

the tailgate fully opened. 193 

 194 

 195 

 196 

 197 
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Table 1. Test series characteristics for dam-break experiments 198 

Test hu (m) hd (m) r (-) 

1 0.302 0.12 0.397 

2 0.3 0.18 0.6 

3 0.3 0.24 0.8 

4 0.3 0 0 

 199 

The dam break experiments were designed using different downstream to upstream 200 

water depth ratios, r = hd/hu, with zero inlet discharge and closed tailgate, which were 201 

organized in tests series comprising r = 0, 0.397, 0.6, and 0.8 (Table 1). First, the flume 202 

was filled with water up to the level hd considered, and then the high-speed sluice gate 203 

closed. Thereafter, the upstream side of the gate further filled up to the desired r was 204 

fixed. Afterwards, the high-speed sluice gate was released (Fig. 2a).  205 
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 206 

Fig. 2. Experimental tests: (a) photograph of the test 1 right after the sluice gate release, 207 

(b) corrected image of camera 4 at t = 6 s with unsteady hydraulic jump at the toe of 208 

the obstacle, and (c) corrected image of camera 6 at t = 1 s in test 1 with the advancing 209 

dam break bore. Digitized data points marked by red crosses. 210 

 211 

The monitoring system was set to record images at 25 fps, which was enough to take 212 

a detailed experimental characterization of the unsteady water waves. Each test was 213 

recorded during 12 seconds, enabling to capture all the relevant hydraulic processes, 214 

namely the positive and negative dam-break wave generation, wave reflection at the 215 

closed tailwater gate, formation of a hydraulic jump at the lee-side of the obstacle, and 216 

interaction of the reflected wave with the flow developing over the obstacle. 217 
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Once the images collected by the system of cameras were assembled and distortion 218 

errors were corrected for selected instants of time, they were used to extract the 219 

instantaneous flow profiles (Fig. 2b, c). The free surface was digitalized from the 220 

images over the free surface curve in the crystal wall using Golden Software Grapher® 221 

13.3.754. By trial-and-error calibration tests, it was found that the procedure permits 222 

to measure the experimental flow profile with ± 0.1 cm accuracy. For illustration 223 

purposes, panoramic instants at t = 1, 6 and 10 s for test 1 are shown in Fig. 3 using 224 

the corrected images of the cameras 4, 5 and 6 (from left to right in each subfigure). 225 

 226 

Fig. 3. Panoramic views of cameras 4, 5 and 6 (from left to right) for test 1 at: (a) t = 227 

1 s, (b) t = 6 s, and (c) t = 10 s. The piezometric tubes are shown in the left images. 228 
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An accurate modeling of the upstream boundary condition in the numerical solver 229 

requires use as input the time-variation of the static upstream water level at the inlet 230 

tank solid wall huw. This time-dependent variable was measured during the 231 

experiments with the high-speed camera Fastec Ts5, and from the ensuing 232 

measurements, the following 4th-order polynomial was found to describe inlet flow 233 

conditions: huw (m) = (0.0015∙t4 − 0.032∙t3 + 0.1656∙t2 − 0.2503∙t + 0.0393 + 234 

100∙h1)/100 (R2 = 0.98), where huw is the flow depth at the upstream wall of the water 235 

tank, t is the time and h1 is the flow depth level at the upstream section of the flume 236 

(see Fig. 1).  237 

Steady flow experiments were conducted with fully open tail- and high-speed sluice 238 

gates with various discharges up to the maximum of the system, 0.1826 m2/s. The bed 239 

pressure head was measured by visual observation of a piezometric panel allowing 240 

readings of accuracy ± 0.1 cm.  241 

3. Shallow-water turbulent flow modeling 242 

3.1 Weighted-averaged residual equations 243 

Consider steady two-dimensional flow in a vertical plane (Fig. 4), as in the 244 

previously described experiments (Fig. 3). The modeling approximation pursued here 245 

entails the development of weighted-averaged residual equations from the RANS 246 

equations of turbulent free surface flow following Steffler and Jin (1993). In a first 247 

step, a sequence of Vertically Averaged and Moment (VAM) equations is produced 248 

by using the first shifted Legendre polynomial as test function, resulting (Steffler and 249 

Jin, 1993; Khan and Steffer, 1996a; b):  250 
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  (6) 259 

where x and z are the horizontal and vertical Cartesian coordinates, respectively; u(x, 260 

z, t) and w(x, z, t) are the horizontal and vertical velocity components; zb(x) is the bed 261 

profile; h(x, t) is the flow depth; p(x, z, t) is the fluid pressure; pb(x, t) is bottom 262 

pressure; (x, z, t) and (x, z, t) are the Reynolds tangential and normal stresses, 263 

respectively;  is the fluid density; g is the gravitational acceleration; and t is the time. 264 

The overbar operator denotes vertically-averaged quantities. Equations (1)−(3) are the 265 

continuity, x-, and z-momentum equations, respectively, while Eqs. (4)−(6) are the 266 

moment of continuity, x-, and z-momentum equations, respectively. Note that z  is the 267 

elevation of the centroid of a section (= zb + h/2). Equations (1)−(6) are weighted-268 

averaged open-channel flow equations, yet not residual, given that (u, w, p) are still 269 

general. 270 

In the VAM model [Eqs. (1)−(6)], predictors for the velocity components (u, w) and 271 

the fluid pressure p are required. Steffler and Jin (1993) used finite-element type 272 
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expansions consisting of a base of functions with a series of coefficients independent 273 

of the vertical coordinate. In particular, they expanded u using the first shifted 274 

Legendre polynomial, and w and p using the first and second shifted Legendre 275 

polynomials, resulting (Steffler and Jin, 1993; Khan and Steffer, 1996a; b):  276 

    0 1( , , ) ( , ) ( , ) 2 ( , , ) 1u x z t u x t u x t x z t   ,   (7) 277 

   2( , , ) ( , ) ( , )4 ( , , ) 1 ( , , ) ( , ) ( , , )b sw x z t w x t w x t x z t x z t w x t x z t      , (8) 278 

   1 2( , , ) ( , ) ( , ) ( , )4 ( , , ) 1 ( , , )p x z t gh x t p x t p x t x z t x z t      . (9) 279 

Here u0 is the depth-averaged horizontal velocity; u1 is the x-velocity at the free 280 

surface in excess of u0; w2 is the mid-depth z-velocity in excess of the average of the 281 

vertical velocities at the bed and free surface levels; wb and ws are the vertical velocity 282 

at the bed and free surface levels, respectively; p1 is the bed pressure in excess of 283 

hydrostatic; p2 is the mid-depth deviation from the linear non-hydrostatic law; and η is 284 

the dimensionless vertical coordinate [= (z−zb)/h]. The kinematic boundary conditions 285 

are expressed as follows (Cantero-Chinchilla et al., 2018; 2020): 286 

  0 1
b

b

z
w u u

x


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
, (10) 287 

  0 1
s

s

zh
w u u

t x


  
 

, (11) 288 

where zs is the free surface elevation (= h + zb).  289 
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 290 

Fig. 4. Definition sketch of two-dimensional unsteady turbulent flow. 291 

Inserting Eqs. (7)−(8), which are the trial functions approximating (u, w, p), into Eqs. 292 

(1)−(6), the following system of approximate (residual) partial differential equations 293 

(PDEs) results:  294 

 0
h q

t x
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  301 

 (17) 302 

where q is the discharge per unit width (= hu0); w* is the vertical velocity difference 303 

between the bed and free surface levels (= wb  ws); b is the bed shear stress; 
x and304 

xz  are the depth-averaged normal and shear stresses, respectively; and 305 

 
21 1 1 12 2 2 2

12 12 6 20
2      b s b s b sw w w w w w w w w . The mean vertical velocity is w  = 306 

wb/2 + 2w2/3 + ws/2. Given that the base functions used in the trial solution are used as 307 

test functions, the VAM model is a Galerkin-type system of weighted-averaged 308 

residual equations (Finlayson and Scriven, 1966). The moment of x-momentum Eq. 309 

(16) differs from that previously used (Cantero-Chinchilla et al., 2018; Gamero et al., 310 

2020) in that the conservative variable is hu1 instead of u1. This modification was found 311 

to increase the numerical robustness of the VAM model when handling dry-wet fronts. 312 

Further, Eqs. (16) and (17) include all turbulent stress terms originating from the 313 

weighted-averaging process. Former models in Cantero-Chinchilla et al. (2018) and 314 

Gamero et al. (2020) only considered bed-shear effects, thus here, the complete 315 

turbulent modeling terms were accounted for in the model equations. The following 316 

reactive equation is written based on the kinematic boundary conditions: 317 

 
* 1 1

( )b bz z hq q q
w u u

h x x h x

     
       

     
. (18) 318 

It is a mathematical statement to be verified by the solution at any instant of time. 319 

Turbulence closure is required to estimate b, x , 
z , 

xz , xz , and xzz in Eqs. (13), 320 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 

 

(14), (16), and (17). Using an eddy-viscosity approach, these terms read after 321 

averaging:  322 
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where x  and z  are the vertically-averaged eddy viscosities in the x- and z-directions, 328 

respectively. In the traditional shallow-water quasi-3D approach, e.g., Rodi (1993), the 329 

pressure is assumed to be vertically hydrostatic, with corrections using turbulent 330 

stresses based on the depth-averaged horizontal velocity u0. In the present formulation, 331 

pressures are dynamic ones, with perturbation parameters p1 and p2, which are 332 

corrected in the model equations by the depth-averaged turbulent stresses considering 333 

the non-uniform variation of the u-velocity with elevation, given by us, ub and u1, as 334 

well as the vertical velocity w variation, determined by ws, wb and w2.  335 

Following Ghamry and Steffler (2002a; b), the depth-averaged eddy viscosities are 336 

estimated as (Fischer et al., 1979): 337 

 *0.5x u h  , (24) 338 
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 *0.07z u h  , (25) 339 

where u* is the shear velocity [= (|τb|/ρ)1/2]. The bed shear stress is modelled using 340 

Manning’s formula including vertical velocity effects as follows (Castro-Orgaz and 341 

Hager, 2017; Cantero-Chinchilla et al., 2018; 2020): 342 

 
 2 2 2

1/3

b b

b

n u w
g

h
 


 , (26) 343 

where n is the Manning’s roughness coefficient. 344 

3.2 Numerical modeling and Software development 345 

The software development entails the solution of the turbulent VAM model [Eqs. 346 

(12)−(17)] through numerical techniques, given that an analytical solution of the 347 

system of PDEs equations is unknown. A semi-implicit finite volume (FV)-finite 348 

difference (FD) scheme is developed based on former works (Cantero-Chinchilla et 349 

al., 2018; 2020; Gamero et al., 2020). Former solvers were prone to numerical 350 

instabilities if shocks or moving hydraulic jumps were progressively developed in the 351 

solution, causing the solution failure in some cases. Therefore, a special feature of the 352 

new solver constructed is its ability for handling the formation of shocks with 353 

robustness, as described below. 354 

The VAM model is in matrix form: 355 

 
o

t x


 
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 

U F
S S , (27) 356 

where vectors U, F and S enclose, respectively, the flow conservative variables, fluxes 357 

and source terms: 358 
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S  , (29) 361 

The subscripts o and  refer to the inviscid and the turbulent stress source terms, 362 

respectively. Note that only transport Eqs. (12)–(14), (16), and (17) are contained into 363 

Eq. (27) which, together with the reactive Eqs. (15) and Eq. (18), conforms the VAM 364 

model.  365 
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This shallow-water VAM model is more complex than the Saint Venant equations, but 366 

its features are significantly better. It may be noted that the RANS equations are 367 

simpler in its formulation. However, the computational cost of a full 3D approach is 368 

still high at a river scale (Katopodes 2019), involving the determination of the free 369 

surface boundary using the volume of fluid or level set methods. In contrast, the 370 

position of the free surface is directly resolved in this depth-averaged formulation. 371 

Note that the VAM equations look complex given their long source terms [see Eqs. 372 

(29)], but the architecture of the equations is similar to that of the standard shallow 373 

water equations [see Eq. (27)]. The solution of this model is vectorized in the present 374 

code, such that implementation is easy.  375 

The semi-implicit FV-FD scheme follows a splitting approach in two stages: (i) a 376 

hyperbolic step and (ii) an elliptical step.  377 

Dividing the x-t plane into quadrilateral finite volume cells of dimensions Δx  Δt, 378 

in the hyperbolic step an intermediate solution is obtained from the homogenous part 379 

of Eq. (27) using a Godunov-type finite-volume scheme (Toro, 2001; 2009): 380 

 381 

  1/2 1/2

Δˆ
Δ

k

i i i i

t

x
  U = U F F . (30) 382 

In Eq. (30), U and F are space- and time-averaged vectors; i is the cell index; k is a 383 

time index; Δx is the x-dimension of the control volume; Δt is the t-dimension of the 384 

control volume. The indices i ± 1/2 refer to the control volume interfaces between cells 385 

i and i ± 1. The numerical flux Fi+1/2 is determined using the approximate Riemann 386 

solver HLLC (Toro, 2001; 2009). Note that contact waves are accounted for in the 387 

solution of Eq. (30), as those described by the conservative variables hw , 1hu  and 388 

1 2

*12
h w . Here, the MUSCL–Hancock scheme (Toro, 2001; 2009), which is the second-389 

order accurate in space and time, is applied to reconstruct U. This produces more 390 

efficient and robust computations than former solvers based on 4th-order accurate 391 
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reconstructions (Cantero-Chinchilla et al., 2018; Gamero et al., 2020). Besides, to 392 

avoid unphysical numerical flux during the reconstruction of the flow depth over 393 

uneven topography, the weighted surface-depth gradient method (WSDGM) (Aureli 394 

et al., 2008) is used, where at the cell interfaces, the water depth is determined as an 395 

average of the values obtained reconstructing the free surface and the water depth 396 

independently. Dry cells are identified as those where the flow depth h is below a 397 

prescribed tolerance, which is adopted as htol = 10–6 in this work. At a dry cell all 398 

variables are reset to zero. 399 

In the elliptical step, the solution is updated in two stages using finite-difference 400 

schemes. The first stage of the elliptical step is called inviscid finite-difference step, 401 

which is designed to incorporate the non-hydrostatic pressure effects into the solution 402 

using an implicit scheme. Using the backward Euler formula, the system of equations 403 

to solve is in compact form: 404 

  0
ˆ

i i it   
 

U U S U . (31) 405 

The implicit system of equations described by Eq. (31) is coupled to the reactive 406 

Eqs. (15) and (18) and solved using a Newton–Raphson (NR) method to obtain U . 407 

The spatial derivates in Eqs. (15), (18) and (31) are discretized using second-order 408 

central finite differences. If shocks are formed in any portion of the computational 409 

domain, the gradients of some of the flow variables may reach large values. These may 410 

result in numerical instabilities. A new special method for handling shock development 411 

is presented in the next section. Here, it is assumed that the solution is smooth 412 

throughout the computational domain.  413 

Setting appropriate initial values for the unknown variables (q, u1, p1, p2, w  and w*) 414 

a vector of residuals  0
ˆm m

i i it   
 

r = U U S U  is defined, where m is a recursion index. 415 

Residuals are reduced by computing an analytical Jacobian J for the unknown 416 

variables at nodes i−1, i and i+1, yielding a 6N6N diagonal matrix formed by 108 417 
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partial derivates per cell, where N is the number of cells. The matrix equation 418 

ir = J dU  is solved at each iteration of the solution, where 
idU  is the vector of 419 

corrections. Should a dry cell be detected, the corresponding residuals are set to zero 420 

[all except Eq. (13), which is not updated]. Once 
idU is determined through the 421 

pertinent matrix inversion, it is employed to update the solution vector, i.e., 422 

1m m

i i i

  U U dU , where U i
m+1 is the updated solution. This process is repeated in the 423 

NR method at every time step until convergence. The convergence criterion suggested 424 

by Khan and Steffler (1996a) is implemented, stopping the iterations if the mean 425 

relative error is below a prescribed tolerance, settled as 10–6 in this work. To save 426 

computational cost, at each time step J is frozen, i.e., computed at the start of the loop 427 

(Cantero-Chinchilla et al., 2018; 2020). 428 

The second stage of the elliptical step consists in an explicit update of the solution 429 

vector U by incorporating the turbulent source terms, S, resulting using the forward 430 

Euler formula: 431 

  1k

i i it 

    
 

U U S U . (32) 432 
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 433 

Fig. 5. Flow chart of the numerical scheme.  434 

Figure 5 shows a flow chart of the numerical sequence described above, which is 435 

followed in every time step. The Courant–Friedrichs–Lewy (CFL) condition is used 436 

to compute Δt thus ensuring numerical stability of the hybrid FV–FD scheme, i.e., Δt 437 

= (CFL∙Δx)/(|u0 + c|) where c = (gh)1/2 is the long wave celerity and CFL ≤ 0.5 by 438 

numerical experimentation. Although the numerical scheme is stable for CFL ≤ 0.5, 439 

we generally used CFL = 0.2 in the computations presented to reduce truncation errors 440 

in the output solutions. 441 

3.2.1 Detection of shock-development 442 

During wave propagation simulations, the VAM model has the ability to generate 443 

shocks or moving hydraulic jumps, which are mathematically represented as a weak 444 

solution of the system of conservations laws involving discontinuities in one or some 445 

of the flow variables, namely q, zs, u1, w , p1 and p2. The shocks or discontinuity-like 446 
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portions of the solutions are generated in the hyperbolic solver of the software. When 447 

these portions of the solution are processed by the elliptic solver, the computation of 448 

the gradients of the flow variables near such steep fronts produces quantities with an 449 

extremely large magnitude, producing numerical instabilities when the Jacobian 450 

matrix is formed and inverted, if feasible. The pathological computations described 451 

are especially dramatic if one attempts to make a mesh-refinement study of the 452 

solution, which is mandatory when presenting numerical solutions. If ∆x is 453 

progressively reduced to get mesh-independent results, the hyperbolic solver produces 454 

sharper discontinuities, given the increased resolution. Processing of these solutions 455 

by the elliptic solver encounters not only shaper shocks, but also a smaller ∆x, thus 456 

much higher gradients, thereby guaranteeing solution crashing. Previous solvers 457 

(Cantero-Chinchilla et al., 2018; Gamero et al., 2020) were found to suffer from this 458 

issue while dealing with the moving hydraulic jumps experimentally generated in this 459 

research, thus a special solver for robust handling of shocks was developed as follows. 460 

The following gradients of the flow variables are used as shock-development 461 

sensors: 462 

 

22 2

1 1 2

2
,  ,  ,  ,  ,  sz u p pq w

x x gh x g x g x x 

            
        

            
, (33) 463 

thereby permitting to detect formation of shocks in the output of the hyperbolic solver. 464 

A threshold value for the gradients Φthr is defined, which is set at 75º by numerical 465 

experimentation for meshes involving ∆x ≤ 0.01 m. A shock is considered formed in 466 

the output of any of the flow variables if the corresponding gradient is above this 467 

threshold. If this occurs in a cell, the non-hydrostatic flow variables are reset to zero 468 

in a bandwidth equal to the stencil used to compute dispersive terms, e.g., 2∆x. This 469 

process eliminates the gradients near sharp discontinuities and permits a robust 470 

numerical handling. At the initial stage of the dam-break flow generation this process 471 

is not applied, given that the initial condition is itself a discontinuity. Thus, the shock-472 
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development detection is applied for t > t0, where t0 is the hydrodynamic time scale [= 473 

(hu/g)1/2] (Wu and Wang, 2007), which is of the order of the gate opening time in the 474 

experiments. 475 

3.2.2 Boundary conditions in dam-break wave experiments 476 

To mimic numerically the experiments conducted in the flume, boundary conditions 477 

must be modelled with accuracy. The boundary conditions are incorporated in the 478 

mathematical model using ghost cells at boundaries. Computational cells are from i = 479 

1 to i = N. At the tailwater section of the flume, the closed gate is modeled as a 480 

reflective boundary condition, i.e., hN+2=hN+1=hN and qN+2=qN+1=−qN (Toro, 2001) with 481 

the remaining variables in the VAM model reset to zero. This was found to reproduce 482 

well the experimental observations. At the upstream end of the flume, a transmissive 483 

boundary condition is implemented for all variables but except the flow depth, i.e., 484 

(q,u1,p1,p2, w ,w*)−1=(q,u1,p1,p2, w ,w*)2 and (q,u1,p1,p2, w ,w*)0=(q,u1,p1,p2, w ,w*)1. 485 

The flow depth in the cells i = −1 and i = 0 is computed by setting energy conservation 486 

in the water tank using the experimentally determined time-variation of huw:  487 

  4 3 2

1 0 1

1
0.0015 0.032 0.1656 0.2503 0.0393

100
uwE E h t t t t h         , (34) 488 

Here E is the specific energy. Flow depths are thus obtained by analytical inversion 489 

of the specific energy diagram as follows: 490 

 

1
1

1

0 0
0

1 2
cos

3 3 3

1 2
cos

3 3 3

E
h

h
E










   
   

           
   

    

, (35) 491 

where: 492 
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, (36) 493 
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
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    
   

    
  
  

. (34) 494 

The flow depth computed using Eq. (35) corresponds to the subcritical root of the 495 

specific energy diagram (Castro-Orgaz and Hager, 2019). 496 

The inviscid part of the VAM equations is not new in the solver presented, but the 497 

model equations here include the turbulent stresses. The numerical solver is new, and 498 

includes important capabilities not available in a previous model by Cantero-499 

Chinchilla et al. (2018): 500 

1. Inclusion of turbulence by an eddy-viscosity approach. 501 

2. Inclusion of a new module for shock detection in the elliptic step, allowing mesh 502 

refinement. 503 

3. Use of the robust MUSCL-Hancock scheme in the hyperbolic step. 504 

4. Dry bed treatment allowed. 505 

The old VAM-2018 model failed during trials to run it for the new experimental 506 

conditions presented, due to the formation of hydraulic jumps and the dry bed zones, 507 

resulting in a collapse in computations.  508 
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4. Results 509 

4.1 Benchmark numerical tests 510 

Several challenging benchmark tests are selected in this section to evaluate the 511 

ability of the VAM model to deal with discontinuous topography, to grant the C-512 

property and to tackle dry-wet unsteady fronts. First, a tidal wave test over a 513 

submerged rectangular step by Bermudez and Vázquez (1994) is used to validate the 514 

capability of the model on dealing with discontinuous topography (Zhou et al., 2002; 515 

Liang and Marche, 2009). The tidal wave is designed to occur in a 1500-m-long 516 

frictionless channel with asymptotic analytical flow solution as follows: 517 

 
4 1

20 4sin
86400 2

b

t
h z 

  
     

  
, (35) 518 

 
 

0

4 1
cos

5400 86400 2

x L t
u

h




   
   

  
, (36) 519 

where L = 1500 m. The bed profile is: 520 

 
8 if  750 187.5,

0 otherwise.
b

x
z

  
 


 (37) 521 
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 522 

Fig. 6. Bed discontinuity test using the analytical solutions for tidal waves over a 523 

submerged vertical step by Bermudez and Vázquez (1994) in comparison with VAM 524 

model results at t = 10800 s for: (a) flow depth and (b) unit discharge. 525 

The test is conducted herein using ∆x = 7.5 m and CFL = 0.8 until t = 10800 s is 526 

reached. Equations (38) and (39) are used to set the initial conditions, i.e., substituting 527 

t = 0 s, while Eq. (38) is used to impose the inlet boundary condition at x = 0 m. The 528 

right end of the channel is modelled using a reflective, closed boundary condition. 529 

VAM model results for this test are shown in Fig. 6, depicting an excellent agreement 530 

with the analytical solution in both water surface (Fig. 6a) and unit discharge (Fig. 6b) 531 

predictions at t = 10800 s, where bed discontinuities did not impact the numerical 532 

solution.  533 
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 534 

Fig. 7. Preservation of still water surface at a surface-piercing hump test by Liang and 535 

Marche (2009) in comparison with VAM model results at t = 200 s for: (a) flow depth 536 

and (ii) unit discharge.  537 

Second, a still water test at a surface-piercing hump (Liang and Marche, 2009), i.e., 538 

with dry-wet interfaces, is selected to evaluate the preservation of C-property by the 539 

proposed VAM model. For this test, the channel is 1-m-long and frictionless, with the 540 

surface-piercing hump defined by: 541 

  
2

max 0,0.25 5 0.5bz x   
 

, (38) 542 

where the flow is at rest with maximum depth of 0.1 m. The test is conducted herein 543 

using ∆x = 0.01 m and CFL = 0.4 until t = 200 s. Figure 7 shows the VAM model 544 

results for the free surface and the unit discharge after 200 s of computation, where the 545 

agreement with the static solution at rest is excellent.  546 

Finally, the analytic solutions by Thacker (1981) for an oscillating shoreline in a 547 

parabolic bowl are used to evaluate the ability of the proposed VAM model to tackle 548 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



31 

 

dry-wet fronts in movement over a non-uniform slope (Liang and Marche, 2009; Lai 549 

and Khan, 2018). The analytical solutions for the flow depth and the unit discharge in 550 

a rectangular channel with parabolic bed profile are (Thacker, 1981; Lai and Khan, 551 

2018): 552 

 
   2 2cos 2 4 cos

max ,
4

s b

B t B Bx t
z z

g

    
  

 
 (39) 553 

    max 0, sins bq z z B t     (40) 554 

with 555 

 
0

0

22 gh

T l


    (41) 556 

where T is the period, ω is the frequency, B is a speed parameter, and h0 and l0 are 557 

definition parameter for the parabolic bed, which is zb = h0[(x/l0)
2 −1]. This test is 558 

conducted herein using ∆x = 0.01 m, CFL = 0.4, h0 = 10 m, l0 = 600 m and B = 5 m/s 559 

until t = T = 269 s. The domain extended to x є [−1000, 1000] m, thus yielding the 560 

boundaries unaffected by the flow during the computation. Figure 8 shows the VAM 561 

model results for flow depth and unit discharge at three different instants: (i) at t = T/2 562 

when the flow reaches its highest position to the right (Figs. 8a and b), (ii) at t = 3T/4 563 

when the flow passes through the horizontal position advancing towards the left end 564 

(Figs. 8c and d), and (iii) at t = T when the flow reaches its highest position to the left 565 

(Figs. 8e and f). The VAM model results show an accurate agreement with the 566 

analytical solutions at all computed instants, where the moving dry-bed fronts are 567 

accurately tackled validating the wetting-drying algorithm in the model.  568 
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 569 

Fig. 8. Evolution of shorelines over a frictionless parabolic bowl test by Thacker 570 

(1981) in comparison with VAM model results for flow depth and unit discharge at 571 

different instants: t = T/2 (a)-(b), t = 3T/4 (c)-(d), and t = T (e)-(f).  572 

4.2 Lee-side waves  573 

The ability of the VAM model on reproducing the challenging experimental flow 574 

tests produced in this work is evaluated is this section. To this end, all tests described 575 

in section 2.2, Table 1, were simulated using ∆x = 0.01 m, CFL = 0.2 and n = 0.01 576 

ms−1/3. The numerical tests were repeated using CFL = 0.1, thereby confirming mesh-577 

independence of the numerical results. The VAM model results for the tests 1−4 are 578 

shown in Figs. 10−13, respectively, where four instants were selected to illustrate the 579 

main phenomena in the transformation of waves in the test series: (i) initial stages of 580 

dam-break flow generation at t = 1 s or 2 s, (ii) wave reflection at the right end of the 581 

flume at t = 5 s, (iii) wave interaction with the unsteady hydraulic jump formed at the 582 

toe of the obstacle at t = 8 s, and (iv) reflected and diffracted waves produced after the 583 

incoming surge surpassed the obstacle, at t = 12 s.  584 

Figure 9 shows the VAM model results in comparison with the experimental data 585 

for test 1, where r = 0.397, as well as the Saint Venant equations (dSV) model 586 
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predictions. In test 1, the non-linearity effects are the highest among the test series, 587 

also depicting the most challenging unsteady hydraulic jump formed at the toe of the 588 

lee slope of the obstacle. The VAM model accurately predicts the initial stages of the 589 

dam-break flow as shown in Fig. 9a, which represents the experimental data at t = 1 s. 590 

The amplitude of the leading broken wave (Fig. 9a, x = 10.7 m) is, however, slightly 591 

overestimated. While the VAM model is able to accurately approximate the advancing 592 

bore position, the dSV model anticipates its location (Fig. 10a, x = 10.9 m). Figure 9b 593 

represents the experimental data at t = 5 s, after the flow reflection at the right end of 594 

the flume. The VAM model results show excellent agreement with the experimental 595 

data of the reflected train of waves, the hydraulic jump profile, and the drawdown in 596 

the upstream water level as the rarefaction wave advances backwards. The dSV model, 597 

however, fails to approximate the reflected train of waves, which is attributed to the 598 

lack of dispersive terms. The experimental data at t = 8 s is represented in Fig. 9c, 599 

depicting the interaction between the reflected train of waves and the moving-forward 600 

hydraulic jump at the toe of the obstacle. While the effect of the rarefaction wave as 601 

well as the reflected train of waves near the flume end are accurately predicted by the 602 

VAM model, discrepancies between the model results and the data are found in both 603 

the interaction zone and the hydraulic jump, with a peak predicted by the VAM model 604 

not observed in the experiments. The VAM model computed the dynamic pressures in 605 

an elliptic step by solving the relevant system of equations iteratively. In the vicinity 606 

of a hydraulic jump, the perturbation parameters determining the pressure field p1 and 607 

p2 are subjected to abrupt changes, and thus inviscid pressure peaks are generated as 608 

solution in the elliptic step, thereby resulting also in abrupt wave peaks in the free 609 

surface profile at the next time step. Turbulence is incorporated in the model using an 610 

eddy-viscosity approach. The mismatch of computations and predictions at t = 8 s 611 

indicates that the modeled turbulent stresses are not strong enough to suppress the 612 

effect of the inviscid pressure peaks at some time instants. The approximated 613 

turbulence closure in the proposed VAM model, which incorporates the bed-614 

dominating turbulence approximation for eddy-viscosity by Ghamry and Steffler 615 
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(2002a; b), may be the origin of this misprediction. A more sophisticated approach 616 

including turbulence diffusion and production may be needed to characterize the 617 

interaction zone of the hydraulic jump and the reflected wave. Finally, Fig. 9d shows 618 

the experimental data at t = 12 s in comparison with VAM and dSV model results. 619 

Overall, the VAM model is capable of predicting most of the reflected and diffracted 620 

waves, leading to some mispredictions especially for the leading wave amplitude in 621 

the reflected bore. These discrepancies may stem from the misprediction of the flow 622 

interaction around t = 8 s (Fig. 9c), but are unrelated to stability issues of the model. 623 

Despite this weakness, the turbulent VAM model prediction of the experimental data 624 

by test 1 is accurate as compared to that of the dSV model. L and L2 norms for VAM 625 

and dSV simulations are given in Table 2. 626 

 627 

Table 2. L and L2 norms for VAM and dSV simulations in Fig. 9 628 

 t = 1 s t = 5 s t = 8 s t = 12 s 

  VAM dSV VAM dSV VAM dSV VAM dSV 

L(m) 0.563 0.728 1.573 1.843 1.604 1.841 1.105 1.468 

L2(m) 0.092 0.107 0.369 0.380 0.265 0.271 0.140 0.182 

 629 
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 630 

Fig. 9. VAM model results for test 1 in comparison with the experimental data and the 631 

dSV model predictions at: (a) t = 1 s, (b) t = 5 s, (c) t = 8 s, and (d) t = 12 s.  632 

 633 

Figure 10 shows the VAM model results in comparison with the experimental data 634 

extracted for test 2, where r = 0.6, as well as the dSV model predictions. In test 2, the 635 

non-linear effects in the advancing bore are expected to decrease as compared to those 636 

given by test 1, thus leading to a non-breaking bore at the initial stages of the dam-637 

break flow as observed during the experimentation. In addition, during the test, the 638 

unsteady hydraulic jump was observed to develop a shorter front than that by test 1. 639 
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Figure 10a shows the experimental data at t = 2 s, i.e., the dam-break flow right after 640 

the initial stages, in comparison with the VAM and dSV model results. Here, the VAM 641 

model provides the results in excellent agreement with the experimental data but for 642 

the leading wave amplitude (Fig. 10a, x = 12 m), it is slightly underestimated. In Fig. 643 

10b, the experimental data at t = 5 s is shown, where the dam-break flow has already 644 

been reflected at the right end of the flume and the hydraulic jump at the toe of the 645 

obstacle begins to develop, in comparison with the results by both models. While the 646 

dSV model less predicts the reflected train of waves, the VAM model is able to 647 

accurately approximate the experimental data at t = 5 s; however, it leads to an 648 

overestimation of the zone of development of the hydraulic jump at the toe of the 649 

obstacle. Note that the latter referred zone is mainly turbulence dominated and, thus, 650 

the accuracy of VAM model results may suffer from the approximate turbulence 651 

closure considered in this work. The overestimation of the initial stages of the 652 

hydraulic jump is also evident in Fig. 10c, where the experimental data at t = 8 s is 653 

plotted against the VAM and dSV model results. Albeit the two leading waves at the 654 

front of the reflected bore are accurately approximated by the VAM model, the 655 

amplitude and phase of the train of waves are slightly misinterpreted. However, the 656 

impact of this underestimation in the train of waves at t = 8 s is minimal on the 657 

approximation of the subsequent test data, as shown in Fig. 10d for the experimental 658 

data at t = 12 s in comparison with both models results. The results by the VAM model 659 

are overall satisfactory for t = 12 s, where the major discrepancies with respect to the 660 

experimental data focus on the amplitude of the train of waves upstream and 661 

downstream the obstacle. L and L2 norms for VAM and dSV simulations are given in 662 

Table 3. 663 

Table 3. L and L2 norms for VAM and dSV simulations in Fig. 10 664 

 t = 2 s t = 5 s t = 8 s t = 12 s 

  VAM dSV VAM dSV VAM dSV VAM dSV 

L(m) 0.784 1.086 1.257 1.776 1.723 2.357 1.333 1.800 

L2(m) 0.092 0.149 0.140 0.209 0.189 0.256 0.135 0.172 
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 666 

Fig. 10. VAM model results for test 2 in comparison with the experimental data and 667 

the dSV model predictions at: (a) t = 2 s, (b) t = 5 s, (c) t = 8 s, and (d) t = 12 s. 668 

Figure 11 shows the VAM model results in comparison with the experimental data 669 

extracted for test 3, where r = 0.8, as well as the dSV model predictions. In test 3, the 670 

wave non-linearity is minimum as the dam-break depth ratio approaches unity. During 671 

the experiments, the unsteady hydraulic jump at the toe of the obstacle was observed 672 

to be very close to the crest. The experimental data at t = 2 s is shown in Fig. 11a, 673 

where the VAM model provides a good approximation of the data in contrast to the 674 

prediction by the dSV model, which not only anticipates the bore position and 675 
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mispredicts the train of waves but also depicts a fictitious, incipient hydraulic jump at 676 

the lee slope of the obstacle. It is noteworthy that during the experimentation in test 3, 677 

a notable surface water splash was observed after the sluice gate opening, thus 678 

contaminating the experimental data in the subsequent time instants. In consequence, 679 

the experimental free surface was hardly tracked at t < 2 s and, therefore, those time 680 

instants are not shown in Fig. 11. In Fig. 11b, the experimental data at t = 5 s is shown. 681 

Here, the VAM model is demonstrated to be able to predict all the data. However, 682 

hydraulic jump and the amplitude of the leading reflected wave are slightly 683 

overestimated and underestimated, respectively. The experimental data at t = 8 s is 684 

presented in Fig. 11c, where the VAM model accurately approximates the 685 

experimental data of the reflected train of waves before they encounter back the 686 

obstacle. Figure 11d presents the experimental data at t = 12 s, after the transformation 687 

of the reflected dam-break waves and the interaction back with the obstacle. In line 688 

with the results for the experimental data at t = 12 s in the experiments 1 and 2, the 689 

VAM model provides a fair approximation of the experimental data, where only major 690 

mispredictions are found in the phase of the train of waves upstream the obstacle. L 691 

and L2 norms for VAM and dSV simulations are given in Table 4. 692 

 693 

Table 4. L and L2 norms for VAM and dSV simulations in Fig. 11 694 

 t = 2 s t = 5 s t = 8 s t = 12 s 

 VAM dSV VAM dSV VAM dSV VAM dSV 

L(m) 0.762 0.925 0.817 1.054 0.921 1.138 0.852 0.884 

L2(m) 0.096 0.118 0.093 0.123 0.105 0.139 0.098 0.094 

 695 
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 697 

Fig. 11. VAM model results for test 3 in comparison with the experimental data and 698 

the dSV model predictions at: (a) t = 1 s, (b) t = 5 s, (c) t = 8 s, and (d) t = 12 s. 699 

Figure 12 shows the VAM and dSV model results in comparison with the 700 

experimental data extracted for test 4, where r = 0, i.e., dam-break flow under dry bed 701 

conditions downstream (Castro-Orgaz and Chanson, 2017). In test 4, the parabolic-702 

like profile of the dry-bed dam-break bore advanced towards the right end of the flume 703 

encountering minor bed irregularities at the structural joints, which yielded little free 704 

surface perturbations. Right after the reflection of the dam-break bore, two unsteady 705 

hydraulic jumps are formed: (i) a moving-forward one at the toe of the lee slope of the 706 
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obstacle and (ii) a moving-backward one at the front of the reflected bore. Figure 13a 707 

shows the experimental data at t = 1 s for the dry-bed dam-break waves at the initial 708 

stages, where the VAM model results merely differ from the dSV predictions in the 709 

profile of the rarefaction wave. The experimental data at t = 5 s depicts the first instants 710 

after the bore reflection, where an unsteady hydraulic jump with smooth transition is 711 

developed (Fig. 13b). Here, the VAM model proposed in this study is shown to be 712 

unable to tackle the smooth hydraulic jump front, however showing a direct transition, 713 

which is in line with the predictions of the dSV model due to the shock detection in 714 

this zone. The latter suggests that the turbulence closure may need to be enhanced 715 

Some discrepancies have also been found in the prediction of direct hydraulic jumps, 716 

as shown in Fig. 12c, x = 11.3 m, for the experimental data at t = 8 s. The last 717 

experimental data extracted for test 4 corresponds to t = 12 s (Fig. 12d), where the flow 718 

interaction between the two unsteady hydraulic jumps is shown, leading to a 719 

challenging turbulence-dominated phenomena. However, the VAM model provides a 720 

fair approximation of the test of data showing non-hydrostatic free surface waves after 721 

the hydraulic jump. L and L2 norms for VAM and dSV simulations are given in Table 722 

5. 723 

 724 

Table 5. L and L2 norms for VAM and dSV simulations in Fig. 12 725 

 t = 1 s t = 5 s t = 8 s t = 12 s 

 VAM dSV VAM dSV VAM dSV VAM dSV 

L(m) 0.545 0.729 1.919 1.600 2.193 1.395 1.870 1.471 

L2(m) 0.076 0.097 0.342 0.281 0.303 0.163 0.246 0.204 

 726 
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 728 

Fig. 12. VAM model results for test 4 in comparison with the experimental data and 729 

the dSV model predictions at: (a) t = 1 s, (b) t = 5 s, (c) t = 8 s, and (d) t = 12 s. 730 

4.3 Steady flow over the obstacle 731 

A steady flow experiment conducted in this work for the maximum discharge q = 732 

0.1826 m2/s was used (Figs. 13a and b) to validate the VAM model results over an 733 

obstacle. The obstacle is a Gaussian profile zbG = 0.209∙exp[−1/2∙((x − xcrest)/0.254)2], 734 

where zbG is the local obstacle height above the flume bed and xcrest is the longitudinal 735 

location of the crest, installed at xcrest = 6.565 m. The experimental obstacle is similar 736 
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to that of Sivakumaran et al. (1983), but q is higher in the present experiments, and, 737 

thus, the degree of non-hydrostaticity of the flow is stronger. In Figure 13, we have 738 

included the experimental measurements of the free surface profile zs(x) and 739 

piezometric bed pressure head (pb/γ+zb)(x) in this obstacle model. Comparison of the 740 

simulated results for the free surface and bed piezometric pressure head pb/γ+zb 741 

obtained from the VAM model in Fig. 13 shows the accuracy of this shallow-water 742 

formulation predicting the flow features over the obstacle. The mesh-size 743 

independence of the results was evaluated progressively reducing ∆x and CFL.  744 

 745 

Fig. 13. Comparison of steady flow experiments over the obstacle with numerical 746 

simulations for the free surface and piezometric bed pressure head 747 
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5. Conclusions 749 

A new experimental procedure to investigate wave interaction and flow adjustment 750 

over obstacles is presented by constructing a large-scale obstacle model in a flume 751 

equipped with a wave-generation mechanism based on a dam-break like set-up. The 752 

experiments were used to produce a variety of relevant phenomena over topography, 753 

as broken and dispersive undular waves, hydraulic jumps, non-hydrostatic critical flow 754 

over a sill crest and wave reflection. In addition to the novelty of the procedure to study 755 

flow interaction with obstacles, the experimental database generated is itself of utility 756 

for environmental fluid flow modelers, given that it can be directly used as benchmark 757 

test cases while testing their models. Steady flow tests were used additionally to 758 

determine the dynamic fluid pressures over the obstacle. 759 

A new shallow-water weighted-averaged residual model with the ability to mimic 760 

turbulent breaking processes trough the formation of shocks or moving hydraulic 761 

jumps is presented. This is due to the inclusion of the turbulent velocity profile and 762 

Reynolds stresses into the model equations, with a new shock-detection algorithm 763 

conferring robustness to the numerical solver. Dispersive effects and non-hydrostatic 764 

bed pressures are further tackled by the model given the inclusion of the vertical 765 

accelerations. These features make the weighted-averaged residual model presented a 766 

suitable tool for environmental modeling of flows over topography with sills. 767 

The turbulent flow model developed reproduces the main features observed during 768 

experimentation, namely undular and broken surges, dispersive wave reflection, 769 

hydraulic jumps and non-hydrostatic critical flow at sill crest with high non-770 

hydrostatic pressures, with enough accuracy for practical modeling purposes. The 771 

dispersionless dSV equations, which is the frequent shallow water flow representation 772 

used to study flow adjustment over obstacles, produces only rough estimates or simply 773 

does not reproduce the observed experimental phenomena. 774 

The main outcome of this research is a contribution to the physical understanding 775 

of the flow adjustment over an obstacle with the new experiments conducted, and by 776 
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producing a new and robust shallow-water solver with capabilities to deal with several 777 

hydraulic phenomena not accounted for in other solvers. 778 
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