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Wireless technology is offering numerous growth to develop communication systems. The Internet of Things (IoT) is combined
with the sensing ecosystem to transfer and process the physical environment. Recently, IoT devices have collaborated with wireless
devices to improve embedded medical applications. Many solutions are proposed to decrease the power consumption of the
sensing ecosystem and support the health industry. However, optimizing the transformation of collected data with lightweight
power consumption is still a burning research issue. Moreover, uncontrolled network devices and healthcare professionals are
remotely accessed by such embedded systems. Thus, securing sensitive information is also a significant factor for mobile
communications. Therefore, this research presents an optimized embedded healthcare industry model with lightweight
computing using a wireless body area network (WBAN), aiming to lessen the control overheads and improve the power
consumption in mobile e-health services. To begin, it employs an optimal learning algorithm to lower the management costs of
embedded systems in order to transform and administer the electronic health record (EHR) more efficiently. Second, with the
help of trustworthy gateways, it delivers a safe EHR algorithm as well as lightweight computing resources for embedded
systems. The proposed model is tested with a variety of experiments and demonstrates its significant improvement over state-
of-the-art techniques.

1. Introduction

Internet of Things (IoT) has grown in popularity; it has
begun to reform and modify our lifestyles through wireless
networks. RFID, sensors/devices, communication lines, and
an end-user interface are all part of the IoT system’s archi-
tecture. Wireless technologies and medical devices offer
many real-time services while keeping the availability and
maintainability of patient-related data [1–3]. Smart process-
ing is a revolutionary innovation that attempts to link vari-
ous physical objects with embedded technology that
communicates and perceives or interacts with their internal
states or external surroundings. In embedded healthcare

applications [4, 5], sensor-enabled digital devices are con-
nected to the Internet, and such paradigms enable new ser-
vices for smart cities. Using the Internet of Medical Things
(IoMT), the biosensors are utilized for information sensing,
analyzing, and sharing the sensitive data of WBAN with a
medical expert over the open-space wireless systems [6–8],
as depicted in Figure 1. Accordingly, it is now possible for
the IoT systems to act upon the distribution of smart ser-
vices to end-users by including tiny microcontroller chips,
smart sensors, and actuators. Many advanced wireless tech-
nologies have been caused by an enormous amount of linked
devices, resulting in the IoT-based medical revolution. These
embedded devices continuously gather and analyze the
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biometric data and then send large volumes of data via the
network towards the cloud system [9–11]. E-health data is
transmitted to the body coordinator, and the body coordina-
tor further forwards it to medical experts for real-time treat-
ments with the support of a digital mobile network [12–14].
Embedded IoT-based healthcare systems are probable to
decrease the management cost and improve the real-time
analysis of patients’ conditions. Although many suggested
solutions have been offered as valuable solutions to the med-
ical field [15–17]; however, despite this, IoT inherits the sig-
nificant problems of advanced technologies in terms of
resource management and trustworthiness data relaying
systems.

Moreover, smart devices such as mobiles, sensors, and
actuators communicate with each other over the unpredict-
able communication medium and are subject to network
threats, thus needing more security functionalities [18–20].
This research introduces an optimizationmodel for embedded
medical applications using a wireless ecosystem that lowers
the processing overheads for smart devices. It uses the artificial
intelligence technique to make the embedded system more
robust and offers timely decisions for analyzing the health
data. The proposed model extracts the most reliable and
near-optimal network edges from the undirected graph by
exploring the multivariable objective function. Moreover,
gateways perform dual responsibilities to reduce excessive
latency and offer an energy-efficient healthcare system. The
proposed model provides compatibility among heterogeneous
communication devices and sink nodes by utilizing the gate-
ways in embedded applications. The sink nodes are intercon-
nected with centralized storage systems, and authorized users
can access the needed data with the support of security poli-
cies. Based on recent studies, IoMTs for embedded applica-
tions have limited constraints and can be easily
compromised in terms of privacy, integrity, and availability
of health data. Therefore, the proposed model also copes with
protection issues and provides a collaborative algorithm for
mobile communication against malicious attacks.

This work is comprised of the following contributions.

(i) An optimization algorithm is introduced for
embedded health applications that efficiently man-
age the routing cost in transforming digital records

(ii) It also incorporates the security features for medical
devices and copes with communication anomalies
using data protection and integrity

(iii) The IoT-based wireless ecosystem secures the health
data and offers a lightweight algorithm to detect
unauthentic devices in the proximity of remote
cloud systems

(iv) The embedded system is simulated with a wide
range of experiments to compare existing work
and analyze its performance

The article’s remaining sections are divided into the fol-
lowing subsections. Section 2 examines related work and
points out the shortcomings of the present solutions. The
plan and development of the proposed model are explained
in Section 3. The simulation parameters and details of the
experiments are discussed in Section 4. Section 5 concludes
this research work with future work.

2. Related Work

In the embedded system, IoT technologies are broadly used
to integrate wireless objects for information collection, pro-
cessing, and facilitating the physical world [21–23]. The data
gathering and transmission depend on various parameters
including computing power, storage space, and energy utili-
zation. Due to tight constraints for embedded systems, opti-
mizing the performance of the wireless system is the main
research challenge. Health monitoring systems based on
the Internet of Things operate on a tiered architecture,
including a perception layer, a network layer, and an appli-
cation layer [24–26]. Each layer has certain security and pri-
vacy implications that must be handled appropriately.
Numerous studies have been conducted to address these
security concerns across various IoT sectors. Additionally,
many security frameworks for IoT-based e-health systems
have been established. In [27], the authors build and con-
struct a specific framework for an IoT-based smart health
system and focused on interoperability challenges. The IoT
system’s particular requirements were investigated and uti-
lized as the basis for developing a framework based on mul-
tiple technological standards and communication protocols.
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Figure 1: E-health model using IoMT.
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Within the scope of protocols and standards, contemporary
web technologies, communication protocols, and hardware
design are used. This technique guarantees that the proposed
model’s unique expectations may be met with certainty. The
studies demonstrated that a dedicated gateway device may
be utilized to provide interoperability between various IoT
devices, standards, and protocols in a smart health system
and the concurrent usage of many web technologies in lim-
ited and Internet contexts.

Authors in [28] present an approach for anonymizing
sensitive health datasets transmitted in an IoT setting utiliz-
ing a wireless communication system. The algorithm spec-
ifies records that cannot be released during the data session
from users engaging online to maintain security and privacy,
hence protecting user privacy. In addition, the proposed
technique incorporates a safe encryption procedure that
ensures the confidentiality of health data. The authors also
conducted a mathematical function analysis to verify the
algorithm’s anonymity function. The findings reveal that
the anonymization method ensures security for the IoT sys-
tem in question when used in the context of healthcare com-
munication networks. A deep reinforcement learning-
(DRL-) based intelligent routing method for IoT-enabled
WSNs is presented [29], which dramatically reduces latency
and increases network lifespan. The suggested technique
separates the whole network into various unequal clusters
based on the current data load in the sensor node, prevent-
ing the network from dying prematurely. The experimental
findings are compared to state-of-the-art algorithms to show
that the suggested method is efficient in terms of the number
of live nodes, packet delivery, energy efficiency, and network
communication latency.

Clustering is a valuable data collecting technique for the
IoT that reduces energy usage selectively by grouping IoT
nodes into clusters [30]. The cluster head has complete con-
trol over all cluster nodes and is responsible for all intraclus-
ter and intercluster communication. Due to the NP-hard
nature of the clustering issue, this paper proposes a moth-
flame optimization algorithm for selecting the smallest num-
ber of required clusters for routing. This technique, derived
from the moth’s life cycle, promotes efficient communica-
tion by establishing the ideal number of clusters. The sug-
gested fitness function is composed of three components:
the total of the distances, the remaining energy, and the
degree of the nodes. The experimental findings are com-
pared to those obtained using a variety of clustering tech-
niques, including the whale optimization algorithm,
innovative chemical reaction optimization, and cuckoo
search optimization. In [31], the authors offer a security
architecture for real-time health monitoring systems that
ensure data confidentiality, integrity, and authenticity via
the use of two widely used IoT protocols: the constrained
application protocol (CoAP) and message inquiry telemetry
transports (MQTT). This security architecture is designed to
protect sensor data from security flaws while it is being sent
continually between layers, and it accomplishes this goal by
using hypertext transfer protocols (HTTPs). As a result, it
protects against breaches with a very low risk-to-benefit
ratio. This article’s approach focuses on how the security

architecture of IoT-based real-time health systems is safe-
guarded through the CoAP and HTTPs layers. This study
suggests ERBAC and the Twofish algorithm to safeguard
IoT health data from a public cloud storage standpoint. In
IoT applications, the proposed system is expected to drasti-
cally reduce storage costs and offer secure cloud storage of
medical data based on role-based access regulations.

The authors [32] also introduce a clustering approach to
speed up the retrieval of important medical data. The ratio-
nale for finding hidden instances in clinical data is cluster-
ing. Using these examples, clinicians made professional
decisions about illness likelihood. Compared to other collec-
tions, the dataset for clustering categories is greater. Also
proposed is a clustering approach based on the computation
of the progress of a swarm of molecules, dubbed clustering
calculation. For the grouping technique, it leverages global
improvements in PSO computation. The authors present a
FOG-assisted CnCI model for dependable healthcare facili-
ties [33]. Creating a safe and reliable CnCI for IoTH net-
works is difficult to solve. We developed a unique
mathematical approach to design FOG-assisted CnCI for
IoTH networks (i.e., integer programming). Wireless link
interfacing gateways are regarded as virtual machines
(VM). An IoTH network is made up of three wirelessly con-
necting nodes: virtual machines (VMs), reduced computing
power gateways (RCPG), and full computing power gate-
ways (FCPG). The goal is to reduce the weighted total of
infrastructure and operating expenses associated with IoTH
network design. An evolutionary technique based on swarm
intelligence is applied to tackle IoTH network planning for
higher quality solutions in a reasonable period. The sum-
mary of the related work is given in Table 1.

3. Embedded Healthcare Paradigm with a
Lightweight IoT-Protected System

The proposed work comprises medical devices that are col-
laborated and interconnected with each other with a wireless
system for sensing health information. The medical sensors
may collect the health data such as heartbeat, blood pressure,
ECG, and temperature. The set of medical devices is further
attached with the body coordinator to accomplish intercom-
munication with remote systems. Medical data is very cru-
cial for accurate decisions and supporting a reliable health
system. Therefore, the proposed model also provides secu-
rity services with a mobile sink and protects the communica-
tion with nominal wireless breaches. The proposed e-health
model is comprised of two main components. At the begin-
ning of the network setup, nodes are interconnected in the
form of an undirected graph Gðn, eÞ. Each node is known
as a vertex, and each edge has some numeric value to repre-
sent the initial cost among consecutive nodes. The first com-
ponent presents the optimization criteria to decrease the
consumption in the decision support system and train the
model with the updated values. Secondly, the mobile sink
is protected from nonvalid requests and offers secured ser-
vices to constraint devices, thus avoiding frequent damages
to health systems. The proposed model exploits the combi-
natorial optimization [34] to connect the sensor nodes and
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extract the most feasible solutions for reaching its goal state.
The feasible solutions are obtained by computing a multivar-
iable objective function. It provides the intelligence method
for a decision support system and reduces the excessive
computing resources with timely delivery of critical data to
medical centers. Let us consider that X = x1, x2,⋯, xn is the
set of medical nodes. If the system is a node xi ∈ X, then f ð
xÞ is the finite set of feasible solutions. Suppose that t1, t2,
t3,⋯, tn are set of feasible solutions towards the goal state
S, as given in the following equation.

xi ⟶ : f xð Þ = t1, t2, t3,⋯, tn: ð1Þ

The proposed model optimizes the decision criteria for
the two cases. The first one is how many paths are available
for sending medical data and the second one is which the
most optimal solution to S. The proposed model computes
the cost function using a multivariable process to determine
this process. The multivariable process determines the
weighted values in terms of distance di, nodes density nd,
and loss length loss leni over the edge eði, jÞ, as given in
the following equation.

f xð Þ = α ∗
1
di

+ β ∗ nd + γ ∗
1

loss leni

� �
: ð2Þ

In Equation (2), di is the absolute value from the source
device to sink node using Euclidean distance, nd is the num-
ber of neighbors in the proximity of node i that can be
derived from its local table and loss leni shows the consecu-
tive number of packets lost over the edge eði, jÞ. The longer
the loss length indicates the unreliable and unstable edge.
Accordingly, the proposed model uses the packets’ informa-
tion and interval of instability time; accordingly, loss leni
can be defined in the following equation.

loss leni = pktsinfo +
E
T

� �
, ð3Þ

where E denotes the time interval in packet receiving and
T is the total time.

After the computing of f ðxÞ value of the selective edge
by exploiting cost function, the proposed model restructures
the route formation RðiÞ process as given in the following
equation.

R ið Þ: xiti, f xð Þ: ð4Þ

Figure 2 illustrates the working flow of the proposed
optimization model for embedded medical applications.
Firstly, exploring the combinatorial optimization algorithm
proposed model offers the balanced utilization of the embed-
ded resources in data transformation. Furthermore, the mul-
tivariable objective function effectively computes the cost
value and intelligently reduces route reconfiguration. The
system is supported by multivalued judgments that uni-
formly balance communication between devices.

A distributed privacy-aware health management system
with authentic services is also provided by the proposed
model. All communication devices in the healthcare system
must validate themselves in a distributed manner and pro-
vide a reliable solution to e-health consumers. The proposed
model also provides the securing of health data using the
integration of gateways and mobile sink. In the first stage,
by exploring the role of the sink node, the proposed model
identified the authentic and trusted gateways. The mobile
sink rotates around the gateways’ perimeter, keeping track
of information about registered gateways. The gateway node
authenticates with the mobile sink first, and the mobile sink
adds the entry to its map table once it receives the request.
The map table is comprised of gateway identity ID and time
stamp t. Also, the request packet is digitally signed with the
private key of the gateway node. Let us consider that request
message r ∈ R and generates a digital signature S as ekðrÞ.
The digital signature S is transmitted towards the mobile
sink with the integration of ID. Upon receiving the request
packet, the mobile sink ms first performs a verification func-
tion vf as given in the following equation.

ms ⟶ gn : vf r, Sð Þ: ð5Þ

Upon successful verification, the mobile sink generates a
secret key for the corresponding trusted gateway and per-
forms an encryption method to ensure privacy for health

Table 1: Summary of the existing work with the proposed model.

Existing solutions

(a) Medical applications have been developed to improve society’s
comfort by delivering real-time patient data to doctors and
consultants using wireless systems.
(b) IoMT-based biosensors periodically collected health data and
forward it to the remote system using body coordinators.
However, their several limitations offer the main critical
challenges in IoT-based environments, such as delay management,
energy consumption, and security attacks.
(c) Many solutions have been proposed to overcome the problems
of medical applications in forwarding health data over wireless
technologies, but optimization methods are still desirable.
(d) Moreover, most solutions fail to protect e-health data from
malicious examinees and threats. As a result, end-users must be
trusted on obtained data from unreliable IoT networks.

Proposed optimized embedded
healthcare industry model with
lightweight computing using
WBAN

(a) An algorithm is developed for
healthcare services with the
support of an optimization
algorithm and mobility.
(b) It balances the contribution
of nodes uniformly in terms of
various factors.
(c) Efficiently explores the
random communication
channels with an adaptive
mobility evaluation.
(d) Formulates a protected and
secured option for malicious
traffic detection and supports
trusted IoT-based medical
applications.
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data. In the proposed model, the mobile sink generates the
secret keys for gateway nodes by using the Blum Blum Shub
algorithm [35], as given in the following equation.

Xn+1 = X2
n mod n: ð6Þ

In Equation (6), n = pq, which is the product of two large
prime numbers. Xn is the secret random value for the gate-
way node gi, and X0 is the seed integer value that is coprime
to n. After generating and distributing secret keys between
the mobile sink and gateway nodes, the gateway node uses
an encryption method Ex to retain privacy for health data
mi, as given in the following equation.

Ex mið Þ = mi ⊕ Xnð Þ ⊕ ID: ð7Þ

Furthermore, the encrypted data is further protected by
using the X or operation with identity to give authentication.
The flowchart of the developed security method for e-health
systems is shown in Figure 3. The trusted gateways have dual
collaboration with sensing devices and mobile sink. The sink
node just enables the request for genuine gateways and then
transfers the health data to the remote system based on the
mapping table. Gateway nodes can transport data after
receiving a valid response from the sink node. Furthermore,
secret values are used by all devices for EHR encryption and
decryption processes to preserve data privacy. As a result,
end-users are able to obtain secure and trustworthy health
information via an insecure communication system.

The list of abbreviations in the proposed model is given
in Table 2.

4. Simulation Environment

This section presents the simulation environment and
experiment results of the proposed model with existing solu-
tions. Using the NS-3, we conduct the simulation and ana-
lyze the results in terms of network throughput, packet
drop rate, link downtime, and erroneous packets. The pro-
posed model is tested against the FOG-assisted CnCI model

Start
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Finite set of random solutions

Cost based decision support system

Routes establishment

Optimized
solution

Yes

E-health forwarding End

Restructuring routes
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Figure 2: E-health forwarding system using IoMT.
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Figure 3: Flowchart of the verification and security for embedded
medical application.

Table 2: List of abbreviations.

Notations Definitions of the abbreviations

G Complete graph

S Goal state

ID Identity

f xð Þ Finite set of solutions

di Distance

nd Node density

loss leni Loss length

R ið Þ Route formation

ms Mobile sink

gn Gateway node

Xn+1 Set of keys

Ex Encryption function

mi Health message
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and DRL-based intelligent routing method. The experimen-
tal tests are performed using varying data sensing rates and
speeds of the mobile sink. The data sensing rate varies from
50 to 400 bits/sec, and the sink’s speed varies from 2 to 6m/
sec. The number of sensor nodes is set to 20, 40, and 60 with
homogeneous constraints. Sink node has no limits for vari-
ous constraints and processing power. Initially, the sensor
nodes have an energy resource of 2 J. We considered the
wireless standard IEEE 802.15.6 to support the routing pro-
cess of the proposed model. The simulation is run for a
period of 20min. Packet size is set to 3 bytes, and data flow
is exploiting periodic intervals. It is adopted for simulation
experiments that need an expected response time and deliv-
ery performance between communication devices with lim-
ited channel bandwidth. The number of malicious nodes is
set to 5. The simulation environment’s configuration param-
eters are shown in Table 3.

In Figures 4(a) and 4(b), the performance evaluation of
the proposed model against the existing solution is pre-
sented. The performance is computed in terms of network
throughput. It can be defined as how many data packets
can be transferred between a source and sink node in partic-
ular time limits. It is seen that with a varying sensing rate
and sink speed, the proposed model improves the network
throughput by an average of 43% and 23%. It is that the pro-
posed model uses the optimization technique to estimate the
usage of resource consumption. Moreover, the multivariable
objective function utilizes the realistic parameters to com-
pute the cost value, and accordingly, edges are extracted
from the unidirectional graph for data transportation. Also,
the mobile sink explicitly increases the delivery ratio of
embedded systems to end-users and facilitates the smart
devices for getting the ERH timely. In this approach, the
suggested model facilitates the identification of neighbors
and the updating of optimization criteria. Furthermore, the
suggested approach employs the mobile sink to lower the
transmission power of medical equipment while balancing
the communication load by transmitting the ERH to emer-
gency centers. The suggested approach uses a multihop for-
warding strategy and interacts with gateways to improve the
delivery performance of the embedded system.

Figures 5(a) and 5(b) illustrate the proposed model’s
performance evaluation for packet drop ratio with existing
solutions. It is defined as the fraction of the total sent data
packets that have not been received at the destination side
within a particular time interval. It was discovered that, in
contrast to previous research, the suggested model reduces
the packet drop ratio by an average of 61% and 59%
throughout a range of sensing rates and sink mobility. As a
result, the proposed model uses the metaheuristic technique
to efficiently analyze the cost function of the available solu-
tions and, as a result, select the most trustworthy nodes as
a next hop. The suggested model also balances the transmis-
sion links with an efficient data flooding scheme by exploit-
ing the network condition. Furthermore, the proposed
model utilizes the lost and response time factors in deter-
mining the optimal neighbors from the set of nodes. More-
over, by efficient utilization of link channels, the proposed
model increases the lifetime for routes and offers balanced

communication services in terms of delivery performance.
Furthermore, the multiobjective function provides opti-
mized routing metrics and forwarders the health data
through reliable neighbors. Finally, the security functions
deal with the malicious nodes and reduce their capabilities
in dropping the IoT data with robust verifications.

Figures 6(a) and 6(b) illustrate the proposed model’s
experimental results against the existing solution in terms
of link downtime. It is defined as a computed time when a
particular wireless link between consecutive nodes is
unavailable due to any communication issue. It was
observed that the proposed algorithm significantly decreases
the link downtime by an average of 27% and 36% for varying
sink speed and data sensing rates. It explores the mobility
aspect of the sink node and dynamically floods the position-
ing coordinates for rapid data gathering and forwarding pro-
cesses. Furthermore, a multiheuristic algorithm offers the
balance contribution of medical sensors in terms of various
parameters and generates an optimal decision supporting
system. The integration of cost evaluation function based
on network parameters and assigning the appropriate solu-
tions for set for nodes, decreasing the response time and data
delay for smart devices. Furthermore, the proposed model
uses the metrics of lost time to find the optimal links; thus,
only fewer overhead nodes are elected for IoT data transfor-
mation. Besides, the devices’ mutual authentication and
hop-by-hop verification secure the data on each iteration
and develop a trusted chain. Accordingly, the proposed
model increases the flow of the information without fre-
quent data disruption and excessive latency to support the
applications of the health industry.

Figures 7(a) and 7(b) explain the proposed model’s per-
formance results with other works for overheads. With
increasing data sensing rate and speed of sink, it was noticed
that overhead also increases. However, the proposed model
significantly reduces the overhead by 36% and 41% as com-
pared to other works. It is due to that the proposed model
efficiently computed the cost factor of the device by explor-
ing the quality-aware parameters and intellectually updating
the decision support system. Moreover, the routes are estab-
lished using the integration of a mobile sink, which not only
reduces the transmission distance among devices but also

Table 3: Simulation parameters.

Parameter Value

Simulation area 20m × 20m
Initial energy 2 J

Malicious nodes 1-5

Sensor nodes 20, 40, 60

Gateways 1-5

Packet size 32 bytes

Transmission range 3m

Wireless standard IEEE 802.15.6

Simulation time 20min

Simulations 10

Data traffic Periodic intervals
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Figure 4: Performance evaluation of the proposed model for throughput.
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(a) Varying data sensing rate and packet drop ratio
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Figure 5: Performance evaluation of the proposed model for packet drop ratio.
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(a) Varying data sensing rate and link downtime
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Figure 6: Performance evaluation of the proposed model for the link downtime.
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minimizes the computing power for the processing of EHR.
Unlike most of the existing work, the proposed model for
health systems also protects health data with the support of
security features. The adaptation of security functions
increases the confidence among devices with data privacy
and avoids network interruption and additional overheads.

In Figures 8(a) and 8(b), the performance analysis of the
proposed model is done against other solutions in terms of
erroneous packets. It is defined as a packet error that means
something is wrong during data transmission. In the pro-
posed model, this metric is used to determine the system’s
reliability in the presence of malicious nodes. It is noticed
that the proposed algorithm minimizes the ratio of errone-
ous packets by an average of 47% and 44% under a varying
data sensing rate and speed of the sink node. It is because
of the uniform load distribution among IoT devices using
combinatorial optimization. Moreover, it also decreases the
extra energy consumption in sending the data from the
observing field using the mobile sink, which balances the

load on nodes near uniformly and provides lesson packet
errors in the presence of malicious nodes. Also, only those
nodes exchange their information to proceed with the data
routing that falls into the coverage range.

5. Conclusion

Embedded applications are widely utilized using IoT and
wireless technologies for crucial processing and monitoring.
However, the limited resources of embedded applications
reflect the unpredictable performance and compromise the
data transformation for the wireless environment. This
study uses WBAN to offer a methodology for optimizing
embedded systems that are expressly utilized for health
information. It gives innovative solutions for lowering
administration and processing expenses on constrained
medical equipment by exploring the combinatorial optimi-
zation technique. Moreover, the embedded system is also
provided privacy and authentication using lightweight
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Figure 7: Performance evaluation of the proposed model for the overhead.
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(a) Varying data sensing rate and erroneous packets
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Figure 8: Performance evaluation of the proposed model for erroneous packets.
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computing functions among wireless devices. The proposed
model is beneficial for real-time observing. On the other
hand, the multivariable objective function is utilized to elim-
inate erroneous communication among IoT-based ecosys-
tems. Furthermore, the compromising ratio for embedded
systems in forwarding the electronic health record over wire-
less channels also decreases with the integration of security
algorithms. However, by using the movable sink, it is
acknowledged that the suggested model suffers from fre-
quent route damages and is not always optimal in real-
world scenarios. Therefore, we aim to develop some
machine learning model to support the proposed model
against communication anomalies and increase its trustwor-
thiness. It also needs to embrace the autonomous cloud con-
cept to reduce computing overheads on embedded systems.
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