

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/202094

Tuzov, I.; De-Andrés-Martínez, D.; Ruiz, JC.; Hernández Luz, C. (2023). BAFFI: a bit-
accurate fault injector for improved dependability assessment of FPGA prototypes. IEEE.
https://doi.org/10.23919/DATE56975.2023.10137300

https://doi.org/10.23919/DATE56975.2023.10137300

IEEE

BAFFI: a bit-accurate fault injector for improved
dependability assessment of FPGA prototypes

Ilya Tuzov1, David de Andrés2, Juan-Carlos Ruiz2, and Carles Hernández1

1DISCA, Universitat Politècnica de València, Campus de Vera s/n, 46022, Spain
2ITACA, Universitat Politècnica de València, Campus de Vera s/n, 46022, Spain

tuil@upv.es, ddandres@disca.upv.es, jcruizg@disca.upv.es, carherlu@upv.es

Abstract—FPGA-based fault injection (FFI) is an indispensable
technique for verification and dependability assessment of FPGA
designs and prototypes. Existing FFI tools make use of Xilinx
essential bits technology to locate the relevant fault targets in
FPGA configuration memory (CM). Most FFI tools treat essential
bits as black-box, while few of them are able to filter essential bits
on the area basis in order to selectively target design components
contained within the predefined Pblocks. This approach, however,
remains insufficiently precise since the granularity of Pblocks in
practice does not reach the smallest design components. This
paper proposes an open-source FFI tool that enables much more
fine-grained FFI experiments for Xilinx 7-series and Ultrascale+
FPGAs. By mapping the essential bits with the hierarchical
netlist, it allows to precisely target any component in the design
tree, up to an individual LUT or register, without the need
for defining Pblocks (floorplanning). With minimal experimental
effort it estimates the contribution of each DUT component into
the resulting dependability features, and discovers weak points
of the DUT. Through case studies we show how the proposed tool
can be applied to different kinds of DUTs: from small-footprint
microcontrollers, up to multicore RISC-V SoC. The correctness
of FFI results is validated by means of RT-level and gate-level
simulation-based fault injection.

Keywords—Fault injection, FPGA, configuration memory, ro-
bustness assessment, RISC-V

I. INTRODUCTION

Current FPGA fault injection (FFI) methodologies emulate
logic faults in FPGA prototypes by manipulating the content of
their configuration memory (CM) at runtime. In that context,
many FFI tools targeting older FPGA series were capable
of emulating logic faults at the granularity of individual
netlist cells[1]. To this end, they relied on the vendor-specific
frameworks like Jbits to automate netlist modifications, and
reflect them directly into the differential/partial bitstreams [2].
Despite modern FPGA frameworks, like Xilinx Rapid Wright
[3], allow similar netlist modifications, they are unable to
reflect these changes into the bitstream.

At the same time, the bitstream format of modern FPGAs
is documented rather skimpily. This prevents designers from
manually deducing which bitstream modifications are required
for targeted emulation of logic faults at the netlist level.
Despite some information on bitstream format is available,
e.g. from the X-Ray Project or related research works [4][5],
it still remains scarce and mostly targets outdated FPGA series
(Xilinx 7-series and older). To the best of author’s knowledge,
there is no publicly available FFI tool for modern FPGAs, that

would be capable of fine-grained fault injections at the level
of hierarchical netlist.

For that reason, most modern FFI tools focus on emulation
of random bit-flips at the level of the CM itself, without estab-
lishing any relation between the CM and design under study
(DUT), other than area/Pblock-based mapping of essential bits.
Essential bits [6] are a subset of CM cells that determine the
circuitry of the DUT in FPGA. Some recent FFI tools [7][8]
treat essential bits as black-box, so to evaluate the effect of
CM faults on the DUT, but without providing any insights on
the dependability features of individual DUT components. Few
FFI tools [9][10] are able to filter essential bits attending to the
rectangular chip area (Pblock), thus reaching finer granularity
of fault injection (grey-box approach). However, one major
disadvantage of these tools is that their precision is conditioned
by the granularity of defined Pblocks, remaining in practice
rather coarse-grained, at least not reaching individual netlist
cells. In addition, they present high level of intrusiveness,
since any Pblock alters the placement-routing results of FPGA
design with respect to unconstrained design.

In this paper, we propose BAFFI, a bit-accurate FFI tool that
supports fine-grained fault injection at the level of hierarchical
netlist. The underlying FFI methodology is based on a bit-
accurate mapping of essential bits with a hierarchical netlist,
covering main types of FPGA cells, namely LUTs, registers,
LUTRAM and BRAM.

The main advantage of BAFFI is its ability to target any
component in the DUT hierarchy (up to an individual LUT or
register) without the need for floorplanning, which is signifi-
cantly important when assessing the effectiveness of specific
fault-tolerant mechanism implemented in the design, or to
obtain detailed robustness estimates for each component in the
DUT tree. In addition, BAFFI is highly customizable, allowing
to build FFI setups controlled from the host PC or from the
FPGA itself, supporting diverse Xilinx FPGAs (including 7-
series and Ultrascale+) and DUTs of any complexity.

II. EMULATING UPSETS IN CHANGEABLE AND
NON-CHANGEABLE CM CELLS

A typical FPGA bitstream contains two types of configu-
ration data: the changeable and non-changeable CM bits. The
changeable memory bits contain the initial content of registers,
BRAMs, and distributed RAMs (LUTRAMs). Their content
dynamically changes during circuit operation, and their current

state can be examined by means of readback-capture procedure
[11]. Likewise, their content can be modified (manipulated for
FFI purposes) by means of readback-modify-write procedure.
It is worth noting that any data manipulation on changeable
memory requires prior pausing of clock signal in order to
prevent undesired data corruption. The location of changeable
memory bits in the CM (bitstream) can be extracted from the
logic location (.LL) file, which is exported by the Vivado suite
alongside the bitstream for Xilinx devices. For each register,
BRAM and LUTRAM this file reports a CM frame address
(FAR) and an offset within the frame that corresponds to each
particular bit of these memory elements.

Injection of bit-flip faults in each of these elements requires
several steps. For instance, flipping the register state requires
to: (i) pause DUT clocking, (ii) activate GCAPTURE signal
to save the current register state into the associated (INIT)
CM cell, (iii) readback the CM frame that is listed in the LL
file for the targeted register, (iv) modify (invert) the bit at the
corresponding offset (also listed in LL file), (v) write back the
modified data frame, (vi) activate GRESTORE signal to set the
state of the targeted register from the updated INIT cell.

The non-changeable memory data constitutes the rest (ma-
jor part) of the bitstream. It configures the combinational
logic (LUTs, MUXes, carry chains), as well as wiring/rout-
ing resources (including switchboxes). Emulation of upsets
in non-changeable CM is simpler since it does not require
capture/restore steps. However, the content of this memory is
not documented by FPGA vendors (e.g Xilinx) in any way
other than format of CM address space [12]. Though, some
scarce information can be found from the related research,
e.g. on the location of LUT configuration bits for Xilinx
6-series and 7-series FPGAs [4][13]. The only useful aid
provided by Vivado 1 for the non-changeable memory is the
essential bit mask file (*.ebd), which highlights those CM cells
that determine the functionality and integrity of the circuit in
FPGA. This file is originally intended for usage with the Xilinx
Single Error Mitigation (SEM) IP [14] both for scrubbing and
fault injection purposes. Some works in the field make use
of this file in their custom FFI tools, albeit mostly based on
SEM IP as well. The problem is that being unable to relate the
essential bits with the DUT hierarchy, these FFI tools either
blindly target all essential bits in a statistical way [7], or at
best filter them on the area basis [9], but still not relating
them to DUT hierarchy. Unfortunately, statistical FFI is useful
for robustness estimation of designs targeting FPGAs but not
to test the dependability and behaviour of the different safety
elements in a SoC or to trigger potential fault-induced security
vulnerabilities that can occur when targeting specific bits [15].

III. BIT-ACCURATE FFI TOOL

BAFFI tool offers fully automated experimental flow as
depicted in Fig.1. It comprises four phases: (i) mapping of es-
sential bits with a hierarchical netlist, (ii) generation of faultlist
(sampling of essential bits) attending to the configured filters

1Vivado is the Xilinx FPGA synthesis tool.

Bitstream parser Netlist parser

Essential
bits (.ebd)

Bitstream
(.bit)

Logic location
file (.ll)

Netlist cells
(.csv)

V
iv

ad
o

 s
u

it
e

Faultload generator
(sample fault space)

FFI confi-
guration

(.xml)

Mapper
(relate CM with hierarchical netlist)

area (Pblock)
hierarhical scope
cell type
multiplicity

Configuration
memory model

Pr
o

je
ct

.x
p

r

FPGA design model

FFI sequencer
(injection, effect evaluation, logging)

Fault list (faultload)

Static
FFI report
(csv/xml)

Report builder

Netlist model

Testbench &
workload

SQLite

FFI dataset

Interactive
report (query
and visualize)

Fig. 1. Workflow and main components of the BAFFI tool

and parameters, (iii) execution of FFI runs, including injection
of sampled faults and evaluation of fault effects on the DUT
behaviour, (iv) generation of FFI report and visualization of
logged FFI results through the interactive reporting interface.
The user is only in charge of (i) configuring the faultload
parameters in an XML-formatted file, (ii) adapting a testbench
template for the targeted DUT, and (iii) invoking BAFFI from
the command line terminal with the XML configuration file
on the input. This section details each of the aforementioned
FFI phases.

A. Mapping of essential bits

The objective of the mapping phase is to relate the hierar-
chical path of netlist cells with the addresses of corresponding
essential bits, as it is depicted in Fig.2. This process is
managed by the Design Parser module. Process starts by
parsing the debug bitstream (in which each data frame is
annotated by a frame address) to extract the list of valid frame
addresses for the target FPGA part. This list of frame addresses
is subsequently used to parse the essential bits (EBD) mask
and to relate it with the bitstream data under the configuration
memory model. The post-place-route design is processed by a
custom Vivado script to extract a set of logic and placement
attributes into an internal netlist model. Among others, these
attributes include: a hierarchical path in the design tree, X:Y
coordinates of a Tile and a Slice on the FPGA floorplan, BEL
Label within the Slice (e.g. A6LUT, AFF), and the INIT value.

Once the CM and netlist models are generated, they are
mapped together by applying a set of FPGA-specific rules.
Some of these rules have been derived by quick coarse-grained
bitstream analysis. For instance, in the 7-series devices one
Major Frame of CM covers two columns of CLB slices and
one column of interconnecting switchboxes (SW), and the
Major Frame index equals the XTILE coordinate of a CLB

SW
LUT-A

LUT-H
...

LUT-A

LUT-H
...

XTILEYTILE

CLB SliceCLB Slice

XTILEYTILE

XSLICEYSLICE
LABEL: H6LUT

CELL type: LUT
CELL path: /core0/iu/r[e][alui][0][op1][44]

SLR
index

Top=
0

Block
Type

Row
Index

Major Frame
(Column)

Minor Frame Word
Bit

Range

Frame address (FAR) Offset

C
M

ad

d
re

ss

sp
ac

e

F
lo

o
rp

la
n

H
ie

ra
rc

h
i

ca
l n

et
li

st

Fig. 2. Mapping between netlist cells and essential bits: from
the hierarchical name to the CM address

Slice. In the Ultrascale+ devices, CLB and SW columns are
configured by different Major Frames. In this case, the mapper
first looks up in the bitstream for the indices of those Major
Frames that configure the switchboxes Mi = SW (XTILE).
These major frames are easily distinguished by their size (they
contain 76 minor frames). Subsequently, the Major Frame
indices of connected CLB (BRAM, DSP) slices are calculated
as Mi − 1 for the left slice, and Mi + 1 for the right slice.

It is worth noting, that the FAR fields Top and Row index
are calculated from the Y coordinate of the clock region (Top
field is not applicable to Ultrascale FPGAs), and the Block type
field equals 0 for all CM bits except BRAM content (whose
Block type equals 1).

We have derived the rules of fine-grain mapping experi-
mentally by low-level bitstream analysis, and currently cover
those netlist elements that form a major part of sequential
and combinational logic in FPGAs (registers, LUTs, BRAMs
and LUTRAMs). In particular, the essential bits of LUTs can
be localized within the major frames by translating the LUT
attributes YTILE and LABEL into a list of tuples [Minor
Frame, Word, Bit], in total 64 tuples for LUT6 cell. This
mapping is depicted in Fig.3 for 7-series devices, and in Fig.4
for Ultrascale+. The mapping we have derived for 7-series
devices matches the one found by [13][4]. However, up to our
knowledge, we provide the first mapping for the Ultrascale+.
It can be seen that in both FPGA series the content of LUTs
spans across four minor frames, although the frame indices
and word offsets are different.

Despite the mapping of LUTRAMs, BRAMs, and registers
can be calculated from their placement coordinates (similarly
to LUTs), the BAFFI tool extracts this mapping directly from
the .LL file (that contains location of DUT’s changeable
memory bits). This file has human-readable ASCII format, and
its parsing is quite straightforward using regular expressions.

As a result of the mapping step, an FPGA design model
is created that indicates the location of essential bits of each
LUT, Register, BRAM and LUTRAM in the design tree. The
rest of FPGA resources that are not currently covered by bit-
accurate mapping, are related with their essential bits at the
Pblock-granularity (similarly to the state-of-the-art FFI tools).

Right slice
(odd X)

Left slice
(even X)

101
16:31 D D

Y49
0:15 C C

………….
50 CRC & pad

………….

1
16:31 D D

Y0
0:15 C C

0
16:31 B B
0:15 A A

Word Bit
0-25 26 27 28 29 30 31 32 33 34 35 Tile

Minor Frame

Fig. 3. Location of LUT content in the CM of 7-series FPGA
(4 LUTs per CLB slice labeled A–D)

92
16:31 F G H

Y59
0:15 D E

… … …
45-47 CRC & pad
… … …

2
16:31 F G H

Y1 0:15 D E

1
16:31 C B A

0:15 F G H
Y0

0
16:31 D E
0:15 C B A

Word Bit
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tile
Minor Frame

Fig. 4. Location of LUT content in the CM of Ultrascale+
FPGA (8 LUTs per CLB slice labeled A–H)

B. Faultload generation

The faultload generator relies on the obtained design model
to a create a fault list attending to filters and parameters,
configured in the input XML file. Such filters include:

– design scope specifies the list of targeted DUT nodes,
defined by their hierarchical path in the DUT tree;

– pblock specifies a rectangular FPGA area, defined by the
XY coordinates of bottom-left and top-right Tiles, or by
the name of Pblock used in the Vivado design;

– target logic specifies the type of targeted FPGA re-
sources, including (i) LUT, Register, LUTRAM, BRAM
for bit-accurate FFI, or (ii) Type-0 for the entire set of
essential bits including logic and routing selected with
Pblock granularity.

The mode attribute configures the way fault configurations
are selected from the fault space: (1) statistical sampling of
sample size faults attending to the approach in [16], (2) iter-
ative sampling until reaching the predefined error margin at-
tending to the approach in [17], (3) exhaustive mode to test all
essential bits in the selected DUT scope. A fault multiplicity
attribute configures the number of faults emulated during each
individual injection run. Finally, a CCF attribute specifies a list
of structurally identical DUT components that can be targeted
for the emulation of common-cause faults [18].

The generated fault list is exported to the binary .dat file
and uploaded to the FPGA-side FFI controller. In the case of
board-controlled injection (see section III-C), this fault list can
be generated directly by FFI controller on the basis of essential
bits mapping. Each fault configuration in a list includes a
CM address of targeted essential bit and a fault injection time
(measured at clock cycle granularity), or a set of such items
in case of multi-bit faults.

ARM core (PS) Programmable logic (PL)

DUT

Configuration
memory (CM)

FFI Application

faults

tests/traces

PCAP

AXI/
GPIO

UART/JTAG

FFI resultsconfiguration

Board-side (Zynq)

Host side (PC)

FFI Host Monitor

Fig. 5. FFI setup controlled by board-side FFI application

C. Fault injection and effect evaluation

The generated faultlist is processed by the FFI sequencer
during fault injection runs. Each injection run comprises five
steps: (i) initialize the DUT, (ii) run the workload on the DUT
until the fault injection time, (iii) modify CM content attending
to the fault configuration (fault injection), (iv) trace DUT
behaviour and determine the effect of injected fault (failure
mode), (v) remove the fault (recover CM content) and reset the
DUT. BAFFI allows to set up this process in two ways: under
the control of board-side FFI application (Fig.5), or under the
control of host-side FFI application (Fig.6).

The board-controlled FFI setup is appropriate for those
DUTs that can be tested without host intervention. In this
case, all FFI steps are autonomously executed on the board
side, using a hardwired ARM core (in Zynq FPGAs) or a
Microblaze IP (in Virtex/Kintex FPGAs) as an FFI controller.
The task of host application is limited to initializing the em-
bedded Zynq/Microblaze application, supplying it with input
data (fault list), and monitoring (collecting) FFI results logged
by the onboard controller.

The host-controlled setup is used for those DUTs that
require a debug link with the host PC. Such as, for instance,
a Cobham Gaisler’s LEON5 and NOELV processors that are
initialized and tested by means of GRMON tool. In this case
the board-side FFI controller is in charge of only fault injection
(performing CM manipulations and controlling DUT clocking)
on the request of the host application. Whereas the evaluation
of fault effects is performed by a testbench service on the host-
side. On the request of main FFI application, the testbench
invokes an executable (workload) on the DUT, evaluates the
DUT outputs and (optionally) its internal state, determines
the failure mode and returns it to the main application as an
outcome of an FFI run.

The board-controlled setup reduces to the minimum the fault
injection and effect evaluation latencies. This enables higher
experimental speed than in the case of host-controlled FFI. The
latter, on the other hand, is more flexible, allowing integration
of standard debuggers into the FFI flow.

IV. EXPERIMENTAL EVALUATION

BAFFI supports a wide range of experimentation scenarios.
This section exemplifies two particular use cases: (i) fault
sensitivity analysis of a multicore RISC-V CPU by means
of fine-grained FFI, and (ii) dependability benchmarking of

Microblaze

DUT

Configuration
memory (CM)

FFI Application
faults ICAP

UART/JTAG

FFI control link

Board-side (FPGA)

Host side (PC)

Injector service
(xsct script)

Testbench service
(e.g. grmon script)

Debug link

FFI Host
Controller

Status

Inject/Recover

Failure mode

Test/Reset

Fig. 6. FFI setup controlled by host-side FFI application

soft-core microcontrollers. The correctness of BAFFI results
is validated by means of simulation-based fault injection
(SFI). Finally, this section discusses the experimental speed
achievable by host-controlled and board-controlled FFI setups,
and compares it with the experimental speed of RTL and gate-
level SFI.

A. Characterizing fault sensitivity of NOELV processor core

NOEL-V is a RISC-V processor developed by Cobham
Gaisler [19]. The processor configuration selected for this
case study implements a 64-bit RISC-V core [20] with dual-
issue pipeline, integer, floating point, atomics and multiply and
divide extensions (a.k.a IMAFD). A four-core configuration of
this processor has been implemented on the Virtex Ultrascale+
FPGA (Xilinx VCU118 evaluation board). Each core is placed
on its own Pblock during the implementation in Vivado
(version 2021). Each core of this processor runs an integer
matrix multiplication workload.

NOEL-V testing environment requires a host-side debug
monitor GRMON [21]. For that reason, a host-controlled
BAFFI setup is used in this case study (Fig.6). In the test-
bench template (represented by a GRMON script) for this
DUT, we customize two functions that are responsible for (i)
resetting the DUT, and (ii) evaluating the processing results
and detecting abnormal DUT states (e.g. crashes/hangs). Both
reset and test functions are invoked on the request of main
BAFFI application, using Linux sockets for communication.
The processing results are stored at the predefined memory
area; the testbench accesses and verifies these results during
each FFI run, and determines the failure mode: (i) masked
when the processing results are correct and no abnormal DUT
state has been detected, (ii) silent data corruption (SDC) when
the processing results are incorrect but the DUT operation
continues without alerts, and (iii) crash in the case of abnormal
DUT state preventing it from further operation (requiring
hardware reset), e.g. absence of DUT response.

Faults are injected into core-0 of NOEL-V CPU, at-
tending to a common grey-box approach and to a pro-
posed bit-accurate approach. In the former case, FFI targets
all essential bits in the area of core-0, i.e. by applying
filter pblock=”core:tiles:X2Y302:X90Y359”, BAFFI reports
roughly 14.9 Mbits of essential bits. In the latter case, FFI
targets core-0 by a hierarchical path, i.e. by applying filter

0.0 1.0 2.0 3.0 4.0

All essential bits (Logic and
routing)

LUT-related essential bits

Rate of failure modes (%) of NOELV core in presence of CM bit-flips

Silent data corruption Hang (Crash)

Fig. 7. Robustness estimates of NOELV core obtained after
the common area-based FFI approach

0 0.1 0.2 0.3 0.4 0.5

f (fetch)

d (decode)

a (register access)

e (execute)

x (exception)

wb (write back)

m (memory)

srstregs

stdata

srstregs

crami

ico

rdata_1

rdata_2

rdata_4

btbo

targets

In
te

ge
r

p
ip

el
in

e
FP

U
M

M
U

R
eg

is
te

r
fi

le

B
ra

n
ch

ta
rg

et
b

u
ff

er

Contribution of NOELV components into LUT-related failure rates (%)

Silent data corruption Hang (Crash)

Fig. 8. Detailed robustness estimates of NOELV core obtained
after the bit-accurate FFI approach

dut scope=”cpu/core0/gpp0/noelv0/cpuloop[0].core”, BAFFI
reports roughly 3.1 Mbits of essential bits (48279 LUTs). Both
experiments perform statistical sampling of 5000 faults.

Dependability estimates obtained after the common area-
based approach (depicted in Fig.7) show an SDC rate of 1.06%
and crash rate of 2.54% for the entire set of essential bits
(including logic and routing) in CPU core-0. When area-based
approach targets only LUT-related essential bits, the SDC rate
is reduced to 0.8% and crash rate is reduced to 1.34%, showing
that upsets in LUTs are less critical than upsets in the routing-
related CM.

Estimates provided by the bit-accurate FFI are depicted in
Fig.8. These detailed results reveal how much each component
of NOEL-V core contributes into the previously described
Pblock estimates. For instance, it can be seen, that the integer
pipeline is the most critical core component, contributing
more than a half of SDCs (72%) and crashes (53%). Among
the pipeline stages, the most critical ones are the memory
access (m) and the execute (e). The second most critical core
component is the MMU that contributes roughly 15% of SDCs
and 9% of crashes to the total LUT-related core-0 estimates.
These fault sensitivity results can be further traced along the
DUT tree, up to a granularity of each individual LUT bit. More
importantly, this experiment shows that BAFFI enables testing
of individual components in large SoCs. This is especially
important in the context of safety-related applications in which
safety mechanisms need to be placed to avoid safety goal
violations.

B. Dependability benchmarking of soft-core microcontrollers

The second case study analyzes the dependability features
of three small-footprint soft-core processors: MC8051 [22],
AVR [23], and Microblaze [24]. The complexity of these
processors is low enough as to make feasible simulation-based
fault injection (SFI) experiments at RTL and gate-level. The
objective of the case study is to validate the dependability
estimates reported by BAFFI by cross-comparing them with
the estimates obtained by SFI (using an SFI tool in [25]).

All three DUTs run a matrix multiplication workload. The
faultload includes (a) bit-flips in registers injected at RTL,
gate-level and FPGA-level, with an error margin on 0.5%,
(ii) bit-flips in BRAM and LUTRAM injected at gate-level
and FPGA with an error margin of 0.1%, and (iii) upsets in
LUTs at gate-level (only in case of MC8051) and FPGA-level
sampled with an error margin of 0.1%.

None of considered DUTs requires a debug link with the
host. Thus, for the sake of higher experimental speed a board-
controlled BAFFI setup is used in this experiment. A 7-
series Zynq FPGA is used in this experiment (Xilinx ZC702
evaluation board), whose hardwired ARM core operates as FFI
controller for both fault injection and effect evaluation (testing)
purposes as depicted in Fig.5.

TABLE I. SFI and FFI experimental time, and resulting speed-
up factor

Mean time per injection run (sec.) Estimated speed-up factor

RTL Gate-level FFI FFI vs RTL FFI vs Gate-level

MC8051 1.6 301.0 0.026 62 11577

AVR 2.0 72.0 0.026 77 2769

Microblaze - 421.0 0.055 - 7655

NOELV 72.0 - 1.145 63 -

As it can be seen from the results in Fig.9, all dependability
estimates obtained by BAFFI match with estimates obtained
by RT-level and gate-level SFI, given that the discrepancy
between them never exceeds the sampling error. This results
not only support the validity of BAFFI results, but also
indicate that BAFFI enables complex fault injection analysis
of very large HW designs (like NOEL-V multicore CPU)
which is usually unfeasible (or way too costly) to carry out by
means of SFI. In fact, BAFFI provides similar fault injection
precision (granularity) as simulation-based fault injectors, and
at the same time reaches much higher experimental speed.
Table I compares the observed experimental speeds of SFI
and FFI setups. It can be seen that BAFFI accelerates fault
injection in sequential logic (RT-level) by nearly two orders
of magnitude, and accelerates fault injection in combinational
logic (gate-level) up to four orders of magnitude. In such a
way, by featuring both high FI precision and high experimental
speed, BAFFI enables dependability analysis of fault-tolerant
mechanisms in large SoCs.

Finally, it can be seen from the Table I that the board-
side BAFFI setup (MC8051, AVR, Microblaze) on the average
performs nearly 20x times faster than the host-controlled setup

(a) (b) (c)

0.0 2.0 4.0 6.0 8.0 10.0 12.0

FFI

GATE-SFI

FFI

GATE-SFI

FFI

GATE-SFI

RTL-SFI

LU
T

B
R

A
M

R
eg

is
te

rs

Estimated failure rate (%), MC8051

0.0 5.0 10.0 15.0 20.0

FFI

FFI

GATE-SFI

FFI

GATE-SFI

FFI

GATE-SFI

LU
T

LU
TR

A
M

B
R

A
M

R
eg

is
te

rs

Estimated failure rate (%), Microblaze

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

FFI

FFI

GATE-SFI

FFI

GATE-SFI

RTL-SFI

LU
T

B
R

A
M

R
eg

is
te

rs

Estimated failure rate (%), AVR

Fig. 9. Dependability estimates of three considered DUTs, obtained by RT-level SFI, gate-level SFI, and FFI experiments

(NOEL-V). This illustrates a speed-up gain attainable by
eliminating slow (high-latency) synchronization/debug links
with the host PC, and deploying FFI experiments in a fully
embedded way in the target FPGA.

V. CONCLUSIONS

Dependability and security assessment of FPGA prototypes
often requires a fine-grain FFI support. This paper has pro-
posed a new FFI tool, that enables fault injection at the
granularity of individual nestlist cells, such as registers, LUTs,
BRAMs and LUTRAMs. This level of precision is achieved by
locating with bit accuracy the essential bits of targeted netlist
cells, and mapping them together under the hierarchical path
in the DUT tree. Unlike the existing FFI tools, BAFFI does
not introduce any area constraints (Pblocks) for targeted DUT
components, thus featuring much lower intrusiveness of FFI
process. Those FPGA resources that currently lack bit-accurate
mapping rules (carry chains, DSPs and routing resources) are
still targeted by BAFFI with the common Pblock granularity.
This limitation will be addressed in the future work. BAFFI is
published at https://gitlab.com/selene-riscv-platform/DAVOS,
as an open-source extension to the DAVOS fault injection
toolkit.

VI. ACKNOWLEDGMENT

This work has received funding from (i) ECSEL Joint Un-
dertaking (JU) under grant agreement No 877056, (ii) Agencia
Estatal de Investigación from Spain under grant agreement
no. PCI2020-112092, (iii) European Unions Horizon 2020
research and innovation programme under grant agreement
no. 871467, and (iv) Grant PID2020-120271RB-I00 funded
by MCIN/AEI/ 10.13039/501100011033. Carles Hernández is
partially supported by Spanish Ministry of Science, Innovation
and Universities under “Ramón y Cajal”, fellowship No.
RYC2020-030685-I.

REFERENCES

[1] D. de Andres, J. C. Ruiz, D. Gil, and P. Gil, “Fault emulation for
dependability evaluation of vlsi systems,” IEEE transactions on VLSI
systems, vol. 16, no. 4, pp. 422–431, 2008.

[2] L. Antoni, R. Leveugle, and M. Feher, “Using run-time reconfiguration
for fault injection in hardware prototypes,” in 17th DFT Symposium.
IEEE, 2002, pp. 245–253.

[3] C. Lavin and A. Kaviani, “Rapidwright: Enabling custom crafted im-
plementations for fpgas,” in 2018 IEEE 26th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2018, pp. 133–140.

[4] L. A. Cardona and C. Ferrer, “Ac icap: a flexible high speed icap
controller,” International Journal of Reconfigurable Computing, vol.
2015, p. 15, 2015.

[5] K. D. Pham, E. Horta, and D. Koch, “BITMAN: A tool and API for
FPGA bitstream manipulations,” in DATE2017 Conference. IEEE,
2017, pp. 894–897.

[6] R. Le, “Soft Error Mitigation Using Prioritized Essential Bits,” 2012.
[7] A. Ramos, J. A. Maestro, and P. Reviriego, “Characterizing a risc-v

sram-based fpga implementation against single event upsets using fault
injection,” Microelectronics Reliability, vol. 78, pp. 205–211, 2017.

[8] W. Yang, B. Du, C. He, and L. Sterpone, “Reliability assessment on
16 nm ultrascale+ mpsoc using fault injection and fault tree analysis,”
Microelectronics Reliability, vol. 120, p. 114122, 2021.

[9] L. A. Aranda, A. Sánchez-Macián, and J. A. Maestro, “Acme: A tool
to improve configuration memory fault injection in sram-based fpgas,”
IEEE Access, vol. 7, pp. 128 153–128 161, 2019.

[10] A. Sari and M. Psarakis, “A fault injection platform for the analysis of
soft error effects in fpga soft processors,” in 19th DDECS Symposium.
IEEE, 2016, pp. 1–6.

[11] Stephanie Tapp, Xilinx Inc., “Configuration Readback Capture in Ultra-
Scale FPGAs, XAPP1230 (v1.1),” 2015.

[12] Xilinx Inc., “7 Series FPGAs Configuration UG470 (v1.13.1),” 2018.
[13] M. Jeong, J. Lee, E. Jung, Y. H. Kim, and K. Cho, “Extract lut logics

from a downloaded bitstream data in fpga,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2018, pp. 1–5.

[14] Xilinx Inc., “Soft Error Mitigation Controller v4.1,” 2018.
[15] P. Swierczynski, G. T. Becker, A. Moradi, and C. Paar, “Bitstream fault

injections (bifi)–automated fault attacks against sram-based fpgas,” IEEE
Transactions on Computers, vol. 67, no. 3, pp. 348–360, 2017.

[16] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in Design, Automation and
Test in Europe, 2009, pp. 502–506.

[17] I. Tuzov, D. de Andrés, and J.-C. Ruiz, “Accurate robustness assessment
of hdl models through iterative statistical fault injection,” in EDCC
Conference. IEEE, 2018, pp. 1–8.

[18] P. Tummeltshammer, “Analysis of common cause faults in dual core
architectures,” PhD dissertation, Technische Universitat Wien, 2009.

[19] C. Gaisler, NOEL-V Processor, 2020,
https://www.gaisler.com/index.php/products/processors/noel-v.

[20] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The RISC-V
Instruction Set Manual,” University of California, Berkeley, Tech. Rep.
UCB/EECS-2014-54, May 2014.

[21] C. Gaisler, GRMON3 User’s Manual, 2022.
[22] Oregano Systems GmbH, “MC8051 IP Core, User Guide (V 1.2),” 2013.
[23] J. Sauermann, “How to design your own CPU on FPGAs with VHDL,”

2010. [Online]. Available: https://github.com/freecores/cpu lecture
[24] Xilinx Inc., “Microblaze processor reference guide, ug984,” 2019.
[25] I. Tuzov, D. de Andrés, and J.-C. Ruiz, “DAVOS: EDA toolkit for

dependability assessment, verification, optimisation and selection of
hardware models,” in DSN Conference. IEEE, 2018, pp. 322–329.

https://gitlab.com/selene-riscv-platform/DAVOS
https://github.com/freecores/cpu_lecture

