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a b s t r a c t 

This paper addresses the assessment of the stability of distributed active noise control (ANC) systems, 

which are designed to cancel acoustic noise at given points in space. These systems distribute the control 

task across several simple acoustic nodes that generate the control signals by filtering a noise reference 

signal. The coefficients of each node filter are iteratively calculated by the filtered-X LMS algorithm. The 

nodes remain stable when the adaptive filters computed in each node converge to finite values. However, 

the acoustic coupling among nodes can cause instability (i.e., divergence). Collaboration among nodes is 

required to avoid this phenomenon. It is shown that the properties of the system are summarized in a 

system matrix and that the system remains stable when the real parts of all of the eigenvalues of this 

system matrix are positive. However, computation of all of the eigenvalues is computationally expensive. 

In this paper, we propose a fast method for checking the positiveness of the real parts of the system ma- 

trix eigenvalues. It is shown that the proposed method is faster than the direct calculation of eigenvalues 

and it assesses the stability/instability of the ANC systems without any false stability outcomes and more 

accurately than existing alternatives. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Multichannel active control noise (ANC) applications [1–4] re- 

roduce specific sound signals (anti-noise signals) to cancel out 

 given noise within an area of the space. These systems gener- 

te the control sound signals from a version of the actual noise, 

alled reference signal, by filtering it through a set of filters, which 

re usually finite impulse response (FIR) filters [5] . The filters are 

teratively adjusted making use of measured signals in the con- 

rol (quiet) area and multichannel adaptive signal processing al- 

orithms. The filtering of the reference noise signal and the multi- 

hannel algorithms [2] to calculate the filters’ coefficients could be 
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xecuted by a central processor that has enough computational ca- 

acity. This processor must be capable of handling many input and 

utput signals in a general case. In [6] , a floating-point architecture 

o achieve a high-efficiency implementation of a centralized multi- 

hannel adaptive algorithm for ANC applications is introduced and 

valuated in a real-time setup. 

Alternatively, distributed systems [7–10] have been proposed 

ased on the use of several units of lower capacity equipment 

both computational and signal handling), which we call acous- 

ic nodes, to avoid the need to use high-performance equipment. 

hen working in parallel, these nodes provide the system with 

he ability to handle a large number of input and output signals 

nd with sufficient versatility, scalability, and robustness (redun- 

ancy) to deal with possible failures in a single processing unit or 

he need for system performance improvement. The simplest ver- 

ion of an acoustic node is composed of one speaker (acoustic ac- 

uator), one microphone (acoustic sensor), a simple computer unit 

here a controller (usually managed by an adaptive filter) is ex- 

cuted, and communication capability (network connection). This 

ode carries out the cancellation of noise at its microphone by 

enerating an anti-noise signal that destructively interferes with 
under the CC BY-NC-ND license 

https://doi.org/10.1016/j.sigpro.2023.109087
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2023.109087&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mferrer@dcom.upv.es
mailto:vmgarcia@dsic.upv.es
mailto:avidal1972@gmail.com
mailto:mdediego@dcom.upv.es
mailto:agonzal@dcom.upv.es
https://doi.org/10.1016/j.sigpro.2023.109087
http://creativecommons.org/licenses/by-nc-nd/4.0/


M. Ferrer, V.M. García-Mollá, A.M. Vidal-Maciá et al. Signal Processing 210 (2023) 109087 

Fig. 1. Examples of different configuration networks for ANC. The network allows processors to share data in collaborative mode. 
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he actual noise. The anti-noise is generated by filtering a reference 

ignal that is correlated with the actual noise through an adaptive 

IR filter, whose coefficients can be adjusted using a version of the 

ltered-x LMS algorithm (FxLMS) [11,12] . A feedforward structure 

ithout feedback between the secondary sources and the reference 

ignals is considered. 

It can be shown that the coefficients of the adaptive filter of the 

ontroller of each acoustic node achieve a stable steady state un- 

er common adaptive filtering and signal conditions, when work- 

ng in isolation. This means that the coefficients of the adaptive 

lter converge in mean to finite values. When this convergence 

appens, we say that the (single-node) system is stable. However, 

 network is comprised of several nodes working simultaneously 

ithin the same acoustic space; thus, the signal generated by each 

ode can interfere with the signals from other nodes. This inter- 

erence from other nodes can lead the system to instability, which 

eans in this context that the adaptive filter coefficients of some 

f the nodes diverge, unless the nodes collaborate to a certain ex- 

ent. In this paper, we are mainly concerned with the study and 

omputation of the stability conditions of multiple-node networks. 

ote that there are several internal feedback loops between the 

ultiple secondary sources and the multiple error sensors during 

he coefficient adaptation process. This fact could lead the system 

o diverge, which motivates the proposed stability analysis. 

The distributed algorithms (running on distributed nodes) for 

NC can work in collaborative [10,13,14] or non-collaborative 

15,16] modes. The collaborative mode involves data exchange 

mong either all of the nodes or a subset of them, whereas the 

on-collaborative mode does not allow any exchange. Recently, 

everal decentralized solutions have been proposed based on the 

igenvalue shaping approach, such as [17] . However, they require 

 preprocessing of reference signals and only address the two- 

hannel ANC problem. The non-collaborative mode is more sen- 

itive to the acoustic system characteristics, which can affect the 

onvergence of the coefficients of the adaptive filters of the con- 

rollers. Thus the rules of collaboration among nodes, and which 

odes should collaborate, are vital in order to achieve good per- 

ormance of the whole system. Although collaboration can be un- 

erstood as the actions that nodes must perform to share given 

ata, some of these strategies exhibit an outcome equivalent to 

hat of multichannel centralized algorithms. The main purpose of 

his work is to assess if a set of nodes formed by one sensor and

ne loudspeaker (single-channel) can work independently within 

n acoustically coupled environment without stability problems (as 
2 
t is illustrated by Fig. 1 -(a)), or it needs to be grouped into multi-

hannel systems using the network (e.g. Fig. 1 -(b)). 

We will show that the stability of a (collaborative or non- 

ollaborative) distributed system depends mainly on the eigenval- 

es of a system matrix [18,19] , which is formed using the corre- 

ation between the reference signal filtered through acoustic chan- 

els linking loudspeakers and microphones. The dimensions of this 

atrix are proportional to the number of nodes and to the length 

f the adaptive filters, and it can be large when the network grows. 

onsequently, the computation of the eigenvalues of this matrix 

an be costly computationally speaking. Furthermore, there are 

everal meaningful practical applications that would require as- 

essing the stability of many ANC systems (i.e., if we search for 

 stable network setup with minimal collaboration among nodes). 

herefore, it is important to efficiently determine the stability of 

n acoustic network setup of active noise controllers. 

In this paper, we propose a fast and approximate method that 

ssesses whether a distributed system is stable for given collabora- 

ion rules among nodes. The proposed method can provide incor- 

ect stability diagnoses (by marking the system as unstable when 

t is stable) in a few cases (false negative, FN). However, it can be 

hown that it never provides false positives (FP), which is the case 

hat must be avoided in practice. This method outperforms other 

roposed methods in terms of FN and FP ratios and also outper- 

orms the direct calculation of the eigenvalues in terms of com- 

utation time. Therefore, it becomes a practical choice for assess- 

ng the stability of distributed ANC controllers. The performance 

n terms of noise reduction that a stable system can achieve de- 

ends mainly on the acoustical characteristics of the system (i.e, 

coustical paths among the noise sources and the microphones and 

mong the loudspeakers and the microphones), but its study is out 

f the scope of this work. Several studies have analyzed statisti- 

ally the performance of multichannel ANC systems based on the 

xLMS in terms of convergence and steady-state behavior. In this 

egard, a centralized multichannel narrowband ANC system is in- 

roduced in [20] . Furthermore, [21] and [22] investigate several dif- 

usion strategies to address the distributed narrowband ANC prob- 

em. 

The paper is structured as follows. Section 2 is devoted to the 

tudy of a network of N single-channel nodes. This analysis is car- 

ied out from the point of view of the convergence of the adaptive 

lters to finite values at the nodes, which implies system stability 

n practice. In Section 3 , we introduce the above-mentioned com- 

utationally efficient method to assess the stability of a network of 
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Fig. 2. Single channel network and node signal details (electrical paths in solid lines, acoustic paths in dashed lines). 
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single-channel nodes, which are running the FxLMS. The use of 

his practical and meaningful method represents the main novelty 

f the present work. The proposed method is validated through ex- 

ensive simulations in Section 4 . Finally, the discussion and conclu- 

ions of the work are presented in Sections 5 and 6 . 

Notation : For the sake of clarity, the following notation has been 

sed throughout this work: italics denote scalars (e.g., x ), bold- 

ace lower-case letters denote vectors (e.g., x ) and boldface upper- 

ase letters denote matrices (e.g., X ). Boldface subindexes and su- 

erindexes are part of the vector or matrix name (e.g., x f and R 

S 
B 

)

nd do not take numerical values. Finally, the expectation operator 

s denoted by E {·} . 

. Stability of a network of N single-channel nodes 

Given a network of N single-channel nodes with an adaptive 

lter of L coefficients at each node, we will use the following signal 

efinitions and nomenclature (see Fig. 2 ): 

• x (n ) : reference noise signal, which is correlated with the noise 

signal at the nodes’ sensors (error microphones). 
• x (n ) : vector with the last L samples of x (n ) . 
• w k (n ) : vector with the L coefficients of the k -th node FIR filter

at time n . 
• w (n ) : vector with the coefficients of the N FIR filters, w k (n ) for

k ∈ { 1 , . . . , N} , at time n . 
• e k (n ) : signal picked up by the sensor at k -th node ( k -th error

signal). 
• e (n ) : vector with the most recent samples of e k (n ) for k ∈

{ 1 , . . . , N} . 
• y k (n ) : signal rendered by the k -th node, which is generated

from the filtering of the reference signal through its cor- 

responding adaptive filter. It can be calculated as: y k (n ) = 

x T (n ) w k (n ) . 
• s jk : acoustic path between the j-th node actuator and 

the sensor of the k -th node. It is modeled as a FIR fil-

ter of M order, which has the following coefficients: s jk = 

[ s jk (0) , s jk (1) , . . . , s jk (M)] T . 
• x f jk (n ) : vector comprising the last L samples of the reference 

signal filtered through the acoustic path between the j-th node 

actuator and the sensor of the k -th node. 
• p k : acoustic path between the noise source and the sensor of 
k -th node. o

3 
The system is usually acoustically coupled. This means that the 

rror signal in each node depends on the interference from the rest 

f the nodes (apart from the signal generated by that node and the 

oise signal to be canceled). Therefore, we can write this depen- 

ence in matrix notation as: 

 (n ) = d (n ) + x 

T 
f (n ) w (n ) , (1)

ith x f (n ) being the following ( LN × N) matrix: 

 f (n ) = 

⎡ 

⎢ ⎢ ⎣ 

x f 11 (n ) x f 12 (n ) · · · x f 1 N (n ) 
x f 21 (n ) x f 22 (n ) · · · x f 2 N (n ) 

. . . 

x f N1 (n ) x f N2 (n ) · · · x f NN (n ) 

⎤ 

⎥ ⎥ ⎦ 

, (2) 

here x f jk (n ) is defined above, and d (n ) = 

 d 1 (n ) , d 2 (n ) , . . . , d N (n )] T is an ( N × 1 ) vector with the last

amples of the noise signal at the N sensors at time n . 

We consider that each node is running the FxLMS adaptive al- 

orithm [11,23] , with an effort parameter given by βk [24] . There- 

ore, when collaboration between nodes is not allowed, the k -th 

ode is updating its coefficients w k (n ) as follows: 

 k (n + 1) = (1 − μβk ) w k (n ) − μx f kk (n ) e k (n ) , (3)

here x f kk (n ) is a column vector comprising the last L samples 

f the reference signal filtered through the acoustic path that joins 

he k -th node actuator with its sensor, and μ denotes the step-size 

onvergence parameter. Eq. (3) arises from the minimization of the 

nstantaneous squared error plus the system control effort, J k (n ) = 

 

2 
k 
(n ) + βk w 

T 
k 
(n ) w k (n ) , by a gradient descent strategy [23] and it

an be also derived as a version of the leaky LMS algorithm [25] .

or the sake of simplicity, it is assumed that each node has perfect 

nowledge of the real acoustic paths (perfect estimation) that it 

eeds to update its coefficients. It should be noted that a single 

ode running the FxLMS without collaboration can remain stable 

s long as the step-size ( μ) and effort ( βk ) parameters are suitably 

hosen [18] . 

When some of the nodes of the network are allowed to up- 

ate their coefficients using the information handled by other (one 

r more) nodes, the network is running a distributed collaborative 

lgorithm. Then, let us consider the k -th node. This node tries to 

ancel the noise signal at its microphone minimizing J k (n ) . How- 

ver, by doing so, the k -th node is creating an interference such 

hat a neighbor node l becomes unstable. To avoid this effect, the 

ost function of the k -th node should be modified to simultane- 

usly consider (and thus minimize) the signal at its microphone 
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nd at the microphone of the l-th node, J k (n ) + J l (n ) . Therefore,

he coefficients of the k -th node would be updated through the 

ollowing adaptive equation [10] : 

 k (n + 1) = (1 − μβk ) w k (n ) − μ(x f kk (n ) e k (n ) + x f kl (n ) e l (n )) , 

(4) 

hich can be generalized (allowing collaboration) as: 

 k (n + 1) = (1 − μβk ) w k (n ) − μx f kk (n ) e k (n ) 

−μ
∑ 

l � = k 
c kl x f kl (n ) e l (n ) , (5) 

here c kl constants indicate if there is collaboration between 

odes k and l, so that c kl = 1 if the node k uses information from

ode l for updating its coefficients, and c kl = 0 otherwise. Although 

he k -th node would apparently need to have access to the error 

ignal of the l-th node to collaborate when c kl = 1 , distributed al-

orithms can carry out the collaboration avoiding sharing signals. 

n example is reported in [10] where an incremental communica- 

ion of the coefficients of the adaptive filters is implemented and 

o signals are shared. 

Using vector notation, all of the nodes in the network are up- 

ating their coefficients as follows: 

 (n + 1) = (I − μB ) w (n ) − μX fk (n ) e (n ) , (6)

here w (n ) is an ( LN × 1 ) vector that holds the L coefficients of

he N adaptive filters, e (n ) is an ( N × 1 ) vector with the N error

ignals at time n , B is a diagonal matrix where the diagonal el- 

ments are repeated in blocks of L elements keeping the effort 

arameter of each node, from β1 to βN , and, finally, X fk (n ) is an 

 LN × N) matrix with the following structure: 

 fk (n ) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

x f 11 (n ) 0 · · · · · · · · · 0 
0 x f 22 (n ) · · · · · · · · · 0 

. . . 

0 · · · x f kk (n ) · · · x f kl (n ) 
0 0 · · · · · · · · · x f NN (n ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

(7) 

here 0 is a column vector with L zeros and the vector x f kl (n )

ppears as long as c kl = 1 ( ∀ k, ∀ l, l � = k ). 

In the case where all of the nodes collaborate with each other 

equivalent to the centralized algorithm), then X fk (n ) = x f (n ) and 

he network would be running a version of the multiple error LMS 

lgorithm [11] . The step-size μ could be different in each node. 

owever, for the sake of simplicity, the same step-size is used for 

he entire network throughout this paper, which may set stiffer 

imits in the step-size that could slow down the convergence of 

ome nodes. 

Eq. (6) can be rewritten using (1) as: 

 (n + 1) = (I − μB ) w (n ) − μX fk (n )(d (n ) + x 

T 
f (n ) w (n )) . (8)

The aim is to know if the vector coefficients of the network 

iven by w (n ) will keep finite values after the iterative use of

q. (8) . This means that the network is stable within the context 

f this work. It should be noted that a given matrix X fk (n ) en-

loses implicitly the collaboration coefficients between nodes ( c kl , 

 k, ∀ l) and the effort parameters ( βk , ∀ k ). Thus an alternative col-

aboration scheme between the nodes must be proposed when 

q. (8) does not converge to finite values for any convergence 

arameter μ. 

Let us assume that we are dealing with stationary zero-mean 

ignals and, when n → ∞ , the filter coefficients of the nodes of the

etwork will converge to w (∞ ) = lim n →∞ 

E{ w (n ) } , thus the fol-

owing expression can be derived: 

 (∞ ) = (I − μB ) w (∞ ) − μE{ X fk (n ) d (n ) } − μE{ X fk (n ) x 

T 
f (n ) } 
4 
w (∞ ) , (9) 

nd consequently: 

 (∞ ) = −(E{ X fk (n ) x 

T 
f (n ) } + B ) −1 E{ X fk (n ) d (n ) } 

= −(R + B ) −1 E{ X fk (n ) d (n ) } . (10) 

here R is an ( LN × LN) matrix that contains the cross-correlation 

atrices of the reference signal filtered by the different acoustic 

aths and is defined as: 

 = E { X fk (n ) x 

T 
f (n ) } = 

⎡ 

⎢ ⎢ ⎣ 

˜ R xf 11 

˜ R xf 12 
· · · ˜ R xf 1 N ˜ R xf 21 

˜ R xf 22 
· · · ˜ R xf 2 N 

. . . ˜ R xf N1 

˜ R xf N2 
· · · ˜ R xf NN 

⎤ 

⎥ ⎥ ⎦ 

, (11) 

here each new ( L × L ) submatrix ˜ R xf rc 
that appears in R is com-

uted as: 

 

 xf rc 
= R xf r r _ cr 

+ 

∑ 

m � = r 
c rm 

R xf rm _ cm 
, (12) 

ith R xf rm _ cm 
being a correlation matrix defined in Eq. (13) . The 

 rm 

constants in Eq. (12) indicate if there is collaboration between 

odes r and m so that c rm 

= 1 if the node r uses information from 

ode m for updating its coefficients, and c rm 

= 0 otherwise. 

Each submatrix R xf rm _ cm 
in Eq. (12) is ( L × L ) with Toeplitz struc- 

ure: 

 xf rm _ cm 
= 

⎡ 

⎢ ⎢ ⎣ 

R x f rm _ cm 
(0) R x f rm _ cm 

(1) · · · R x f rm _ cm 
(L − 1) 

R x f rm _ cm 
(1) R x f rm _ cm 

(0) · · · R x f rm _ cm 
(L − 2) 

. . . 

R x f rm _ cm 
(L − 1) R x f rm _ cm 

(L − 2) · · · R x f rm _ cm 
(0) 

⎤ 

⎥ ⎥ ⎦ 

, 

(13) 

here R x f rm _ cm 
(l) = R xx (l) ∗ s rm 

(l) ∗ s cm 

(−l) (the operator ∗ repre- 

ents linear convolution), and R xx (l) = E{ x (n + l) x (n ) } , the self-

orrelation of the reference signal x (n ) , (see Appendix A ). 

If x f (n ) ≈ X fk (n ) and B = 0 , then the solution given by Eq.

10) would provide the same solution of the equivalent centralized 

or fully collaborative) system. The matrix of effort factors B adds a 

ias to the optimal solution that achieves the maximum noise can- 

ellation [11,25,26] , consequently B = 0 is preferred in most prac- 

ical cases. 

.1. Convergence conditions 

The translated weight vector v (n ) is defined as: v (n ) =
{ w (n ) } − w (∞ ) . When the filter coefficients of the nodes of the

etwork converge, it holds that v (n ) → 0 if n → ∞ . Using this def-

nition, expression (8) can be written as: 

 (n + 1) = (I − μ(B + R )) v (n ) , (14) 

It can be shown that the convergence of the system described 

y Eq. (14) when n increases depends on the eigenvalues of the 

atrix R B = B + R . If R B is a nondefective matrix [27] , then the

atrix R B fulfills that 

 B Q = Q�, (15) 

here Q is an ( LN × LN) matrix such that its columns are the 

igenvectors of R B , and � is a diagonal matrix with the LN eigen- 

alues ( λl ) of R B along its diagonal. Eq. (14) can be uncoupled con- 

idering that the vector v (n ) is a linear transformation of another 

ector v ′ (n ) as: 

 (n ) = Qv ′ (n ) . (16) 

herefore (14) becomes 

 

′ (n + 1) = (I − μ�) v ′ (n ) , (17) 
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hich can be decomposed in LN uncoupled equations as follows: 

 

′ 
l (n + 1) = (1 − μλl ) v ′ l (n ) = (1 − μλl ) 

(n +1) v ′ l (0) . (18)

q. (18) reveals the following necessary condition for the conver- 

ence of the filter coefficients of the nodes of the network to the 

ptimal solution: 

 1 − μλl | < 1 , 1 ≤ l ≤ LN. (19) 

his means that the filter coefficients of the nodes will converge, 

hich provides system stability in practice, only if all of the eigen- 

alues of the matrix R B , λl , fulfill that 

1 − μIRe (λl )) 
2 + (μIIm (λl )) 

2 < 1 . (20) 

he condition given by (20) will not hold if any IRe (λl ) < 0 , in-

ependently of the value of μ. Therefore, if any eigenvalue of the 

atrix R B has a negative real part, the system will not be stable. 

f all of the eigenvalues of R B have non-negative real parts, it does 

ot automatically imply that the system will converge since the 

tep-size μ, which must be a positive constant, must simultane- 

usly fulfill the following constraints for all of the eigenvalues: 

 < μ < 

2 

IRe (λl ) 
, (21) 

 < μ < 

1 

| IIm (λl ) | , (22) 

< 

2 IRe (λl ) 

| λl | 2 . (23) 

he above conditions depend on many factors, such as algorithm 

arameters (value of constant μ, effort factors in B ) and the fea- 

ures of the room and the signals (included in the values of the 

atrix R ). If unit-variance white noise is used as the reference 

oise signal, the values of the matrix R would depend only on 

he physical configuration of the system, (i.e., on the properties of 

he acoustic paths), because R xx (l) = δ(l) and hence R x f rm _ cm 
(l) = 

 rm 

(l) ∗ s cm 

(−l) . 

Similarly, if the input signal follows an MA (Moving Aver- 

ge) mode, i.e., x (n ) = n o (n ) ∗ f (n ) , with n o (n ) being unit-variance

hite noise and f (n ) the impulse response of a filter, then 

 xx (l) = f (l) ∗ f (−l) . Then, the values in the matrix R can be easily

omputed as: R x f rm _ cm 
(l) = f (l) ∗ f (−l) ∗ s rm 

(l) ∗ s cm 

(−l) = s 
f 
rm 

(l) ∗
 

f 
cm 

(−l) , where s 
f 
rm 

(l) = f (l) ∗ s rm 

(l) . These values depend only on

he acoustic system (and the MA model) and represent an equiv- 

lent system whose input is unit-variance white noise, and all of 

he acoustic paths of the system have been replaced by the result 

f their convolutions with the filter f (n ) . 

On the other hand, when R B = R ( βl = 0 , ∀ l), finding an eigen-

alue such that IRe (λl ) < 0 implies that the algorithm would never 

onverge independently from the choice of step-size μ. However, 

his circumstance can be avoided using appropriate values of the 

ffort factor βl > 0 together with an appropriate choice of the step- 

ize parameter, at the expense of decreasing the final noise cancel- 

ation levels. To illustrate this fact, let us consider βl = β > 0 , ∀ l,

implifying the Eq. (14) to: 

 (n + 1) = ((1 − μβ) I − μR ) v (n ) . (24)

From here, new conditions can be derived for the eigenvalues 

f the new matrix R B . If the eigenvalues of R are named as λR 
l 

, we

ould have: 

 1 − μβ − μλR 
l | < 1 ⇒ | 1 − μ(β + λR 

l ) | < 1 . (25)

This would allow that if any eigenvalue λR 
l 

has a negative real 

art, its influence on convergence can be countered by using a 

uitable value of β . However, even choosing appropriate values for 
5

such that negative eigenvalues are avoided, the following condi- 

ions on μ should also hold: 

< 

2 

β + IRe (λR 
l 
) 
, (26) 

< 

1 

| IIm (λR 
l 
) | , (27) 

< 

2(β + IRe (λR 
l 
)) 

β2 + 2 βIRe (λR 
l 
) + | λR 

l 
| 2 . (28) 

In a non-collaborative network ( c k j = 0 , ∀ k � = j) and the hypo-

hetical case where all of the acoustic paths are identical, which 

eans that all of the acoustic paths s rr are equal ∀ r, and all of

he crossed acoustic paths are also equal, s rc = s cr for r � = c, ma-

rix R will be symmetric and positive definite. Therefore, all of its 

igenvalues are real and nonnegative. This means that it is always 

ossible to find a value of μ such that the non-collaborative dis- 

ributed ANC system is theoretically stable. Eigenvalues close to 

ero might appear, which (in practice) could deteriorate the ro- 

ustness and convergence of the adaptive algorithm. However, in 

his case, a small value of β could be easily tuned to improve the 

lgorithm’s convergence. Unfortunately this hypotetical case is not 

iven in practice and the stability of non-collaborative networks 

eeds to be checked. The above results apply when the signals 

nd acoustic paths of the ANC systems match the stationary model 

onsidered to build the matrix R or R B . They do not apply in tran- 

ient state. 

. Criteria for assessing network stability 

The stability of an ANC network depends (among others) on 

actors like the delay between signals arriving at each sensor or 

he relative energies of these signals [28,29] . However, these fac- 

ors cannot independently determine the stability of the whole 

etwork. Therefore, the study of the stability must be addressed 

rom the eigenvalues of the R B matrix [15] , which gathers all of 

he acoustic system information and the rules of collaboration if 

hey exist. The properties of these eigenvalues are used to deter- 

ine the convergence of the adaptive algorithm (FxLMS), which 

s running at each node, and consequently to assess ANC network 

onvergence. The computation of all of the eigenvalues can be per- 

ormed using a state-of-the-art function, like the eig function of 

atlab [30] , which uses an optimized version of the LAPACK li- 

rary [31] and is able to take advantage of the multiple cores of 

 modern computer. However, the computation of all of the eigen- 

alues of a matrix using functions like eig is computationally very 

emanding. The main computational cost for obtaining the eigen- 

alues (without eigenvectors) using the eig function is due to the 

eduction of the matrix to upper Hessenberg form [27] , which is 

 ( 10 M 

3 

3 ) for a matrix in � 

M×M . 

The computational cost is especially relevant when the stabil- 

ty of several collaboration set-ups of a given network needs to be 

ested. Depending on the size of the network (number of nodes), 

he number of different configurations may be very large. This hap- 

ens when we are searching for a collaboration scheme so that an 

nstable non-collaborative network becomes stable by collabora- 

ion among nodes. For each possible collaboration set-up, a differ- 

nt matrix R B will arise. If the eigenvalues of many different matri- 

es R B have to be computed, the computational cost will become 

naffordable. Hence, other methods for checking the properties of 

he eigenvalues of R B related to the stability of the ANC system 

ust be tried and tested. 
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.1. Stability condition based on the Gershgorin Circle Theorem 

There are well-known theorems that provide information about 

he location of the eigenvalues of a matrix on the complex plane 

ithout computing them. The Gershgorin Circle Theorem [27] is 

ossibly the best known of these theorems. A sufficient criterion to 

uarantee that the eigenvalues of a matrix have positive real parts 

ithout needing to compute them can be derived from this theo- 

em. Thus, it can be shown that the eigenvalues will have positive 

eal parts if the moduli of the diagonal elements are higher than 

he sum of the moduli of the rest of the elements in the same

ow. This means, given Rb x f i j 
as the (i, j) element of the matrix 

 B , that: 

 Rb x f ii 
| > 

∑ 

j � = i 
| Rb x f i j 

| , ∀ i. (29) 

The computational cost of checking the condition given by 

29) is only M · (M − 2) additions for a matrix in � 

M×M . However,

he condition given by Eq. (29) turns out to be too restrictive in 

ractice [13,15] . As will be shown in Section 4 , this condition can

ead to having to consider most networks as unstable (even if they 

re stable), which means most system matrices will not fulfill the 

ondition (29) , thus providing many False Negatives (FN). 

However, it must be stressed that if Eq. 29 is verified, this en- 

ures system stability in practice (i.e., it cannot give FP). Further- 

ore, it is always possible to lead any system to fulfill Eq. (29) by

hoosing a suitable effort factor ( βi ≥ 0 ) for each node. Since R B 

iffers from R only in the diagonal elements and all of the ele- 

ents of the diagonal are positive, it holds that: 

 Rb x f ii 
| = βi + | R x f ii 

| , (30) 

nd, therefore, condition (29) holds if: 

i > 

∑ 

j � = i 
| R x f i j 

| − | R x f ii 
| , ∀ i. (31) 

lthough these values of βi can provide stable systems, it is at the 

xpense of degradation in noise cancellation performance and give 

NC systems without practical usefulness in most cases. 

The condition given by Eq. (29) can be alternatively obtained 

rom Eq. (14) considering that 

lim 

 →∞ 

(I − μR B ) 
n = 0 , (32) 

or an ANC system to converge to the optimum filter coefficients. 

xpression (32) holds if 

 I − μR B ‖ < 1 , (33) 

or any consistent matrix norm (denoted by ‖ · ‖ ). Specifically, the 

se of the infinity norm, ‖ R B ‖ = max i 
∑ 

j | Rb x f i j 
| leads to Eq. (29) .

o prove this, let us consider that i -th row has the maximum sum

f the modules of the row elements. In this case Eq. (33) holds if:

 1 − μRb x f ii 
| + μ

∑ 

j � = i 
| Rb x f i j 

| < 1 , (34) 

hich holds when: 

 Rb x f ii 
| > 

∑ 

j � = i 
| Rb x f i j 

| . (35) 

.2. Stability condition based on the computation of the inertia 

The stability criterion given by Eq. (29) is computationally very 

fficient. However, this criterion is far too restrictive and marks 

ost network configurations as likely unstable, even if they are 

table. This means a high number of FN outcomes. Thus, a crite- 

ion that minimizes the FN outcomes but that is computationally 
6 
ess expensive than the computation of all of the eigenvalues of 

 B is needed to be useful in practice. It is important to take ad- 

antage of the structure of the matrix R B , which is a block ma- 

rix with Toeplitz blocks. These matrices are usually referred to as 

oeplitz-block matrices. 

As mentioned above, a distributed ANC network running the 

xLMS algorithm will converge to the optimum controllers when 

ll of the eigenvalues of R B have positive real parts and the step- 

ize μ is suitably selected. This implies in practice that the sys- 

em will perform properly and remain stable. Therefore, our goal 

s to identify the systems where all of the eigenvalues of R B have 

ositive real parts, because these systems can be made stable (by 

electing an appropriate μ). 

The so-called inertia theorems can be used to check whether 

he real parts of all of the eigenvalues of the system matrix are 

ositive. The inertia of a matrix A , denoted by In (A ) , is defined 

s the triplet: (π(A ) , ν(A ) , δ(A )) [32] , where π(A ) , ν(A ) and δ(A ) 

re, respectively, the number of eigenvalues of A with positive, 

egative, and zero real parts, counting multiplicities. There are 

ethods for computing the inertia (without computing the eigen- 

alues) for symmetric and non-symmetric matrices. However, the 

ethods described in [32] have a computational cost O (M 

3 ) for 

atrices of size (M × M) , like the computation of all the eigenval- 

es. 

Since we are interested in faster methods, this requires tak- 

ng advantage of the Toeplitz-block structure of the matrix R B . 

oeplitz-block matrices belong to a wider class of matrices that is 

escribed as the set of matrices having displacement structure . 

hese matrices are defined in [33] as matrices A ∈ C 

M×M that can 

e written as: 

 Z M 

− Z M 

A = G M 

(H M 

) T , (36) 

here Z M 

is denoted as 

 M 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 · · · 0 0 

1 0 · · · 0 0 

0 1 · · · 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 · · · 1 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (37) 

nd G M 

and H M 

∈ C 

M×α are called the generator matrices. α is 

alled the displacement rank of A and is small compared to M. A 

oeplitz-block matrix with α blocks has a displacement rank of at 

ost 2 α [33] . 

A fast method ( O (αM 

2 ) ) for computing the inertia of a Her-

itian Toeplitz-block matrix (hence, with real eigenvalues) is de- 

cribed in [33] (Algorithm 2.3 in [33] ). This algorithm allows 

omputing the number of eigenvalues of a Hermitian Toeplitz- 

lock matrix A that are greater than, equal to, or less than a 

iven real number κ . Algorithm in Appendix B gives a pseudo- 

ode description of the inertia algorithm for κ = 0 , which incor- 

orates an improvement described below. A demo version of the 

ode can be downloaded from http://personales.upv.es/vmgarcia/ 

oeplitz _ inertia.zip . 

Unfortunately, matrix R B is not Hermitian in general. However, 

he interval containing the real parts of the eigenvalues of a ma- 

rix can be approximated using Bromwich’s inequality [34] , which 

tates that the real parts of the eigenvalues of a non-symmetric 

atrix A are contained in the interval formed by the largest and 

mallest eigenvalue of the symmetric part of A , which is defined 

s: A 

S = 0 . 5 ∗ (A + A 

T ) . If the matrix R B is Toeplitz-block, its sym-

etric part ( R 

S 
B 
) will also be. 

The Bromwich inequality can be combined with the inertia al- 

orithm proposed in [33] (for κ = 0 ) to develop an approximate 

ast method for assessing the sign of the eigenvalues of R 

S 
B 

. This 

ethod can be used to approximately test the sign of the real parts 

http://personales.upv.es/vmgarcia/Toeplitz_inertia.zip
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Fig. 3. Different ANC network scenarios working in non-collaborative mode. Each 

of the settings provides several scenarios. The blue elements are fixed and the red 

elements change. Setting 4 displays scenarios with different number of nodes. 
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f the eigenvalues of R B . If all of the eigenvalues of R 

S 
B 

are pos- 

tive, then the real parts of all of the eigenvalues of R B are also 

ositive. This result is assured thanks to the Bromwich inequality 

nd therefore this method will not provide false positives in the 

ase of ANC networks. On the other hand, if any of the eigenval- 

es of R 

S 
B 

were negative, then it could not be stated that the sys- 

em was unstable since it might still happen that the real parts 

f all of the eigenvalues of R B were positive. However, it will be 

hown in Section 4 that the rate of successful assessment of stabil- 

ty/instability provided by this method is good enough for practical 

se. 

This method requires the computation of the symmetric part 

atrix ( R 

S 
B 

) and the computation of the generator matrices. The 

lgorithm for computing the generator matrices is included in 

 downloadable version from http://personales.upv.es/vmgarcia/ 

oeplitz _ inertia.zip . Algorithm was implemented as a mex file to 

peed up its execution in Matlab [30] . Furthermore, the algorithm 

an be accelerated by taking advantage of the special features of 

he problem. In the description in [33] , when Algorithm is applied 

o a (M × M) matrix R B , it computes a vector q such that the num-

er of negative components in q indicates the number of negative 

igenvalues of R B . The vector q is generated within a loop with 

iterations, where a component of q is generated at each itera- 

ion. In our application, a single negative value of q is enough to 

lassify the ANC system as unstable. Therefore, Algorithm has been 

odified so that it stops as soon as a negative value of q arises.

his modification does not have any effect when the system is sta- 

le (because the vector q has to be completely computed), but the 

umber of iterations of the loop (and the computing time) can be 

reatly reduced in many cases where the system is being classified 

s unstable. The computational cost of Algorithm depends on the 

umber of iterations of its main loop (line 8 of Algorithm ) that are

arried out. Each iteration adds O (αM) flops to the computational 

ost. The number of iterations depends, among other factors, on 

hether the system is stable or not. If the system is stable, which 

eans that all real parts of the eigenvalues of the system matrix 

re positive, the loop will iterate M times, therefore the cost will 

e the one of the original algorithm proposed in [33] , i.e. O (αM 

2 ) .

f the system is unstable, the cost can be as small as O (αM) (if a

egative value in the q vector arises in the first iteration). 

.3. Discussion about alternative methods 

Iterative methods (such as Arnoldi, Lanczos,...) can alternatively 

e used to compute the eigenvalues of interest without computing 

ll of the eigenvalues of R B [27] . There are several well-known li- 

raries, of which Arpack [35] is the best known. The eigs function 

f Matlab [30] makes internally use of the znaupd Arpack function. 

terative methods are used to compute only a few eigenvalues. The 

igs function can be configured to look for the eigenvalues with 

he smallest real parts (which are the eigenvalues that we are in- 

erested in). Generally speaking, these methods can be very fast 

for large matrices) and the Toeplitz-block structure can be used 

o accelerate their computation. Unfortunately, the eigs function 

and the underlying Arpack function znaupd ) often fails to converge 

hen it is applied to some of the R B matrices arising in ANC net- 

orks. These failures occur when the eigs function is configured 

o find the eigenvalues with the smallest real parts, and, at the 

ame time, the R B matrix has a cluster of several (many) eigen- 

alues very close to zero. It is possible to obtain convergence by 

odifying some eigs input parameters, i.e., increasing the number 

f eigenvalues to be found or increasing the dimension of the sub- 

pace used in inner computations. However, when either of these 

wo approaches is applied, the computational cost of eigs becomes 

igher than the computational cost of the eig function. Therefore, 

he use of eigs was discarded. 
7 
. Results 

In this section, different methods that are available to assess the 

tability of a distributed ANC are evaluated, these are: the compu- 

ation of all of the eigenvalues, the criterion based on Gershgorin’s 

heorem given by (29) , and the inertia method proposed in 3.2 . 

hese methods have been tested for ANC networks using synthetic 

oom impulse responses of a room with size 9 . 13 m × 4 . 48 m ×
 . 64 m and different reverberation values. A total of 166320 sce- 

arios were studied. These were obtained by generating room im- 

ulse responses using the images method [36] with the software 

eported in [37] and available in [38] . The acoustic systems were 

NC networks of 2, 4, and 8 nodes located at different positions 

nside the room. White noise signal filtered through different fil- 

ers (low-pass, band-pass, and high-pass) is considered. The sta- 

ility analysis only requires knowledge of the estimated secondary 

aths and perfect estimation has been assumed. The number of 

oefficients of the generated room impulse responses of the sec- 

ndary paths was 250. 

The stability of each scenario was assessed by computing all of 

he eigenvalues of the system matrix using the Matlab eig func- 

ion. As mentioned above, if the real part of all of the eigenvalues 

s positive, then the system is considered stable; thus this assess- 

ent is considered to be the ground truth throughout this section. 

he system stability was also estimated using the condition given 

y (29) and using the proposed inertia method. As previously men- 

ioned, both methods can not give false positives, which means an 

P rate of 0% . However, both methods can fail by marking systems 

hat are stable as unstable (based on exact eigenvalues). As a mat- 

er of fact, in practice, the method derived from the Gershgorin 

heorem becomes useless for assessing the stability of wide-band 

NC systems, because it nearly always marks the system as unsta- 

le in all the simulated scenarios, which means an unacceptable 

http://personales.upv.es/vmgarcia/Toeplitz_inertia.zip


M. Ferrer, V.M. García-Mollá, A.M. Vidal-Maciá et al. Signal Processing 210 (2023) 109087 

Fig. 4. Stability assessment from Inertia and Gerschgorin’s criterion for different configurations of an ANC network composed of two nodes (Setting 1 with { d, s, r} = 

{ 20 , 40 , 50 } cm) working in non-collaborative mode. 
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N ratio. Its outcomes coincide with the direct calculation of the 

igenvalues only in 1 . 51% of the simulated scenarios (almost only 

hose with negative real part of any eigenvalue), while the inertia 

ethod coincides in 57 . 88% of them. This means that the FN ratio

s ≈ 100% for the Gershgorin criterion and ≈ 43 , 8% for the inertia 

riterion, for the simulated scenarios. 

Fig. 3 illustrates some of the scenarios, which can be generated 

electing different values of the parameters: d, s , and r. Further- 

ore, Fig. 3 (a) can provide different scenarios by modifying the 

ngle of one of the microphones ( θ ), and Fig. 3 (b) generates sce-

arios by modifying the angle of one node (speaker and micro- 

hone). Fig. 3 (d) considers configurations of 2, 4, and 8 nodes with 

onstant angular distribution. The radius, r, of separation between 

odes is the single parameter that is changing in this scenario. 

The sampling frequency was fixed to f s = 10 0 0 Hz in all cases.

he stability assessment of the ANC networks was also calcu- 

ated for different values of L , the number of coefficients of the 

daptive filter at each node. This way, e.g., the assessment of 
8 
tability for the network given by Fig. 3 (a) ( d = 20 cm, s = 40 cm

nd r = 50 cm) can be displayed as a function of the angle of the

obile microphone for the particular case of L = 180 . Note that we 

re selecting values of d, r and s that provide stable and unstable 

ystems depending on θ . The assessments of the three methods are 

isplayed in Fig. 4 (a) (1 indicates a stable system and 0 indicates 

n unstable system) for a white noise signal in a low reverberation 

oom ( T 60 = 0 ms, i.e, similar conditions to free space propagation). 

t can be seen that the proposed inertia method gives incorrect as- 

essments for only two scenarios ( θ = 162 o and θ = 198 o ), while 

he condition derived from the Gershgorin theorem marks all of 

he configurations as unstable. 

In the case of rooms with higher reverberation time, the sys- 

em stability depends on the relative positions of the nodes and 

lso on their placements within the room. However, the ability of 

he methods to evaluate the stability of the network remains sim- 

lar. The results for the same room with a reverberation time of 

 60 = 200 ms are shown in Fig. 4 (b). Again, the inertia method 
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Fig. 5. Stability assessment from Inertia and Gerschgorin’s criterion for different configurations of an ANC network working in non-collaborative mode. 
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Table 1 

Theoretical computational cost of the considered methods to check the positiveness 

of the real part of the eigenvalues in flops. M = Lα, where α is the number of nodes 

and L is the length of the adaptive filters. 

Method Flops 

eig function 10 M 3 

3 
+ lower order terms 

Inertia method (proposed) αM 

2 + lower order terms (worst case) 

Gershgorin’s criterion M(M − 2) 

i

c

w

c

t

t

utcomes are closer to the direct calculation of eigenvalues than 

ershgorin’s criterion. In this example, the network is located in 

he center of the room. As a consequence, symmetries can be 

bserved in the results. Fig. 4 (c) shows the results of the same 

cenario but displacing the network away from the center of the 

oom. The inertia method does not provide symmetrical results in 

his case and exhibits worse results than Fig. 4 (b). However, this 

ethod is still much more accurate than Gerschgorin’s criterion. 

The inertia method shows different accuracy in different sce- 

arios when it is compared with the direct calculation of the 

igenvalues, depending on the features of the acoustical system 

nd on the reference signal. However, there is not a clear pat- 

ern. In a few cases, the inertia method can exhibit a behavior 

hat is as restrictive as Gershgorin’s criterion, i.e., the configuration 

hown in Fig. 4 (d). In this case, the reference signal has been high-

ass-filtered with a cutoff frequency of f c = 400 Hz. However, the 
9 
nertia method always shows better performance than Gershgorin’s 

riterion. Similar results for the rest of the configurations (also 

ith L = 180 ) are shown in Fig. 5 . 

As mentioned above, the computational costs of Gershgorin’s 

riterion and the inertia method are small when compared with 

he computational cost of computing all of the eigenvalues. The 

heoretical costs of the three methods are shown in Table 1 . These 
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Fig. 6. Computing times of: eig , inertia method, and Gershgorin’s criterion. A computer equipped with an Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz with 6 cores and 32 GB 

has been used. 
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heoretical computational costs must be carefully considered when 

ractical measurements are being carried out because the eig func- 

ion is a parallelized state-of-the-art routine, which takes profit of 

ll the available computing cores. On the other hand, the main 

oop of the proposed inertia algorithm (line 8 of Algorithm ) builds 

ach new iteration using data from the former iteration, therefore 

his loop cannot be effectively parallelized. Furthermore, the ex- 

ression given in the Table 1 for the inertia method corresponds to 

he worst case, when the internal loop is completed. Fig. 6 shows 

he computing time of the three methods (Matlab’s routine eig was 

sed to compute all of the eigenvalues) using a computer equipped 

ith an Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz with 6 cores 

nd 32 GB. In this figure, a system with 4 nodes (increasing L from 

50 to 700) was chosen. 

The inertia method gives a FN ratio as small as 33% in the sim-

lated low reverberation scenarios, which becomes 50% in the high 

everberation scenarios, without any FP outcome (FP = 0% ). Further- 

ore, it requires an affordable computing time for most cases as 

ompared with the direct calculation of the eigenvalues. Thus, the 

roposed inertia method provides a good balance between accu- 

acy and computing time. This makes the inertia method suitable 

or the exhaustive assessment of different ANC network configura- 

ions. Furthermore, it can be used to search for the best rules of 

ollaboration (values of c km 

in Eq. (5) ) that keep the network sta- 

le. It can be shown that if all c km 

coefficients are set to 1, the

ystem will remain stable. In the other case, if the only c km 

values 

et to 1 are those where k = m , then the system has no collabora-

ions and it becomes unstable in many cases. Thus, it is advisable 

o perform a search for the rules of collaboration with the smallest 

umber of collaborations (smallest number of nonzero c km 

values) 

mong nodes. The proposed inertia method allows this search to 

e performed within an affordable computing time. 

The inertia method can also be used to find the largest adaptive 

lter length ( L ) so that the system remains stable. As an example
10 
f this use, Fig. 7 shows the stability assessment of the different 

ethods varying L up to 500. 

. Discussion 

The proposed method assesses the stability of the distributed 

NC systems, but it does not provide information about the 

chieved noise cancellation level. The performance of a stable 

NC system in terms of noise cancellation level depends on the 

elation between the reference and noise signals, the step size 

nd the spatial placement of the transducers. On the other hand, 

tability only depends on the reference signal and the spatial 

lacement of the transducers. The best performance of a dis- 

ributed system is achieved for a fully collaborative scheme, which 

s stable since the system matrix is definite positive and coin- 

ides with the performance of the equivalent centralized scheme 

10] . However, this is at the expense of the highest communi- 

ation needs. Therefore, looking for a configuration that achieves 

 given minimum desired performance in terms of cancellation 

hile minimizing collaboration (communications in distributed 

ystems) seems reasonable in practice. The inertia method pro- 

osed in this paper allows to efficiently searches for a minimum 

ollaboration setup that assures system stability. This collabora- 

ion setup gives excellent cancellation results in practice (close to 

he fully collaborative network) because the nodes that do not 

ollaborate should have very little influence on the final resid- 

al noise levels. Moreover, the fully minimization of collabora- 

ion is not always achieved since the FN rate is not zero in the 

roposed algorithm. However, the obtained stable systems exhibit 

lightly better performance in terms of residual noise levels than 

he corresponding stable system with minimum collaboration be- 

ause collaboration cannot worsen the performance in terms of 

ancellation [10] . 
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Fig. 7. Maximum adaptive filter length ( L ) that guarantees stability for different settings of an ANC network working in non-collaborative mode. 
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. Conclusions 

This paper has addressed the stability assessment of an 

NC network of N single-channel nodes working in non fully- 

ollaborative mode. In this kind of ANC network, each node tries 

o minimize noise (which is a wide-band signal) by executing the 

xLMS adaptive algorithm. Each node could reach a stable steady 

tate (independently of the other nodes) by choosing an appropri- 

te convergence step. However, since the network is acoustically 

oupled, the stability of the network depends on the interaction 

mong nodes. 

The convergence analysis of the multichannel FxLMS running 

n the network reveals that the stability of the system can be as- 

essed from the eigenvalues of the system matrix, which is de- 

oted by R B . The size of this matrix is proportional to the num- 

er of nodes of the network and the length of the adaptive fil- 

ers ( L ). This matrix is generated using the data of the correlation 

f the noise at the node microphones with the reference signal 
11 
oise filtered through the different network acoustic paths. Ma- 

rix R B of a given network can be thought of as the assembly of 

N × N) submatrices, each one of (L × L ) size. The blocks on the 

iagonal of the system matrix represent the self-coupling between 

he speaker of each node with its microphone. It should be noted 

hat the proposed algorithm needs the R matrices as inputs, which, 

n practice, must be approximated by estimators such as time 

verages. 

The network stability assessment of an ANC network is simpler 

n case of tonal noise. In this case, the size of the system matrix 

s just given by the number of nodes, and the coefficient (i, j) of

 B represents the influence of the j-th node on the i -th node [15] .

n such case, the moderate size of the system matrix makes easier 

he computation of all of its eigenvalues and, consequently, makes 

asier the stability assessment. However in the case of wide-band 

oise signals, the computation becomes far more complex due 

o the larger size of R B and the diversity of scenarios and noise 

ignals. 
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The stability of ANC networks can be assessed using stan- 

ard routines for the computation of all of the eigenvalues of 

 B , but the computational cost of this procedure (for large L 

nd N) is too high for practical use. On the other hand, there 

re theorems that provide clues or boundaries about the loca- 

ion of the eigenvalues, such as the Gershgorin Theorem. Condi- 

ions on the system matrix derived from them can assure that its 

igenvalues remain within a given region on the complex plane 

nd thus can provide network stability. Therefore the condition 

iven by Eq. (29) can be derived from the Gershgorin Theorem 

nd can be computed very fast. However, the results show that 

his condition is very restrictive for most of the system matri- 

es, (excepting those belonging to ANC systems working at a 

ingle frequency [11] ) and, consequently, there are many stable 

cenarios of ANC networks that do not fulfill this condition in 

ractice. 

In this paper, we have proposed an alternative inertia method 

hat can be used to estimate if the real part of the eigenvalues 

f R B are positive and to assess the stability of ANC networks. 

he computation of this method has been optimized and takes 

dvantage of the Toeplitz-block structure of the R B matrix. This 

ethod is fast enough for practical use and is far more accurate 

han the condition derived from the Gershgorin Theorem. The re- 

ults show that the proposed inertia method cannot give FP as- 

essments and provides much less FN assessments than the Ger- 

hgorin condition. Therefore, this method can also be used to ef- 

ciently find stable ANC network configurations and collaboration 

ules. 
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ppendix A. Computation of the matrix R 

Matrix R is calculated from (L × L ) submatrices R x f rm _ cm 
. Each 

lement ( f, c) of the R x f rm _ cm 
submatrix is computed as E { x f rm 

(n +
f − 1) x f cm 

(n + c − 1) } which becomes E { x f rm 
(n + | f − c| ) x f cm 

(n ) } =
 x f rm _ cm 

(| f − c| ) , for stationary signals. Therefore, the elements of 

his matrix are the values of the cross-correlation of the signals 

 f rm 
(n ) and x f cm 

(n ) , which are the results of filtering the reference

ignal x (n ) by the acoustic paths s rm 

(n ) and s cm 

(n ) respectively.

onsequently, this cross-correlation can be written as a function of 

he reference signal self-correlation as: 

 x f rm _ cm 
(l) = R xx (l) ∗ s rm 

(l) ∗ s cm 

(−l) , (A.1) 

here the symbol ∗ represents the linear convolution. 
12 
ppendix B. Inertia algorithm for the stability assessment of 

NC networks 

lgorithm 1 Algorithm 2.3 from [33] adapted for stability assess- 

ent 

1: Input: A , G , H 

2: Output: out

3: Given a Hermitian Toeplitz Matrix A ∈ C 

M×M and itsgenerators 

G and H ∈ C 

M×α , this function computesa real variable out such 

that out = 1 if all the eigenvaluesof A are positive and out = 0

if there is at least one negative eigenvalue of A . α is the num- 

ber of nodes and M = Lα, where L is the length of the adaptive

filters. 

4: q=zeros(M,1); 

5: q(1)=A(1,1); 

6: w(1,1)=A(1,2)/q(1); 

7: f(1,1: α)=G(1,1: α) ′ ./q(1); 

8: k=1; 

9: while q (k ) ≥ 0 and k < M do 

0: k=k+1; 

11: fn=zeros(k, α); 

2: vmm1=A(1:k-1,k-1); 

3: q(k)=A(k,k)-vmm1 ′ *w(1:k-1,k-1); 

4: y(1:k,k)=[w(1:k-1,k-1);-1]; 

5: for i = 1 to α do 

6: fn(:,i)= [f(:,i);0]-(G(k,i)- vmm1 ′ *f(1:k-1,i))*y(1:M,k)/q(k); 

17: end for 

18: w(1:k,k)=[0; w(:,k-1)] -fn(:,1: α)* (H(:,1:k) ′ *y(1:k,k)); 

9: f=fn; 

0: end while 

1: if q (k ) < 0 then 

2: out = 0 ; 

3: else 

4: out = 1 ; 

5: end if 
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