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MAXIMAL REGULARITY FOR TIME-STEPPING SCHEMES ARISING1

FROM CONVOLUTION QUADRATURE OF NON-LOCAL IN TIME2

EQUATIONS3

CARLOS LIZAMA AND MARINA MURILLO-ARCILA4

Abstract. We study discrete time maximal regularity in Lebesgue spaces of sequences for
time-stepping schemes arising from Lubich’s convolution quadrature method. We show min-
imal properties on the quadrature weights that determines a wide class of implicit schemes.
For an appropriate choice of the weights, we are able to identify the θ-method as well as the
backward differentiation formulas and the L1-scheme. Fractional versions of these schemes,
some of them completely new, are also shown, as well as their representation by means of
the Grünwald–Letnikov fractional order derivative. Our results extend and improve some
recent results on the subject and provide new insights on the basic nature of the weights
that ensure maximal regularity.

1. Introduction5

Our concern in this paper is the study of the maximal regularity property, in Lebesgue6

spaces of sequences, for the time-discretization of the following non-local in time abstract7

evolution equation:8

(1)

∫ t

0
a(t− s)v(s)ds = Av(t) + f(t), t > 0,

where A is a closed linear operator (not necessarily bounded) with domain D(A) defined on a9

Banach space X and a ∈ L1loc(R+) is a scalar kernel. Typical kernels a are the standard kernel10

a(t) = gβ(t) := tβ−1

Γ(β) , which produces the classical time-fractional case, the fractional case11

with exponential weight a(t) = gβ(t)e
−γt where γ > 0 and 0 < β < 1, and the distributed12

order case (or ultraslow diffusion) see e.g. [33, Section 6]. The operator A typically denotes13

the negative Laplacian in X = L2(Ω), or the elasticity operator, the Stokes operator, or the14

biharmonic Δ2, equipped with suitable boundary conditions. Problems of the form (1) have15

experimented a great interest during the last years. This kind of equations models anomalous16

diffusion. See for instance [17] where these equations appear in the modeling of ultraslow17

diffusion and renewal processes. In [32], the authors consider fractional models that label18

into this scheme for modeling anomalous diffusive processes in physics and engineering. In19

[33], optimal decay estimates for time-fractional and other non-local subdiffusion equations20

using energy methods are obtained. Another context where these equations and nonlinear21

versions of them arise is the pattern of dynamic processes in materials with memory. See22

[27] where heat conduction with memory is analyzed and [8] where these equations model23

the diffusion of fluids in porous media with memory.24

The study of discrete time maximal regularity, or more precisely discrete maximal regular-25

ity estimates, has apparently its origins in the works by S. Blunck [6, 7], who characterizes this26
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2 C. LIZAMA AND M. MURILLO

property in terms of R-boundedness of an operator-valued symbol. Then Portal [26] studied1

different notions of discrete maximal regularity and generalized Blunck’s result to the case2

of some discrete time scales (discrete problems with nonconstant step size). Also, maximal3

regularity of evolution equations with operator-valued Fourier multipliers in Lp-spaces was4

studied in [34]. A review of these results as well as applications are given in the monograph5

[1]. After that, Kovács, Li and Lubich [18] gave an important step further studying under6

which conditions the property of maximal regularity can be preserved from the continuous7

to the discrete time setting in Lebesgue spaces. They showed that this property holds for A-8

stable multistep and Runge–Kutta methods under minor additional conditions. In particular,9

the implicit Euler method, the Crank–Nicolson method, the second-order backward differ-10

ence formula, and higher-order A-stable implicit Runge–Kutta methods such as the Radau11

IIA and Gauss methods preserve maximal regularity. By the same time, Kemmochi [15] an-12

alyzed the notion of discrete maximal regularity for the finite difference method (θ-method)13

still under the hypothesis of continuous maximal regularity. The θ-method represents the14

most simple Runge–Kutta method (and also linear multistep method) and different values15

of θ are of significance in some contexts.16

It should be noted that discrete maximal regularity has several applications in the analysis17

of stability, error bounds and convergence of numerical methods for nonlinear problems,18

including quasi-linear parabolic equations [2] even with nonsmooth coefficients [20], optimal19

control and inverse problems [19].20

The study of maximal regularity of time-stepping schemes of approximation in Lebesgue21

spaces of sequences for non-local time-stepping schemes, more precisely of fractional order22

α ∈ (0, 1), has its origin in the paper [22] where Blunck’s Theorem on operator-valued23

multipliers [7] is the basis of the analysis. An important step forward was given in the24

seminal paper [14] by Jin, Lazarov and Zhou where the idea outlined in [22] was widely25

refined and applied to an important number of time-stepping schemes of fractional order26

that can be obtained from Lubich’s quadrature method, including implicit and explicit Euler27

methods, backward difference formulas, the L1-scheme and the Crank–Nicolson method [24].28

More recently, in [23], maximal regularity for discrete time Volterra equations in the form29

un = c ∗ Aun + fn was studied. The main theorem in [23] includes the analysis of several30

non-local time-stepping schemes.31

However, such model requires some assumptions that apparently restrict the analysis to32

some classes of kernels. In fact, the kernel c must belong to a certain class of sequence33

kernels that resembles the Sonine class [28] (originated from a paper of N. Sonine, published34

in 1884). This restriction does not allow to deduce - at least in a first glance - discrete time35

maximal regularity results for a wider variety of non local time-stepping methods like e.g.36

the L1-scheme which has been recently studied in the literature, see [31]. We note that the37

L1-scheme is one of the most popular and successful numerical methods for discretizing the38

Caputo fractional derivative in time [14]. In addition to the L1-scheme - which is not local39

by its own nature - there exist other non-local schemes that have not been studied in the40

literature yet, as the fractional version of the θ-method whose maximal regularity has not41

been analyzed, except in the cases θ ∈ {0, 1, 1/2}. In synthesis, we ask ourself the following42

question: Which are the most crucial properties on the kernel in order to obtain maximal43

regularity for (local and non local) time-stepping schemes?44

In this paper, we want to give an important step further in this line of research. More
concretely, we consider time-stepping schemes arising from convolution quadrature∑

0≤jτ≤t
bjv(t− jτ), t = τ, 2τ, 3τ, ...
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where τ is the time step size, and the quadrature weights bj are determined by their generating
power series

F

(
δ(ζ)

τ

)
=

∞∑
j=0

bjζ
j .

Here, F (·) denotes the Laplace transform of the scalar kernel a in (1) and δ(ζ) is a rational1

function, chosen as the quotient of the generating polynomials of a linear multistep method.2

Convolution quadrature was first proposed by Lubich in a series of works [24] for discretizing3

Volterra integral equations.4

In this paper, our main goal is to determine under which conditions on the kernel b the5

following time-discretization of (1)6

(2)

n∑
j=0

bn−juj = Aun + fn, n ∈ N0,

has maximal regularity, identifying those kernels that correspond to known time-stepping7

schemes of approximation, revealing their nature, and proposing new schemes through a8

suitable choice of these kernels.9

As we will reveal along this research, by means of the abstract model (2), we are able to10

capture a wide variety of classical implicit time-stepping schemes such as the Backward Euler11

scheme (BE-scheme) or the second order backward differentiation formula for time-stepping12

schemes (BDF-scheme).13

For instance, choosing bn = 1
τ (δ0 − δ1)(n), where δi(j) is the Kronecker delta, we obtain14

the classical Backward Euler scheme (BE-scheme) and when bn = 1
τ [(δ0 − δ1)](n) + 1

2τ [(δ0 −15

δ1)∗ (δ0−δ1)](n), we get the second order backward differentiation formula for time-stepping16

schemes (BDF-scheme). This choice of b reveals the local character of each of the aforemen-17

tioned methods.18

More interesting is to observe that when we choose bj =
1
ταk

−α
j we obtain the fractional19

Backward Euler scheme [13, Section 3.1] of order 0 < α < 1, where20

(3) (1− z)α =

∞∑
j=0

k−αj zj ,

which corresponds to time-discretization of (1) with a(t) = gα(t). We note that the sequence21

kβj , β ∈ R has the explicit form22

(4) kβj =

⎧⎪⎪⎨⎪⎪⎩
Γ(β + j)

Γ(β)Γ(j + 1)
j ∈ N0, β ∈ R \ {−1,−2, ..};

(δ0 − δ1)∗(−β)(j) j ∈ N0, β ∈ {−1,−2, ...},
where Γ is the Euler gamma function and p∗n = p ∗ p ∗ . . . ∗ p︸ ︷︷ ︸

n-times

where ∗ denotes the convolution23

of sequences given by (u∗v)(n) =∑n
j=0 u(n−j)v(j), see [12].This sequence has been recently24

used in a variety of papers in connection with time fractional discrete systems in several areas25

of research. For instance, Sun and Phillips in [30, Section 2.1] (and references therein) used26

this sequence for the definition of fractional difference filters in finance and macroeconomics27

where long memory is relevant. Moreover, in [21] (see also [23] and references therein) it28

was used to define a new fractional order difference operator which is linked - by means of29

the so called transference principle [12, Section 4] - to the most common fractional forward30

difference operator of order α > 0 defined in the classical paper [5] by Atici and Eloe. It31
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is remarkable that the sequence kβn plays the same role than the kernel gβ(t) in continuous1

fractional calculus, see [21].2

Continuing the discussion on fractional order schemes, another possibility is to choose3

(5) bn =
1

τα
1

(1 + α(1− θ))

n∑
j=0

k−αn−j
(α(θ − 1))j

(1 + α(1− θ))j , n ∈ N0,

where 0 < α < 2, α �= 1 and 1
2 ≤ θ < 1. Note that when θ = 1

2 it corresponds to the4

fractional Crank–Nicolson scheme studied in [13, Section 6]. We will see that this kernel5

gives rise to a fractional version of the θ-scheme that will be studied in this paper for the6

first time. Note that this new scheme is not related to the fractional step θ-scheme, studied7

in older references [16].8

A further option is the following9

(6) bn =
( 3

2τ

)α n∑
j=0

k−αn−j
1

3j
k−αj , n ∈ N0.

This sequence corresponds to the fractional second-order BDF scheme which was considered10

in [23]. A next interesting example that we will examine in this paper, among others, is11

(7) bn =
1

ταΓ(2− α) [(n+ 1)1−α − n1−α], n ∈ N0, 0 < α < 1,

that produces the L1-scheme. We note that in contrast to the BE and BDF schemes, all12

these kernels are non-local, i.e. a no finite number of terms of the sequence bn are different13

from zero.14

Summarizing, this paper is organized as follows: Section 2 is devoted to introduce some15

preliminary results, most of which are taken from [23] and that can be found in earlier works16

on the subject. See e.g. the monograph [1]. Section 3 contains the main abstract result of this17

paper, namely Theorem 3.5, that states the most general sufficient conditions on the kernel18

b for maximal regularity of (2) in the context of UMD-spaces. Apart from the geometrical19

condition on the Banach space, and R-boundedness conditions of the operator-valued symbol,20

we provide new insights on the minimal properties on the kernel b that are crucial in order21

to obtain maximal regularity.22

It should be noted that in the context of Hilbert spaces, the hypothesis of R-boundedness23

is reduced to simple uniform boundedness. This is the content of Corollary 3.6. Otherwise,24

R-sectoriality of the operator A plus a condition on the location of b0 on the complex plane is25

needed. This condition can be replaced by the stronger hypothesis 0 ∈ ρ(A), the resolvent set26

of A, if necessary. It is interesting to observe the relation between maximal regularity and the27

concept of A(β)-stability. This is the content of Corollary 3.8. Finally, Section 4 is entirely28

devoted to the analysis of maximal regularity for time-stepping schemes that we identify with29

kernel sequences b. We begin with the θ-scheme and a new fractional version of it of order30

0 < α < 2, that we call (α, θ)-scheme. We must divide the study in two cases: 0 < θ ≤ 1
2 and31

1
2 ≤ θ ≤ 1. See Theorems 4.4 and 4.6. It is interesting to observe that both cases are related to32

the generalized Grünwald–Letnikov fractional order derivative. We also improve [13, Theorem33

5] and [13, Theorem 9] in Theorem 4.8. Then we take into consideration the backward34

differentiation formulas of order p ≤ 6 which are given by bn =
∑p

j=1
1
j [(δ0−δ1)j ](n), n ∈ N0,35

as they are well-known examples of A(α)-stable linear multistep methods. Here (δ0 − δ1)
j

36

denotes convolution j-times. We compute the angle α and obtain new criteria of maximal37

regularity in cases p = 2, 3, 4. Fractional versions of each case are also included as part of38

our results. In particular, in case p = 2, we recover [13, Theorem 6]. The other cases are39
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new. Finally, we analyze the L1-scheme, which is fractional in nature, and we provide their1

integer and fractional version that seems to be new. Our main criteria of maximal regularity2

in case 0 < α < 1 is contained in Theorem 4.15 which extends [13, Theorem 7].3

2. Analytical framework and notation4

In this section, we introduce some notations and preliminary results that will be necessary5

in the forthcoming sections.6

Let X be a complex Banach space. We denote by S(Z;X) the Schwartz space of vector-7

valued sequences that are rapidly decreasing, whose topology is that induced by the semi8

norms pk(f) := supn∈Z |n|k‖f(n)‖, k ∈ N0, and by Cnper(R;X) the space of all 2π-periodic9

X-valued and n-times continuously differentiable functions defined in R. We also set T :=10

(0, 2π) and T0 := (0, 2π) \ {π}. The space of test functions is the space C∞per(T;X) :=11 ⋂
n∈N0

Cnper(R;X). When X = R we simply write C∞per(T) and S(Z). We recall that the12

discrete time Fourier transform F : S(Z;X) → C∞per(T;X) is an isomorphism defined by13

Fϕ(t) ≡ ϕ̂(t) :=
∑∞

j=−∞ e−ijtϕj and the inverse transform is given by F−1ϕn ≡ ϕ̌n :=14

1
2π

∫ 2π
0 ϕ(t)eintdt.15

For a sequence b : N0 → C extended to negative subscripts n by 0, the Gelfand transform16

is defined by b̃(z) :=
∑∞

n=0 bnz
n, |z| < 1. We also recall the following Lemma [23, Lemma17

2.3].18

Lemma 2.1. Let u, v : Z → X be given and a : N0 → C which is defined by 0 for negative19

values of n.We assume that the series ã(z) :=
∑∞

n=0 anz
n, converges on the complex unit disk,20

and that the radial limit â(t) = lim
r↗1

ã(re−it) exists for all t ∈ T0. Suppose that 〈u, ϕ̌〉 = 〈v, (ϕ·21

â−)̌〉 for all ϕ ∈ C∞per(T), where (ϕ · â−)̌n := 1
2π

∫ 2π
0 â(−t)ϕ(t)eintdt, n ∈ Z and 〈u, ϕ̌〉 :=22 ∑

n∈Z u(n)ϕ̌(n), ϕ̌ ∈ S(Z). Then un = H(v ∗ a)n for all n ∈ Z, where23

(8) (v ∗ a)n :=

n∑
j=0

vn−jaj , n ∈ N0,

denotes the finite convolution, and H denotes the Heaviside operator defined as Hwn = wn24

if n ∈ N0 and by 0 otherwise.25

We also recall the notion of R-bounded sets and �p-multipliers in the space B(X,Y ) of26

bounded linear operators from X into Y endowed with the uniform operator topology that27

will play an important role in our work.28

Definition 2.2. Let X and Y be Banach spaces. A subset T of B(X,Y ) is called R-bounded29

if there is a constant c > 0 such that for all T1, ..., Tn ∈ T , x1, ..., xn ∈ X, n ∈ N, we have30

‖(T1x1, ..., Tnxn)‖R ≤ c‖(x1, ..., xn)‖R, where ‖(x1, ..., xn)‖R :=
1

2n

∑
{εj}nj=1∈{−1,1}n

∥∥∥ n∑
j=1

εjxj

∥∥∥.31

Some basic properties are preserved under R-boundedness, see [1, Section 2.2] and [10] for32

more information. We now recall the notion of �p-multiplier. Let X, Y be Banach spaces33

and 1 < p <∞. A function M ∈ C∞per(T;B(X,Y )) is an �p-multiplier (from X to Y ) if there34

exists a bounded operator TM : �p(Z;X)→ �p(Z;Y ) such that35

(9)
∑
n∈Z

(TMf)
nϕ̌n =

∑
n∈Z

(ϕ ·M−)̌nf
n
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for all f ∈ �p(Z;X) and all ϕ ∈ C∞per(T). We will need a Fourier multiplier theorem for1

operator - valued symbols originally given by S. Blunck [7, 1] which gives sufficient conditions2

to ensure when an operator-valued symbol is a multiplier, and establishes an equivalence3

between �p-multipliers and the notion of R-boundedness for the UMD class of Banach spaces.4

For more information on this class of spaces, see [4, Section III.4.3-III.4.5]. The following5

extended version of Blunck’s theorem is essentially due to Kemmochi [15] as regards the6

independence of the constant involved. See [14, Theorem 4] for the precise statement.7

Theorem 2.3. [7, Theorem 1.3] Let p ∈ (1,∞) and let X,Y be UMD spaces. Let M ∈
C∞per(T0;B(X,Y )) be such that the set

{M(t) : t ∈ T0} ∪
{
(1− eit)(1 + eit)M ′(t) : t ∈ T0

}
,

is R-bounded, with an R-bound cR. Then M is an �p-multiplier (from X to Y ) for 1 < p <∞.8

Further, there exists a cp,X > 0 independent of M such that the operator norm of TM is9

bounded by cRcp,X .10

Conversely, if X,Y are Banach spaces and M ∈ C∞per(T;B(X,Y )) is an operator valued11

function such that there exists a bounded operator TM : lp(Z;X)→ lp(Z;Y ) veryfing equality12

(9), then the set {M(t) : t ∈ T} is R-bounded.13

3. Abstract setting: Maximal �p0-regularity14

It is important for our analysis to observe that Lubich’s convolution quadrature method
implicitly considers zero-padding in the negative real axis, see [24, p.131, lines 1-2]. This
notion of causality has been previously considered in other papers, see e.g. [23]. Therefore,
in what follows, the prehistorical values of the kernel b in (2) will be assumed to be zero.
According to this, we will analyze maximal regularity in the following Lebesgue space of
vector-valued sequences:

�p0(N0;X) := {f ∈ �p(Z;X) : fn = 0 for all n = −1,−2, ...}.
For a given vector-valued sequence f : N0 → X we consider along this section the abstract15

discrete equation given by (2).16

Remark 3.1. Note that the solvability of (2) is equivalent to the invertibility of b0−A, since17

(2) can be rewritten as (b0 −A)u0 = f0 and18

(10) (b0 −A)un = −
n−1∑
j=0

bn−juj + fn, n ∈ N.

In particular, if (2) is solvable, then the solution must be unique. For instance, if A is the19

generator of a bounded analytic semigroup on X and b0 > 0 then (2) is solvable. However,20

in general, we must assume that b0 belongs to ρ(A), the resolvent set of A.21

Definition 3.2. Let 1 < p < ∞ be given. We say that (2) has maximal �p0-regularity if for22

each f ∈ �p0(N0;X) there exists a unique solution u ∈ �p0(N0; [D(A)]) of (2) that satisfies the23

estimate24

(11) ‖Au‖�p0(N0;[D(A)]) + ‖b ∗ u‖�p0(N0;X) ≤ C‖f‖�p0(N0;X),

where the constant C > 0 is independent of A, b and f, and [D(A)] denotes the domain of A25

endowed with the graph norm.26

We recall the following definition.27
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Definition 3.3. [23] Let k ∈ N0 be given. A sequence b : Z→ C is called k-regular if there1

exists a constant c > 0 such that |((1 + eit)(1− eit))n [̂b(t)](n)| ≤ c|̂b(t)| for all 1 ≤ n ≤ k and2

all t ∈ T0.3

We note that, in some sense, it is a discrete version analogous to the existing concept of4

1-regularity for Volterra equations defined by Prüss in his monograph [27].5

In the following result, we show the equivalence between theR-boundedness of the operator-6

valued symbol of the difference equation (2) given by b̂(t)(̂b(t)−A)−1 and the fact that it is7

an �p-multiplier.8

Theorem 3.4. Let X be a UMD space, 1 < p <∞, b : N0 → C such that bn = 0 for all n ∈9

Z−. Suppose that the Gelfand transform of b and their radial limit b̂(t) exists and is 1-regular,10

satisfying b̂(t) �= 0 for all t ∈ T0 and
{
b̂(t)

}
t∈T0

⊂ ρ(A). Denote M(t) := b̂(t)(̂b(t) − A)−1,11

then the following assertions are equivalent:12

(i) M(t) is an �p-multiplier from X to [D(A)].13

(ii) {M(t)}t∈T0 is R-bounded.14

Proof. (ii) =⇒ (i) By Theorem 2.3 it is enough to prove that the set {(eit − 1)(eit +15

1)M ′(t)}t∈T0 is R-bounded. Indeed, a computation shows that16

M ′(t) =
[̂b(t)]′

b̂(t)
M(t)− [̂b(t)]′

b̂(t)
M(t)2, t ∈ T0.(12)

Therefore, for all t ∈ T0 we have

(1− eit)(1 + eit)M ′(t) = (1− eit)(1 + eit)
[̂b(t)]′

b̂(t)
M(t)− (1− eit)(1 + eit)

[̂b(t)]′

b̂(t)
M(t)2.

From [1, Proposition 2.2.5], the hypothesis and the 1-regularity of b we conclude that the set17

{(1 − eit)(1 + eit)M ′(t) : t ∈ T0} is R-bounded and the claim is proved. (i) =⇒ (ii) By18

hypothesis we have that there exists a bounded operator T such that (9) holds. Now, (ii)19

holds as a consequence of Theorem 2.3. �20

With these preliminaries, we can prove the main abstract result of this work. We would21

like to emphasize that the main contribution in the following result is the identification of22

necessary properties in the kernel b of the model (2) to have existence and uniqueness with23

maximal regularity in the Lebesgue space of sequences �p0 for the abstract difference model24

(2), being the important a priori estimate (11) a consequence of the closed graph theorem,25

but with the notable distinction in this particular case, that the constant that appears in the26

estimate (11) is independent of the operator A and of the kernel b (and therefore of the step27

size of the scheme). This independence is essentially an application of Blunck’s theorem in28

the form of the Theorem 2.3, after Kemmochi’s crucial comments [15] on this topic.29

Theorem 3.5. Let X be a UMD space, 1 < p < ∞, b : N0 → C such that bn = 0 for

all n ∈ Z−. Suppose that the Gelfand transform of b and their radial limit b̂(t) exists and is

1-regular, satisfying b̂(t) �= 0 for all t ∈ T0. Assume that b̂ ∈ C∞per(T); 0 ∈ ρ(A) or b0 �= 0;
and the condition

(MR) {b0, b̂(t)}t∈T0 ⊂ ρ(A) and the set {b̂(t)(̂b(t)−A)−1 : t ∈ T0} is R-bounded

holds. Then equation (2) has maximal �p0-regularity.30
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Proof. Assume first that b0 �= 0. We start showing that b ∈ C where C := {b : N0 → C :
there exists a : N0 → C such that (a ∗ b) = δ0(n), n ∈ N0}, see [23, Section 4]. In fact, since
b0 �= 0 then from the identity

∑n
j=0 an−jbj = δ0(n), n ∈ N0, we obtain recursively

an = − 1

b0

n−1∑
j=0

an−j−1bj+1 +
δ0(n)

b0
, n ∈ N.

Moreover, b is 1-regular if and only if a is 1-regular [23, Remark 2]. Therefore the problem (2)1

is equivalent to prove maximal regularity for the Volterra equation un =
∑n

j=0 an−jAu
j + gn2

where gn := (a ∗ f)n, n ∈ N0. Then, the proof follows from [23, Theorem 3.6].3

Suppose now that b0 = 0 and 0 ∈ ρ(A), and let f ∈ �p0(N0;X) be given and M(t) :=4

b̂(t)(̂b(t)−A)−1. By hypothesis and Theorem 3.4, there exists w ∈ �p(Z; [D(A)]) such that5

(13)
∑
n∈Z

wnϕ̌n =

∞∑
n=0

(ϕ ·M−)̌nf
n,

for all ϕ ∈ C∞per(T). Assuming that 0 ∈ ρ(A) we have6

(14)
∑
n∈Z

A−1wnϕ̌n =
∞∑
n=0

(ϕ ·A−1M−)̌nf
n, ϕ ∈ C∞per(T).

Define N(t) := (̂b(t)−A)−1. We have the identity7

(15) N(t) = (̂b(t)−A)−1 = b̂(t)A−1(̂b(t)−A)−1 −A−1 = A−1M(t)−A−1.
In particular, it implies that the set {N(t)}t∈T0 is R-bounded. Identity (15) together with the8

hypothesis and the permanence properties of R-boundedness imply that (1−eit)(1+eit)N ′(t)9

is also R-bounded and then N(t) defines an �p-multiplier by Theorem 2.3. Then there exists10

v ∈ �p(Z; [D(A)]) such that11

(16)
∑
n∈Z

vnψ̌n =

∞∑
n=0

(ψ ·N−)̌nfn, ψ ∈ C∞per(T).

Observe that by hypothesis ψ(t) := ϕ(t)̂b(−t) ∈ C∞per(T). Setting ψ in (16), and taking

into account that b̂(t)N(t) = M(t), we get by (13) that 〈v, (ϕ · b̂−)̌〉 = 〈f, (ϕ · (̂bN)−)̌〉 =
〈f, (ϕ ·M−)̌〉 = 〈w, ϕ̌〉. From Lemma 2.1 we conclude from the above identity and the fact
that bn = 0 for negative values of n that

wn = H(v ∗ b)n =
n∑
j=0

vn−jbj , n ∈ N0,(17)

and in particular w ∈ �p0(N0;X). SinceN(t) = A−1M(t)−A−1, after multiplication by eintψ(t)

and integration over the interval (0, 2π), we have (ψ · N−)̌n = (ψ · A−1M−)̌n − A−1ψ̌n, for
all ψ ∈ C∞per(T). Then we obtain 〈f, (ψ ·N−)̌〉 = 〈f, (ψ · A−1M−)̌〉 − 〈f,A−1ψ̌〉. By replacing
(16) and (14) in the above identity and then taking into account (17) we obtain for all
ψ ∈ C∞per(T) :

∞∑
n=0

vnψ̌n =

∞∑
n=0

A−1wnψ̌n −
∞∑
n=0

ψ̌(n)A−1fn =

∞∑
n=0

A−1

⎡⎣ n∑
j=0

vn−jbj

⎤⎦ ψ̌n − ∞∑
n=0

ψ̌nA
−1fn.

In particular, this identity shows that the right hand side belongs to D(A). Choosing ψ(t) =12

e−ikt (k ∈ Z), and applying A in both sides of the above identity, we conclude that v ∈13
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�p0(N0; [D(A)]) and satisfies the equation (2). We have proved the existence of a solution.1

The proof of the uniqueness of the solution follows from [23, Theorem 3.6] and therefore we2

omit it. The estimate (11) and its independence of the constant involved is a consequence of3

Theorem 2.3. �4

As a immediate consequence of the fact that R-boundedness is equivalent to boundedness5

in Hilbert spaces [10] we obtain the following corollary.6

Corollary 3.6. If X in Theorem 3.5 is a Hilbert space, then condition (MR) can be replaced7

by supt∈T0

∥∥∥b̂(t)(̂b(t)−A)−1∥∥∥ <∞.8

As we rapidly observe, the given hypothesis (MR) of R-boundedness - although very9

general - is not easy to check in practice. Kemmochi [15] uses the ill-posedness of the θ-10

method in order to restrict the analysis to the case that A is bounded and in this way the11

study of R-boundedness is concentrated in the location of the bounded spectrum of the12

operator A. In contrast, the authors in [13] realized that a suitable hypothesis of sectoriality13

for the operator A (in Hilbert spaces), or R-sectoriality of angle θ in UMD-spaces, suffices.14

It turns out that this last concept is closely related to the concept of A(β)-stability, which is15

specially well adapted when we treat with backward differentiation formulas of order p ≤ 6.16

In simple words, it refers to the geometrical location of the set {b̂(t)}t∈T0 which, roughly17

speaking, must remain within a sector Σπ−β for some β associated to the time-stepping18

scheme. We point out that the precise calculation of the maximum angle β for BDF-schemes19

has been improved very recently in [3, Theorem 1] and we will revisit this topic briefly in the20

next section.21

Next, we briefly recall the concept of R-sectoriality. Given any θ ∈ (0, π), we denote22

Σθ := {z ∈ C : | arg(z)| < θ, z �= 0} where −π < arg(z) ≤ π. Recall that a closed operator23

A : D(A) ⊂ X → X with dense domain D(A) is said to be R-sectorial of angle θ if the24

following conditions are satisfied25

(i) σ(A) ⊆ C \ Σθ;26

(ii) The set {z(z −A)−1 : z ∈ Σθ} is R-bounded in B(X).27

The permanence properties for R-sectorial operators are similar to those for sectorial op-28

erators. For instance, they behave well under perturbations. Sufficient conditions for R-29

sectoriality are studied in the monograph [10, Chapter 4]. Moreover, R-sectoriality charac-30

terizes maximal regularity of type Lp in R+ for the abstract Cauchy problem of first order,31

see [10, Theorem 4.4]. As a consequence, we obtain the following remarkable result.32

Corollary 3.7. Let X be a UMD space, 1 < p < ∞ and b : N0 → C such that bn = 0 for33

all n ∈ Z−. Suppose that the Gelfand transform of b and their radial limit b̂(t) exists and is34

1-regular, satisfying b̂(t) �= 0 for all t ∈ T0. Assume that A is R-sectorial of angle θ such that35

0 ∈ ρ(A) or b0 �= 0 and the condition36

(18) {b0, b̂(t)}t∈T0 ⊂ Σθ

is verified. Then equation (2) has maximal �p0-regularity.37

We recall that (2) is said to be A(β)-stable if | arg(b̃(z))| ≤ π − β for |z| < 1 and some38

0 < β < π. See e.g. [24]. Consequently, we obtain the following corollary39

Corollary 3.8. Let X be a UMD space, 1 < p < ∞, b : N0 → C such that bn = 0 for40

all n ∈ Z−. Suppose that the Gelfand transform of b and their radial limit b̂(t) exists and41

is 1-regular, satisfying b̂(t) �= 0 for all t ∈ T0. Assume that A is R-sectorial of angle β for42
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some β ∈ (0, π) and b0 > 0. If (2) is A(β)-stable, then the scheme given by (2) has maximal1

�p0-regularity.2

Proof. Observe that under the given hypothesis we have both 0 �= b0 ∈ Σπ−β and {b̂(t)}t∈T0 ⊂3

Σπ−β . �4

It should be noted that, even when the set {b̂(t)}t∈T0 is not contained in a sector Σθ for5

some angle θ < π, it does not imply that the general hypothesis in Theorem 3.5 on the6

R-boundedness of the set {b̂(t)(̂b(t)−A)−1 : t ∈ T0} may fail. In fact, it could happen that7

the portion of the set that relies outside of the region, remains R-bounded. We observe that8

this phenomenon was previously observed and heavily worked in the references [15, 13].9

4. Time-stepping schemes10

In the previous section, we have obtained an �p0-maximal regularity result in Theorem 3.511

for an abstract difference equation (2) that involves a convolution term. This general result12

allows us to unify the theory. More concretely, we recover maximal regularity results for13

some time-stepping schemes already existing in the literature and we obtain new �p0-maximal14

regularity results for others – mainly nonlocal – schemes.15

For later use, we recall that the generalized forward Grünwald–Letnikov derivative [25,16

Section 3.3], is defined by:17

(19) u
(α)
∇ (n) :=

n∑
j=0

k−αn−ju
j , α > 0,

where the sequence kαj is defined in (4). Note that u
(1)
∇ (n) = un − un−1.18

4.1. θ-scheme. Given 0 ≤ θ ≤ 1 we consider the θ-scheme19

(20)
1

τ
u
(1)
∇ (n+ 1) = (1− θ)Aun + θAun+1 + (1− θ)fn + θfn+1, n ∈ N0,

with initial condition u0 = 0 and stepsize τ > 0. The maximal regularity for this scheme20

was studied in [15] under the hypothesis that A has Lp-maximal regularity. It is important21

to point out that this method coincides with the explicit (or forward) Euler scheme when22

θ = 0 whereas the implicit (or backward) Euler scheme is obtained for θ = 1. Finally, if23

θ = 1
2 then the θ-scheme corresponds to the Crank–Nicolson method, see e.g. [18, Theorem24

3.2] where a discrete maximal regularity estimate is established for this method under the25

hypothesis of Lp-maximal regularity for the operator A. Define26

(21) bn =

{
1
τ

1
(1−θ) [

(−1)n
θ (1−θθ )n − δ0(n)] if 0 < θ < 1;

1
τ (δ0(n)− δ1(n)) if θ = 1,

where δi(j) is the Kronecker delta. Observe that for θ = 0 the sequence bn = 1
τ (δ−1(n)−δ0(n))27

that defines the explicit Euler scheme cannot be included in our study since b−1 �= 0 and28

then the hypothesis on b of Theorem 3.5 is not fulfilled. This is not a surprise, because by29

their own nature our model (2) only includes implicit methods. As a consequence of our30

main theorem proved in the previous section, we obtain the following result that generalizes31

[15, Theorem 3.2].32
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Theorem 4.1. On UMD-spaces, and for 0 < θ ≤ 1, the abstract difference equation (20)

(or the θ-scheme) has �p0-maximal regularity if
{

1
τθ ,

(1−e−it)
τ(1−θ)e−it+τθ

}
t∈T0

⊂ ρ(A) and the set{
(1− e−it)

τ(1− θ)e−it + τθ

(
(1− e−it)

τ(1− θ)e−it + τθ
−A

)−1
: t ∈ T0

}
is R-bounded.1

Proof. Let θ �= 1 be given, then b̃(z) = (1−z)
τ(1−θ)z+τθ is exactly the characteristic symbol cor-

responding to the θ-scheme [15, Section 2.3]. Observe that the radial limit for such sym-

bol exists for all t ∈ T0 and is given by b̂(t) = (1−e−it)
τ(1−θ)e−it+τθ

. Since |(1 − θ)e−it + θ|2 =

(1− θ)2 + 2θ(1− θ) cos(t) + θ2 ≥ (1− 2θ)2 + 2θ2(1− θ) > 0 it follows that

(1 + eit)(1− eit) [̂b(t)]
′(t)

b̂(t)
=
−i(1 + eit)(1− e−it)((1− θ)e−it + 1)

(1− θ)e−it + θ

is bounded. Hence, we conclude that b is 1-regular. If θ = 1, then b̃(z) = 1
τ (1 − z) is the

characteristic symbol corresponding to the implicit Euler scheme of approximation (see e.g

[13, Section 3.1]). Now, observe that in this last case the radial limit b̂(t) = 1
τ (1− e−it) exists

for all t ∈ T0 and

(1 + eit)(1− eit) [̂b(t)]
′(t)

b̂(t)
= −i(1 + eit)

is clearly bounded. �2

In [15, Lemma 2.9] the authors showed that the symbol b̂(t) for the θ-method corresponds3

to a circumference located in the left half complex plane for 0 ≤ θ < 1
2 . In contrast, when4

1
2 < θ ≤ 1 it is a circumference located in the right half plane. In the limit case θ = 1

2 , we5

have b̂(t) = iR \ {0}. As an immediate consequence of Corollary 3.7, and taking into account6

that b0 =
1
τθ in case 0 < θ ≤ 1 we obtain the following result:7

Corollary 4.2. Let X be a UMD space, 1/2 < θ ≤ 1, and let A be an R-sectorial operator8

of angle π/2. Then the θ-scheme has �p0-maximal regularity.9

Proof. It follows immediately from the observation given in [15, Lemma 2.9], where the10

authors show that for 1/2 < θ ≤ 1 the set b̂(T) corresponds exactly to the circumference of11

center and radius the same point 1
(2θ−1)τ . Moreover, it is clear that 1

τθ ∈ ρ(A). �12

Remark 4.3. Observe that if A is R-sectorial operator of angle δ + π/2 for any δ > 0, then13

we can ensure �p0-maximal regularity for the Crank–Nicolson scheme.14

4.2. (α, θ)-scheme. In this section, our purpose is to define a new fractional order version of15

the θ-scheme, that we call the (α, θ)-scheme, where 0 < α < 2. We recall that the qualitative16

analysis of the θ-method is investigated in several works, mainly, for obtaining the numerical17

solution of some semidiscretized linear parabolic problems, see e.g. [29]. In what follows, we18

consider the following two cases:19

Case 1: 0 < θ ≤ 1
2 . We consider the scheme20

(22)
1

τα
u
(α)
∇ (n+1) = ((1−θ)− (1−α)θ)(Aun+fn)+(θ+(1−α)θ)(Aun+1+fn+1), n ∈ N0,



12 C. LIZAMA AND M. MURILLO

with initial condition u0 = 0, stepsize τ > 0. When θ = 1/2, the (α, 1/2)-scheme given in
(22) corresponds to the fractional Crank–Nicolson scheme that has been previously analyzed
in [13, Section 6], namely

1

τα
u
(α)
∇ (n+ 1) =

(
1− α

2

)
Aun+1 +

α

2
Aun +

(
1− α

2

)
fn+1 +

α

2
fn, n ∈ N.

In case α = 1, the (1, θ)-scheme corresponds to the θ-scheme whose �p0-maximal regularity
was obtained in the previous subsection, and where the kernel sequence bn is defined by (21).
For α �= 1 and 0 < θ ≤ 1

2 we define

bn =
1

τα
1

(2 − α)θ

n∑
j=0

k−αn−j
(1− (2− α)θ)j
(θ(α− 2))j

, n ∈ N0.

Theorem 4.4. Let X be a UMD space, 0 < α < 2, α �= 1 and 0 < θ ≤ 1
2 . Assume that{

1
τα(2−α)θ ,

1
τα

(1−e−it)α

(2θ−αθ)+(1−2θ+αθ)e−it

}
t∈T0

⊂ ρ(A) and the set{
(1− e−it)α

ταθ(2− α) + τα(1− θ(2− α))e−it
(

(1− e−it)α
ταθ(2− α) + τα(1− θ(2− α))e−it −A

)−1}
t∈T0

is R-bounded, Then the (α, θ)-scheme (22) has maximal �p0-regularity.1

Proof. Using (3) it follows that b̃(z) = 1
τα

(1−z)α
(2θ−αθ)+(1−2θ+αθ)z and hence b̂(t) exists for all2

t ∈ T0. Moreover, the following identity holds for all t ∈ T0 :3

(23) (1 + eit)(1− eit) [̂b(t)]
′

b̂(t)
= −iα(1 + eit)− i(1 + eit)(1− e−it)(1− 2θ + αθ)

(2θ − αθ) + (1− 2θ + αθ)e−it
.

Since |(2θ− αθ) + (1− 2θ+ αθ)e−it|2 ≥ (4θ− 2αθ− 1)2, it is clear that if θ �= 1
2(2−α) , then b4

is 1-regular. Meanwhile, if θ = 1
2(2−α) , (23) reduces to −iα(1 + eit)− i(eit − 1) and then b is5

again 1-regular. Finally, taking into account that b0 =
1

τα(2−α)θ the conclusion follows from6

Theorem 3.5. �7

Remark 4.5. We observe that choosing α0 = 2− 1
2θ for any fixed θ in the interval (1/4, 1/2]8

we obtain the scheme9

(24)
1

τα0
u
(α0)
∇ (n+ 1) =

1

2
(Aun + fn) +

1

2
(Aun+1 + fn+1), n ∈ N0,

which should be compared with the Crank–Nicolson scheme.10

Case 2: 1
2 ≤ θ ≤ 1. We consider the scheme11

(25)
1

τα
u
(α)
∇ (n+ 1) = ((1− θ)α)(Aun + fn) + (1− α(1− θ))(Aun+1 + fn+1), n ∈ N0,

with initial condition u0 = 0, stepsize τ > 0 and where u
(α)
∇ denotes the generalized forward12

Grünwald–Letnikov derivative defined in (19). Note that when θ = 1/2, it corresponds again13

to the fractional Crank–Nicolson scheme. For α �= 1 and θ �= 1 we define the sequence bn as14

in (5) and for α �= 1 and θ = 1, we set bn := 1
ταk

−α
n . Observe that in this last case the model15

(25) corresponds to the fractional Backward Euler scheme [14] and is given by:16

(26)
1

τα
u
(α)
∇ (n) = Aun + fn, n ∈ N.

We obtain the following maximal �p0-regularity result for the (α, θ)-scheme.17
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Theorem 4.6. Let X be a UMD space, 0 < α < 2, α �= 1 and 1
2 ≤ θ ≤ 1. Assume that{

1

τα(1 + α(1− θ)) ,
1

τα
(1− e−it)α

(1− α+ αθ) + (α− αθ)e−it
}
t∈T0

⊂ ρ(A)

and the set{
1

τα
(1− e−it)α

(1− α+ αθ) + (α− αθ)e−it
(

1

τα
(1− e−it)α

(1− α+ αθ) + (α− αθ)e−it −A
)−1}

t∈T0

is R-bounded, Then the (α, θ)-scheme (25) has maximal �p0-regularity.1

Proof. Using (3) it follows that if θ �= 1 then b̃(z) = 1
τα

(1−z)α
(1−α+αθ)+(α−αθ)z and hence b̂(t) exists

for all t ∈ T0. Moreover, it follows that:

(1 + eit)(1− eit) [̂b(t)]
′(t)

b̂(t)
= −iα(1 + eit)− i(1 + eit)(1− e−it)(α− αθ)

(1− α+ αθ) + (α− αθ)e−it

where 1−α(1− θ) ≥ 1− α
2 > 0 since α < 2, due to the hypothesis on θ and α. It implies that

b is 1-regular. Otherwise, if θ = 1, then b̃(z) = 1
τα (1− z)α and therefore b̂(t) = 1

τα (1− e−it)α
exists for all t ∈ T0. We note that

(1− eit)(1 + eit)
d

dt
[(1− e−it)α] 1

(1− e−it)α = −iα(1 + eit),

is bounded, and therefore b is 1-regular. Taking into account that b0 = 1
τα(1+α(1−θ)) for2

1
2 ≤ θ ≤ 1, the conclusion follows from Theorem 3.5. �3

Remark 4.7. It is interesting to observe that if we choose α0 = 1
2(1−θ) which is possible4

whenever 1/2 ≤ θ < 3/4 then we obtain the scheme (24) again.5

The following result recovers and extends [13, Theorem 5] and [13, Theorem 9].6

Theorem 4.8. Let X be a UMD space, 1
2 ≤ θ ≤ 1, 0 < α < 1 and A be a R-sectorial7

operator of angle απ
2 . Then the (α, θ)-scheme (22) has maximal �p0-regularity.8

Proof. It suffices to prove that the set{
1

τα
(1− e−it)α

(1− α+ αθ) + (α− αθ)e−it
(

1

τα
(1− e−it)α

(1− α+ αθ) + (α− αθ)e−it −A
)−1}

t∈T0

is R-bounded. In fact, following an idea of [13] we observe that

b̂(t) =
1

τα
(1− e−it)α

(1− α+ αθ) + (α− αθ)e−it =
2

3α
2 [sin(t/2)]αei(

απ
2
−αt

2
−ψ(t))

ταρ(t)

where t ∈ T and ρ(t) :=
√
(1− α+ αθ)2 + (α− αθ)2 + 2(1− α+ αθ)(α− αθ) cos t > 09

and ψ(t) := arg ((1− α+ αθ) + (α− αθ)e−it) = arctan
(

(αθ−α) sin t
(1−α+αθ)+(α−αθ) cos t

)
. On the other10

hand, since 1 < 1
2−2θ and α < min{ θ−2θ−1 ,

1
1−θ} we obtain that:11

−α
2
− ψ′(t) = −α[(2α

2(θ − 1)2 − 2α(θ − 2)(θ − 1))(cos t− 1) + (2− 2θ) cos t− 1]

2[(2α2(θ − 1)2 + 2α(θ − 1))(cos t− 1)− 1]
≤ 0

As a consequence, the function −αt
2 − ψ(t) is decreasing from 0 to −απ as t changes from 012

to 2π and then the symbol b̂(t) ⊂ Σαπ/2. From the sectoriality of the operator A, we obtain13

the conclusion using Corollary 3.7. �14
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4.3. Second-order BDF scheme. Let us consider the scheme1

(27)
3

2τ
un+2 − 1

τ
un+1 − 1

2τ
un = Aun+2 + fn+2, n ∈ N0,

with initial conditions u0 = u1 = 0. This scheme is well-known in the literature as the second
order backward differentiation formula. If we define

bn :=
1

τ
[(δ0(n)− δ1(n))] +

1

2τ
[(δ0 − δ1) ∗ (δ0 − δ1)](n) =

1

τ

(
3

2
δ0(n)− 2δ1(n) +

1

2
δ2(n)

)
,

then b̃(z) = 1
τ (

3
2 − 2z + 1

2z
2), the radial limit exists, and is given by:

b̂(t) =
1

τ

(
3

2
− 2e−it +

1

2
e−2it

)
=

3

2τ

(
1− 1

3
e−it

)
(1− e−it), t ∈ T0.

We observe that the above symbol corresponds exactly to the second order backward differen-
tiation formula for time-stepping schemes [24, p.131]. The maximal regularity of this scheme
has been studied in [18, Theorem 4.1 and 4.2] and extended to the fractional order case (α ∈
(0, 2)\{1}) in the recent reference [13, Theorem 6]. We can obtain the same result easily, only
verifying that b is 1-regular. Indeed, we conclude that the scheme (27) has �p0-maximal regu-
larity whenever the following conditions are verified: { 3

2τ ,
1
τ

(
3
2 − 2e−it + 1

2e
−2it)}t∈T0 ⊂ ρ(A)

and the set

{1
τ

(
3

2
− 2e−it +

1

2
e−2it

)
(
1

τ

(
3

2
− 2e−it +

1

2
e−2it

)
−A)−1 : t ∈ T0}

is R-bounded.2

Corollary 4.9. Let X be a UMD space, 1 < p <∞. Assume that A is R-sectorial of angle3

π/2. Then equation (27) has maximal �p0-regularity.4

Proof. It is enough to observe that �(32 − 2e−it + 1
2e
−2it) = (1− cos t)2 > 0 for all t ∈ T0 and5

that b0 =
3
2τ . �6

Now, given α > 0 and a ∈ C we define the sequence kαa (n) := ankαn . We consider the7

scheme8

(28)
( 3

2τ

)α
u
(α)
∇ (n) = A(kα1/3 ∗ u)n + (kα1/3 ∗ f)n, n ∈ N,

and define the sequence bn as:9

(29) bn =
( 3

2τ

)α n∑
j=0

k−αn−j
1

3j
k−αj , n ∈ N0.

This sequence corresponds to the fractional second-order BDF scheme which was considered
in [23] and previously in the paper [9, Formula (4.6)]. It is not difficult to see, using (3)

and the rule for the product of convolution, that b̃(z) = 1
τα (

1
2z

2 − 2z + 3
2)
α and hence

b̂(t) = 1
τα (

1
2e
−2it − 2e−it + 3

2)
α exists for all t ∈ T0. Moreover, b̂(t) �= 0 for all t ∈ T0. It is

straightforward to compute

(1− eit)(1 + eit)
[̂b(t)]′

b̂(t)
=
−α(1 + eit)(2i− ie−it)

3
2

(
1− e−it

3

)
showing that the left hand side is bounded for all t ∈ T0. It implies that b is 1-regular for10

any α > 0. Moreover, note that b0 = ( 32τ )
α. Summarizing, we obtain the following new result11

which extends [13, Theorem 6].12
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Theorem 4.10. Let X be a UMD space, α > 0, assume that

{( 3

2τ
)α, [

1

τ

(
1

2
e−2it − 2e−it +

3

2

)
]α}t∈T0 ⊂ ρ(A)

and that the set

{[ 1
τ
(
1

2
e−2it − 2e−it +

3

2
)]α([

1

τ
(
1

2
e−2it − 2e−it +

3

2
)]α −A)−1}t∈T0 is R-bounded.

Then the fractional second-order BDF scheme given by (28) has maximal �p0-regularity.1

If we add the condition of R-sectoriality for the operator A we obtain as a corollary [13,2

Theorem 6].3

Corollary 4.11. Let X be a UMD space, 0 < α ≤ 2, and let A be an R-sectorial operator4

of angle απ/2. Then all the hypothesis of Theorem 4.10 are fulfilled.5

Proof. Since τ−1(12e
−2it−2e−it+ 3

2) ∈ Σπ/2 for all t ∈ T0, we have τ
−α(12e

−2it−2e−it+ 3
2)
α ∈6

Σαπ/2. The conclusion follows from Corollary 3.7. �7

4.4. Third-order BDF scheme. Let us consider the following abstract difference equation8

(30)
1

τ

[
11

6
un+3 − 2un+2 +

3

2
un+1 − 1

3
un
]
= Aun+3 + fn+3, n ∈ N0,

with initial conditions u0 = u1 = u2 = 0. This time-stepping scheme has symbol 1τ (
11
6 − 3z+

3
2z

2 − 1
3z

3). It corresponds to the backward differentiation formula of order 3, see e.g. [24],
which can be seen by defining

bn :=
1

τ
(δ0 − δ1)(n) +

1

2τ
[(δ0 − δ1) ∗ (δ0 − δ1)](n)

+
1

3τ
[(δ0 − δ1) ∗ (δ0 − δ1) ∗ (δ0 − δ1)](n) =

1

τ

(
11

6
δ0(n)− 3δ1(n) +

3

2
δ2(n)−

1

3
δ3(n)

)
.

It follows that b̃(z) = 1
τ

(
11
6 − 3z + 3

2z
2 − 1

3z
3
)
, the radial limit exists, and is given by:

b̂(t) =
1

τ

(
11

6
− 3e−it +

3

2
e−2it − 1

3
e−3it

)
=

1

6
(1− e−it)(11− 7e−it + 2e−2it), t ∈ T0.

We can easily verify that b is 1-regular. In fact, a calculation shows that

(1− eit)(1 + eit)
[̂b(t)]′

b̂(t)
=
−6i(1 + e−it)(3− 3e−it + e−2it)

11− 7e−it + 2e−2it

where 11−7e−it+2e−2it = 2(a+e−it)(a+e−it) with a := 7/4+i
√
39/4. Note that |a|2 = 11/2

and b0 =
11
6τ . We can conclude from Theorem 3.4 that the abstract difference equation (30),

that originates from the third-order BDF-scheme, has �p0-maximal regularity whenever the
following conditions are verified:{

11

6τ
,
1

τ

(
11

6
− 3e−it +

3

2
e−2it − 1

3
e−3it

)}
t∈T0

⊂ ρ(A)

and the set{
1

τ

(
11

6
− 3e−it +

3

2
e−2it − 1

3
e−3it

)(
1

τ

(
11

6
− 3e−it +

3

2
e−2it − 1

3
e−3it

)
−A

)−1
: t ∈ T0

}
is R-bounded. We remark that this �p0-maximal regularity result is completely new.9
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For a third-order BDF scheme it is well-known that the set {b̂(t)}t∈T0 is contained in a1

sector Σθ0 for some θ0 > π/2. We note that recently, in the reference [3], the exact angles for2

the BDF schemes from order 3 to 6 have been computed. Since the precise computation of3

these angles is needed, we have included a short proof of the computation of the exact angle4

of order 3 in the following result:5

Corollary 4.12. Let X be a UMD space, and let A be an R-sectorial operator of angle6

π − arctan
(329√ 7

5

27

)
. Then equation (30) has maximal �p0-regularity.7

Proof. Let Φ(t) = arctan ( 7 sin t−2 sin 2t
11−7 cos t+2 cos 2t) + arctan ( sin t

1−cos t) be the argument function of the

symbol for the third order scheme b̂(t) for t ∈ T. A simple calculus shows that:

Φ′(t) =
6 sin2( t2)(22 cos t− 13)

−91 cos t+ 22 cos 2t+ 87
.

As a consequence, Φ has a relative maximum at every: tn = 2πn + arccos (13/22), n ∈ Z.8

Taking n = 0, we get t0 = arccos (13/22) which corresponds to the unique relative maximum9

which is contained in the interval T. Then, the maximum of Φ(t) is given by Φ(t0) = π −10

arctan
(329√ 7

5

27

)
and the third order numerical scheme is A(θ)-stable for θ = arctan

(329√ 7
5

27

)
.11

Since A is an R-sectorial operator of angle π − θ, b0 > 0 and we previously checked that b is12

1-regular then the conclusion follows from Corollary 3.8. �13

Let α > 0 be given and we consider the scheme14

(31)
(11
6τ

)α
u
(α)
∇ (n) = A(kαa ∗ kαa ∗ u)n + (kαa ∗ kαa ∗ f)n, n ∈ N,

where we recall that a = 7/4 + i
√
39/4. We define the sequence:

bn =
(11
6τ

)α
(k−α ∗ k−αa ∗ k−αa )n,

Then, it is easy to check using (3) that b̃(z) = ( 116τ )
α(1− z)α(1− z

a)
α(1− z

a)
α and hence

b̂(t) =
(11)α

(3τ)α
(1− e−it)α(1− 1

a
e−it)α(1− 1

a
e−it)α

=
1

(3τ)α
(1− e−it)α(a1 − e−it)α(a2 − e−it)α =

1

τα
(
11

6
− 3e−it +

3

2
e−2it − 1

3
e−3it)α.

It is not difficult to check that b is 1-regular, b0 =
(
11
6τ

)α
�= 0 and, therefore, an analogous15

result to Theorem 4.10 holds for the fractional scheme (31) as follows.16

Corollary 4.13. Let X be a UMD space, 0 < α < πθ−10 where θ0 := π − arctan
(329√ 7

5

27

)
17

and let A be an R-sectorial operator of angle αθ0. Then the third order difference fractional18

scheme (31) has maximal �p0-regularity.19

Proof. Since b̂(t) = 1
τ (

11
6 − 3e−it + 3

2e
−2it − 1

3e
−3it) ∈ Σθ0 , then b̂(t)

α ∈ Σαθ0 . The conclusion20

immediately holds from Corollary 3.7. �21

The following subsection illustrates how to continue the analysis of the backward differen-22

tiation formulas of order p (p ≤ 6).23
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4.5. Fourth-order BDF scheme. Let us consider the following abstract difference equation1

(32)
1

τ

[
25

12
un+4 − 4un+3 + 3un+2 − 4

3
un+1 +

1

4
un
]
= Aun+4 + fn+4, n ∈ N0,

with initial conditions u0 = u1 = u2 = u3 = 0. This time-stepping scheme has sym-2

bol 1
τ

(
25
12 − 4z + 3z2 − 4

3z
3 + 1

4z
4
)
and corresponds to the fourth order backward difference3

scheme, see e.g. [24]. As before, we define bn := 1
τ (δ0 − δ1)(n) + 1

2τ [(δ0 − δ1) ∗ (δ0 − δ1)](n) +4

1
3τ [(δ0 − δ1) ∗ (δ0 − δ1) ∗ (δ0 − δ1)](n) +

1
4τ [(δ0 − δ1) ∗ (δ0 − δ1) ∗ (δ0 − δ1) ∗ (δ0 − δ1)](n) =5

1
τ

[
25
12δ0(n)− 4δ1(n) + 3δ2(n)− 4

3δ3(n) +
1
4δ4(n)

]
.6

It follows that b̃(z) = 1
τ

(
25
12 − 4z + 3z2 − 4

3z
3 + 1

4z
4
)
, the radial limit exists, and is given

by:

b̂(t) =
1

τ

(
25

12
− 4e−it + 3e−2it − 4

3
e−3it +

1

4
e−4it

)
, t ∈ T0.

We arrive at the following result.7

Corollary 4.14. Let X be a UMD space, and let A be an R-sectorial operator of angle8

π − arctan
(699√ 3

2

256

)
. Then equation (32) has maximal �p0-regularity.9

Proof. Let Φ(t) = arctan ( −3 sin 3t+13 sin 2t−23 sin 3t3 cos 3t−13 cos 2t+23 cos t−25)+arctan ( sin t
1−cos t) be the argument function10

of the symbol for the fourth order scheme b̂(t) for t ∈ T. A computation show that Φ′(t) =11

−480 sin4( t
2
)(5 cos t−1)

913 cos t−394 cos 2t+75 cos 3t−666 . Then, Φ has a relative maximum at the points: tn = 2πn +12

arccos (1/5), n ∈ Z. The maximum of Φ(t) is given by Φ(t0) = π − arctan
(699√ 3

2

256

)
and then13

the scheme is A(θ)-stable with θ = arctan
(699√ 3

2

256

)
. A calculus shows the 1-regularity of14

the kernel sequence b. Moreover, b0 = 25
12τ > 0. The conclusion then follows from Corollary15

3.8. �16

In view of the preceding subsections, an analogous analysis for the fractional version of17

this scheme can be easily carry on. We omit the details.18

4.6. L1-Scheme. We now consider one time-stepping scheme of finite difference type for19

simulating subdiffusion and superdiffusion, the L1-scheme, which has been recently studied20

in the literature, see [31]. The L1-scheme is one of the most popular and successful numerical21

methods for discretizing the Caputo fractional derivative in time [14]. Our approach here22

begins establishing the linear difference equation associated with the scheme, which seems to23

be new. In order to do that, we recall the function gβ(t) :=
tβ−1

Γ(β) , t > 0, β > 0, that we will24

consider evaluated on the set N, that is (gβ)n := nβ−1

Γ(β) , n ∈ N. Let 0 < α < 1 be fixed and we25

define the difference scheme26

(33)
(g2−α ∗ u)n+1 − (g2−α ∗ u)n

τα
= Aun + fn, n ∈ N.

It is interesting to observe that (33) is a nonlocal version of the difference equation (un+1−un)
τ =27

Aun + fn, n ∈ N, that appears from (33) in the limit case α = 1. Moreover, it is remarkable28

that because 0 < α < 1 we have g2−α(0) = 0. Therefore, using the identity [12, Proposition29

2.9]-(v), we get that the nonlocal difference equation (33) is equivalent to:30

(34) (b ∗ u)(n) = Aun + fn, n ∈ N.
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where bn = 1
τα (g2−α)

(1)
∇ (n+ 1) which - after a computation - coincides with1

(35) bn =
1

ταΓ(2− α) [(n+ 1)1−α − n1−α], n ∈ N0, 0 < α < 1,

obtaining that (34) fits in the abstract model (2). Moreover, a calculation shows that

b̂(t) =
(1− e−it)2

ταe−itΓ(2− α)Liα−1(e
−it),

where Liα−1(z) is the polylogarithmic function [11], defined by Lip(z) :=
∑∞

j=1
zj

jp such that2

Liα−1(e−it) is defined via analytic continuation. We observe that a simple condition involving3

R-sectoriality of the operator A is not possible here, since there is no sector Σθ including4

completely the set {b̂(t)}t∈T0 . However, as before, one can provide a general result which is5

independent of this geometrical restriction, as follows:6

Theorem 4.15. Let X be a UMD space and 0 < α < 1. Assume that{
1

ταΓ(2− α) ,
(1− e−it)2

ταe−itΓ(2− α)Liα−1(e
−it)

}
t∈T0

⊂ ρ(A)

and that the set{
(1− e−it)2

ταe−itΓ(2− α)Liα−1(e
−it)

(
(1− e−it)2

ταe−itΓ(2− α)Liα−1(e
−it)−A

)−1}
t∈T0

is R-bounded. Then the L1-scheme (33) has maximal �p0-regularity.7

Proof. The theorem follows directly from Theorem 3.5 if we show that the sequence {bn}n∈N08

defined in (35) is a 1-regular sequence. Indeed, a simple calculus shows that the following9

equality holds:10

(36) (1− eit)(1 + eit)
[̂b(t)]′

b̂(t)
= −i(1 + eit)2 − i(1− e2it)Liα−2(e

−it)
Liα−1(e−it)

.

We have the following expansion formula [35, Formula (13.1)]11

Liα−1(e−it)
Γ(2− α)(37)

= (−2πi)α−2
∞∑
k=0

(k + 1− t

2π
)α−2 + (2πi)α−2

∞∑
k=0

(k +
t

2π
)α−2

= (2π)α−2(cos((2− α)π
2
)(A(t) +B(t))− i(2π)α−2(sin((2− α)π

2
)(A(t)−B(t))

where A(t) =
∑∞

k=0(k + t
2π )

α−2 and B(t) =
∑∞

k=0(k + 1 − t
2π )

α−2 are both convergent12

series for 0 < α < 1. As a consequence, there exist positive constants C,C ′ > 0 such that13

|Liα−2(e−it)| < C and |Liα−1(e−it)| > C ′ when t ∈ T0 is far away from 0. Meanwhile, using14

the asymptotic expansion [35, Equation (9.3)] given by Lip(e
−it) = Γ(1− p)(it)p−1+ o(tp) as15

t→ 0 we can conclude that (1− e2it)Liα−2(e−it)
Liα−1(e−it)

is also bounded when t→ 0, and hence, for16

all t ∈ T0. Therefore, (36) is bounded for all t ∈ T0 and the proof is finished. �17

In case 1 < α < 2, we consider the abstract difference equation18

(38)
1

τα
(g3−α ∗ u)(1)∇ (n+ 1) = Aun + fn, n ∈ N.
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We observe that in the limit case α = 2 the above equation reduces to 1
τ2
un+1 = Aun+fn. In1

contrast, when α < 2, we obtain that the difference equation (38) is equivalent to 1
τα (bn∗u)n =2

Aun + fn, n ∈ N where bn = 1
τα (g3−α)

(1)
∇ (n + 1). Consequently, we are in the conditions of3

our abstract main result with the sequence bn = 1
ταΓ(3−α) [(n + 1)2−α − n2−α], n ∈ N0, and4

b̂(t) = 2
τα

1−e−it

1+e−it
(1−e−it)2

e−itΓ(3−α)Liα−2(e
−it). The corresponding theorem follows similarly as the5

case 0 < α < 1 as a consequence of the 1-regularity of the kernel sequence bn.6
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