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Abstract

The proliferation of autonomous systems, and their increasing integration with
day-to-day human life, have opened new frontiers of research and develop-
ment. Within this scope, the current thesis dives into the multifaceted appli-
cations of Large Language Models (LLMs), Deep Learning (DL) techniques,
and Optimization Algorithms within the realm of these autonomous systems.
Drawing from the principles of AI-enhanced methods, the studies encapsulated
within this work converge on the exploration and enhancement of different au-
tonomous systems ranging from B5G Truck Platooning Systems, Multi-Agent
Systems (MASs), Unmanned Aerial Vehicles, Forest Fire Area Estimation, to
the early detection of diseases like Glaucoma.

A key research focus, pursued in this work, revolves around the innovative de-
ployment of adaptive PID controllers in vehicle platooning, facilitated through
the integration of LLMs. These PID controllers, when infused with AI capa-
bilities, offer new possibilities in terms of efficiency, reliability, and security of
platooning systems. We developed a DL model that emulates an adaptive PID
controller, thereby showcasing its potential in AI-enabled radio and networks.
Simultaneously, our exploration extends to multi-agent systems, proposing an
Extended Coevolutionary (EC) Theory that amalgamates elements of coevo-
lutionary dynamics, adaptive learning, and LLM-based strategy recommen-
dations. This allows for a more nuanced and dynamic understanding of the
strategic interactions among heterogeneous agents in MASs.
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Moreover, we delve into the realm of Unmanned Aerial Vehicles (UAVs), propos-
ing a system for video understanding that employs a language-based world-
state history of events and objects present in a scene captured by a UAV.
The use of LLMs here enables open-ended reasoning such as event forecasting
with minimal human intervention. Furthermore, an alternative DL methodol-
ogy is applied for the estimation of the affected area during forest fires. This
approach leverages a novel architecture called TabNet, integrated with Trans-
formers, thus providing accurate and efficient area estimation.

In the field of healthcare, our research outlines a successful early detection
methodology for glaucoma. Using a three-stage training approach with Effi-
cientNet on retinal images, we achieved high accuracy in detecting early signs
of this disease.

Across these diverse applications, the core focus remains: the exploration of
advanced AI methodologies within autonomous systems. The studies within
this thesis seek to demonstrate the power and potential of AI-enhanced tech-
niques in tackling complex problems within these systems. These in-depth
investigations, experimental analyses, and developed solutions shed light on
the transformative potential of AI methodologies in improving the efficiency,
reliability, and security of autonomous systems, ultimately contributing to fu-
ture research and development in this expansive field.
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Resumen

La proliferación de sistemas autónomos y su creciente integración en la vida
humana cotidiana han abierto nuevas fronteras de investigación y desarrollo.
Dentro de este ámbito, la presente tesis se adentra en las aplicaciones multi-
facéticas de los LLMs (Large Language Models), técnicas de DL (Deep Learn-
ing) y algoritmos de optimización en el ámbito de estos sistemas autónomos.
A partir de los principios de los métodos potenciados por la Inteligencia Arti-
ficial (IA), los estudios englobados en este trabajo convergen en la exploración
y mejora de distintos sistemas autónomos que van desde sistemas de platoon-
ing de camiones en sistemas de comunicaciones Beyond 5G (B5G), Sistemas
Multi-Agente (SMA), Vehículos Aéreos No Tripulados (UAV), estimación del
área de incendios forestales, hasta la detección temprana de enfermedades como
el glaucoma.

Un enfoque de investigación clave, perseguido en este trabajo, gira en torno
a la implementación innovadora de controladores PID adaptativos en el pla-
tooning de vehículos, facilitada a través de la integración de los LLMs. Estos
controladores PID, cuando se infunden con capacidades de IA, ofrecen nuevas
posibilidades en términos de eficiencia, fiabilidad y seguridad de los sistemas
de platooning. Desarrollamos un modelo de DL que emula un controlador PID
adaptativo, mostrando así su potencial en las redes y radios habilitadas para
IA. Simultáneamente, nuestra exploración se extiende a los sistemas multi-
agente, proponiendo una Teoría Coevolutiva Extendida (TCE) que amalgama
elementos de la dinámica coevolutiva, el aprendizaje adaptativo y las recomen-
daciones de estrategias basadas en LLMs. Esto permite una comprensión más
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matizada y dinámica de las interacciones estratégicas entre agentes heterogé-
neos en los SMA.

Además, nos adentramos en el ámbito de los vehículos aéreos no tripulados
(UAVs), proponiendo un sistema para la comprensión de vídeos que crea una
log de la historia basada en la descripción semántica de eventos y objetos pre-
sentes en una escena capturada por un UAV. El uso de los LLMs aquí permite
razonamientos complejos como la predicción de eventos con mínima interven-
ción humana. Además, se aplica una metodología alternativa de DL para la
estimación del área afectada durante los incendios forestales. Este enfoque
aprovecha una nueva arquitectura llamada TabNet, integrada con Transform-
ers, proporcionando así una estimación precisa y eficiente del área.

En el campo de la salud, nuestra investigación esboza una metodología exitosa
de detección temprana del glaucoma. Utilizando un enfoque de entrenamiento
de tres etapas con EfficientNet en imágenes de retina, logramos una alta pre-
cisión en la detección de los primeros signos de esta enfermedad.

A través de estas diversas aplicaciones, el foco central sigue siendo la explo-
ración de metodologías avanzadas de IA dentro de los sistemas autónomos.
Los estudios dentro de esta tesis buscan demostrar el poder y el potencial de
las técnicas potenciadas por la IA para abordar problemas complejos dentro
de estos sistemas. Estas investigaciones en profundidad, análisis experimen-
tales y soluciones desarrolladas arrojan luz sobre el potencial transformador
de las metodologías de IA en la mejora de la eficiencia, fiabilidad y seguri-
dad de los sistemas autónomos, contribuyendo en última instancia a la futura
investigación y desarrollo en este amplio campo.
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Resum

La proliferació de sistemes autònoms i la seua creixent integració en la vida
humana quotidiana han obert noves fronteres de recerca i desenvolupament.
Dins d’aquest àmbit, la present tesi s’endinsa en les aplicacions multifacè-
tiques dels LLMs (Large Language Models), tècniques de DL (Deep Learning)
i algoritmes d’optimització en l’àmbit d’aquests sistemes autònoms. A partir
dels principis dels mètodes potenciats per la Intel·ligència Artificial (IA), els
estudis englobats en aquest treball convergeixen en l’exploració i millora de
diferents sistemes autònoms que van des de sistemes de platooning de camions
en sistemes de comunicacions Beyond 5G (B5G), Sistemes Multi-Agent (SMA),
Vehicles Aeris No Tripulats (UAV), estimació de l’àrea d’incendis forestals, fins
a la detecció precoç de malalties com el glaucoma.

Un enfocament de recerca clau, perseguit en aquest treball, gira entorn de la
implementació innovadora de controladors PID adaptatius en el platooning
de vehicles, facilitada a través de la integració dels LLMs. Aquests contro-
ladors PID, quan s’infonen amb capacitats d’IA, ofereixen noves possibilitats
en termes d’eficiència, fiabilitat i seguretat dels sistemes de platooning. Desen-
volupem un model de DL que emula un controlador PID adaptatiu, mostrant
així el seu potencial en les xarxes i ràdios habilitades per a IA. Simultàniament,
la nostra exploració s’estén als sistemes multi-agent, proposant una Teoria Co-
evolutiva Estesa (TCE) que amalgama elements de la dinàmica coevolutiva,
l’aprenentatge adaptatiu i les recomanacions d’estratègies basades en LLMs.
Això permet una comprensió més matissada i dinàmica de les interaccions es-
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tratègiques entre agents heterogenis en els SMA.

A més, ens endinsem en l’àmbit dels Vehicles Aeris No Tripulats (UAVs), pro-
posant un sistema per a la comprensió de vídeos que crea un registre de la
història basat en la descripció semàntica d’esdeveniments i objectes presents
en una escena capturada per un UAV. L’ús dels LLMs aquí permet raonaments
complexos com la predicció d’esdeveniments amb mínima intervenció humana.
A més, s’aplica una metodologia alternativa de DL per a l’estimació de l’àrea
afectada durant els incendis forestals. Aquest enfocament aprofita una nova
arquitectura anomenada TabNet, integrada amb Transformers, proporcionant
així una estimació precisa i eficient de l’àrea.

En el camp de la salut, la nostra recerca esbossa una metodologia exitosa de
detecció precoç del glaucoma. Utilitzant un enfocament d’entrenament de tres
etapes amb EfficientNet en imatges de retina, aconseguim una alta precisió en
la detecció dels primers signes d’aquesta malaltia.

A través d’aquestes diverses aplicacions, el focus central continua sent l’exploració
de metodologies avançades d’IA dins dels sistemes autònoms. Els estudis dins
d’aquesta tesi busquen demostrar el poder i el potencial de les tècniques poten-
ciades per la IA per a abordar problemes complexos dins d’aquests sistemes.
Aquestes investigacions en profunditat, anàlisis experimentals i solucions de-
senvolupades llançen llum sobre el potencial transformador de les metodologies
d’IA en la millora de l’eficiència, fiabilitat i seguretat dels sistemes autònoms,
contribuint en última instància a la futura recerca i desenvolupament en aquest
ampli camp.
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Chapter 1

Introduction

Autonomous systems have metamorphosed into one of the cornerstones of mod-
ern technological evolution, fundamentally altering our perspective on inter-
connectedness, efficiency, and decision-making [1, 2, 3]. As these systems be-
come increasingly embedded in our day-to-day experiences [4] – from vehicle
coordination on busy highways to unmanned aerial oversight and healthcare
diagnostics – the imperative to augment their capabilities grows ever more
pressing. A pivotal facet of this augmentation is the seamless integration of
advanced Artificial Intelligence (AI) methodologies [5, 6, 7]. This doctoral
thesis, titled "AI-Enhanced Methods in Autonomous Systems: Large Lan-
guage Models, DL Techniques, and Optimization Algorithms," undertakes an
in-depth exploration of such methods, rendering insights and innovations that
could redefine the landscape of autonomous systems.

Central to our exploration is the intersection of Large Language Models (LLMs)
with Deep Learning (DL) techniques and Optimization Algorithms [8]. This
convergence facilitates groundbreaking innovations in autonomous systems, en-
compassing a gamut of applications – from B5G Truck Platooning Systems [9]
and Multi-Agent Systems [10, 11], to Unmanned Aerial Vehicles [12] and early
disease detection methodologies [13, 14, 15].

Vehicle Platooning and Network Communications: In the exhilarating domain
of vehicle platooning, especially in the context of Beyond 5G (B5G) networks,
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a paradigm shift is afoot. Vehicles coordinated in platoons, often traveling at
high speeds with minimal spacing, necessitate an impeccable degree of synchro-
nization and reliability [16]. This work reveals that the utilization of LLMs, like
the GPT-3.5-turbo, in conjunction with adaptive PID controllers [17, 18, 19],
can profoundly augment the safety and efficiency of platooning systems, par-
ticularly when navigating the challenges posed by communication latencies,
packet losses, and varied communication ranges.

Strategic Interactions in Multi-Agent Systems: Venturing into the intricate
world of Multi-Agent Systems (MASs), traditional game theory models, albeit
instrumental, often grapple with capturing the dynamism and heterogeneity
inherent to modern MASs. Herein, we introduce an Extended Coevolutionary
(EC) Theory, enriched with LLM-based strategic insights [20]. This novel
framework recognizes the multifaceted interactions, diverse risk appetites, and
learning capabilities of agents, offering a robust model for emergent cooperative
behavior, even amidst disruptions.

Unmanned Aerial Vehicles and Scene Comprehension: A prominent advance-
ment, worth highlighting, is our work with Unmanned Aerial Vehicles (UAVs).
By integrating Large Language Models [21, 22], such as BLIP-2 [23, 24] and
GPT-3 [25, 26, 27], we lay the groundwork for an intelligent video understand-
ing system. This system translates the visual world of UAVs into a language-
based narrative, providing comprehensive descriptions, actionable insights, and
predictive forecasts.

Forest Fire Area Estimation: On the environmental front, the devastating
impact of forest fires underscores the need for precise area estimation. Lever-
aging the prowess of the transformer-based architecture TabNet [28], this re-
search demonstrates a state-of-the-art methodology for predicting affected ar-
eas, thereby enabling informed disaster management decisions.

Early Disease Detection: Lastly, in the realm of healthcare, early detection of-
ten makes the difference between manageable treatment and dire consequences.
The research presents an optimized three-stage training approach using Effi-
cientNet [29, 30, 31], showcasing remarkable accuracy in the early detection of
Glaucoma from retinal images [32].

As we navigate through this thesis, the mathematical intricacies and method-
ologies underlying each application are elucidated, providing a robust founda-
tion for understanding the transformative potential of AI-enhanced techniques.
Through experimental analyses and developed solutions, this work aims to il-
lustrate not just the contemporary significance, but also the futuristic vision of
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AI methodologies in autonomous systems. In essence, this research endeavors
to accentuate the synergistic potential of LLMs, DL techniques, and optimiza-
tion algorithms in reimagining the capabilities of autonomous systems [33, 34],
thereby lighting the path for subsequent researchers and developers in this
ever-evolving field.

1.1 Objectives

The main objective of this thesis is to enhance the capabilities of autonomous
systems through the integration of advanced AI methodologies, particularly
focusing on the application of LLMs, DL techniques, and Optimization Al-
gorithms. To achieve this goal, the following specific objectives have been
tackled:

• To explore the integration of LLMs within the control loop of autonomous
vehicle platoons, enhancing communication and decision-making processes
in B5G networks.

• To develop an Extended Coevolutionary (EC) framework that incorpo-
rates LLM-based strategy recommendations, fostering cooperative behav-
ior in MASs.

• To design and implement an intelligent semantic scene understanding
system for UAVs using a pipeline of LLMs.

• To employ advanced ML and DL techniques, particularly TabNet, for
accurate estimation of burned areas in forest fires, aiding in environmental
management and disaster response.

• To innovate an optimized three-stage training procedure for the early
detection of Glaucoma using EfficientNet variants, demonstrating high
accuracy and resource efficiency.

These objectives serve as milestones towards the realization of the thesis’ main
goal. Each chapter of this dissertation is dedicated to addressing these ob-
jectives, with comprehensive experimental analyses to validate the proposed
methodologies and solutions. As we navigate through the mathematical intri-
cacies and practical applications of each proposed method, we aim to demon-
strate the transformative potential of AI-enhanced techniques in autonomous
systems.
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1.2 Methodology

The methodological approach of this thesis is rooted in a systematic exploration
and development of AI-enhanced methods within autonomous systems. A
rigorous, multi-stage strategy was employed to address the research questions
posed by the objectives. The following presents the structured methodology
undertaken:

1. Literature Review: A comprehensive review of existing literature was
conducted to identify the state-of-the-art in AI methodologies applied
to autonomous systems, including the latest advancements in LLMs, DL
techniques, and optimization algorithms.

2. Problem Formulation: Based on the literature review, specific chal-
lenges within the domain of autonomous systems were identified, and
pertinent research questions were formulated. These questions guided
the subsequent stages of research.

3. System Design and Modeling: For each objective, appropriate sys-
tem models were developed. This included the design of control loops
for vehicle platooning, EC frameworks for MASs, semantic scene under-
standing systems for UAVs, fire area estimation models, and diagnostic
models for early disease detection.

4. Algorithm Development: Tailored algorithms leveraging LLMs, DL,
and optimization were conceptualized and developed to solve the formu-
lated problems. This stage involved iterative prototyping, testing, and
refinement.

5. Experimental Setup and Data Collection: Experiments were de-
signed to rigorously test the developed models and algorithms. This in-
cluded setting up simulations, collecting datasets, and ensuring robust
experimental protocols.

6. Evaluation and Analysis: The performance of the proposed solutions
was evaluated using a variety of metrics appropriate to each domain. Re-
sults were analyzed to draw conclusions about the efficacy and efficiency
of the AI-enhanced methods.

7. Validation and Verification: Where possible, solutions were validated
using real-world data and scenarios to verify the practical applicability of
the proposed methods.
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8. Documentation and Dissemination: Findings were meticulously doc-
umented, ensuring that the research process and outcomes were transpar-
ent and reproducible. Results were also disseminated through publica-
tions and presentations to the scientific community.

This structured approach ensured a comprehensive investigation into each re-
search question, providing a robust framework for the development and eval-
uation of AI-enhanced methods in autonomous systems. Each chapter of this
thesis corresponds to a distinct phase in this methodology, collectively con-
tributing to the field’s advancement and setting the groundwork for future
research endeavors.

In the problem formulation phase, the research was steered by several questions
that emerged as a result of the initial literature survey. These questions were
meticulously crafted to dissect the core challenges and opportunities within the
autonomous systems landscape. Key among them were: How can LLMs like
GPT-3.5-turbo be effectively integrated into the control systems of autonomous
vehicle platoons to enhance communication and decision-making? What are
the potential dynamics of cooperation and defection in MASs when influenced
by LLM-based strategic recommendations within an EC framework? Can the
integration of LLMs and Visual Language Models (VLMs) in UAVs lead to a
breakthrough in semantic scene understanding that transcends current limita-
tions? What DL architectures and models most effectively predict the extent
of burned areas in forest fires, and how can these predictions be optimized to
assist in disaster management? Lastly, how can the efficiency and accuracy
of disease detection, specifically glaucoma, be maximized through advanced
neural networks like EfficientNet? Addressing these questions constituted the
foundation of our research, ensuring that the developed methodologies not only
addressed theoretical gaps but were also attuned to practical, real-world appli-
cations and implications. Each chapter thus not only pursues these questions
with rigor but also contributes to the body of knowledge that shapes the field
of autonomous systems.
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Chapter 2

Background

In an age marked by the exponential evolution of AI, our understanding and ap-
proach to autonomous systems have been fundamentally altered. Autonomous
systems, operating independently of human intervention, have steadily em-
bedded themselves in our daily lives. From transportation networks to smart
homes, autonomous robotics to healthcare, they have drastically expanded the
scope and capacity of technological integration. At the heart of this revolu-
tion are the interwoven threads of LLMs, DL techniques, and Optimization
Algorithms, all of which have fueled and catalyzed these developments.

LLMs have emerged as powerful tools for tasks involving natural language un-
derstanding, information retrieval, and knowledge extraction. Their ability
to comprehend, generate, and interact in human language, and to produce
coherent, contextually accurate text, has made them valuable in various ap-
plications. These models, including OpenAI’s GPT series, excel at an array
of tasks from text generation, translation, to answering queries, among others.
Their ability to incorporate and interpret vast swaths of information has un-
locked unique potential in developing dynamic and adaptive systems, thereby
making them pivotal in the autonomous systems discussed in this work.

Beyond Language Models (BLIP-2) [23, 24], a significant evolution of LLMs,
delve further into the intersection of Machine Learning (ML) and human-like
cognitive abilities. Expanding upon its predecessors, the BLIP-2 model offers
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enhancements such as multi-modal learning, better representation of learned
information, and increased language understanding capacity. Its underlying
design and functionality render it a valuable tool in developing autonomous
systems, particularly in the realm of multi-agent interactions and strategy
adaptation.

DL, a subfield of ML, leverages complex, multi-layered artificial neural net-
works to model and understand diverse data structures. It has been particu-
larly effective in tasks that involve large datasets and high-dimensional spaces.
Crucial to our work is its integration in video understanding on Unmanned
Aerial Vehicles (UAVs), and more particularly in Socratic Video Understand-
ing, where the goal is to develop machines that understand video content at
a human-like level. DL allows machines to learn from a series of past expe-
riences, much like human cognition, thereby enabling them to autonomously
analyze, interpret, and understand video feeds.

PID (Proportional Integral Derivative) Controllers constitute a crucial aspect
of the control systems in autonomous vehicles, particularly in vehicle platoon-
ing. They calculate an ‘error’ value as the difference between a measured
process variable and a desired setpoint, and apply a correction based on pro-
portional, integral, and derivative terms to achieve the desired behavior. When
combined with ML techniques and LLMs, they promise improved platooning
performance, decreased fuel consumption, and better safety measures.

In the context of autonomous vehicular systems, Truck Platooning emerges
as a critical application. Platooning refers to a group of vehicles that travel
in close proximity to one another, operating as a single unit while improving
traffic flow, reducing fuel consumption, and enhancing safety. The develop-
ment of efficient, AI-enhanced control systems for platooning, therefore, holds
significant implications for autonomous vehicular technology.

MASs consist of multiple interacting intelligent agents that can be used to
solve problems that are difficult or impossible for an individual agent to solve.
They find application across a diverse range of domains from game theory,
distributed computing to robotics. In this thesis, we focus on the incorpora-
tion of LLMs in MASs, striving to achieve emergent cooperation and strategy
adaptation, thereby enhancing their overall functionality and efficiency.

In a similar vein, Coevolutionary Algorithms, a type of Evolutionary Algo-
rithms, work on the principle of co-adaptation, wherein multiple populations
evolve together by interacting and competing with each other. They are par-
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ticularly useful for optimization in dynamic environments, thereby finding ap-
plications in our work on strategy adaptation in MASs.

TabNet [28], a high-performance and interpretable DL model introduced by
Google Cloud AI, has found growing applications in the field of tabular data
learning. Its integration with Transformers, which are DL models used in
understanding sequences, enhances its capacity to capture complex patterns
in data. This methodology plays a critical role in our work on area estimation
of forest fires.

EfficientNet [29], another state-of-the-art DL model, represents a family of
advanced convolutional networks (CNNs) that leverage a compound scaling
method to uniformly scale all dimensions of depth, width, and resolution.
Particularly relevant in our work is its application in the early detection of
glaucoma, underlining the significant potential of DL in the domain of medical
imaging and diagnostics.

By amalgamating these diverse technologies, methodologies, and algorithms,
this thesis delves into the expansive realm of autonomous systems. The explo-
ration sheds light on the potential of AI-enhanced methods to address com-
plex challenges, thus driving the advancement of autonomous systems. The
synergy of these elements underscores the transformative role of AI method-
ologies in propelling efficiency, reliability, and security within these systems.
The profound implications of these studies extend beyond their immediate ap-
plications, contributing a holistic perspective to the rapidly evolving discourse
on AI and autonomous systems.

2.1 Large Language Models and Their Applications

LLMs [25, 26] such as GPT-4 by OpenAI have significantly revolutionized our
approach to natural language understanding and generation. These models,
by design, leverage billions of parameters and extensive corpora of text data
to generate human-like text. At the heart of LLMs lie the principles of trans-
former architecture, characterized by self-attention mechanisms and positional
encoding.
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2.1.1 LLM Architecture and Mathematics

The primary mathematical model behind LLMs is the transformer model, a
sequence transduction model that relies on self-attention and position-wise
fully connected feed-forward networks.

A transformer model works with an encoder-decoder structure. The encoder
maps an input sequence of symbol representations (x1, ..., xn) to a sequence
of continuous representations Z = (z1, ..., zn). Given Z, the decoder then
generates an output sequence (y1, ..., ym) of symbols one element at a time,
where m can be different from n.

In mathematical terms, the transformer’s self-attention mechanism can be de-
fined as:

Self-Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (2.1)

where Q, K, V are the query, key, and value vectors. The output of the self-
attention function is the weighted sum of the values, where the weight assigned
to each value is computed by the compatibility function of the query with the
corresponding key. Here, dk is the dimensionality of the query and key vectors,
usually set to 64 in practice.

2.1.2 LLMs Training

LLMs training is generally performed using the maximum likelihood esti-
mation (MLE) principle. For a dataset D of N sentence pairs, where each
pair (x, y) consists of an input sentence x = (x1, ..., xn) and output sentence
y = (y1, ..., ym), the goal is to minimize the negative log-likelihood of the model
parameters θ:

L(θ) = −
∑

(x,y)∈D

logP (y|x; θ). (2.2)

The parameters θ of the LLM are then updated via gradient descent, specifi-
cally using optimization algorithms like Adam.
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2.1.3 Challenges and Future Directions

While LLMs provide substantial advancements in natural language under-
standing and generation, there remain challenges such as ensuring ethical use,
mitigating biases in data, and dealing with the interpretability of these models.

Despite these challenges, the potential of LLMs in various sectors is immense.
With continued advancements in computational power, algorithmic improve-
ments, and more diverse and extensive data, we can expect to see increasingly
nuanced and powerful applications of LLMs in autonomous systems, health-
care, education, and more.

The unique ability of LLMs to analyze and generate human-like text, coupled
with their capacity to learn from large datasets, makes them an invaluable
asset in the realm of AI-enhanced autonomous systems. By continuing to
innovate and explore these technologies, we can unlock unprecedented potential
in machine understanding and interaction, thereby pushing the boundaries of
what we perceive as possible in AI development.

2.2 Visual Language Models and Their Applications

The combination of vision and language has led to a new class of models
known as Visual Language Models (VLMs) [7]. These models are trained to
understand and generate information by connecting visual content with natural
language, thereby allowing for more holistic and enriched interpretations of
data. They have seen significant advancements with the advent of transformer
architectures that effectively incorporate both vision and language.

2.2.1 VLM Architecture and Mathematics

A VLM consists of two main components: a vision model and a language
model. These components are typically connected through a transformer layer
that maps the vision and language representations into a common semantic
space.

The vision model is usually a Convolutional Neural Network (CNN) that ex-
tracts feature vectors from input images. For a given image I, a CNN will
output a feature map F = CNN(I), where F ∈ Rh×w×d, h and w are the
height and width of the feature map, and d is the dimensionality of the feature
vectors.
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The language model is a transformer-based language model, which generates
a sequence of token embeddings for a given text input. For an input sentence
S consisting of n tokens, the language model outputs a sequence of token
embeddings E = LM(S), where E ∈ Rn×d′ and d′ is the dimensionality of the
token embeddings.

These two components are combined using a transformer layer, which connects
the vision and language representations:

O = Transformer(F,E), (2.3)

where O ∈ R(h×w+n)×d′′ , and d′′ is the dimensionality of the output represen-
tations.

2.2.2 VLMs Training

Training a VLM involves learning a joint distribution over images and text.
In practice, this is usually done through contrastive learning. The objective
is to maximize the similarity between the representations of a pair of positive
examples (an image and its corresponding text), and minimize the similarity
between the representations of negative examples (an image and random text,
or vice versa).

Given a batch of B image-text pairs (Iz, Sz)
B
z=1, the contrastive loss can be

defined as:

L = − 1

B

B∑
z=1

log
exp(szz/τ)

exp(szz/τ) +
∑

o6=z exp(szo/τ)
, (2.4)

where szo = sim(Iz, So) is the similarity between image Iz and text So, and τ
is a temperature parameter.

2.2.3 Challenges and Future Directions

Although VLMs have demonstrated promising results in various tasks, there
are still several challenges to be addressed, such as mitigating biases in data,
improving the interpretability of these models, and enhancing their efficiency.
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Moreover, a new wave of VLMs is emerging, with models like BLIP-2, which
aim to further improve the performance and utility of VLMs in real-world
applications. These next-generation models, incorporating more complex and
powerful architectures, are paving the way for unprecedented advancements in
AI.

VLMs, with their ability to merge vision and language understanding, play
a critical role in the development of intelligent and interactive AI systems.
They provide a powerful tool for enhancing autonomous systems, contributing
significantly to the field of AI research and development.

2.3 PID Control and Its Applications

PID Control is one of the most commonly used feedback control mechanisms in
various fields due to its simple, effective and comprehensible control structure.
It has been employed to regulate everything from industrial processes to vehicle
control, and even in some facets of AI applications.

2.3.1 The Mathematics of PID Control

The PID controller is named after its three correcting terms, each of which
respectively corrects the present, accumulated past, and future behavior of the
error.

The control function of a PID controller can be defined as follows:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd

de(t)

dt
, (2.5)

where:

• u(t) is the output control variable.

• Kp, Ki, and Kd are the proportional, integral, and derivative gains re-
spectively.

• e(t) is the error signal defined as e(t) = r(t) − y(t), with r(t) being the
desired setpoint and y(t) being the actual output.

The PID control law is then composed of three terms:
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1. The proportional term (P ) is proportional to the current error e(t). It
determines the reaction to the current error. The proportional response
can be adjusted by Kp.

2. The integral term (I) is proportional to both the magnitude and the
duration of the error. It determines the reaction based on the sum of
recent errors. The integral response can be adjusted by altering Ki.

3. The derivative term (D) is proportional to the rate of change of the
error. This predicts the future trend of the error, based on its current
rate of change. The impact of the derivative response can be adjusted by
changing Kd.

2.3.2 Tuning of PID Controllers

Tuning a PID controller involves adjusting the proportional, integral, and
derivative gains to get the desired response. There are several methods for PID
controller tuning, with the most popular ones being the methods Ziegler–Nichols
and Cohen–Coon [17].

The goal is to find the gain values that minimize the difference between the de-
sired and actual output. This is often formulated as an optimization problem,
which can be solved using various techniques.

2.3.3 Applications and Challenges

Despite its apparent simplicity, PID control is a cornerstone of control engi-
neering, applied widely in various fields [18]. However, tuning a PID controller
for a specific system can be challenging, especially for systems with complex
and nonlinear dynamics [19]. Furthermore, while PID controllers are effective
for systems with constant parameters, they may fail to deliver satisfactory
control performance for systems with varying parameters or disturbances.

Incorporating AI techniques like ML and optimization algorithms can signif-
icantly improve the performance of PID controllers. With the advent of AI-
enhanced PID controllers, we can now handle more complex control tasks and
navigate dynamic, uncertain environments more effectively.
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2.4 Truck Platooning

Truck Platooning involves the application of automated driving technology to
enable a group of trucks to travel in a close convoy [16]. This method increases
fuel efficiency and safety, but also necessitates intricate control systems for
managing inter-vehicle distances and reacting to real-world variables. The in-
tegration of LLMs into this context can lead to improved explainability and
control.

A conventional approach to truck platooning involves the use of control al-
gorithms such as the PID control. This controller manipulates the system’s
output, i.e., the acceleration of the truck, based on the error in the system’s
desired output, which is the desired inter-vehicle distance. If dref is the desired
inter-vehicle distance and d is the current distance, then the error e is given
by

e = dref − d. (2.6)

The output of the PID controller u is given by

u = Kpe+Ki

∫
edt+Kd

de

dt
, (2.7)

where Kp, Ki, and Kd are the proportional, integral, and derivative gains,
respectively.

In a traditional setup, these gains are usually set by the engineer during system
design and are fixed. However, we propose to use a DL model to predict the
gains based on real-time data, resulting in an adaptive PID controller.

Assuming a simplified linear model of the truck dynamics, the state of the
truck can be represented by its position p and velocity v. If we assume that
O = {DL,LLM, . . .}, where this can be any generic AI model, takes as input
the state of the truck and the error e, and outputs the gains Kp, Ki, and Kd,
then we can represent this as

[Kp,Ki,Kd] = O(p, v, e). (2.8)
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This results in an adaptive PID controller that can adjust its behavior based
on real-time conditions.

2.4.1 Explainability with LLMs

In addition to control, LLMs can also enhance the explainability of the pla-
tooning system. By analyzing the inputs and outputs of the LLM, we can
gain insights into the decisions made by the controller. For example, the LLM
might place more emphasis on the proportional term when the error is large,
indicating that it is focusing on reducing the error quickly. On the other hand,
when the error is small and changing slowly, it might place more emphasis on
the integral term, indicating that it is trying to eliminate the steady-state er-
ror. This can help in understanding the behavior of the controller and making
adjustments if necessary.

In conclusion, the incorporation of LLMs into truck platooning can enhance
not just the control performance, but also the explainability of the system.
However, practical implementation of this approach requires thorough testing
and validation to ensure safety and reliability.

2.5 Multi-agent Systems and Coevolutionary Theory

A MAS is a computational system where several autonomous entities, called
agents, interact or work together to perform tasks or solve problems that might
be too complex or large for a unique agent. These agents can exhibit complex
behaviors and evolve through their interactions in the system.

The mathematical model of a MAS can be formalized as a tuple MAS =
{A,Env, ρ,Ag}, where:

• A = {a1, a2, ..., an} is a set of agents.

• Env represents the environment in which the agents interact.

• ρ : A × Env → A is a function describing the rules of agent behavior in
the environment.

• Ag : A× A → A represents the aggregation function describing how the
agents interact with each other.
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2.5.1 Introduction to Coevolutionary Theory

Coevolutionary theory [42] is a key concept in the study of evolutionary pro-
cesses. It pertains to the change of a biological entity triggered by the change
of a related entity. In the context of MAS, coevolutionary theory implies the
concurrent evolution of agents based on their interactions and the continuous
adaptation to each other’s strategy.

2.5.2 Coevolution in Multi-agent Systems

In the context of a MAS, a coevolutionary algorithm could involve a population
of solutions for each agent, evolving concurrently. The fitness of a solution is
then determined not just by its own characteristics, but also by the character-
istics of the other agents’ solutions in the environment.

Let’s denote a solution for agent az as saz , and the set of all solutions for this
agent as Saz = {saz1, saz2, ..., sazm}. The fitness Faz(saz) of a solution saz can
be defined by its interaction with the solutions of the other agents:

Faz(saz) =
n∑

o=1,o 6=z

∫
sao∈Sao

fzo(saz , sao)dsao , (2.9)

where fzo(saz , sao) is a function describing the outcome of the interaction be-
tween solution saz of agent az, and solution sao of agent ao.

2.5.3 Challenges and Opportunities

Implementing coevolution in MAS involves several challenges, including main-
taining diversity, avoiding premature convergence, and dealing with the prob-
lem of relativism, i.e., defining an absolute measure of performance in a coevo-
lutionary setup. Despite these challenges, coevolution offers a powerful frame-
work to harness the emergent behavior and adaptation capabilities of MAS,
making it a promising approach for designing efficient and robust distributed
systems.
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2.5.4 LLMs in Coevolutionary Multi-agent Systems

As we have seen in the context of individual agents, LLMs can imbue agents
with enhanced capabilities, opening up interesting possibilities for coevolution
in MAS. In such a scenario, agents would evolve not just based on predefined
rule sets, but also through the strategies inferred from the LLMs.

One approach to integrating LLMs into coevolutionary MAS involves the use
of these models as strategy generators. In this case, the LLM would gener-
ate possible strategies or actions, and these would be evaluated within the
coevolutionary context. For agent az, this could be formalized by introducing
a strategy generation function Gaz that maps the agent’s current state to a
strategy space, Ωaz :

Gaz : Saz → Ωaz . (2.10)

The fitness function can then be redefined to account for these generated strate-
gies:

Faz(saz) =
n∑

o=1,o 6=z

∫
saz∈Saz

fzo(Gaz(saz), Gao(sao))dsao (2.11)

Here, the interaction function fzo is evaluated based on the generated strategies
Gaz(saz) and Gao(sao).

This use of LLMs can allow for richer dynamics in the coevolutionary process,
as strategies can be more diverse and adaptive, potentially leading to more
sophisticated emergent behaviors. Furthermore, the use of an LLM allows for
the encoding of complex, human-like strategies, which can add an additional
layer of complexity and potential performance in the MAS. This novel ap-
proach to coevolutionary MAS could potentially lead to the discovery of new,
more efficient strategies and solutions. However, further research is needed to
determine the specific mechanics of such integration and its benefits.
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2.6 Socratic Video Understanding

Socratic Video Understanding (SVU) [22] is a methodology for interpreting
video content and acting upon, where several modules exchange information
between them. It involves using AI models to analyze a video and make pre-
dictions or draw conclusions about the content. In this work, we explore the
use of both LLMs and VLMs to perform this task, as their size and complexity
allow for a deeper understanding of the content and its context.

LLMs, such as GPT-3, have been used to perform a variety of language under-
standing tasks, including the comprehension of a sequence of events, context,
and other complex language-based tasks. By applying these models to video
understanding, we can gain insights into the events, characters, and objects
within a video.

Suppose we have a video V , and we represent the sequence of frames in the
video as F1, F2, ..., Fn. We can use an image-to-text modelMimg2txt to generate
a textual description Dz of each frame Fz, i.e., Dz = V LMimg2txt(Fz). Then,
the LLM can be used to understand the sequence of descriptions, which is
equivalent to understanding the video.

LLM(D1, D2, ..., Dn). (2.12)

Through this methodology, we can obtain a nuanced understanding of the
video content.

2.7 TabNet

TabNet [28] is a novel DL model developed for tabular data. The model,
unlike traditional DL architectures, can handle heterogeneous data and enables
interpretability through learned feature importance. Its architecture can be
represented mathematically as follows:

fTabNet(x) =
K∑
k=1

Mk · Tk(x), (2.13)

where x is the input data, K is the number of decision steps, Mk are the
learnable masks, and Tk(x) are the transformers encoding the input data x at
step k.
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2.7.1 Application to Forest Fire Area Estimation

The determination of affected areas during forest fires is a crucial task for
resource allocation and the planning of effective firefighting strategies. In this
thesis, we employ TabNet to tackle this challenge, proving its effectiveness in
accurately predicting the extent of forest fires.

In forest fire area estimation, the input data x typically includes meteorological
data (temperature, humidity, wind speed, etc.), topographical data (elevation,
slope, etc.), and other relevant information such as the type of vegetation.

For the k-th decision step, TabNet applies the learned mask Mk to the trans-
formed input Tk(x) to select relevant features. By allowing TabNet to learn the
importance of different features at each step, the model is capable of identifying
the most relevant factors that contribute to the spread of a forest fire.

To train the model, we define the objective function as the Mean Squared Error
(MSE) between the predicted and true fire areas:

L(Θ) =
1

n

n∑
z=1

(fTabNet(xz; Θ)− yz)2
, (2.14)

where Θ represents the parameters of the TabNet model, xz is the z-th input
data, and yz is the true fire area corresponding to xz. The objective of training
is to minimize this loss function:

Θ∗ = arg min
Θ
L(Θ). (2.15)

Through this approach, we leverage the strengths of TabNet, particularly its
ability to handle heterogeneous data and provide interpretability, to achieve
accurate and insightful forest fire area estimation.

2.8 EfficientNet

EfficientNet [29] is a DL model for image classification that optimizes the bal-
ance between the depth, width, and resolution of the network. It is based on a
compound scaling method that uniformly scales all dimensions of depth/width/res-
olution using a simple yet effective compound coefficient. Its architecture can
be represented as follows:
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Let d, w, and r represent the depth, width, and resolution of a baseline network,
respectively. The scaled network depth D, widthW , and resolution R are then
computed as follows:

D = d · αφ, W = w · βφ, R = r · γφ, (2.16)

where φ is a user-specified coefficient that controls the resources available for
model scaling, and α, β, and γ are constants that can be determined by a
small grid search.

2.8.1 Application to Glaucoma Detection

Glaucoma is a complex eye disease that can lead to irreversible blindness if not
detected and treated early. In this thesis, we employ EfficientNet to address
this crucial task.

In glaucoma detection, the input data typically includes retinal images ob-
tained from ocular examinations. These images are preprocessed and resized
to the specified resolution R before being fed into the model EfficientNet.

We use the architecture of the EfficientNet to automatically learn features
from the input retinal images. These features can include various aspects of
the optic nerve head, such as the cup-to-disc ratio and the thickness of the
retinal nerve fiber layer, which are critical for diagnosing glaucoma.

The model is trained to minimize the cross-entropy loss between the predicted
and true labels:

L(Θ) = − 1

n

n∑
z=1

[yz log(pΘ(yz|xz)) + (1− yz) log(1− pΘ(yz|xz))] , (2.17)

where Θ represents the parameters of the model EfficientNet, xz is the z-th
input retinal image, yz is the true label corresponding to xz (1 for glaucoma
and 0 for normal), and pΘ(yz|xz) is the predicted probability of the z-th image
being classified as glaucoma. The objective of training is to find the parameters
Θ that minimize this loss:

Θ∗ = arg min
Θ
L(Θ). (2.18)
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Through this approach, we leverage the strengths of EfficientNet, particularly
its efficiency and performance, to achieve accurate and early detection of glau-
coma.

2.9 Technological Framework and Application Justification

In this thesis, we establish a distinct methodological approach where each
technology – LLMs, DL, and EC Theory – is applied within specific application
fields. The rationale behind these applications and their corresponding AI
approaches are detailed below.

2.9.1 Application of LLMs in Autonomous Systems

LLMs like GPT-3.5-turbo are deployed in autonomous vehicle platoons to en-
hance real-time decision-making and communication. The choice of LLMs for
this application is predicated on their ability to process and generate natural
language, enabling vehicles to understand and respond to complex commands
and to communicate with one another in an interpretable manner.

• Objective: To improve coordination and response strategies within pla-
tooning systems as well as explainability, thus enhancing overall safety
and efficiency.

• Justification: The robust natural language processing capabilities of
LLMs provide a means for nuanced communication and sophisticated
control strategies beyond the scope of traditional algorithms.

2.9.2 DL for Scene Understanding and Medical Diagnostics

DL techniques are harnessed for semantic scene understanding in UAVs and
for medical diagnostics in the early detection of glaucoma.

• Objective: To interpret complex visual data streams and to identify
pathological markers in medical imagery, respectively.

• Justification: The convolutional neural networks (CNNs) at the heart
of DL are exceptionally suited for image recognition tasks, capable of
identifying patterns and features that are imperceptible to human ana-
lysts.
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2.9.3 EC Theory in Strategy Formation

EC is applied within MASs to establish a game-theoretic framework where we
simulate and analyze the dynamics of cooperation and defection.

• Objective: To model emergent behavior and to optimize collective strate-
gies in dynamic environments.

• Justification: The adaptive nature of the EC Theory allows for the evo-
lution of agent behaviors that can dynamically adjust to complex and
changing conditions, reflecting the unpredictable nature of real-world in-
teractions.

2.9.4 Cross-disciplinary Applications

The confluence of these AI technologies is justified by the complementary
strengths they bring to their respective fields:

• In the domain of autonomous vehicles, LLMs and DL are combined to
enable vehicles to interpret sensor data, communicate with one another,
and make decisions in a human-like manner.

• For UAV scene comprehension, DL provides the visual processing
capabilities, while LLMs contribute to the understanding and generation
of descriptive narratives about the scenes.

• In strategy formation within MASs, EC sets a game-theoretic frame-
work of utility maximization, while LLMs enrich the strategic options
with their ability to generate a diverse array of potential actions.

Each application domain is carefully selected based on the inherent demands
of the field and the suitability of the AI technology to meet those demands.
The integration of AI approaches is not arbitrary but is instead a deliberate
choice to harness the strengths of each technology, thereby creating systems
that are more than the sum of their parts.

The methodology of this thesis is anchored in the belief that the future of
autonomous systems lies in the synergy of multiple AI technologies. By delin-
eating the specific roles and applications of LLMs, DL, and the EC Theory, we
set the stage for a comprehensive exploration of their potential and pave the
way for their sophisticated integration in complex real-world scenarios.
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Chapter 3

LLM Adaptive PID Control for
B5G Truck Platooning Systems
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Truck Platooning Systems" Sensors, vol(23), 5899.
DOI: 10.3390/s23135899

This chapter presents an exploration into the capabilities of
an adaptive PID controller within the realm of truck platooning op-
erations, situating the inquiry within the context of Cognitive Ra-
dio and AI-enhanced 5G and Beyond 5G (B5G) networks. We
developed a Deep Learning (DL) model that emulates an adap-
tive PID controller, taking into account the implications of factors
such as communication latency, packet loss, and communication
range, alongside considerations of reliability, robustness, and secu-
rity. Furthermore, we harnessed a Large Language Model (LLM),
GPT-3.5-turbo, to deliver instantaneous performance updates to the
PID system, thereby elucidating its potential for incorporation into
AI-enabled radio and networks. This research unveils crucial in-
sights for augmenting the performance and safety parameters of
vehicle platooning systems within B5G networks, concurrently un-
derlining the prospective applications of LLMs within such techno-
logically advanced communication environments.
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3.1 Introduction and Related Work

The concept of truck platooning [1, 2, 3, 4] is gaining significant attention due
to its potential to improve fuel efficiency, reduce traffic congestion, and enhance
road safety [5, 6]. In a platoon, multiple trucks travel closely together, main-
taining a constant distance to minimize air drag and save fuel. Adaptive PID
(Proportional-Integral-Derivative) controllers play a crucial role in maintain-
ing a constant inter-vehicle distance and ensuring the stability of the platoon.
By adjusting the controller gains in real time based on the system’s behavior,
adaptive PID controllers [7] can enhance the performance of the platoon and
adapt to various driving conditions.

Effective communication between vehicles is fundamental for the successful
implementation of truck platooning. Vehicle-to-vehicle (V2V) [8, 9] communi-
cation enables trucks to share vital information, such as the speed, position,
and braking status, with other vehicles in the platoon. This information is es-
sential for maintaining a safe and constant distance between the trucks, which
ensures an efficient platoon operation. The key aspects of communication that
impact the performance of a platoon include the communication latency, packet
loss, communication range, reliability, and robustness. Moreover, the security
of the communication system is of the utmost importance, as it protects the
platoon from potential cyberattacks and ensures the safety of the drivers and
the cargo.

In recent years, the development of Cognitive Radio and AI-enabled 5G and
Beyond 5G (B5G) networks has opened up new opportunities for advanced
vehicular communication systems [12, 10, 11]. Indeed, one such application
is truck platooning [14, 13, 15]. Our goal with this work is to emphasize the
role of AI-enabled radio and networks in enhancing communication between
vehicles, thereby addressing key challenges.

This chapter presents an adaptive PID controller [16, 17, 18] that utilizes a
Deep Learning (DL) model for efficient and reliable truck platooning. The
controller is designed to handle various aspects of vehicle-to-vehicle (V2V)
communication, such as communication latency, packet loss, communication
range, reliability, and robustness. Furthermore, security concerns [20, 19] are
addressed to ensure the safety of the platoon.

We begin with a base adaptive PID controller [21, 22] that leverages a trained
neural network model to predict the actual inter-vehicle distance. The con-
troller is then improved by incorporating considerations relating to commu-
nication latency, packet loss, and communication range, as we believe in the
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importance of a reliable and robust communication system for the safe opera-
tion of the platoon. Moreover, a cutting-edge Large Language Model (LLM)
[23, 24, 25] , GPT-3.5-turbo, is integrated into the system to obtain real-time
performance updates, demonstrating an innovative application of LLMs in the
context of truck platooning. The results indicate that our adaptive PID con-
troller, along with the LLM-based performance updates, offers a promising
solution for efficient and secure truck platooning. An illustration of the pro-
posed system is depicted in Figure 3.1.

Input
Data

Desired
Dis-
tance

Error
Error
Deriva-
tive

Accumulated
Error

Control
Signal

Predicted
Distance

Noise
Noisy
Input

Scaled
Input

Control
Loop LLM

Performance Up-
date [gpt-3.5-turbo]

Figure 3.1: Flow diagram of the adaptive PID controller with LLM performance updates.

This research aims to provide valuable insights into the design and implemen-
tation of AI-driven control systems for truck platooning in B5G networks while
highlighting the potential of LLMs in advanced communication environments.

The core contributions of this study are twofold. Firstly, we put forth an adap-
tive PID controller, aimed at bolstering the efficiency and reliability in truck
platooning within AI-enabled 5G and B5G network contexts. This controller
deploys a DL model to forecast actual inter-vehicle distances and introduces
factors such as communication latency, packet loss, communication range, and
system reliability and robustness. These enhancements are designed to aug-
ment the performance and safety of the platoon amid varied driving conditions.
Secondly, we introduce the integration of a cutting-edge Language Learning
Model (LLM), GPT-3.5-turbo, into the control loop. The LLM provides real-
time updates and recommendations, thereby augmenting the adaptability and
explainability of the PID controller. This innovative usage of LLMs within the
realm of truck platooning allows the system to tap into natural language com-
prehension abilities, which then leads to improved decision making and system
optimization. Taken together, the adaptive PID controller and the LLM inte-
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gration represent a comprehensive solution that guarantees the effective and
secure truck platooning in B5G networks.

The remainder of this chapter is organized as follows: Section 3.2 introduces
the adaptive PID controller, emphasizing its critical role in control systems,
with particular attention given to vehicle platooning. Section 4.4 outlines the
methodology employed to design and implement the adaptive PID controller,
addressing key considerations and challenges such as the latency, packet loss,
communication range, noise channel, and security. Subsequently, Section 4.3.4
explores the integration of LLMs as a means to enhance the performance of
the adaptive PID controller through real-time updates and recommendations.
In Section 4.7, we delve into the potential implications of our research. Finally,
Section 4.8 concludes the chapter and outlines potential directions for future
research.

3.2 Adaptive PID Controller

A Proportional-Integral-Derivative (PID) controller is a widely used control
algorithm in various control systems. It calculates the control signal based
on the error, the integral of the error, and its derivative. The error (e(t)) is
the difference between the desired setpoint (r(t)) and the measured process
variable (y(t)):

e(t) = r(t)− y(t). (3.1)

The control signal u(t) generated by the PID controller is given by the following
equation:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd

de(t)

dt
, (3.2)

where Kp, Ki, and Kd are the proportional, integral, and derivative gains,
respectively.

In an adaptive PID controller, the gains Kp, Ki, and Kd are adjusted in real
time based on the system’s performance. The goal is to maintain optimal
control performance despite changes in the system dynamics or external dis-
turbances. Various methods exist for tuning the PID gains adaptively, such as
Ziegler–Nichols [26], Cohen–Coon, and model-based approaches [16]. In this
work, we employed a data-driven approach by training a deep neural network
(DNN) to predict the optimal PID gains for the given system state. The DNN
was trained on a synthetic dataset that captured a wide range of system behav-
iors and conditions and was used to illustrate its practical application. This
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allowed the adaptive PID controller to adjust the gains in real time based on
the system’s current state, thus ensuring optimal control performance.

This chapter primarily centers on the creation and assessment of an adaptive
DNN-based PID control methodology for truck platooning. Although the syn-
thetic dataset we utilized for experimentation did not overtly include vehicle
model parameters such as mass, inertia, aerodynamic drag, tire friction, and
powertrain features, it is crucial to stress that our approach can still be im-
plemented when these parameters are either known or can be estimated. The
synthetic dataset was representative, and its use demonstrated the efficacy and
performance of our adaptive control method.

The adaptive PID controller employs the strength of deep neural networks to
understand and adapt to the inherent dynamics of the truck platooning system.
This enables it to effectively manage the changes in vehicle characteristics
and driving conditions. This work propels the progression of adaptive control
strategies within the scope of truck platooning, setting the stage for future
research that could merge intricate vehicle models with parameter estimation
methodologies.

The DNN used in this work comprised three types of layers: the input, hidden,
and output layers. The input layer accepted the normalized system state,
and the output layer generated the predicted PID gains. The hidden layers
contained multiple neurons with activation functions, which facilitated the
learning of complex nonlinear relationships between the input and output.
Specifically, our DNN architecture included two hidden layers, the first with
64 neurons and the second with 32 neurons, both using the Rectified Linear
Unit (ReLU) activation function. To prevent overfitting, we also incorporated
dropout layers with a dropout rate of 0.2.

We adopted a supervised learning approach to train the DNN and utilized
a synthetic dataset comprising various system states and their corresponding
optimal PID gains. The dataset was generated using different parameters, such
as desired and actual distances, vehicle speed, acceleration, road grade, and
weather conditions. The dataset was then divided into training and testing
sets, using an 80/20 split.

To optimize the DNN, we minimized the mean square error (MSE) loss func-
tion, which measures the difference between the predicted PID gains and the
true optimal gains. For this purpose, we employed the Adam optimizer with a
learning rate of 0.001. The training process also included a validation split of
20%, with the model being trained for 50 epochs using a batch size of 32; the
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training and validation loss over time is shown in Figure 3.2. Once the DNN
is trained, it can predict optimal PID gains for new unseen system states, en-
abling the adaptive PID controller to adjust its gains in real time and maintain
optimal control performance.

Figure 3.2: Training and validation loss over time for the proposed architecture.

The trained DNN, shown in Figure 3.3, was integrated into the control loop of
the truck platooning system. At each time step, the current system state was
passed as input to the DNN, which predicted the optimal PID gains. These
gains were then used to calculate the control signal, which adjusted the truck’s
acceleration or deceleration to maintain a safe and constant inter-vehicle dis-
tance. This adaptive approach allows the PID controller to respond effectively
to changes in the system dynamics and external disturbances, ensuring the
stable and efficient operation of the platoon.

Input

64 0.2 32 0.2

Output

σ σ

Figure 3.3: Detailed network architecture of the deep neural network (DNN) used for
the adaptive PID tuning. The model consists of two fully connected layers with 64 and
32 neurons, followed by dropout layers with a rate of 0.2. Rectified Linear Unit (ReLU)
activation functions, depicted as σ, are applied after each fully connected layer. The input
and output layers are also depicted.

This study, while recognizing the importance of stability analysis, did not un-
dertake a comprehensive formal stability examination via strict mathematical
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methods. We acknowledge that such an analysis is a fundamental facet of
controller design, especially within the realm of adaptive control systems; the
focus of our work, however, veered towards the implementation of LLMs for
the sake of explainability.

Stability analysis in adaptive control systems typically involves an examination
of the closed-loop system’s stability attributes, a task rendered complex by the
controller’s adaptive properties. Traditional stability analysis methods, such as
the Lyapunov stability theory and small-gain theorems, are usually employed
to scrutinize the stability of adaptive control systems. These methods often
require the establishment of suitable Lyapunov functions or the study of system
gains to ensure stability and convergence.

The intricate nature and rigorous mathematical demand of a complete stability
analysis meant that it was beyond the scope of our current work. Future
research may seek to perform an in-depth stability analysis to provide formal
assurances and further substantiate the stability properties of the adaptive PID
controller under various scenarios. The main thrust of this chapter, however,
is to explore and highlight the utility of LLMs for the enhancement of system
explainability.

3.3 Methodology

For our simulation, we utilized a platoon of two trucks that maintained a
safe inter-vehicle distance. The synthetic dataset under study considered a
desired distance between the two trucks to be within the range of 20–100 m
(although in commercial applications, the range would be much lower in order
to benefit from the aerodynamic drag), with their speeds varying between 40
and 120 km/h. The safe distance between the vehicles was determined based
on various factors, such as the trucks’ speeds, acceleration, road grade, and
weather conditions. The control loop calculated the control signal based on
the current state, which was then used to update the truck’s acceleration or
deceleration.

The choice of varying the desired distance between 20 and 100 m was meant to
simulate different traffic scenarios and communication conditions that may af-
fect the performance of the platoon control system. In real-world applications,
the desired distance between vehicles might not necessarily remain constant,
as factors such as traffic density, road conditions, and safety considerations can
influence the optimal distance.
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To simulate the communication latency, we modified the control loop to include
a circular buffer for the control signals. This buffer represents the delay in
communication between vehicles, with each element in the buffer corresponding
to a time step of latency.

We set the communication latency (in time steps) and initialized the control
signal buffer accordingly. The desired distances, actual distances, and control
signals were recorded for each time step. After running the simulation, we
visualized the desired and actual inter-vehicle distances, as well as the control
signals over time. The plots in Figures 4.2 and 4.3 can help in the analysis of
the latency’s impact on the performance of the adaptive PID controller and
its ability to maintain safe inter-vehicle distances.

Figure 3.4: Desired vs. actual inter-vehicle distance with latency.

Figure 3.5: Temporal evolution of the control signal amid the latency. The control signal
encapsulates the system modifications applied to sustain the requisite distance between the
vehicles within a truck platoon, acting as a responsive adjustment to the latency-induced
variations.
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Thus, communication latency was integrated into the control loop by simulat-
ing a circular buffer for the control signals. This modification, which meant
that the effects of latency were now incorporated into the control loop, allowed
us to analyze the performance of the adaptive PID controller under various la-
tency conditions. In the control loop, the buffer was used to store and retrieve
control signals with the specified latency. At the beginning of each iteration,
a placeholder was added to the buffer, and the delayed control signal was re-
trieved by popping the first element. If the delayed control signal was available,
it was used to control the vehicle; otherwise, the current PID calculation was
used. This process simulated communication latency and helped us to un-
derstand its impact on the system’s performance. In this specific example, a
latency of five time steps was used.

To simulate the packet loss in the communication between vehicles, we modified
the control loop to incorporate a packet loss rate. This rate represents the
percentage of control signals that are lost during transmission. The packet
loss was simulated by randomly setting the percentage of control signals to
None based on the packet loss rate. Mathematically, we can define the packet
loss rate as p ∈ [0, 1], where p = 0 means no packet loss, and p = 1 means
100% packet loss. We then generated a random number r ∈ [0, 1] for each time
step, and if r < p, we set the control signal to None. We subsequently set
the packet loss rate and ran the simulation, recording the desired distances,
actual distances, and the control signals for each time step. After running the
simulation, we visualized the desired and actual inter-vehicle distances, as well
as the control signals over time. The plots in Figures 4.4 and 3.7 can help in
analyzing the impact of packet loss on the performance of the adaptive PID
controller and its ability to maintain safe inter-vehicle distances.

Figure 3.6: Desired vs. actual inter-vehicle distance with packet loss.
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Figure 3.7: Control signal trajectory amid the packet loss. This illustrates the control
signal’s role as a corrective mechanism that dynamically adjusts to maintain the intended
inter-vehicle distance within a truck platoon, demonstrating its resilience despite the packet
loss events.

In the specific example, the packet loss rate was set to 0.1 (or 10%). The
code can also be used to test a range of packet loss rates to understand the
sensitivity of the controller’s performance under different packet loss scenarios.

However, in a real environment, the reality is that packet loss gradually in-
creases as the distance increases, up until it reaches 100%. The all-or-nothing
approach used in the previous code might not accurately represent this behav-
ior. To better simulate the real-world scenario, we modified the control loop
to incorporate a gradual increase in packet loss as the distance increased. Our
approach involved the use of a sigmoid function, illustrated in Figure 3.8, to
map the distance to a packet loss rate (see Figures 3.9 and 3.10).
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Figure 3.8: Sigmoid function for gradual packet loss rate. This plot illustrates the relation-
ship between the distance ratio (predicted distance divided by communication range) and
the packet loss rate. The sigmoid function demonstrates a gradual increase in packet loss
rate as the distance ratio increases, simulating a more realistic communication scenario in
the control loop.

Figure 3.9: Desired vs. actual inter-vehicle distance with a gradual packet loss.
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Figure 3.10: Temporal progression of the control signal amid gradual packet loss. The
control signal functions as an adaptive mechanism that continually adjusts to preserve the
targeted distance between vehicles within a truck platoon, even when confronting the chal-
lenges of a gradual packet loss.

In our study, we introduced the gradual packet loss mechanism based on the
sigmoid function to simulate a more realistic scenario where packet loss in-
creases as the inter-vehicle distance approaches the maximum communication
range. Although the sigmoid function indeed resulted in a 100% packet loss
rate when the maximum communication range was reached, it was essential
to conduct experiments in order to investigate the system’s behavior under
varying communication conditions and packet loss rates.

The purpose of these experiments was to demonstrate the performance and
robustness of the proposed control strategy in maintaining the desired inter-
vehicle distance despite the presence of communication challenges. Figure 3.9,
which presents the distances between trucks, may not show significant differ-
ences as compared to the previous results. However, it is crucial to highlight
the controller’s capability to handle communication limitations and maintain
satisfactory performance even when the vehicles were close to or at the com-
munication range’s limits. This observation underscores the importance of
analyzing the impact of communication range and packet loss on the control
system’s performance in real-world applications.

In order to simulate the effect of communication range limitations on the adap-
tive PID controller, we modified the control loop to take into account the com-
munication range. When the predicted inter-vehicle distance was greater than
the communication range, the control signal was set to None, which simulated
a lack of communication between the vehicles. We then set the communication
range and ran the simulation, recording the desired distances, actual distances,
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and control signals for each time step. After running the simulation, we visual-
ized the desired and actual inter-vehicle distances, as well as the control signals
over time. The plots in Figures 3.11 and 3.12 help in analyzing the impact
of communication range limitations on the performance of the adaptive PID
controller and its ability to maintain safe inter-vehicle distances.

Figure 3.11: Desired vs. actual inter-vehicle distance with the communication range.

Figure 3.12: Control signal trajectory in varying communication ranges. The control signal,
depicted here, acts as a real-time corrective measure that effectively regulates inter-vehicle
distance within a truck platoon, demonstrating its adaptability across different communica-
tion range scenarios.

To evaluate the effect of noisy communication on the adaptive PID controller,
we modeled the impact of Gaussian noise on the packet loss, which influences
the system’s ability to accurately calculate the control signal. Let N (0, σ2) be
the Gaussian noise, with mean 0 and standard deviation σ. We incorporated
the noise effect by mapping the noise standard deviation to a packet loss rate
using a sigmoid function. We then ran the control loop with the noise-affected
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packet loss rate and recorded the desired distances, actual distances, and con-
trol signals for each time step. After running the simulation, we visualized the
desired and actual inter-vehicle distances, as well as the control signals over
time. The plots in Figures 3.13 and 3.14 help in analyzing the performance
of the adaptive PID controller under noisy communication conditions and its
ability to maintain safe inter-vehicle distances.

Figure 3.13: Desired vs. actual inter-vehicle distance with noisy communication.

Figure 3.14: Control signal behavior amid noisy communication. This depiction of the
control signal underscores its role as a dynamic corrective measure, adjusting in real time to
manage inter-vehicle distances within a truck platoon, even under the challenging conditions
of communication noise.

The reason behind adding Gaussian noise to the packet loss rate is the fol-
lowing: While it is true that the sigmoid function models the effect of signal
attenuation on packet loss, we wanted to explore the effect of other sources of
noise that could also impact the communication range, such as atmospheric
conditions or interference from other wireless signals. By adding Gaussian noise
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to the packet loss rate, we introduced a random component to the simulation
that could help us better understand the robustness of the platooning system
to different sources of noise. Moreover, the analysis of the probability distribu-
tion function of the distance could also provide us with a better understanding
of the behavior of the platoon system under different noise conditions.

In the context of the control signal plot, the values displayed represent u(t),
which was the control signal at each time step t. The control signal u(t) was
calculated based on the PID controller’s output, which combined the propor-
tional, integral, and derivative terms of the error between the desired distance
and the actual distance. The purpose of the control signal is to adjust the
behavior of the following vehicle in the platoon in order to minimize the error
and maintain the desired inter-vehicle distance.

In the presence of packet loss or communication limitations, some control sig-
nals might be lost, which could lead to fluctuations in the actual distance as
the controller tries to compensate for the missing information. The control sig-
nal plot visualizes the u(t) values over time, allowing for the assessment of the
system’s performance and robustness in the face of communication challenges.

In this scenario, the potential impact of the secure communication between
vehicles on the adaptive PID controller is considered. It should be noted that
encryption is not typically used at the physical layer in vehicular networks, and
the primary impact of encryption in this context would be the added delay in-
troduced by the encryption and decryption process. However, for completeness,
a demonstration of how one might implement encrypted communication using
the Advanced Encryption Standard (AES) for symmetric encryption with the
Python cryptography library is provided as follows.

• encrypt_data(data, key, iv): encrypts the given data using the provided
key and initialization vector (IV) with the AES in CBC mode and PKCS7
padding;

• decrypt_data(encrypted_data, key, iv): decrypts the given encrypted
data using the provided key and initialization vector (IV) with the AES
in CBC mode and PKCS7 padding.

In the control loop, the following steps were performed:

1. Calculate the control signal as usual;

2. Encrypt the control signal using encrypt_data() with a randomly gener-
ated AES key and IV;
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3. Transmit the encrypted control signal. In a real system, this would involve
sending the data between vehicles;

4. Decrypt the received encrypted control signal using decrypt_data() with
the same AES key and IV;

5. Continue with the decrypted control signal in the control loop.

The primary takeaway from this exercise is the potential impact of the addi-
tional latency that was introduced by the encryption and decryption process.
The simulation results may not significantly differ from the unencrypted sce-
nario, as depicted in Figures 3.15 and 3.16, as the added delay from encryption
and decryption was not incorporated into this demonstration. In practice, the
delay should be taken into account when analyzing the performance of the
adaptive PID controller.

Figure 3.15: Desired vs. actual inter-vehicle distance with encrypted communication.
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Figure 3.16: Control signal over time with encrypted communication. The control signal
represents the adjustment applied to the system to maintain the desired distance between
the vehicles in a truck platoon.

3.4 Integration with Large Language Models

Large Language Models (LLMs) [27, 28, 29, 30] are advanced ML models
trained on vast amounts of text data. These models have achieved state-
of-the-art results in various natural language understanding tasks, including
text generation, translation, summarization, and question answering. LLMs
are capable of understanding the context, generating coherent responses, and
providing valuable insights based on the data they are exposed to. In this
section, we explore the integration of LLMs into a control loop system and
demonstrate their potential to enhance the system’s performance.

The GPT-3.5-turbo is built on the Transformer architecture, which was first
introduced in [31]. The architecture employs self-attention mechanisms [32]
that enable the model to process and understand long-range dependencies in
the input text. Mathematically, the self-attention mechanism can be expressed
as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (3.3)

where Q, K, and V represent the query, key, and value matrices, respectively,
and dk is the dimension of the key vectors. The softmax function normalizes
the attention scores and helps the model to focus on the most relevant parts
of the input text.
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The training process involves optimizing the model’s parameters in order to
minimize the cross-entropy loss between the predicted token probabilities and
the actual target tokens in a given context. This was carried out using the
synthetic dataset that we generated. The loss function can be expressed as
follows:

L(θ) = −
T∑
t=1

logp(yt|y1:t−1,x; θ), (3.4)

where L(θ) is the loss function, yt is the target token at time step t, x is the
input context, and θ represents the model’s parameters.

During inference, the LLM generates the text by sampling from the probability
distribution over the vocabulary. The model employs a temperature parameter
(τ) to control the randomness of the generated text. Lower values of τ result
in more deterministic outputs, whereas higher values increase the diversity of
the generated text. The probability of selecting a token yt at time step t can
be defined as follows:

p(yt|y1:t−1,x; θ, τ) =
exp(fθ(y1:t−1,x)/τ)∑
y′t exp(fθ(y′1:t−1,x)/τ)

, (3.5)

where fθ is the model’s prediction function.

In the following example, we use a control loop system designed to maintain
a desired inter-vehicle distance in an autonomous vehicle. The control loop’s
primary function is to calculate the control signals that help the vehicle main-
tain the desired distance. The system employs an adaptive PID controller that
predicts the distance based on input data, calculates the error, and adjusts the
control signals accordingly.

The control loop system operates in a noisy communication environment, sim-
ulating real-world scenarios, where input data can be affected by noise. The
code snippet below defines the control loop with noise:

input_data_noisy = input_data +N (0, noise_stddev), (3.6)

whereN (0, noise_stddev) represents the Gaussian noise with mean 0 and stan-
dard deviation noise_stddev.
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The control loop calculates the error between the desired and predicted dis-
tances:

error = desired_distance− predicted_distance. (3.7)

Using proportional (Kp), integral (Ki), and derivative (Kd) gains, the control
signal is calculated as follows:

control_signal = Kp · error+
Ki · accumulated_error +Kd · error_derivative. (3.8)

LLMs can be integrated into the control loop to provide performance updates
and insights at specific intervals, as depicted in the flow diagram in Figure 3.1.
In this example, the LLM is queried every 100 time steps. The LLM receives
the input data string and returns a performance update.

Time step 800: Based on the given input data, it appears that the vehicle is very close
to the desired distance but still has a small positive error. The error_derivative is
positive, which means that the vehicle is moving closer to the desired distance. The
accumulated_error is quite high, indicating that the vehicle has been consistently
either too far or too close to the desired distance over multiple readings. The vehi-
cle_speed is higher than the speed limit, and the negative acceleration suggests that
the vehicle is slowing down. The road_grade is negative, which means that the vehi-
cle is driving uphill. Overall, the system seems to be performing adequately in that
the vehicle is kept close to the desired distance, but it may need some adjustments
to reduce the accumulated_error and maintain a safer speed.
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Time step 900: Based on the input data provided, it seems that the current
error is positive (2.018650451683051), which indicates that the vehicle is lag-
ging behind the desired distance. However, the error_derivative value is positive
(1.0185617658178303), which indicates that the error is increasing over time. This
suggests that the vehicle may be accelerating too slowly to catch up to the desired
distance. The accumulated_error value is quite high (439.6535339888033), which
indicates that the system has been struggling to maintain the desired distance for
some time. This can be problematic in the long run as it may lead to overshooting
the desired distance. The vehicle_speed value (68.55087801368882) and acceleration
value (−7.270586245729461) indicate that the vehicle is currently slowing down. The
road_grade value (−3.7167413781123546) suggests that the vehicle is driving uphill,
which may be contributing to the slower speed. Overall, the PID system may need
to adjust its control parameters to better maintain the desired distance and prevent
overshooting. Additionally, the system may need to take into account the current
road grade to adjust the speed and acceleration appropriately.

These updates can help engineers analyze the performance of the control loop
and potentially suggest improvements or detect issues. Integrating Large Lan-
guage Models into control loop systems can provide valuable insights, perfor-
mance updates, and support when optimizing the system’s performance. The
example provided demonstrates how LLMs can be effectively used in conjunc-
tion with an adaptive PID controller in a noisy communication environment.
This approach opens up new possibilities for leveraging the power of LLMs in
various control applications across different domains.

3.5 Discussion

In this study, we delved into the integration of LLMs, particularly the GPT-
3.5-turbo, into the control loop of a convoy of autonomous vehicles. We
demonstrated the potential of LLMs to bolster the control loop performance by
providing immediate feedback and recommendations. Furthermore, we scruti-
nized the impact of variables such as noisy communication, encryption, latency,
packet loss, and communication range on the performance of the system, under-
lining the importance of secure and reliable communication for safety-critical
applications.

An area of promising potential application for our findings is in the domain of
unmanned aerial vehicles (UAVs), or drones. Similar to autonomous vehicles,
drones require sophisticated control mechanisms to ensure stable flight and
efficient route planning. PID controllers are a crucial component in drone
flight systems as they are responsible for achieving and maintaining the drone’s

44



3.6 Conclusions and Future Work

balance and orientation based on sensory input. The integration of LLMs could
provide additional layers of interpretability and adaptability to these systems,
potentially leading to safer and more reliable drone operations.

Our experiments demonstrated that the amalgamation of LLMs and conven-
tional control techniques can indeed enhance the performance of complex sys-
tems such as autonomous vehicle platoons. LLMs provide new opportunities
to leverage their natural language understanding capabilities for a plethora of
applications, including diagnostics, decision making, and real-time system op-
timization. Our research accentuates the potential of LLM integration across
an extensive range of engineering domains, where they can supplement and
augment conventional control techniques.

While the use of synthetic data enabled us to demonstrate the virtues of our
control scheme within a controlled environment, we acknowledge the necessity
for further validation using real-world data. The focus of this chapter was the
innovative combination of an adaptive PID controller with an LLM to enhance
explainability. Therefore, we were primarily concentrated on the theoretical
framework and its potential implementations.

3.6 Conclusions and Future Work

This study offered valuable insights into the design and implementation of AI-
driven control systems for truck platooning within B5G networks and show-
cased the promising potential of LLMs in advanced telecommunication envi-
ronments. Future work should aim to utilize actual data from real-world truck
platooning systems, which could thereby provide a rigorous evaluation of our
proposed control strategy.

Future research directions for LLMs could include the following:

• Assessment of forthcoming LLM architectures and the training method-
ologies’ impact on the efficiency of adaptive control systems;

• Development of methods for the real-time fine-tuning of LLMs, allowing
for swift adaptation to dynamic environments;

• Exploration of LLM applicability to other safety-critical domains such as
aerospace and medical systems;

• Advancement of LLM-based control strategies in multiagent systems;
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• Investigation of the combination of LLMs with alternative AI approaches,
such as reinforcement learning.

For the adaptive PID control, future research could entail the following:

• Extension of the framework to cater to complex systems with nonlinear
dynamics;

• Examination of the performance of different RL algorithms, such as Q-
Learning or Actor–Critic, for the tuning of the PID controller gains;

• Development of hybrid control strategies that combine adaptive PID con-
trol with other control approaches;

• Integration of advanced sensing and communication technologies, such as
LiDAR or V2X communication;

• Exploration of the integration of multiple control systems, such as a mul-
tiagent system, for larger-scale control problems.
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The increasing complexity of Multi-Agent Systems (MASs),
coupled with the emergence of Artificial Intelligence (AI) and Large
Language Models (LLMs), have highlighted significant gaps in our
understanding of the behavior and interactions of diverse entities
within dynamic environments. Traditional game theory approaches
have often been employed in this context, but their utility is limited
by the static and homogenous nature of their models. In response
to this pressing need, we propose an Extended Coevolutionary (EC)
Theory.
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4.1 Introduction

The modern world is increasingly characterized by complex systems and inter-
actions. These systems often involve a multitude of diverse entities, ranging
from individuals and organizations to autonomous agents in Artificial Intelli-
gence (AI)-driven environments. At the heart of understanding these complex
interactions is strategic decision making, which is a vital aspect in economics,
sociology, biology, and, more recently, in AI.

The study of strategic decision making has long been an essential aspect of
understanding interactions among diverse entities in various domains, such as
economics, sociology, and biology. Classical game theory, which was pioneered
by John von Neumann and further developed by John Nash [2, 1], has provided
a foundational framework for analyzing these interactions and predicting the
outcomes of strategic choices. However, with the rapid advancements in AI
and the emergence of Large Language Models (LLMs), there is a growing need
to develop new theoretical frameworks that can better capture the dynamics
of Multi-Agent Systems (MASs) in the presence of these disruptive forces [3,
4, 5, 6].

One of the key challenges in modeling strategic interactions is the inherent
complexity of the environments and agents involved. In real-world scenarios,
entities often have diverse characteristics, such as different risk aversions, so-
cial preferences, and learning capabilities, that can significantly influence their
decision-making processes [7]. Moreover, these entities interact through vari-
ous channels, including economic transactions, social relationships, and infor-
mation exchange, which can further complicate the analysis of their strategic
behaviors [8].

Human–Computer Interaction (HCI) is a multidisciplinary field that focuses
on the design, implementation, and evaluation of interactions between humans
and computers. It encompasses a wide range of topics, including the joint per-
formance of tasks by humans and computers; the structure of communication
between humans and computers; human capabilities to use computers; algo-
rithms and programming of the interface itself; engineering concerns that arise
in designing and building interfaces; the process of specification, design, and
implementation of interfaces; and design trade offs.

Multi-Agent Systems (MASs) represent a paradigm in AI that models complex
systems as a collection of autonomous agents that are each capable of reactive,
proactive, and social behavior. These agents, which can be software programs
or physical entities, interact with one another and their environment to achieve

52



4.1 Introduction

individual or shared objectives. Key concepts in MASs include coordination
and control; reasoning and planning; and learning and adaptation.

In this study, we explored the intersection of HCI and MASs by integrating the
EC framework with Large Language Models (LLMs) [9, 10] to model and sim-
ulate the dynamics of cooperation and defection in MASs. The EC framework
combines elements from game theory, coevolutionary algorithms, and MASs to
analyze and predict the behavior of agents in various interaction scenarios. By
incorporating LLMs as AI agents that can provide strategic recommendations
and influence human decision making, we aim to create a more comprehensive
model of HCI in the context of MASs.

The core of our proposal lies in the use of intelligent sensors and sensor net-
works as a means to facilitate the communication and cooperation between
human and intelligent agents. These sensors enable the collection of valuable
data and allow for real-time adaptation and learning in response to changing
environmental conditions or agent interactions. By integrating MASs and HCI,
we hope to develop novel technologies and solutions centered around the use
of intelligent sensors in various applications, thereby ultimately enhancing the
effectiveness and efficiency of MASs in diverse HCI contexts.

HCI plays a critical role in understanding and facilitating effective cooperation
between humans and intelligent agents within MASs. While HCI encompasses
a wide range of topics, in this chapter, we emphasize the societal and economic
perspectives of interactions between humans and AI-driven entities, such as
LLMs. These perspectives involve the exchange of information, the joint per-
formance of tasks, and the influence of AI-based strategic recommendations
on human decision-making processes. By integrating HCI and MASs, we aim
to create a comprehensive model that captures the evolving nature of interac-
tions in complex systems, thereby ultimately offering insights into promoting
cooperation, enhancing social welfare, and building resilience in multi-agent
environments.

At the core of our proposal, we regard LLMs as intelligent sensors or AI agents
that interact with human counterparts within MASs. These LLMs, which
can be conceived as advanced AI-driven entities or even embodied as robots,
provide strategic recommendations, process information, and influence human
decision-making processes. By integrating LLMs as intelligent sensors within
MASs, we facilitate the collection of valuable data that enables real-time adap-
tation and learning in response to changing environmental conditions or agent
interactions. Our approach aims to develop novel technologies and solutions
that center on the use of intelligent sensors and robots in various applications,
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thereby ultimately enhancing the effectiveness and efficiency of MASs across
diverse HCI contexts.

Traditional approaches have largely relied on game theory. However, as the
digital era progresses, disruptive forces such as AI and LLMs are transforming
the landscape of strategic decision making. These advancements underline the
pressing need for new theoretical frameworks that are capable of capturing the
nuanced dynamics of MASs amidst this transformative wave.

To this end, we introduce an Extended Coevolutionary (EC) Theory as an
alternative to traditional game theory approaches for modeling and analyzing
strategic interactions among heterogeneous agents. Our EC framework aims to
capture the evolving nature of MASs and incorporate the potentially disruptive
influence of LLMs on business and society. The main contributions of this study
are:

1. The development of a comprehensive theoretical framework that inte-
grates coevolutionary dynamics, adaptive learning, and LLM-based strat-
egy recommendations for understanding the emergence of cooperation
and defection patterns in MASs.

2. The design of a simulation environment that allows for the exploration of
the EC framework, thus incorporating heterogeneous agents and multi-
layer networks to model diverse interactions among entities.

3. The evaluation of the effectiveness of the EC framework in promoting
cooperative behavior and robustness in the face of disruptions by using
various performance metrics and advanced visualization techniques.

By achieving these objectives, we hope to provide valuable insights into the
interplay between strategic decision making, adaptive learning, and LLM-
informed guidance in complex, evolving systems. Our findings have the po-
tential to inform the development of novel strategies and interventions for
harnessing the power of AI and LLMs in promoting cooperation, enhancing
social welfare, and building resilience in multi-agent environments.

The remainder of this chapter is organized as follows: In Section 4.2, we pro-
vide a comprehensive review of the related work that covers topics such as
game theory and NASH equilibrium, coevolutionary algorithms, MASs, and
AI. Section 4.3 presents the EC framework and discusses its key components,
such as coevolutionary dynamics, adaptive learning, and the role of LLMs
in strategy formation. Section 4.3.4 introduces the concept of LLMs in the
EC framework and explains how they can be used to generate strategy rec-
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ommendations and influence agent interactions. In Section 4.4, we present the
methodology, which provides proofs of the EC framework to establish its math-
ematical foundations. Section 4.5 details the simulation environment used in
our experiments, including implementation details, performance metrics, and
visualization techniques. Section 5.5 presents the results and analysis of our
experiments by examining the emergence of cooperation and defection pat-
terns, the influence of LLM-based strategy recommendations, and the overall
system robustness and resilience. Section 4.7 discusses the broader implica-
tions of our findings for business and society, as well as the limitations of our
current framework and potential avenues for future work. Finally, Section 4.8
concludes the chapter by summarizing our key findings and contributions to
the field of MASs and HCI.

4.2 Related Work and Theoretical Context

Game theory is a mathematical framework for studying strategic interactions
among rational agents [11]. A central concept in game theory is the NASH
equilibrium, which is a state in which no player can improve their utility by
unilaterally changing their strategy, given the strategies of the other players
[1]. The concept of NASH equilibrium has been widely applied to model and
analyze a variety of strategic situations, including economic transactions, so-
cial dilemmas, and political negotiations [12]. Recent research has explored
the extensions of classical game theory to incorporate more realistic assump-
tions about agent behavior and the dynamics of strategic interactions, such as
bounded rationality, learning, and adaptation [13, 14]. These extensions have
led to the development of new solution concepts and methods for predicting
and influencing the outcomes of strategic interactions in complex, evolving
environments.

Coevolutionary algorithms are a class of evolutionary algorithms that model
the adaptive processes of learning and optimization in populations of inter-
acting agents [15]. In coevolutionary algorithms, agents adapt their strate-
gies over time in response to the strategies of other agents in the population,
thereby leading to the emergence of complex patterns of cooperation, com-
petition, and specialization [16, 17, 18]. These algorithms have been used to
study a wide range of problems in AI, optimization, and MASs, including the
evolution of cooperation in social dilemmas [19, 20, 21], the development of ef-
ficient algorithms for hard optimization problems [22, 23], and the emergence
of communication and coordination in MASs [24, 25].
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MASs [26] are part of a subfield of AI that focuses on the development of
computational models and algorithms for simulating and controlling the inter-
actions among multiple autonomous agents [27, 28, 29]. MAS research aims
to understand the underlying principles that govern the behavior of complex,
distributed systems, and to develop methods for coordinating the actions of
individual agents to achieve global objectives [30, 31].

Recent advances in AI, particularly in the areas of machine learning and Large
Language Models (LLMs) [32, 33, 34], have opened up new possibilities for
modeling and analyzing strategic interactions in MASs [35]. While there is
limited research on the direct integration of LLMs in this specific setting, our
work aims to bridge this gap and explore the potential impacts of AI on the
dynamics of cooperation, competition, and social welfare in evolving multi-
agent environments. The infusion of LLM-based advice into agent decision
making opens up promising avenues for investigation, particularly regarding
the potential benefits and challenges posed by AI-driven guidance in MASs.
Notably, LLMs, such as GPT-3.5-turbo, are capable of generating human-like
natural language text, thereby allowing them to provide strategic guidance and
recommendations to agents in a Multi-Agent System [36]. By incorporating
LLM-based advice into the decision-making processes of agents, researchers
have begun investigating the potential benefits and challenges that may arise
from AI-driven guidance in MASs.

For instance, recent studies have shown that LLMs can enhance the perfor-
mance of agents in various tasks, such as negotiation [37] and coordination
[38], by providing real-time strategic recommendations based on the current
state of the environment and agent interactions. These initial findings suggest
that LLMs can play a significant role in shaping the dynamics of multi-agent
systems and, ultimately, the outcomes of strategic interactions.

In summary, while the direct integration of LLMs in the context of strategic
interactions and MASs is still an emerging area of research, our work aims
to contribute to the understanding of the potential benefits and challenges
associated with incorporating AI-driven guidance in complex, evolving envi-
ronments. By extending existing theories and methodologies, such as coevolu-
tionary algorithms and game theory, our proposed Extended Coevolutionary
(EC) framework seeks to capture the unique characteristics of LLMs and their
potential impact on the dynamics of cooperation, competition, and social wel-
fare in Multi-Agent Systems.

56



4.3 EC Theory

4.3 EC Theory

In this section, we present the Extended Coevolutionary (EC) Theory frame-
work, which is the main contribution of our work. Our EC framework inte-
grates concepts from game theory, coevolutionary algorithms, and AI to study
the emergence and evolution of cooperation and defection in Multi-Agent Sys-
tems (MASs). Specifically, the EC framework extends classical game-theoretic
models [17, 39] by incorporating adaptive learning, heterogeneous agents, and
multi-layer network structures. Moreover, we introduce the use of LLMs, such
as GPT-3.5-turbo, to assist agents in forming their strategies, thereby enabling
a more comprehensive understanding of the dynamics of strategic interactions
in complex environments. In the following subsections, we detail the key com-
ponents and theoretical tools used in the development of the EC framework.

4.3.1 Coevolutionary Dynamics and Adaptive Learning

Coevolutionary dynamics are central to our proposed EC framework, as they
capture the process by which agents adapt their strategies in response to the
strategies of others in the population. The EC framework employs adaptive
learning mechanisms in which agents update their strategies based on the util-
ities they receive from interacting with other agents.

Let sz denote the strategy of agent z, and let Uz(sz, s−z) represent the utility
of agent z given its own strategy sz and the strategies of all other agents s−z.
The adaptive learning process can be described by the following update rule:

sz(t+ 1) = sz(t) + α∇Uz(sz(t), s−z(t)), (4.1)

where α is the learning rate, and ∇Uz is the gradient of the utility function
with respect to the strategy sz. This update rule captures the process by which
agents adjust their strategies to maximize their utilities based on the current
state of the population.
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4.3.2 Large Language Models in Strategy Formation

In our EC framework, we also incorporated the use of LLMs, such as GPT-
3.5-turbo, to assist agents in forming their strategies. These AI agents can
provide valuable insights and recommendations based on the current state of
the game and the strategies of neighboring agents. By integrating LLMs into
the adaptive learning process, we can explore how the introduction of AI agents
influences the dynamics of cooperation and defection in MASs; an illustrative
diagram can be seen in Figure 4.1.

Game Theory Coevolutionary Algorithms AI (LLM)

Multi-Agent Systems Adaptive Learning

strategy models

agent behavior

learning models

evolution dynamics strategy advice learning feedback

performance feedback

interaction feedback adaptation feedback

Figure 4.1: A detailed schematic representation of the Extended Coevolutionary (EC) The-
ory framework emphasizing the integration of Large Language Models (LLMs). The diagram
not only illustrates the primary components of the framework—game theory, coevolution-
ary algorithms, AI (LLM), Multi-Agent Systems, and adaptive learning—but also explicates
their dynamic interconnections. Feedback loops are introduced to signify ongoing adapta-
tion and learning processes, while labeled arrows illuminate the nature of interactions, such
as strategy modeling, agent behavior, learning models, evolution dynamics, strategy advice,
learning feedback, and performance feedback. This comprehensive portrayal seeks to foster
a deeper understanding of the intricate dynamics within the EC framework.

Indeed, the feedback process in adaptive learning extends beyond modifying
interaction strategies. Adaptive learning involves an iterative process of adjust-
ing the model parameters based on the feedback received, thereby continuously
improving the performance of the model. In our EC framework, adaptive
learning not only informs the strategies adopted by agents, but also refines
the underlying models that drive agent behavior. Specifically, the “learning
feedback” from the LLM to the adaptive learning component of the system
captures this process of continuous improvement. When the LLM provides
strategic advice to the agents, it includes not only immediate actions, but also
feedback on the current strategies. This feedback is then used to adjust the
models that inform agent behavior, thereby enabling them to learn and adapt
over time. Moreover, the “adaptation feedback” from the adaptive learning
component back to the LLM signifies the updates in model parameters based
on the performance and interaction feedback. This continuous feedback loop
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ensures that the LLM, and, thus, the strategies it recommends, evolves over
time to better support agent interactions.

4.3.3 Heterogeneous Agents and Multi-Layer Network Model

The EC framework acknowledges the importance of agent heterogeneity and
complex network structures in shaping the dynamics of strategic interactions.
We modeled agents with varying characteristics, such as different levels of risk
aversion, social preferences, and learning capabilities. Furthermore, we intro-
duced a multi-layer network model that captures multiple types of interactions
between agents, such as economic transactions, social relationships, and infor-
mation exchange.

The multi-layer network is represented by a tuple G = (V,E1, E2, . . . , Ek),
where V is the set of nodes (agents), and Ez is the set of edges (interactions)
in layer z. The multi-layer network allows us to study the interdependencies
between different types of interactions and their effects on cooperation and
defection dynamics in the population.

4.3.4 Large Language Models in EC

LLMs, such as GPT-3.5-turbo, play a significant role in the EC framework,
especially in the context of strategic formation and adaptive learning. These
AI agents can analyze the current state of the game, the strategies employed by
neighboring agents, and can provide valuable insights and recommendations for
the agents’ next actions. The incorporation of LLMs within the EC framework
enables a deeper understanding of the dynamics of cooperation and defection,
as well as the influence of AI agents on the overall system.

LLM-Based Adaptive Learning

In the EC framework, LLMs are used to support agents during the adaptive
learning process. At certain intervals, agents consult the LLM for advice on
their next strategic move while considering the strategies of their neighbors. To
formalize this interaction, let Qz,t be the LLM’s recommendation for agent z at
time t. We can express the recommendation as a function of the neighboring
agents’ strategies s−z(t):

Qz,t = f(s−z(t)), (4.2)

where f(·) is the function representing the LLM’s recommendation process.
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In the context of real-time applications, the function f(·) needs to be effi-
cient and robust. Efficiency is required to ensure that the recommendation
process does not introduce significant latency into the system, which is espe-
cially critical in real-time applications where timely response is often necessary.
Robustness, on the other hand, is needed to ensure that the recommendation
process can handle a wide range of possible inputs and still produce meaningful
outputs. This is crucial in a dynamic Multi-Agent System where the strate-
gies of neighboring agents can vary significantly over time. In the context of
LLMs, the function f(·) is implemented by the LLM’s underlying ML model.
The model is trained on a large corpus of data and is capable of generating
strategic recommendations based on the input it receives. The specifics of this
process depend on the architecture and training of the LLM. In the case of
GPT-3.5-turbo, for example, the model takes the current context, including
the strategies of neighboring agents, and generates a recommendation based
on patterns it has learned during its training.

The agent’s strategy update can then be modeled as a combination of its
original adaptive learning process and the LLM’s recommendation:

sz(t+ 1) = (1− β) (sz(t) + α∇Uz(sz(t), s−z(t))) + βQz,t, (4.3)

where β ∈ [0, 1] represents the influence rate of the LLM on the agent’s strategy.
When β = 0, the agent relies solely on its original adaptive learning process;
when β = 1, the agent fully adopts the LLM’s recommendation.

Incorporating LLM Uncertainty

Given the probabilistic nature of LLM-generated recommendations, it is essen-
tial to consider the uncertainty associated with the LLM’s advice. One way to
account for this uncertainty is to introduce a confidence measure cz,t that is
associated with the LLM’s recommendation:

cz,t = g(Qz,t), (4.4)

where g(·) is a function that maps the LLM’s recommendation to a confidence
value in the range [0, 1].

By incorporating the confidence measure, we can adjust the agent’s strategy
update rule as follows:
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sz(t+ 1) = (1− βcz,t) (sz(t) + α∇Uz(sz(t), s−z(t))) + βcz,tQz,t. (4.5)

This modified update rule allows agents to weigh the LLM’s advice based on
the confidence associated with the recommendation, thereby leading to a more
nuanced adaptive learning process.

In summary, our EC Theory framework provides a powerful and flexible ap-
proach for studying the emergence and evolution of cooperation and defection
in MASs. By incorporating adaptive learning, heterogeneous agents, multi-
layer network structures, and LLMs, the EC framework can offer novel in-
sights into the complex dynamics of strategic interactions in diverse settings.
Futhermore, the integration of LLMs within the EC framework provides a
novel perspective on the dynamics of cooperation and defection in MASs. The
LLM-assisted adaptive learning process, along with the consideration of LLM
uncertainty, contributes to a more comprehensive understanding of the com-
plex strategic interactions in diverse settings.

4.4 Methodology

Let us assume that our EC framework can be reduced to a simple two-player
game with finite strategy sets and that the utility functions incorporate only
the immediate payoffs without the adaptive learning mechanisms or LLM-
based strategy recommendations. The proof below demonstrates the existence
of a NASH equilibrium for this simplified game using Brouwer’s fixed-point
theorem.

Theorem 1. Given a two-player game in the EC framework with each player
having a finite set of strategies and where the utility functions are based only on
immediate payoffs, without any adaptive learning mechanisms or Large Lan-
guage Model (LLM) based strategy recommendations, there exists a NASH equi-
librium.

Proof. Let us consider a two-player game represented by the EC framework,
with each player o having a finite set of strategies So, where o ∈ {1, 2}. Let
s = (s1, s2) denote a strategy profile, where so ∈ So for both players.

1. Define the utility functions uo(s) for each player o as the immediate pay-
offs from the chosen strategy profile s.
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2. Define the best response correspondence Bo : S−o → So for each player
o, which maps a strategy of the opponent to the set of best responses for
player o. Since So is finite, the best response correspondence is nonempty
and upper hemicontinuous.

3. Define the correspondence
G : S1 × S2 → S1 × S2 as G(s1, s2) = (B1(s2), B2(s1)). This maps a
strategy profile s to the set of best response profiles for both players.
Since Bo is nonempty and upper hemicontinuous for both players, G is
also nonempty and upper hemicontinuous.

4. Define the strategy space S = S1 × S2 and assume it is a compact and
convex set. Compactness follows from the finiteness of the strategy sets,
and convexity follows, since we can treat the strategies as probability
distributions over the pure strategies.

5. Apply Brouwer’s fixed-point theorem, which states that every continuous
function from a compact, convex set to itself has a fixed point. Since G
is nonempty, upper hemicontinuous, and maps S to itself, it has a fixed
point s∗ = (s∗1, s

∗
2) ∈ S.

6. At this fixed point s∗, we have s∗1 ∈ B1(s∗2) and s∗2 ∈ B2(s∗1). This means
that, given the strategy of the opponent, each player is choosing their
best response, thus making s∗ a NASH equilibrium.

By following these steps and applying Brouwer’s fixed-point theorem, we have
proven the existence of a NASH equilibrium for a simplified two-player game
within the EC framework.

An interesting point to note here is that the convex combination in (4) is
proposed under the assumption that the weightings of the adaptive learning
mechanism and the LLM’s recommendation sum to one, which is often a math-
ematical convenience that helps to maintain the strategy within a defined strat-
egy space. This is particularly important when strategies are represented as
probability distributions over a finite set of pure strategies, where the sum of
probabilities must equal to one. A convex combination ensures that the re-
sulting strategy is a valid probability distribution. However, considering an
affine combination could also bring an interesting perspective. An affine com-
bination could potentially allow for a greater range of weightings and, thus,
may offer more flexibility. It could provide a richer representation of how the
agent might incorporate the advice from the LLM or the learning mechanism
in its decision-making process. But it is important to note that using an affine
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combination could lead to situations where the strategy might fall outside the
original strategy space, especially if the strategies are represented as prob-
ability distributions. We could indeed modify the model to allow for affine
combinations of the adaptive learning mechanism and the LLM’s recommen-
dation, provided that we adjust the strategy space and the interpretation of
the strategies accordingly. We could also explore different mechanisms to de-
termine the relative weightings of the two components, beyond a simple fixed
weight. For instance, the weightings could depend on the agent’s confidence
in the LLM’s recommendation or on the performance of the adaptive learning
mechanism.

Another important issue to consider is that the existing formulation does not
characterize the LLM-related uncertainty and seems to be more related to the
sensitivity of the agents’ strategies to the LLM’s recommendations. To ad-
dress this point, we could propose to revise the model to explicitly consider
the uncertainty in the LLM’s recommendation. The LLM’s recommendation
Qz,t could be modeled as a random variable instead of a deterministic function
of the neighboring agents’ strategies s−z(t). This could better represent the
inherent uncertainty of AI systems. We could also explore ways to quantify
this uncertainty. For instance, we could explore this by incorporating a mea-
sure of the variance or entropy associated with the LLM’s recommendation.
We might also consider modifying the utility functions to reflect the agents’
risk attitudes towards the LLM-related uncertainty. For example, risk-averse
agents might prefer strategies that minimize the potential negative impact of
an inaccurate LLM recommendation, while risk-neutral agents might be indif-
ferent to this uncertainty. However, it is important to note that introducing
uncertainty into the model may complicate the analysis. The existence of a
NASH equilibrium, as demonstrated in the proof using Brouwer’s fixed-point
theorem, may no longer be guaranteed. This is because the fixed-point theorem
assumes that the function (in this case, the correspondence G) is deterministic,
whereas introducing uncertainty into the LLM’s recommendation might render
G stochastic.

Given the complexity of LLMs and the inherent difficulties in mathematically
formalizing their properties, proving a specific aspect of the EC framework
that incorporates LLM-based strategy recommendations is challenging. How-
ever, we can attempt to provide a simple proof that demonstrates the potential
improvement in utility for an agent following LLM-based strategy recommen-
dations.
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The assumptions and simplifications include the following:

1. Consider a two-player game represented by the EC framework, with each
player o having a finite set of strategies So, where o ∈ {1, 2}.

2. Assume that the LLM provides strategy recommendations for player 1.

3. Let the true utility functions uo(s) for each player o be known and fixed.

4. Assume that the LLM’s recommendations are based on the true utility
functions of both players and that the LLM generates recommendations
that maximize player 1’s expected utility, given player 2’s strategy.

The proof indeed builds on several strong assumptions and simplifications, es-
pecially the third one, where we assume that the true utility functions are
known and fixed. This is, of course, an oversimplification; in real-world sce-
narios, utility functions might be unknown or dynamically changing. This
assumption is made primarily to make the proof tractable, thereby providing a
simplified demonstration of the potential benefits of incorporating LLM-based
strategy recommendations. The third assumption can be interpreted as a “per-
fect information” assumption. We are assuming that the LLM is omniscient
and has complete information about the utility functions of both players.

Theorem 2. Consider a two-player game represented by the EC framework,
where each player o has a finite set of strategies So (o ∈ {1, 2}), and the true
utility functions uo(s) for each player o are known and fixed. Assume that the
LLM provides strategy recommendations for player 1 and that these recommen-
dations are based on the true utility functions of both players. If the LLM’s
recommendations aim to maximize player 1’s expected utility given player 2’s
strategy, then player 1’s expected utility following the LLM’s recommendations
will be at least as high as when choosing any other strategy from their strategy
set.

Proof. Let s = (s1, s2) denote a strategy profile, where so ∈ So for both players.
Define sR1 as the strategy recommendation provided by the LLM for player 1,
given player 2’s strategy s2.

1. Define the expected utility for player 1 when following the LLM’s recom-
mendation as E[u1(sR1 , s2)].

2. Since the LLM generates recommendations based on the true utility func-
tions of both players and aims to maximize player 1’s expected utility, we
have E[u1(sR1 , s2)] ≥ E[u1(s1, s2)] for any s1 ∈ S1.
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3. If player 1 chooses to follow the LLM’s strategy recommendation sR1 ,
their expected utility will be at least as high as when choosing any other
strategy from their strategy set.

In this simplified proof, we have shown that following LLM-based strategy
recommendations can potentially improve the expected utility for player 1.
However, it is important to note that this proof is built on several assumptions
and simplifications that may not hold in more complex scenarios or when
considering adaptive learning mechanisms and heterogeneous agents.

These proofs provide a strong foundation for understanding the theoretical
aspects of the EC framework and the potential benefits of incorporating LLM-
based strategy recommendations in Multi-Agent Systems.

4.5 Simulation Environment

The EC framework was implemented as a simulation environment to explore
the interactions between heterogeneous agents in a multi-layer network. The
simulation consists of a discrete-time system with the following steps:

1. Initialization: Create a set of N heterogeneous agents with varying char-
acteristics such as risk aversion, social preferences, and learning capabili-
ties. Generate a multi-layer network representing various types of interac-
tions between agents, such as economic transactions, social relationships,
and information exchange.

2. Iteration: For each time step t ∈ {1, 2, . . . , T}, where T is the total
number of simulation rounds:

(a) Simulate interactions between agents based on their current strate-
gies and update their utilities.

(b) Apply adaptive learning to update the agents’ strategies, with LLM
consultations at specified intervals.

(c) Update the network structure based on the evolving strategies and
utilities
of agents.
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3. Analysis: Evaluate the system’s performance using various metrics and
visualize the network’s evolution to gain insights into the dynamics of
cooperation and defection.

The multi-layer network structure we use in the simulation is not only a com-
plex system composed of three interconnected layers—economic’, social’, and
‘information’—but it is also a reflection of real-world multi-agent systems.
Each layer represents a distinct type of interaction among the agents. These
interactions are not isolated; instead, they collectively influence the decision-
making process of the agents in a holistic manner. For example, an agent’s
economic decisions may be influenced by their social interactions and the infor-
mation they receive. Moreover, these interactions and their consequences can
feedback into each layer, thereby causing changes that can further influence
the decision-making process. In addition to interacting within and across lay-
ers, the agents themselves are characterized by their strategies and attributes
that were previously presented. For instance, the strategies formulated in the
context of the EC framework are implemented by the agents as they interact
within and across the layers of the multi-layer network.

Formally, the multi-layer network can be defined as a tuple G = (V,E1, E2, E3),
where:

• V is the set of nodes (entities) in the network, each characterized by a
strategy, risk aversion, social preference, learning capability, and utility.

• E1 represents the set of edges in the ‘economic’ layer indicating economic
interactions between the entities.

• E2 represents the set of edges in the ‘social’ layer indicating social inter-
actions between the entities.

• E3 represents the set of edges in the ‘information’ layer indicating infor-
mation exchange between the entities.

The multi-layer network was constructed as a multi-graph in order to allow for
multiple edges between a pair of nodes that are each associated with a differ-
ent layer. The edges within each layer were generated using a random graph
model with a specified edge probability. This model ensured that the network
structure exhibited a random distribution of edges, thus capturing the inherent
uncertainty and complexity of real-world interaction patterns among agents.
The multi-layer network structure served as a robust and versatile framework
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for simulating the interplay of various interaction types among agents, thereby
facilitating a comprehensive understanding of the system’s dynamics and evo-
lution.

While this multi-layer network structure was used here for simulation purposes,
its design is representative of the type of complex multi-agent systems seen in
real-world situations. By using such a structure, we can capture and study
the interplay of various interaction types among agents, which is crucial for
understanding the dynamics and evolution of Multi-Agent Systems.

4.5.1 Performance Metrics

To measure the effectiveness of the EC framework, several performance metrics
were introduced, including overall social welfare, the prevalence of cooperation,
and the robustness of the system to shocks or disruptions. The selection of
these metrics was motivated by their ubiquity in Multi-Agent Systems litera-
ture and their relevance to the specific aspects we aimed to enhance through
the EC framework.

• Overall social welfare: The sum of all agents’ utilities at time t. This
metric is traditionally used in economics and game theory to measure
the total benefit accrued by all members of a system, thus providing an
aggregate measure of system performance. Higher social welfare indicates
that more agents are achieving higher utility, which aligns with the goal
of our EC framework to improve individual and collective outcomes.

W (t) =
N∑
z=1

Uz(t). (4.6)

• Prevalence of cooperation: The proportion of agents employing a coop-
erative strategy at time t. This metric is particularly relevant for Multi-
Agent Systems where cooperative behavior can lead to mutual benefit
or improved social welfare. As the EC framework aims to encourage co-
operative behavior, monitoring the prevalence of cooperation provides a
direct measure of this aspect of the system’s performance.

Pc(t) =

∑N
z=1 I[sz(t) = cooperate]

N
, (4.7)
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where I[·] is the indicator function, which equals 1 if the condition inside
the brackets is true and equals 0 otherwise.

• Robustness: The ability of the system to maintain cooperation levels in
the face of shocks or disruptions. In Multi-Agent Systems literature, the
robustness of a system is often a critical measure of performance, and
it indicates how well the system can adapt to changes or uncertainties.
Given that real-world Multi-Agent Systems often face dynamic environ-
ments and perturbations, we incorporated this metric to evaluate how well
the EC framework could maintain performance under such conditions.

R(t) =
Pc(t)− Pc(t− 1)

Pc(t− 1)
. (4.8)

4.5.2 Visualization Techniques

Effective visualization techniques are essential for understanding the complex
dynamics of the EC framework. Several approaches can be employed to illus-
trate the evolution of the system, including:

1. Time-lapse network visualization: Display the network’s evolution over
time in an animation in order to highlight changes in network structure,
agent strategies, and cooperation levels. This visualization can be created
using libraries such as NetworkX or Gephi, where nodes represent agents,
and edges represent relationships. The nodes’ colors and sizes can be
adjusted based on the cooperation levels, thereby allowing observers to
track the development of cooperation and defection strategies over time.

2. Interactive visualizations: Develop interactive visualizations that allow
users to explore the relationships between agents, their strategies, and
the various types of interactions in the multi-layer network. This can be
achieved using web-based visualization libraries such as D3.js or Plotly,
which enable the creation of dynamic, responsive visualizations. For ex-
ample, users could filter agents based on certain attributes, adjust time
scales, or zoom into specific areas of the network to investigate local dy-
namics. Tooltips can also be added to display additional information
about individual agents and their strategies by hovering or clicking.

3. Heatmaps: Generate heatmaps to visualize the spatial distribution of co-
operation and defection strategies, thus providing insights into the emer-
gence of clusters or patterns within the network. This can be done us-
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ing Python libraries such as Matplotlib or Seaborn, where the X-axis
represents rounds, the Y-axis represents agents, and the color intensity
indicates the cooperation level of each agent. Such heatmaps can help
identify regions of high cooperation or defection, as well as detect sudden
shifts in strategies or the formation of stable cooperation clusters over
time.

These visualization techniques, along with the performance metrics, provide
valuable tools for analyzing the behavior of agents and the overall dynamics
of cooperation and defection within the EC framework.

4.6 Results and Analysis

In this section, we present the results and analysis of our experiments with the
EC framework, with a focus on the emergence of cooperation and defection
patterns among heterogeneous agents in the Multi-Agent System. We inves-
tigated the role of adaptive learning and the impact of LLM-based strategy
recommendations on these patterns, as well as the network’s overall robust-
ness and resilience. The network’s initial and final structures, as shown in
Figures 4.2 and 4.3, provide a visual representation of the evolution of these
patterns over time.

The experiments conducted in this study were executed using a custom-built
Multi-Agent System simulator, which was designed specifically to study the
emergence of cooperation and defection patterns in complex networks. This
simulator allows for the creation and manipulation of heterogeneous agents by
implementing adaptive learning processes and incorporating LLM-based strat-
egy recommendations. It is capable of simulating dynamic, evolving multi-layer
networks while tracking and visualizing changes in the system over time. The
simulator provides a comprehensive platform for observing and analyzing the
effects of various hyperparameters and network structures on agent behavior
and overall system performance. The visualizations generated by the simulator
facilitate a deeper understanding of the complex dynamics at play within the
Multi-Agent System, thereby enabling researchers to fine-tune the EC frame-
work and optimize its potential for fostering cooperation in diverse real-world
applications.

Through the implementation of the EC framework, we observed the emer-
gence of cooperation and defection patterns within the Multi-Agent System.
The adaptive learning process, combined with the varying characteristics of
heterogeneous agents, led to the formation of clusters of cooperators and de-
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fectors within the network. These clusters evolved dynamically over time,
having been influenced by the agents’ strategies and interactions with their
neighbors. Next, we will delve deeper into the factors contributing to these
patterns and their significance in the context of the EC framework.

In the simulations conducted, a set of hyperparameters was used to determine
the behavior of the agents and the network. The total number of agents, or
entities, in the network was set to 100. The simulation was run over 500 rounds
to observe the evolution of agent strategies and network properties. The initial
cooperation factor was set to 0.5, meaning that 50% of the agents started with
a cooperative strategy. The learning rate was set at 0.1, which determined
the probability of agents adapting their strategies based on their neighbors’
performance. To model the addition of new connections between agents, an
edge addition probability of 0.05 was used, thereby allowing the network to
evolve over time. Finally, a cooperation threshold of 0.6 was implemented,
which represented the minimum proportion of cooperative neighbors needed
for an agent to switch to a cooperative strategy. These hyperparameters guided
the simulation and influenced the outcomes of social welfare and cooperation
prevalence within the network.

The prevalence of cooperation increased when agents were able to learn from
their neighbors’ strategies, particularly in the presence of high levels of trust
and reciprocity. Conversely, when agents were more risk-averse or selfish, defec-
tion patterns emerged, leading to suboptimal outcomes for both the individual
agents and the system as a whole.

The incorporation of LLMs into the EC framework significantly impacted the
adaptive learning process and the formation of cooperation and defection pat-
terns, as shown in Figures 4.2–4.5. The LLM consult interval served as an
effective mechanism to analyze their influence on the system. By consulting
the LLMs at specific intervals, we could observe the impact of their recommen-
dations on the agents’ decision making, as well as the resulting cooperation and
defection patterns over time.

When agents consulted LLMs for strategy recommendations, they were more
likely to make informed decisions based on the broader context of their neigh-
bors’ strategies and the network structure. The LLM-based recommendations
promoted cooperation, especially when the majority of neighbors were already
cooperating, as agents sought to maximize their utilities through mutual co-
operation.
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The choice of using an LLM consult interval, rather than a direct compari-
son of the system with and without LLMs, allowed us to better understand
the dynamic interplay between LLM-guided decision making and the agents’
autonomous adaptive learning. This approach offers insights into the com-
plex, evolving relationships between agents, their strategies, and the network
structure, which might be obscured in a direct comparison scenario.

Figure 4.2: Evolution of network structure over time, illustrating the changes in cooperation
and defection patterns among agents. The initial network structure (left) is compared to
the final network structure (right) after running the simulation with adaptive learning,
including LLM-based strategy recommendations every 10,000 rounds. The nodes are colored
green if the entity’s strategy is to cooperate, and red if the entity’s strategy is to defect. We
used a preferential attachment rule for edge creation and an edge removal rule based on a
cooperation threshold of 0.6.
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Figure 4.3: Evolution of the network structure and agent strategies, taking into account
individual risk aversion, social preference, and learning capability during the simulation.
The initial network structure (left) and the final network structure (right) are presented
after incorporating adaptive learning and LLM-based strategy recommendations every 10,000
rounds. The nodes are colored green if the entity’s strategy is to cooperate, and red if the
entity’s strategy is to defect. We used a preferential attachment rule for edge creation and an
edge removal rule based on a cooperation threshold of 0.6. The changes in cooperation and
defection patterns among agents, influenced by their unique risk aversion, social preference,
and learning capability, can be observed over the course of the simulation.

Moreover, LLMs helped agents to adapt more quickly to changes in their en-
vironment, such as the emergence of defectors or fluctuations in the levels of
trust and reciprocity within the network. This increased adaptability allowed
the agents to maintain cooperation levels and achieve higher overall social wel-
fare. For instance, Figure 4.4 illustrates the multi-layer network structures
before and after the simulation, where they achieved an overall social welfare
of 2442.3 and a prevalence of cooperation of 63.00%, with an LLM consult
interval of 15,000 rounds.

The EC framework demonstrated robustness and resilience in the face of shocks
and disruptions, such as the introduction of defectors or changes in the net-
work structure. The adaptive learning process, along with the influence of
LLM-based strategy recommendations, allowed agents to swiftly adjust their
strategies in response to these perturbations.
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Figure 4.4: Multi-layer network structures before and after the simulation: These side-
by-side plots show the multi-layer network consisting of economic (red edges), social (blue
edges), and information (green edges) layers. Each layer in the network represents a different
type of interaction: economic transactions, social relationships, and information exchange.
The left plot represents the initial network structure, while the right plot displays the final
network structure after the simulation. Nodes are colored based on their strategies, with
blue representing cooperation and red representing defection. The evolution of strategies
can be observed as a result of the agents’ interactions, learning capabilities, and LLM-based
strategy recommendations.

The system’s robustness was further enhanced by the multi-layer network
model, which captured different types of interactions between agents. This
multi-layer structure allowed agents to maintain cooperation levels in one layer,
even when facing disruptions in another layer. For instance, in the multi-layer
system studied in Figure 4.4, the EC achieved a change in social welfare after a
shock of 1819 and a change in cooperation prevalence after the shock of 5.00%,
with an LLM consult interval of 30,000 rounds. Overall, the EC framework
proved to be a resilient approach to modeling and promoting cooperation in
complex MASs.

The visualizations generated during the simulation provided valuable insights
into the dynamics of the EC framework. Time-lapse network visualizations
revealed the emergence of cooperation and defection patterns, as well as the
evolution of the network structure over time. Interactive visualizations allowed
for the exploration of agent strategies, network layers, and the relationships
between agents in greater detail.
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As shown in Figure 4.5, the evolution of cooperation in the multi-layer network
is illustrated across representative rounds. Each plot presents the state of the
network at different points in time, with blue nodes representing cooperative
entities and red nodes symbolizing defecting entities. Node numbers represent
the unique identifiers for each agent. The cooperative prevalence values, indi-
cated in the subcaptions, provide insights into the percentage of cooperative
agents within the network at each round.

Over the course of the simulation, we can observe shifts in the prevalence of
cooperation and defection within the network, as well as the formation of clus-
ters of cooperative and defecting agents. These changes can be attributed to
the adaptive learning processes, the interactions between entities across mul-
tiple layers, and the influence of LLM-based strategy recommendations. The
figure provides valuable insights into the dynamics of cooperation in complex
multi-layer networks and highlights the significance of considering multiple
dimensions of interaction when studying the evolution of cooperation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.5: Evolution of cooperation in a multi-layer network across representative rounds.
Each plot shows the network state at different rounds, with blue nodes representing coop-
erative entities and red nodes representing defecting entities. Node numbers represent the
unique identifiers for each agent. We used an LLM consult interval of 33,000. The cooperative
prevalence values indicate the percentage of cooperative agents within the network at each
round. As the simulation progressed, we can observe varying levels of cooperation and the
formation of clusters of cooperative and defecting agents, thus illustrating the dynamic nature
of the multi-agent system. (a) cooperative prevalence = 57%; (b) cooperative prevalence =
49%; (c) cooperative prevalence = 49%; (d) cooperative prevalence = 45%; (e) cooperative
prevalence = 60%; (f) cooperative prevalence = 58%; (g) cooperative prevalence = 57%; (h)
cooperative prevalence = 53%; (i) cooperative prevalence = 55%.
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We would like to emphasize that, while the EC framework has been demon-
strated via a simplified simulation, we believe that the principles and mech-
anisms it encapsulates, such as adaptive learning, multi-layered interactions,
and the use of LLM-based strategy recommendations, bear significant relevance
to complex real-world scenarios. The ability of our framework to model and
promote cooperation among diverse and adaptive agents provides a powerful
tool to address various challenges in different contexts.

4.7 Implications for Business and Society

The EC framework, as demonstrated by our simulation, has far-reaching impli-
cations for both businesses and society as a whole. By promoting cooperation
and fostering positive interactions between agents, the EC framework can be
applied to a variety of real-world scenarios to optimize social welfare and en-
hance cooperation.

In the context of businesses, the EC framework can be used to model and
improve cooperative behavior between employees, teams, or departments, po-
tentially leading to increased productivity and efficiency within organizations.
Moreover, the insights gained from the LLM-based strategy recommendations
can inform decision-making processes and help organizations adapt to changing
environments.

From a societal perspective, the EC framework can be applied to model and
address pressing issues such as climate change, public health, and economic
inequality. By encouraging cooperative behavior among individuals, commu-
nities, and nations, the EC framework can facilitate the development of sus-
tainable solutions to these complex challenges.

Despite the promising results obtained from the EC framework, several limita-
tions should be acknowledged. First, the simulation environment used in this
study is a simplified representation of real-world systems. The assumptions
made about agent behavior, network structure, and interactions may not fully
capture the complexity of real-world situations. Additionally, the choice of
LLMs and their implementation within the EC framework may also influence
the outcomes observed in the simulation.
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4.8 Conclusions

In this chapter, we have presented a comprehensive framework that integrates
EC Theory, MASs, and LLMs to simulate and analyze the dynamics of cooper-
ation and defection in complex environments. By incorporating heterogeneous
agents, adaptive learning mechanisms, and LLM-based strategy recommenda-
tions, our framework provides a more realistic and flexible representation of
HCI in MASs.

We have also discussed the implementation details of our simulation environ-
ment, including performance metrics, visualization techniques, and the use of
intelligent sensors for data collection and real-time adaptation. Through the
analysis of various simulation results, we have demonstrated the emergence
of cooperation and defection patterns, the influence of LLM-based strategy
recommendations, the robustness and resilience of the system under different
conditions, and the utility of our visualization techniques for understanding
multi-agent system dynamics.

Furthermore, we have discussed the broader implications of our findings for
business and society, thereby highlighting the potential benefits and challenges
associated with the integration of LLMs and MASs in various domains. We
have also acknowledged the limitations of our current framework, including the
incorporation of additional layers of interaction, more advanced LLM-based
strategy formation mechanisms, and the development of more sophisticated
visualization and analysis tools.

In our proposed framework, we extended the concept of HCI to encompass
the interaction between human agents and AI-driven agents, such as LLMs, in
complex Multi-Agent Systems. This extended interpretation of HCI aims to
capture the intricate dynamics of cooperation and defection that arise when
humans and AI collaborate, compete, or coexist in various domains. By inte-
grating LLMs as a form of human–computer interface, we created a more adap-
tive and flexible representation of these interactions, where the LLM modifies
the beliefs and strategies of human agents based on the information provided.
This approach allows for a deeper understanding of the potential benefits and
challenges associated with human–AI collaboration in complex environments
and contributes to the development of more effective and efficient Human–
Computer Interaction strategies in diverse real-world applications.

In conclusion, our study represents a significant step towards a deeper under-
standing of the interplay between humans and computers in cooperative and
competitive settings. By integrating advanced AI technologies, such as LLMs,
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with well-established theories from game theory and MASs, we aim to pave the
way for more effective and efficient Human–Computer Interaction and unlock
the potential of intelligent agents to address a wide range of complex problems
in various domains.

Future work should focus on refining the EC framework by incorporating more
realistic models of agent behavior, interaction mechanisms, and network struc-
tures. This can be achieved through the integration of empirical data, as well
as the application of advanced modeling techniques. Furthermore, the perfor-
mance of different LLMs and their suitability for various contexts should be
explored.

Additional areas of future work include the investigation of alternative learning
processes, the development of more sophisticated visualization techniques, and
the study of the EC framework’s applicability to a broader range of real-world
scenarios. By addressing these limitations and expanding upon the current
work, the EC framework has the potential to significantly contribute to our
understanding of cooperation and defection in MASs.
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Chapter 5

Socratic Video Understanding
on Unmanned Aerial Vehicles

I. de Zarzà, J. de Curtò, Carlos T. Calafate. (2023). "So-
cratic Video Understanding on Unmanned Aerial Vehicles."
27th International Conference on Knowledge Based and In-
telligent information and Engineering Systems (KES 2023),
Athens, Greece, 6–8 September, 2023. DOI: pendiente de
asignación.

In this chapter, we propose a system for video understand-
ing through zero-shot reading comprehension using Socratic Models.
Specifically, we create a language-based world-state history of events
and objects present in a scene captured by an Unmanned Aerial Ve-
hicle (UAV). To achieve this, video footage from RYZE Tello mi-
crodrones is transmitted to a ground computer for further process-
ing. The semantically rich information offered by Large Language
Models (LLMs) enables open-ended reasoning, such as event fore-
casting with minimal human intervention, in a cost-effective robotic
system. BLIP-2 is employed to answer a given set of instructional
prompts, creating a log-state of objects, humans, and hazards that
can be searched. Simultaneously, it suggests probable actions in the
scene and can assist the human controller with an estimated best
command.
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5.1 Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, are employed
in various applications, particularly those requiring mobility and versatility.
The emergence of models that can equip these robotic platforms with real-time
intelligence, either with or without the assistance of a GPU-enabled ground
station or wired computer, has paved the way for open-ended reasoning in
lightweight systems. This advancement also enables real-time event tracking
and description, serving as a companion to human operators in potentially
hazardous situations by suggesting estimated optimal commands for action.

Large Language Models (LLMs) [10, 1, 23] have emerged as valuable resources
for addressing complex tasks across diverse disciplines. Their pre-trained ca-
pabilities give rise to numerous zero-shot applications, referring to models that
do not require retraining and, consequently, eliminate the need for specific
adaptation to particular scenarios. In this context, UAVs play a significant
role in deploying real-world robots equipped with sensing and visual capabili-
ties. Their interaction with humans is particularly interesting in a wide range
of environments [2]. The aim of this chapter is to bridge the gap between
state-of-the-art pre-trained models, which are based on vast data corpora, and
affordable robots designed for human interaction. Our goal is to generate a
comprehensive scene description in the form of a world-state history, specifi-
cally a log of all objects, humans, and likely actions per frame. Additionally,
we seek to enable the ability to query LLMs regarding specific details of the
ongoing events.

To achieve this, we employ a RYZE Tello drone, an affordable lightweight
microdrone equipped with a high-definition camera. We configure this drone
to transmit the captured video stream to a ground computer responsible for
computation and world-state acquisition. Socratic Models (SMs) [24] repre-
sent a modular framework wherein tasks are formulated as language-based
exchanges between multiple modules, and zero-shot capabilities are preserved
through prompt engineering and guided multimodal interactions among the
utilized models. In this work, we rely on BLIP-2 [13], a generic and efficient
pre-training strategy that bootstraps vision-language pretraining from a frozen
image encoder and frozen LLMs. BLIP-2 offers captioning capabilities, as well
as generic image understanding in the form of Socratic interactions between
models and users. Our objective is to develop an affordable robotic system that
takes advantage of recent advances in Natural Language Processing (NLP) and
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Figure 5.1: Diagram illustrating the pipeline for Socratic Video Understanding, which
combines BLIP-2 and OpenAI da-vinci-003/gpt-3.5-turbo. The system can operate in two
modes: either by collecting frames and conducting post-processing to generate a searchable
world-state history or in real-time, providing an estimated best command suggestion for the
human-in-the-loop.

Computer Vision while providing practical insights on the usability and best
practices of these devices in real-world scenarios. For this purpose, we establish
an experimental setup with the drone functioning as a flying camera that trans-
mits video to the ground computer. A set of hard-coded guidelines in the form
of open-ended question-answers is supplied to the system to be queried at each
frame and then combined to generate a world-state log of activities, actions,
and objects; refer to Figure 5.1 for a visual representation of the methodology.

The chapter is organized as follows: Section 5.2 provides an overview and state
of the art of LLMs and VLMs. Next, in Section 5.3 we discuss the problem we
are trying to characterize. Section 6.2 addresses the materials and methodology
used, where we highlight the main contributions and the body of work of the
publication. In Section 5.5 we evaluate the proposed methodology and design
a set of experiments. Section 5.5.1 gives emphasis on the use of the pipeline for
guidance and command. Finally, Section 6.4 presents the conclusions drawn
after testing the proposed framework, discusses the limitations of actual LLM
architectures, and suggests potential future work for further investigation.
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5.2 Overview and related work

Large Language Models (LLMs) [7, 10, 1, 23] and Visual Language Models
(VLMs) [18] are widely acknowledged as essential resources that enable in-
telligent systems to interact with humans in novel ways and perform com-
plex tasks effortlessly. These models, also known as Foundation Models, have
demonstrated remarkable performance across various tasks, including robotic
manipulation [6, 25, 17], navigation, and guidance [24, 11]. They can also be
integrated with other modules to address highly complex situations.

LLMs are a type of ML models trained on vast text datasets to generate human-
like text. These models rely on Transformers [20, 8] to learn and adapt through
training, aiming to discern statistical patterns and relationships in the data to
produce plausible text. One of the most notable features of LLMs is their
compelling ability to generate text that is virtually indistinguishable from text
written by humans. Owing to their training on substantial volumes of text,
these models can capture various linguistic patterns, such as grammar, syntax,
and vocabulary, and create coherent and grammatically correct text ideal for
Natural Language Processing (NLP) applications like translation, summariza-
tion, and text generation [5, 26].

VLMs, in contrast, are ML models trained on both text and image datasets to
generate descriptive and informative text about visual content. The primary
objective of VLMs is to learn the statistical patterns and relationships present
in the training data and leverage this knowledge to generate natural language
text describing the objects, people, and events depicted in an image or set of
images. One of the significant strengths of VLMs is their ability to produce
grounded text that is closely related to the visual content of an image. This
means that the generated text provides detailed and informative descriptions
of the visual elements, enabling the models to perform tasks such as image
classification, object detection, and image captioning. VLMs have the poten-
tial to revolutionize image and video analysis, content generation, and NLP.
In this chapter, we focus on Vision-Language Pre-training (VLP) [14, 12, 13],
which emphasizes the use of these large pre-trained modules in a wide variety
of tasks, and we combine them in a Socratic manner.

Furthermore, recent advancements have delved into the utilization of LLMs and
VLMs in Socratic learning, wherein these models are integrated in a way that
facilitates mutual learning, thereby augmenting their collective understanding
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of the environment. Such approaches have demonstrated potential across var-
ious applications, encompassing robotics and autonomous systems [9, 3]. The
work presented in our chapter aligns with these cutting-edge developments and
proposes an innovative pipeline that merges LLMs and VLMs using a Socratic
approach to enable UAVs to attain semantic scene understanding.

5.3 Research problem

Advances in NLP and Computer Vision have enabled numerous use cases in
which the analysis of visual cues equips agents with real-time intelligence in
unparalleled ways. Socratic Models can simultaneously serve as object detec-
tors, event forecasters, and anomaly or hazard detectors. In this context, tasks
that were typically addressed using multiple backbones can now be character-
ized by a set of interconnected vision and language modules that communicate
through prompts. Moreover, humans also play a role in this interaction by
providing specific queries to the system, which can be either commands or
actions to trigger a particular response, or questions about the specific situa-
tion captured by the sensors. Additionally, the system can assist the human
in making appropriate decisions, such as determining the optimal command
for the subsequent state. Drones are rapidly gaining popularity due to their
potential applications in many real-world scenarios, including the deployment
of AI techniques for semantic scene understanding harvesting state-of-the-art
pre-trained models. This capability is crucial for applications such as robotics,
surveillance, and autonomous driving, which necessitate the ability to analyze
and interpret the meaning or significance of the objects, people, and events
present in a scene.

The goal of this chapter is to confer the reader with a practical system im-
plementation for UAV Socratic Video Understanding, utilizing state-of-the-art
Large Language Models [19, 4, 18, 16]. We emphasize the widespread appli-
cability of the techniques and the affordability of the hardware used. Our aim
is to demonstrate the deployment of these instructable models in the context
of drones, which can interact with the human on-the-loop to offer detailed
descriptions, alerts, and guidance. Additionally, we are interested in high-
lighting the limitations of state-of-the-art models in accomplishing these tasks,
as well as exploring the extent to which we can leverage interconnected large
pretrained models and their actual understanding in real scenarios. As part
of the proposed system for UAV semantic scene understanding, we have in-
tegrated BLIP-2 [13], a cutting-edge vision-language approach that builds on
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pre-trained unimodal models. To bridge the modality gap, they employ the
Querying Transformer (Q-Former) pre-trained in two stages. The first stage
involves learning vision-language representations using a frozen image encoder,
followed by a vision-to-language generative learning stage using a frozen LLM.
The Q-Former model architecture and two-stage pre-training process are inte-
gral components of our system, allowing us to efficiently process and analyze
visual and textual data.

5.4 Materials and methodology

In our experiments, UAV footage from indoor and outdoor scenes has been
used as the primary source of visual information for further processing, with-
out relying on LiDAR, RADAR, or positioning information provided by an
IMU. The captured videos were taken in uncontrolled environments, featuring
a wide range of objects in the scenes, as well as spontaneous humans, traffic,
and animals. Specifically, we consider three environments: an indoor setting
in the form of a laboratory and corridor, and two outdoor scenes – a touristic
avenue in front of a museum and an alleyway, as illustrated in Figure 5.2.

A language-based world-state history is composed by querying a Large Lan-
guage Model. In particular we use BLIP-2 [13] and formulate a set of instructed
prompts per frame, as follows:

a) Caption.

b) Which objects do you see in the image?

c) Which action is likely to happen in this image?

d) Are there humans in the scene?

e) Is the situation dangerous or are there some hazards?

The information provided by the Socratic Model as answer to these particular
queries is stored and further processed for a post hoc analysis, visualization
and interpretation.

Each of these instructed prompts is specifically chosen for a particular pur-
pose. One of the goals is to obtain a comprehensive description of the scene by
effectively combining the captions. A list of objects present in each frame pro-
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Figure 5.2: The first and second rows depict outdoor scenes: the top row showcases
a touristic avenue, while the latter features a university alleyway. The third and fourth
rows correspond to indoor settings at the university, including a laboratory and a corridor,
respectively. These diverse environments provide a wide range of scenarios for testing the
proposed UAV Socratic Video Understanding system, allowing us to analyze its performance
and capabilities in different real-world settings.

vides the user with a detailed log of the scene. The ability to forecast possible
actions is especially valuable in many applications, where anticipating future
likely events is essential for preventing danger or hazards. Additionally, the
presence of humans serves as a reliable indicator of activity in a frame and can
trigger further processing on specific frames. Similarly, the LLM’s ability to
assess whether a situation entails danger or hazards can be highly beneficial
for initiating further event triggering in the form of a rapid response or an
alarm. Given the LLM outputs for questions d) and e), regarding the presence
of humans or dangers in a given frame, we train an SVM classifier to preprocess
the text, transforming it into a feature-log containing only boolean indicators.
Then, we plot the results over time for visualization, as shown in Figure 5.4.
This information is particularly useful for analyzing the video content and
triggering potential UAV reactions. It is important to note here that human
and danger detection is pursued from the LLM perspective. Instead of using
a traditional vision pipeline with an object detector, we leverage the LLM’s
ability to understand the scene and query its resources for further knowledge
distillation. In the case of question b), the world-state log of objects can be
utilized to search for the presence of specific instances of interest.
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Figure 5.3: Conceptual plot of hypothetical likely actions given a video scene as suggested
by BLIP-2. This visualization aims to provide an intuitive understanding of the potential
actions that could occur within the scene based on the LLM’s understanding of the situation.
The plot demonstrates how the proposed UAV Socratic Video Understanding system can
predict and anticipate events in the scene, providing valuable insights for various applications,
such as safety monitoring, surveillance, and guidance.

For captioning, instructed prompt a), semantic scene understanding is achieved
by combining the captions into a description using the API of OpenAI [19, 4],
specifically the model da-vinci-003. We also employ the recently introduced
API for ChatGPT [21], using the model gpt-3.5-turbo. Similarly, for likely
actions (instructed prompt c), the results are combined into a hypothetical
set of actions that could occur in the scene. Figure 5.3 provides a conceptual
plot of this process. In this manner, we explore the interoperability of several
frameworks in a Socratic way, where the outputs from BLIP-2 are combined
and the API from OpenAI is called upon to complete the task.

5.5 Results

Experiments were conducted in both outdoor and indoor environments to eval-
uate the effectiveness of the proposed pipeline. Figure 5.4 displays the LLM
indicators for human presence and potential dangers or hazards across four
scenes, using a sampling rate of 1fps. A SVM is trained on the LLM outputs
for danger and human presence (instructed prompts d) and e)) to generate
boolean indicators, which are then plotted on a timeline for each frame. For
example, the danger or hazard indicator is activated when the drone is in close
proximity to the terrain or an object, while the human presence indicator is
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positive in every frame where a person appears.

Building on the same concept, instructed prompt b) is utilized to search
through the frames for the presence of specific objects. Figure 5.5 presents the
results for particular attributes, such as ‘bike’, ‘tv’, ‘door’, or ‘bus’, in both in-
door and outdoor environments. As mentioned earlier, these techniques enable
object detection capabilities from a NLP perspective, which underscores the
potential for generalization across various applications of the proposed pipeline.

Instructed prompt (a) from all frames is combined to create a description using
the API of OpenAI, GPT-3 model da-vinci-003 and gpt-3.5-turbo, providing
textual information that accurately describes both indoor and outdoor scenes;
see Tables 5.1 and 5.2. Readability metrics for LLM-enhanced text assessment,
introduced in [7], are provided in Tables 5.3 and 5.6 to analyze the output of
the improved gpt-3.5-turbo model, demonstrating very good generalization be-
havior.

The readability metrics [7] serve as indicators for the level of difficulty in un-
derstanding the text in the LLM-enhanced video descriptions for each envi-
ronment. GUNNING Fog, Dale-Chall, ARI, Coleman-Liau, and Linsear Write
have been employed as measures. GUNNING Fog measures the number of
years of formal education required for a person to understand the text, with
higher values indicating increased difficulty. Dale-Chall also provides a mea-
sure of text difficulty, with scores above 9 suggesting that the text may be
challenging for some readers to comprehend. The ARI assesses text complex-
ity, with higher scores signifying more difficult text. Coleman-Liau estimates
text readability by measuring sentence length and average number of syllables
per word. Lastly, Linsear Write estimates the years of formal education needed
to understand the text. The results demonstrate that the LLM has a strong
command of English, producing text that is rich yet not overly complex, en-
abling a broad audience to understand it.

The measures indicate that the model gpt-3.5-turbo has a very good grasp of
English. For example, all scores Dale-Chall in Table 5.3 are higher than 9,
suggesting that the texts are intended for an educated audience. Comparing
these results to those reported in [7], where CLIP prefix for image captioning
[18, 15, 16] and YOLOv7 [22] are combined with GPT-3, da-vinci-002, for UAV
semantic scene understanding, it can be seen that the pipeline proposed using
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Figure 5.4: Indicators of presence of humans and dangers/hazards over time for the touris-
tic avenue scene (first row), university alleyway (second row), laboratory (third row) and
corridor (fourth row).
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Figure 5.5: Presence indicators of specific objects using the world-state log provided by the
LLM over time for the touristic avenue scene (first row), university alleyway (second row),
laboratory (third row), and corridor (fourth row).
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Table 5.1: Combined captions, instructed prompt a), for Videos [1] to [4] using the API of
OpenAI, GPT-3 model: da-vinci-003.

Video Description
[1] A city park with a lot of grass and trees, a grassy area with a tree in the middle of

it, a sign, a bench, a sculpture of the word love, a statue of a T-Rex and a giraffe,
a man flying a kite, a person riding a skateboard down a city street, a van parked
in front of an old building, and a lot of trash on the ground, all on a cloudy day.

[2] A skateboarder is riding a skateboard down a sidewalk in front of a building, with
a car parked in an empty parking lot next to a building with a metal fence and a
fire hydrant, a bike rack, a lot of bicycles, and a bike tied to a pole, and a chain
around it, in a city with a bus stop, a large tree in the middle of a parking lot,
and a building with a clock tower in the background.

[3] A small office with a whiteboard and a desk, a printer, two computer monitors on
a desk, a whiteboard with writing on it, a box on a table, a TV mounted on the
wall, and a trash can on the floor with a cat sitting next to it.

[4] A long hallway in a building with white walls and posters on the wall, a TV
mounted on the wall with wires attached to it, a whiteboard in a room with a
trash can next to it, and a person sitting at a desk in an office.

BLIP-2 and GPT-3/ChatGPT yields more detailed text descriptions. More-
over, the highlighted text in Table 5.2 demonstrates that, for a target audience
at the university level, we can expect to find nexus, composed sentences, sub-
ordinate clauses, and circumstantial components.

Instructed prompt (c) generates likely actions per frame, which are subse-
quently combined for event forecasting. The resulting text can be found in Ta-
bles 5.4 and 5.5, showcasing the exceptional forecasting capabilities of BLIP-2
when paired with either GPT-3 model da-vinci-003 or gpt-3.5-turbo. Notably,
the newly introduced ChatGPT API, corresponding to the model gpt-3.5-turbo
(Table 5.2), exhibits state-of-the-art performance for text summarization in
terms of text quality, speed, and token capacity. The summary of likely ac-
tions provided by da-vinci-003 (Table 5.4) is structured and well-organized,
while the output generated by gpt-3.5-turbo for this task (Table 5.5) is more
descriptive and informative, albeit less concise.

Among the measures displayed in Tables 5.3 and 5.6, GUNNING Fog presents
an ideal behavior, with all values falling within the range of [7 − 12]. This
indicates that the generated texts are comparable in complexity to established
publications in magazines and books, making them accessible to the general
public. This holds true for both the descriptions of the combined captions and

94



5.5 Results

Table 5.2: Combined captions, instructed prompt a), for Videos [1] to [4] using the API of
OpenAI, GPT-3 model: gpt-3.5-turbo.

Video Description
[1] A bustling city park with green grass, towering trees, and unfortunately , a lot

of trash scattered about. In the midst of it all , there’s a popular grassy area
where people walk and skateboard. A few interesting sights include a promi-
nent sign and a striking sculpture. Oh, and don’t forget the T-Rex statue that’s

causing quite a stir among park-goers. Meanwhile, a man flies a kite, a dog runs
through the grass, and a person rides their skateboard down a cobblestone street.
The park also features several benches and fountains, and there are plenty of places
to take a break from the concrete jungle .

[2] A collection of images showcasing streets, buildings, sidewalks, and empty park-

ing lots in a city, including parked cars, bicycles, and skateboarders. Many of the

buildings have doors and windows, and some have bushes, trees, grass, or fences
in front of them. There are also several red and white poles, as well as a blue
handicapped sign on the sidewalk.

[3] A small office, computer room, or classroom with desks, chairs, whiteboards,
a printer, and a mounted TV on the wall. Includes Samsung printers
and related comparisons , with occasional presence of cats and trash cans.

[4] A long hallway in various buildings with white walls and doors, mounted
with numerous posters and whiteboards. Some rooms have desks and chairs,
while others have TVs mounted on the wall with wires attached. Trash cans are
seen next to the whiteboards in some rooms.

Table 5.3: Readability Metrics for Videos [1] to [4] for combined captions, instructed
prompt a), gpt-3.5-turbo.

Metric
[1] [2] [3] [4]

Readability

GUNNING Fog 8.82 11.95 11.51 7.78
Dale-Chall 9.4 9.97 12.37 10.7

ARI 10.2 12.2 12.6 9.5
Coleman-Liau 9.57 10.62 12.29 10.08
Linsear Write 8.67 12.17 10.5 7.17
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Table 5.4: Hypothetical likely actions, instructed prompt c), for Videos [1] to [4] using the
API of OpenAI, da-vinci-003.

Video Hypothetical likely actions (event forecast)
[1] A person is walking on a sidewalk, walking in a park, throwing a frisbee, riding

a skateboard, sitting on a bench, taking pictures of a Tyrannosaurus Rex statue,
looking at a T-Rex statue, walking past a T-Rex statue, walking through the grass,
and driving down the street, while a dog is playing with a frisbee, a group of people
is walking in the park, and a car is parked in front of a building.

[2] A person walks down the sidewalk, a car is parked in a parking lot, a car will
drive into the parking lot, a car will drive down the street, a person will walk
through the fence, a skateboarder will skate on the sidewalk, a skateboarder will
skateboard down the street, a person is waiting for a bus, a person will ride a
bike, a person will walk through the chained area, a person will try to enter the
building, someone is going to use a broom to clean the sidewalk, someone is going
to clean the sidewalk, a person enters a building and will use the wheelchair ramp,
while a skateboarder is going to enter the same building, and a person will park
their bike in the racks, sit on a bench, and put a tarp over the trash cans while a
fire is extinguished.

[3] A person will use a computer to watch a TV show, someone is working on a
computer, writing on a whiteboard, working at a desk, typing on a computer,
printing a document, working on a project, opening a box, using the printer,
opening the door, walking into the room, and walking on the floor, while someone
else is cleaning up the floor.

[4] A TV will be turned on, plugged into a wall outlet, and connected to the wires;
someone is writing on a whiteboard, walking down a hallway, looking at a QR
code on a wall, sitting at a desk, working at a desk, and entering a room; a person
is walking down the hallway, past a poster on a wall.

96



5.5 Results

Table 5.5: Hypothetical likely actions, instructed prompt c), for Videos [1] to [4] using the
API of OpenAI, gpt-3.5-turbo.

Video Hypothetical likely actions (event forecast)
[1] People enjoy various activities in the park including throwing a frisbee, walking

their dog, riding a skateboard, sitting on benches, taking pictures of sculptures and
statues, and walking on the grass and cobblestones. A group of people are also
seen protesting while others are picking up trash. Cars drive down the street and
are parked in front of buildings. The park also features statues of a tyrannosaurus
rex and other sculptures, which attract visitors and tourists who take pictures and
admire them.

[2] People and vehicles moving around as usual in a busy urban environment with
someone walking, a skateboarder riding and performing tricks, and cars parked in
a lot or driving through the area. Some people are waiting for a bus or riding
bikes, while others enter or exit buildings. A bike is parked in a planter or on a
rack, and someone will use a wheelchair ramp.

[3] In a busy room, people are multitasking - one person is using a computer to watch
a TV show while another works on a project at the desk. Meanwhile, someone is
writing on a whiteboard and someone else is about to print a document. A group
of people collaboratively works on a project as students write on the whiteboard
and use the printer. Amidst all the activity, someone will enter the room, open a
box, and possibly clean up the floor while others walk on it.

[4] A person will connect a TV by plugging it into a wall outlet, connect the wires,
and turn it on. They will then work at a desk, sit down, and walk down the
hallway passing posters on the wall with QR codes.

Table 5.6: Readability Metrics for Videos [1] to [4] for combined hypothetical likely actions,
instructed prompt c), gpt-3.5-turbo.

Metric
[1] [2] [3] [4]

Readability

GUNNING Fog 10.64 11.22 11.34 8.4
Dale-Chall 9.47 9.51 7.67 8.06

ARI 13.4 10.9 10.2 7.6
Coleman-Liau 12.3 8.36 7.83 4.7
Linsear Write 11.5 12.33 12.5 10.5
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the overall hypothetical likely actions.

The actual system operates offline, capturing a series of frames and process-
ing them on a ground computer. Once the large pretrained model is loaded,
answers per frame can be obtained within milliseconds, while processing thou-
sands of frames may take several seconds. The system has the potential to
function in real-time, with the main bottleneck being the frame capture and
relay to the computer, which introduces a latency of a few milliseconds. In this
context, the communication between the drone and the ground GPU plays a
critical role in the performance of the system. Any delay in data transmission
or processing due to network latency or limited bandwidth could affect real-
time decision-making and responsiveness. To minimize this impact, it is cru-
cial to optimize the communication protocol and data transfer rate. In Section
5.5.1, we propose using the LLM to assist in drone command by estimating the
optimal action. In this case, minimizing latency is crucial, particularly when
sending the image from the drone to the computer and then transmitting the
text-based command from the computer to the drone. Strategies such as data
compression, prioritization of critical information, or using edge computing
devices on the UAV itself could be implemented to improve communication ef-
ficiency and help mitigate the latency issue and improve real-time performance.
Although challenges remain, the latency could still be less than a second, mak-
ing the system suitable for various real-time applications.

5.5.1 LLM guidance and control

The capability of prompting the LLM [9, 3] with queries could be further uti-
lized for guidance and control. In this regard, it could be employed to suggest
the next possible action to a human operating the UAV, or further integrated
into the pipeline as a remote autonomous controller. For instance, using an
instructed prompt such as: “Given this image taken by a drone, what’s the best
possible action: forward, backward, up, down, rotate left, or rotate right?" At
each frame, BLIP-2 can be queried to determine the next best possible action
based on the input frame. The drone then executes the action and processes
another frame, and so on. In our system, we use this information to suggest
the estimated best possible command to the human controller. Although the
ability of BLIP-2 and state-of-the-art models to understand spatio-temporal
data is still limited, and computations are performed per frame, the rapid
advancements in the field ensure that this technology could soon empower
autonomous robots and drones with intelligence in an unprecedented manner,
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achieving open-ended reasoning with visual cues. Thus, the system’s capability
to suggest the next best estimate command to the human controller is achieved
through the interaction with the BLIP-2 model. At each frame, the system
queries the BLIP-2 with an instructed prompt. The model processes the in-
put frame and generates a response based on its understanding of the scene
and the objects within it. This response represents the best possible action,
as estimated by the model, which is then suggested to the human controller.
The controller can consider the suggestion and decide whether to execute the
recommended action or make a different decision. This process is repeated
for each frame, allowing the human controller to continuously receive guidance
from the model, enhancing the overall control and navigation of the UAV in
real-time.

5.6 Conclusions and future work

Thorough experimentation has been conducted to assess UAV semantic scene
understanding using an LLM pipeline based on BLIP-2 combined with Ope-
nAI da-vinci-003/gpt-3.5-turbo. This methodology enables users to query the
model about the environment, opening up a wide range of applications where
Socratic video understanding can be achieved through human-in-the-loop in-
teraction with a set of interconnected LLM modules that share information.
Our system involves data collection from a RYZE Tello, which is then pro-
cessed for knowledge acquisition using a series of instructed prompts. These
prompts are stored and analyzed to perform further tasks by combining infor-
mation from each frame into a global knowledge state that can be searched, for
example, looking for particular objects, humans, presence of hazards, possible
actions, and forecasting events across frames. The system is also capable of
suggesting the next best estimated command to the human controller.

Potential future work could involve integrating positioning information into
the pipeline, such as GPS coordinates or IMU data, along with data from
internet-available maps, to enable event suggestions or site recognition. Addi-
tionally, the proposed pipeline is general and can be queried for a wide variety
of information, allowing users to specify particular prompts tailored to their
application of interest in a human-computer interaction context. Moreover,
the system’s capability to suggest an estimated best command based on raster
images paves the way for LLM navigation and control directly within the pixel
space. The limitations of the methodology stem from the LLM used to obtain
answers to the instructed prompts. The capacity for open-ended reasoning
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depends on the model’s ability to generalize. In this study, we observe that
BLIP-2 can perform a wide variety of tasks in a zero-shot manner within real
environments with changing conditions. However, newer models may be able
to improve upon this and possess spatio-temporal knowledge of the scenes. In
this regard, the LLMs under investigation can make reasonable guesses based
on the instructed prompts, but they are not yet capable of making, for example,
adequate probabilistic guesses, comprehending temporal aspects, or estimating
length and size directly from visual data.
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Chapter 6

Area Estimation of Forest Fires
using TabNet with Transformers

I. de Zarzà, J. de Curtò, Carlos T. Calafate. (2023). "Area
Estimation of Forest Fires using TabNet with Transform-
ers." 27th International Conference on Knowledge Based
and Intelligent information and Engineering Systems (KES
2023), Athens, Greece, 6–8 September, 2023. DOI: pendi-
ente de asignación.

In this chapter, we propose a novel approach for estimating the
burned area of forest fires using the TabNet transformer-based ar-
chitecture. Forest fires pose a significant threat to ecosystems, and
accurate estimation of the affected area is essential for effective dis-
aster management and resource allocation. We conducted a com-
prehensive analysis of various Machine Learning (ML) and Deep
Learning (DL) methods, including Random Forest, Neural Net-
works, Neural Architecture Search (NAS), TabNet with Transform-
ers, and Self-Supervised Learning with Autoencoders, to identify
the most accurate and efficient model for area estimation. Our ex-
periments employed a publicly available dataset, UCI Forest Fires,
containing a combination of meteorological, geospatial, and cate-
gorical data. We implemented a thorough preprocessing pipeline
that included handling categorical variables, standardization, and
feature engineering.
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6.1 Introduction

Forest fires [15, 10] have increasingly become a global concern, causing sig-
nificant damage to ecosystems, wildlife, human life, and property. Accurate
and timely estimation of the burned area in forest fires is crucial for effective
disaster management, resource allocation, and planning of mitigation strate-
gies. Recent advancements in Machine Learning (ML) and Deep Learning
(DL) [8] have opened up new possibilities for addressing this critical issue.
This chapter presents a comprehensive study of various methodologies for pre-
dicting the burned area of forest fires, with a particular focus on the TabNet
transformer-based model [1, 14, 7]. In the past, traditional statistical and ML
methods, such as linear regression and decision trees, have been employed for
forest fire area estimation [9]. However, the complex interactions between var-
ious meteorological, geospatial, and categorical variables make these methods
less effective in capturing the underlying patterns in the data. As a result,
researchers have been exploring more sophisticated DL techniques that can
better model the intricate relationships among these variables.

In this chapter, we have conducted a thorough study of diverse ML and DL
approaches, including Random Forest [2], Neural Networks [3, 5], Neural Ar-
chitecture Search (NAS) [17, 12, 13], Transformers [14, 7, 16, 4], and Self-
Supervised Learning [6] with Autoencoders. We utilized a publicly available
dataset containing a rich set of meteorological, geospatial, and categorical at-
tributes. Our preprocessing pipeline involved handling categorical variables,
standardization, and feature engineering to ensure the optimal input format
for the various models. We employ grid search and hyperparameter optimiza-
tion strategies for the Random Forest, and DL models. Furthermore, we delve
into the application of NAS, an advanced technique for discovering NN archi-
tectures tailored to the specific problem of forest fire area estimation.

In this study, we introduce a novel approach to forest fire area estimation by
leveraging the power of the transformer-based TabNet model, which has rarely
been applied in this domain. Our work innovatively combines meteorological,
geospatial, and categorical data in a cohesive model that captures the complex,
interrelated factors contributing to fire spread. The novelty of our work lies
not only in the application of TabNet transformers to this particular problem
but also in the comprehensive, methodical approach we have adopted. We
believe our methodology, which includes a thorough statistical analysis, data
preprocessing and transformation, and rigorous model training and evaluation
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Figure 6.1: Basic statistical analysis: categorical variables. Bar graphs.

procedures, provides a unique and valuable reference point in the field of forest
fire prediction.

This chapter is organized as follows: Section 6.2 provides a detailed descrip-
tion of the dataset, its features, and the preprocessing steps undertaken, as
well as a thorough statistical analysis of the data, feature engineering and di-
mensionality reduction. Section 6.3 discusses the application of TabNet [1] and
other methodologies under study. Finally, Section 6.4 concludes the study and
provides directions for future research in the field of forest fire area estimation
using ML and DL techniques.

6.2 Materials and methodology

We first prepare a basic statistical analysis, where we calculate the frequency
and create a bar graph for categorical variables, as shown in Figure 6.1. In
the case of numeric variables, we calculate basic descriptive statistics such as
mean, median, and standard deviation. We also illustrate the histograms for
all variables involved, as presented in Table 6.1 and Figure 6.2. Finally, for
geospatial variables, we display a two-dimensional histogram, as depicted in
Figure 6.3.

Categorical variables: bar graphs for the “day" and “month" attributes show
the frequency distribution of wildfires between days of the week and months
of the year. From the graphs, we observe that fires occur more frequently on
weekends (Saturday and Sunday), possibly due to increased human activities
or recreational visits to the forest during these days. The months with the
highest frequency of fires are August and September, which can be attributed
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Table 6.1: Descriptive Statistics for Numeric Variables.

X Y FFMC DMC DC ISI temp RH wind rain area

count 517.0 517.0 517.0 517.0 517.0 517.0 517.0 517.0 517.0 517.0 517.0
mean 4.7 4.3 90.6 110.9 547.9 9.0 18.9 44.3 4.0 0.0 12.8
std 2.3 1.2 5.5 64.0 248.1 4.6 5.8 16.3 1.8 0.3 63.7
min 1.0 2.0 18.7 1.1 7.9 0.0 2.2 15.0 0.4 0.0 0.0
25% 3.0 4.0 90.2 68.6 437.7 6.5 15.5 33.0 2.7 0.0 0.0
50% 4.0 4.0 91.6 108.3 664.2 8.4 19.3 42.0 4.0 0.0 0.5
75% 7.0 5.0 92.9 142.4 713.9 10.8 22.8 53.0 4.9 0.0 6.6
max 9.0 9.0 96.2 291.3 860.6 56.1 33.3 100.0 9.4 6.4 1090.8

to the summer season and its higher temperatures, lower humidity, and dry
conditions, making the forest more susceptible to fires.

Numerical variables: histograms and descriptive statistics of numerical vari-
ables, as shown in Figure 6.2 and Table 6.1, give us insight into their distribu-
tions and central tendencies:

• The “FFMC" (Fine Fuel Moisture Code) variable is slightly skewed to the
left, with the majority of values concentrated around 90–95, indicating
that fine fuel moisture conditions are generally high, which makes the
forest more prone to fires.

• The “DMC" (Duff Moisture Code) variable has a right-skewed distribu-
tion with a long tail, meaning that there is a wide range of moisture
content in the organic layers.

• The “DC" (Drought Code) variable is also skewed to the right, showing
that drought conditions vary across the dataset, with some areas experi-
encing high levels of drought.

• The “ISI" (Initial Spread Index) variable shows a right-skewed distribu-
tion with a long tail, indicating that the rate of fire spread varies signifi-
cantly, with some cases having a high rate of spread.

• The variable “temp" (temperature) shows an almost normal distribution,
but slightly skewed to the right, with most temperatures between 15 and
25 degrees Celsius.

• The “RH" (relative humidity) variable is skewed to the left, indicating
that lower humidity levels are more common in the dataset.
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Figure 6.2: Basic statistical analysis: numeric variables. Plot of the histograms for all
variables involved.
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Figure 6.3: Basic statistical analysis: geospatial variables. Plot of the two-dimensional
histogram.

• The “wind" variable is slightly skewed to the right, with most wind speeds
between 2 and 6 km/h.

• The “rain" variable is heavily skewed to the right with a long tail, showing
that most cases have little or no rain, but there are some cases with a
significant amount of rain.

Geospatial variables: the 2D histogram of the geospatial variables “X" and
“Y" provides information on the spatial distribution of wildfires, as depicted in
Figure 6.3. There is a greater concentration of fires in the central region of the
park (around coordinates X = 4, Y = 4) and the southeastern region (around
coordinates X = 7, Y = 4), which indicates that these areas could be more
prone to fires. There are also some areas with less fire incidence, such as the
northwest and northeast corners of the park, which could be due to different
types of vegetation, topography, or other factors that affect fire susceptibility.

From the superimposed histograms, as shown in Figure 6.4, it is not immedi-
ately apparent that the categorical attributes “day” and “month” have a strong
relationship with the target variable “area”. However, some observations can be
made: for the “day" variable, the histograms for different days appear to have
similar shapes and distributions. Although the frequency of fires varies slightly
between days, there does not appear to be a clear difference in the distribution
of “area" values for each day of the week. For the variable “month", some
differences can be observed. August and September, which have the highest
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Figure 6.4: Exploratory Analysis. A graph for each categorical variable where there is
overlaid for each category a histogram of the values of the target variable.

fire frequency, show a greater concentration of smaller “area" values. However,
there are no clear patterns indicating that a specific month consistently leads
to larger or smaller burned areas. Given these observations, the categorical at-
tributes “day” and “month” may not have a significant impact in predicting the
target variable “area”. However, it is important to note that visual inspection
alone may not be sufficient to definitively determine the relationship between
these attributes and the target variable.

To better assess the importance of these categorical attributes, additional fea-
ture selection and statistical analysis techniques can be used. For example,
we can also use correlation measures such as Cramér’s V or perform a one-
way ANOVA test to assess whether there are significant differences in mean
“area" values between different categories of categorical variables. In addition,
ML algorithms can be applied to evaluate the importance of these attributes
during the modeling process. For each category of the categorical variables
we compute the mean and standard deviation values of the target variable,
see Tables 6.2 and 6.3. We compute then the pairwise correlation between
all numerical attributes, including geospatial variables, see Figure 6.5. The
resulting correlation matrix shows the linear relationships between all pairs of
numerical variables, with values ranging from −1 (perfect negative correlation)
to 1 (perfect positive correlation). A value of 0 indicates no linear correlation.
In Figure 6.6 we graph the relationships between all pairs of numeric variables
in the dataset (including geospatial variables).
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Table 6.2: Mean and Standard Devia-
tion of “area" for Each Day.

Mean Standard Deviation
Day

Fri 5.26 9.95
Tue 12.62 33.30
Sat 25.53 121.97
Sun 10.10 25.94
Mon 9.55 33.48
Wed 10.71 30.00
Thu 16.35 94.57

Table 6.3: Mean and Standard Devia-
tion of “area" for Each Month.

Mean Standard Deviation
Month

Mar 4.36 9.06
Oct 6.64 13.23
Aug 12.49 60.20
Sep 17.94 87.39
Apr 8.89 18.79
Jun 5.84 16.38
Jul 14.37 50.05
Feb 6.28 12.03
Jan 0.00 0.00
Dec 13.33 6.23
May 19.24 19.24
Nov 0.00 0.00

Figure 6.5: Pairwise correlation coefficients between all numerical attributes.

We then identify the 2 attributes that have the strongest correlation with the
response, and the 3 that have the weakest correlation (higher or lower corre-
lation coefficient in absolute value), as can be seen in Table 6.4. To observe
and analyze the correlations graphically, we present, for each of the 5 identified
attributes, a scatter plot with the attribute on the x-axis and the response on
the y-axis. Also, we add a linear regression plot to each graph that fits the
points, as shown in Figure 6.7.

Looking at the scatterplots, we can see the correlations that we have identified
numerically to some extent, as can be seen in Figure 6.7. For the strongest
correlations: the first attribute with the strongest correlation, although not
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Figure 6.6: Graph with the relationships between all pairs of numeric variables in the
dataset.
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Figure 6.7: Scatter plot with the selected attribute on the x-axis and the response on the
y-axis. We add a linear regression plot to each graph that fits the points.

Table 6.4: Strongest and Weakest Correlations with “area".

Correlation Category
Variable

Temp 0.097844 Strongest
RH -0.075519 Strongest

Wind 0.012317 Weakest
ISI 0.008258 Weakest
Rain -0.007366 Weakest

very strong, shows a somewhat discernible pattern in the scatterplot. As the
value of the attribute increases, we can see a slight increase in the “area" val-
ues, indicating a positive correlation between the two variables. The second
attribute with the strongest correlation, however, does not show a very clear
pattern in the scatterplot. The data points are scattered and it is difficult to
identify a strong relationship with the “area" variable. For weaker correlations:
in the first scatterplot of the weaker correlations, the data points are widely
scattered with no apparent trend, confirming the weak correlation between
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Figure 6.8: Projection to two attributes of the original descriptive attributes using PCA
(left) and t-SNE (right).

the attribute and the “area" variable. The second scatterplot for the weaker
correlations also shows a similar pattern, with no clear trend or relationship
between the attribute and the “area" variable. The third scatterplot for the
weakest correlations shows a similar pattern to the other weak correlations,
with scattered data points and no clear trend or relationship to the “area"
variable.

It is important to note that correlation only measures linear relationships, and
there may be non-linear relationships between variables that are not captured
by correlation coefficients. Additionally, the presence of potential outliers can
also affect correlation values and scatterplots.

For the purpose of visually checking the distribution of the target variable
considering all the descriptive attributes at once, we reduce the dimensionality
of the problem to only two attributes which will be the projection of the original
descriptive attributes using Principal Component Analysis (PCA) and t-SNE
[11], as can be observed in Figure 6.8. Looking at the two graphs, it is not very
clear whether the dimensionality reduction has worked well in both cases. Both
the PCA plot and the t-SNE show no distinct clusters or patterns that would
allow us to say with confidence that the new dimensions explain the variation
in the target variable (area). The distribution of color (burned area) appears
to be somewhat random in both plots, indicating that using only two novel
dimensions might not be sufficient to differentiate between large and small fire
areas.
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6.3 Model comparison and results

In this section, we present the various models and techniques applied to the
UCI dataset forest fires, along with their respective results. Our approach
starts with basic statistical analysis and progressively moves to more advanced
ML and DL methods. The primary goal is to understand the potential of each
method in estimating the burned area and compare their performance.

The performance of each model has been evaluated based on their Mean
Squared Error (MSE) on the training and test sets. Among all the models,
TabNet [1] has emerged as the best-performing model, achieving the lowest
MSE on the test set, as shown in Table 6.5 and Figure 6.9. This result indi-
cates that TabNet’s architecture is well-suited for the forest fire area estimation
problem, as it efficiently captures the complex relationships between the vari-
ables in the dataset.

We begin with a thorough statistical analysis of the dataset, including descrip-
tive statistics, as shown in Table 6.1, histograms, as depicted in Figures 6.1,
6.2, 6.3, and 6.4, and correlation analysis, as can be seen in Figure 6.5, 6.6 and
6.7 and Table 6.4. The categorical and numerical attributes are explored to
understand their distributions and relationships with the target variable, area.
This analysis provides valuable insights into the dataset and helps inform the
choice of appropriate ML models. The dataset contains two categorical vari-
ables, ‘month’ and ‘day.’ We transform these categorical variables into binary
variables using the “get_dummies" function in the pandas library. This trans-
formation results in a dataset with additional binary columns representing each
category. We standardize all descriptive attributes to have a mean of 0 and
a standard deviation of 1 using the “StandardScaler" from the sklearn pre-
processing module. This step ensures that all features have the same scale,
improving the performance of the subsequent ML algorithms. We separate
the dataset into training (70%) and test (30%) to evaluate the performance
of our models. The train-test split is done after preprocessing to avoid data
leakage, ensuring that the test set remains unseen and not influenced by any
transformations applied to the training set.

Random Forest regression was selected as our first ML model due to its ro-
bustness and ease of implementation. We preprocessed the dataset by trans-
forming categorical variables into binary variables and standardizing numerical
attributes. The model was trained and evaluated on both training and test
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subsets, and the results showed good performance on the training data but
overfitting to the training data, leading to a lower performance on the test
subset. We use grid search over the parameters: n_estimators, max_depth,
min_samples_split, min_samples_leaf, and bootstrap.

A DL model using feedforward neural networks was implemented to capture
complex patterns in the dataset. Several architectures were explored, and the
model was trained and evaluated on the same training and test subsets used
for Random Forest. The results indicated that the DL model showed better
generalization compared to the Random Forest. We use grid search over the
parameters: epochs, batch_size, optimizer, hidden_layers, and neurons.

To further improve the model performance, we employed NAS to automatically
discover good NN architectures for our specific problem. NAS searches for the
best architecture by optimizing the model’s structure and hyperparameters
using techniques such as reinforcement learning and evolutionary algorithms.
The discovered architecture was then trained and evaluated on the same train-
ing and test subsets used for the Random Forest and DL models. The results
demonstrated that the NAS model outperformed Random Forest but not Tab-
Net. We use AutoKeras with 100 epochs per configuration.

We also investigated the potential of self-supervised learning using an autoen-
coder, a type of neural network that can learn efficient data representations
by encoding and decoding the input data. We trained the autoencoder on our
dataset and used the learned feature representations as input to a subsequent
regression model. While this approach showed promise, the performance was
comparable to the NAS model but inferior to TabNet, although it showcased
the potential of using unsupervised learning techniques for feature extraction
and representation in regression tasks.

We employed the model TabNet [1], a DL architecture specifically designed
for tabular data, which leverages the power of attention mechanisms and fea-
ture selection. TabNet has shown excellent performance in a variety of tasks,
including regression problems like our current area estimation of forest fires.
The model was implemented using the PyTorch library and optimized through
hyperparameter tuning.
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Here is a brief analysis of the scores obtained in Table 6.5 and Figure 6.9 (the
lower the MSE, the better the model’s performance):

Random Forest has the lowest training MSE of 1616, indicating that it per-
formed the best during training. However, it has a relatively high testing MSE
of 8044, which suggests the model might be overfitting the training data and
not generalizing well to new, unseen data. DL model has a training MSE of
2184 and a testing MSE of 7870. Although the training performance is not as
good as Random Forest, the testing performance is better, suggesting that this
model generalizes better to new data. The NAS model has a training MSE of
2267 and a testing MSE of 7924. Its performance is slightly worse than the
DL model, but it still generalizes reasonably well to new data. In the case of
Self-supervised Learning with Autoencoders, the model has a training MSE of
2318 and a testing MSE of 7989. The performance is somewhat similar to the
NAS model, but the testing error is slightly higher, indicating that it might
not be the best choice for this problem. TabNet has a training MSE of 2319
and the lowest testing MSE of 7781 among all the models. This suggests that
TabNet generalizes the best to new, unseen data in the context of forest fire
area estimation; which is particularly interesting as it is a transformer-based
architecture adapted to work with tabular data, a domain where traditional
techniques in many cases outperform other methodologies.

The results of this study can be used to inform the development of more
robust and efficient models for estimating the burned area of forest fires and
for understanding the environmental impact of these events.

Table 6.5: MSE Train and Test results for
the methodologies under study.

Method MSE Train MSE Test

Random Forest 1616 8044
Deep Learning 2184 7870
NAS 2267 7924
Self-supervised Learning with Autoencoders 2318 7989
TabNet 2319 7781
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Figure 6.9: Comparison in bar plot of
MSE Train and Test results.
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6.4 Conclusions and future work

In this chapter, we presented a comprehensive study of several ML and DL
models applied to the problem of estimating the burned area of forest fires.
Our investigation began with a thorough statistical analysis of the dataset,
which informed our subsequent choices of models and techniques. Among
the models explored, TabNet demonstrated the best performance, significantly
outperforming other approaches such as NAS, Self-Supervised Learning with
Autoencoders, DL and Random Forests.

Our results highlight the potential of TabNet in solving complex regression
problems and its superiority in obtaining very good estimates for the specific
problem at hand. However, there are several avenues for future work that could
further improve the performance and applicability of our models:

• Incorporating additional data sources: integrating external data, such
as weather data or satellite imagery, could provide a richer context for
the models and potentially improve their performance in estimating the
burned area.

• Investigating alternative NAS techniques: while our NAS implementa-
tion delivered promising results, exploring other NAS methods, such as
differentiable architecture search or Bayesian optimization, could lead to
even better model architectures.

• Exploring other self-supervised learning techniques: although the
autoencoder-based approach did not outperform the NAS model, inves-
tigating other self-supervised learning techniques could yield valuable in-
sights and contribute to better feature extraction and representation in
the problem domain.

• Investigating ensemble methods: combining the predictions from multi-
ple models, such as NAS, transformers, and autoencoders, could lead to
better overall performance by leveraging the strengths of each individ-
ual model and mitigating their weaknesses. Ensemble techniques, such
as stacking or bagging, may be particularly beneficial in improving the
robustness and generalization of our predictions.

• Assessing model performance on a wider range of datasets: to better un-
derstand the generalizability of our models, it would be valuable to test
their performance on other forest fire datasets from different geographi-
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cal regions and time periods. This would allow us to identify potential
limitations and refine our models accordingly.

• Further exploration of transformer-based models: adapting other
transformer-based models to the forest fire area estimation problem could
potentially yield even better results, given their recent success in various
fields.

In conclusion, our study demonstrates the potential of advanced ML and DL
techniques, particularly a transformer-based architecture, for estimating the
burned area of forest fires. We believe that further research in this area can
lead to more accurate and robust models, ultimately contributing to better
forest fire management and prevention efforts.
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Chapter 7

Detection of glaucoma using
three-stage training with

EfficientNet

I. de Zarzà, J. de Curtò and Carlos T. Calafate. (2022).
"Detection of glaucoma using three-stage training with Ef-
ficientNet." Intelligent Systems with Applications, vol(16),
200140. DOI: 10.1016/j.iswa.2022.200140

This chapter sets forth a methodology that is based on three-
stage-training of a state-of-the-art network architecture previously
trained on Imagenet, and iteratively finetuned in three steps; freez-
ing first all layers, then re-training a specific number of them and
finally training all the architecture from scratch, to achieve a system
with high accuracy and reliability. To determine the performance
of our technique a dataset consisting of 17.070 color cropped sam-
ples of fundus images, and that includes two classes, normal and
abnormal, is used. Extensive evaluations using baselines models
(VGG16, InceptionV3 and Resnet50) are carried out, in addition
to thorough experimentation with the proposed pipeline using vari-
ants of EfficientNet and EfficientNetV2.
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7.1 Introduction

Intelligent systems based on data-driven techniques have been proposed in re-
cent years to solve a wide variety of tasks with unprecedented level of success.
In the case of medical data, applications where methods that rely on com-
puter vision and neural networks are used have proven to be very effective;
[22, 16, 4, 2], showing performance levels that are similar or even better than
human assessment.

In this thesis, we propose a three-stage training mechanism to design a reliable
system to detect and assess glaucoma; [6, 5], an irreversible neuro-generative
eye disease that, according to the World Health Organization (WHO), affects
more than 65 million people around the globe. Early detection and treatment
are of utmost importance to prevent loss of visual capacity.

The system introduced achieves state-of-the-art performance on the applica-
tion under consideration, and the methodology is general enough to be used
in other clinical cases or widespread vision applications where learning highly
descriptive features from raw pixel intensities is crucial. The design princi-
ples take into consideration performance, reliability, statistical significance,
platform-aware latency and FLOPS needed to accomplish the task; with the
ultimate goal to propose an expert system that could be seamlessly integrated
with the clinical equipment (e.g. retinograph) for early diagnostic and treat-
ment.

Our network achieves a mean average percentage F1-score across folds of 96.6
using EfficientNet-B0 (with standard deviation of 3.7) and EfficientNet-B4
(with standard deviation of 2.0), where the best F1 on a given fold is 99 on B0
and 98 on B4. For the case of EfficientNetV2, V2-B3 achieves a mean average
F1-score across folds of 95.7 (with standard deviation of 2.3) and V2-S of 95.4
(with standard deviation of 1.6), where the best F1 on a given fold is 98 for
both V2-B3 and V2-S. These results significantly outperform the baselines;
VGG16 (83.2), InceptionV3 (91.1) and ResNet50 (88.9), and are also clearly
better than the state-of-the-art reported results found in the literature, [6].

Code and data used throughout the chapter is released publicly under the
badge initiative on reproducibility by Code Ocean1. A detailed notebook ad-

1Permanent link to reproducible capsule: doi.org/10.24433/CO.8342269.v1
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dressing all the stages of the methodology, as well as the dataset used, can be
found in a runnable capsule environment.

The remainder of this chapter is organized as follows: in the next section we
present an overview and state of the art; then an exhaustive description of
the data and the methods is provided, together with visualization, preliminary
study, evaluation and selection of the best model with thorough experimenta-
tion. Finally, conclusions and further work are discussed.

7.2 Overview and state of the art

Several approaches to address retinal imaging problems are introduced, show-
ing both traditional techniques based on hand-crafted features and also CNN
based methodologies. A brief discussion of each procedure is provided as well
as the type of data used in the experimentation. We broaden the analysis
by mentioning the state-of-the-art techniques used in our work, that unlike
previous publications take carefully into account accuracy and number of pa-
rameters.

In [3] they propose a semi-supervised learning framework based on bag of
words for early detection of glaucoma. In [7] they assess the pathology by
the use of random tree classification, although the experiments are only re-
ported on a dataset of 45 samples. [32] details the use of PCA and BAYES
classifier. [18] proposes the use of CNN to predict bounding boxes with their
corresponding class probability and confidence score, where initialization is
done using k-means clustering. [30] goes beyond this approach and applies a
pathology-aware feature visualization approach for the diagnostic, where the
method relies heavily on Generative Adversarial Networks (GANs). [8] uses
UNet++ in [35] to segment the Optic Disc and Optic Cup using feature ex-
traction at several fields of view and then a gradient boosting decision tree to
do the screening of glaucoma. Traditional methods have also shown to be effec-
tive to tackle related medical imaging problems, [13, 33, 34]. For a meticulous
analysis of several approaches see [1], where both a description of handcrafted
methods and techniques based on deep convolutional networks [31, 21, 17] are
presented. However, although most methods provide a well-thought effective
methodology to address the problem, the majority of them have a shortfall
on the used data, as are tested on very small datasets with limited statistical
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significance.

The architecture proposed is built on EfficientNet in [27] and EfficientNetV2
in [28], using a three-stage training mechanism that broadens the finetuning
steps proposed in [6]. These architectures are built using Neural Architecture
Search (NAS), [36, 37, 20], in particular EfficientNet uses the AutoML MNAS
framework presented in [26] that optimizes the networks for accuracy and ef-
ficiency (FLOPS) and is based on previous work in [23] and [26], but with a
larger base model. Evaluation of the family of models is done from B0 to B5
in the case of EfficientNet, and from B0 to B3, S and M in EfficientNetV2.
We use transfer learning from ImageNet to the particular application under
study and see that the models achieve high accuracy with a reduced number of
training parameters, compared to other state-of-the-art methodologies. Con-
comitant approaches in retinal image classification show the adequacy of the
family of models EfficientNet for the given task, [29, 19, 15, 14, 10, 9].

7.3 Data and methods

The dataset under consideration consists on 17.070 fundus images, which are
digitalized photographs of the posterior part of the eye, with positive (abnor-
mal) and negative (normal) samples of the pathology. The data is divided into
10 folds of 1.707 instances, each one with its corresponding sets of training,
validation and testing. The sets are relatively balanced to reduce the number
of false negatives. These samples are obtained using retinography, and thus
their characteristics in terms of illumination and intensity are very particular
and relatively homogeneous among all instances; such aspect is central for the
correct detection of the samples. For this reason, using the raw pixels without
normalization confers the network with significantly better generalization than
when using min-max normalization, or normalization with standard deviation,
as these types of preprocessing cause loss of information. This observation is
very important as any type of non-linear transformation that affects or alters
the brightness of the samples can severely degrade the performance of such a
system; this can hold also when dealing with other medical data where image
intensity is crucial.

128



7.3 Data and methods

Figure 7.1: Example of negative (normal) and positive (abnormal) samples.
Highlighted inner circular region corresponds to Optic Cup and outer circular region to
Optic Disc. Samples that are glaucomatous (right; with severe pathology) present abnormal
size of the Optic Cup respect to normal samples (left). [Source: two random samples from
the dataset under study.]

7.3.1 Fundus images

The samples are cropped to improve the sensitivity of the detector. The dis-
ease is characterized by an abnormal size of the Optic Cup, with respect to
the Optic Disc, see Figure 7.1. This is the reason why many earlier approaches
were based on the Cup/Disc Ratio (CDR). As our approach is data driven,
there is no need to use handcrafted intermediate features as feature selection.
A random subset of the data is shown in Figure 7.2, as well as, detailed statis-
tics in Table 7.1 and Figure 7.3.

Figure 7.2: Visual exploration of the samples of the pathology glaucoma; first
row: positive, second row: negative.
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Table 7.1: Statistics of the dataset consisting on 17.070 fundus images with positive (P:
abnormal) and negative (N: normal) samples. The data is distributed into 10 folds (0 to 9)
of 1.707 samples each with corresponding train, validation and test.

Fold
0 1 2 3 4 5 6 7 8 9 Total

Train (N) 754 740 739 743 746 758 754 642 748 733 7452
(P) 625 639 640 636 633 621 625 737 631 646 6338

Validation (N) 83 88 83 85 81 71 84 82 80 82 819
(P) 71 66 71 69 73 83 70 72 74 72 721

Test (N) 82 91 97 91 92 90 81 100 91 104 919
(P) 92 83 77 83 82 84 93 74 83 70 821

Total 1707 1707 1707 1707 1707 1707 1707 1707 1707 1707 17070

Figure 7.3: Statistics of the dataset using a bar plot for sets of training, validation
and testing.

7.3.2 Preliminary study and methodology

The preliminary study focuses on Fold 0 to set forth a design methodology
that will serve as guiding principle of the chapter.

The methodology under study proposes a three-stage training system (see Fig-
ure 7.4 for a visual description) that consists on the following procedure in
only one Fold of the data:

1. Start from a model trained on Imagenet, and only re-train the last added
layers (GlobalAveragePooling2D, BatchNorm, Dropout and Fully Con-
nected) of the system.
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2. Use the weights from the previous stage to initialize a model that un-
freezes a number of layers of the previous model (excluding BatchNorm),
and retrain the system.

3. Use the weights from the previous iteration and retrain the whole net-
work. Evaluate the classification report based on both the F1-score and
confusion matrix to select the best hyperparameters.

Model *

Data

m1 m2 m3

Expert System

Fold 0

Figure 7.4: Visual description of the proposed three-stage training system in
one fold of the data. Transfer learning from ImageNet is put in place. Color layers are
re-trained. In particular, weights from m1 are used to initialize the network when training
m2, which unfreezes a given number of layers from the full model (in our application 20,
keeping layers BatchNorm untrained). Afterwards, weights from m2 are used to initialize the
network when training m3, which retrains the whole architecture. Finally, in the evaluation
stage, the weights obtained (Model*) are then fed into 10-fold crossvalidation to retrain the
network for each fold, and select the best model according to F1-score. The procedure is
robust against hyperparameter choices.

Experimentation is based on baseline models (VGG16 in [24], InceptionV3 in
[25] and ResNet50 in [11]) and then extended to variants of EfficientNet; [27],
and EfficientNetV2; [28].

EfficientNet-B0 base model consists on the following layers, see Table 7.2. In
this particular example, model m1 freezes all layers from stages 1 to 8, and re-
trains only layers corresponding to stage 9. Model m2 starts from the learned
weights on m1 and retrains a subset of layers going backwards, in our case
20, while keeping BatchNorm layers untrained. Finally model m3 starts from
the weights of m2 and retrains the whole network. The network proceeds in
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the same way with the case of variants of EfficientNetV2 (see Table 7.3 for a
description of the architecture) and model baselines (VGG16, InceptionV3 and
ResNet50).

The family of models EfficientNet and EfficientNetV2 is a compositional stack
of modules MB and Fused-MB Convolutions (denoted MBConvn and Fused-
MBConvn). These modules consist on the following inner operators:

• MBConvn: a 1× 1 convolution, followed by a depthwise 3× 3 convolu-
tion, a SE module in [12], and finally another 1× 1 convolution.

• Fused-MBConvn: a 3 × 3 convolution, followed by a SE module and
finally a 1× 1 convolution.

Table 7.2: EfficientNet-B0, baseline network. Each row describes a stage c with L̂c

layers, with input resolution 〈Ĥc, Ŵc〉 and output channels Ĉc.

Stage Operator Resolution # Channels # Layers
c F̂c Ĥc × Ŵc Ĉc L̂c

1 Convn3x3 224× 224 32 1
2 MBConvn1, k3x3 112× 112 16 1
3 MBConvn6, k3x3 112× 112 24 2
4 MBConvn6, k5x5 56× 56 40 2
5 MBConvn6, k3x3 28× 28 80 3
6 MBConvn6, k5x5 14× 14 112 3
7 MBConvn6, k5x5 14× 14 192 4
8 MBConvn6, k3x3 7× 7 320 1
9 Convn1x1 & Pooling & FC 7× 7 1280 1

Table 7.3: EfficientNetV2-S, example architecture. Extension to EfficientNet using
both MB and Fused-MB Convolutions. Each row describes a stage c with L̂c layers, with
given stride and output channels Ĉc.

Stage Operator Stride # Channels # Layers
c F̂c Ĉc L̂c

0 Convn3x3 2 24 1
1 Fused-MBConvn1, k3x3 1 24 2
2 Fused-MBConvn4, k3x3 2 48 4
3 Fused-MBConvn4, k3x3 2 64 4
4 MBConvn4, k3x3, SE0.25 2 128 6
5 MBConvn6, k3x3, SE0.25 1 160 9
6 MBConvn6, k3x3, SE0.25 2 256 15
7 Convn1x1 & Pooling & FC - 1280 1

Worthy of mention is the fact that EfficientNet-B0 achieves state-of-the-art
performance while keeping the number of parameters to train bounded to the
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same levels as ResNet50.

Tables 7.4, 7.5 and 7.6 show the accuracy in validation and training for the
given three-stage training mechanism: m1 corresponding to the first stage
where only the last layers are trained, m2 to the second stage where a number
of layers are unfrozen, and m3 to the third stage where the whole network is
retrained.

Confusion matrices of the corresponding models are shown in Tables 7.7, 7.8
and 7.9, where we can see that there is a clear performance increase due to the
three-stage procedure, causing the number of false negatives to be drastically
reduced. Although for this particular task we consider F1-score as the compar-
ison metric, confusion matrices allow for the computation of other measures
such as error-rate, accuracy, specificity, sensitivity, and precision.

Numerical progression of F1-score can be observed in Tables 7.10, 7.11 and
7.12, where the number of trainable and non-trainable parameters are reported
for each method level under study.

Table 7.4: Three-stage training system for several model baselines. Accuracy in Fold 0.

Method level
m1 m2 m3

Model
VGG16

InceptionV3

ResNet50

133



Chapter 7. Detection of glaucoma using three-stage training with EfficientNet

Table 7.5: Three-stage training system for several variants of EfficientNet. Accuracy in
Fold 0.

Method level
m1 m2 m3

EfficientNet

B0

B1

B2

B3

B4

B5
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Table 7.6: Three-stage training system for several variants of EfficientNetV2. Accuracy in
Fold 0.

Method level
m1 m2 m3

EfficientNetV2

B0

B1

B2

B3

S

M

Regarding the confusion matrices for the three-stage training system, we can
observe that the expected behavior in terms of incorrect cases is having a
higher number of false positives than false negatives. This is appropriate for
designing a system to detect glaucoma, as the principle is to be able to always
detect the disease if it is present, as the pathology is irreversible and early
treatment can considerably improve the condition of the subject.
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Table 7.7: Three-stage training system. Confusion Matrix Baseline Models in Fold 0.
VGG16, InceptionV3 and ResNet50.

Method level
m1 m2 m3

Model
VGG16

InceptionV3

ResNet50

Table 7.8: Three-stage training system. Confusion Matrix EfficientNet in Fold 0.

Method level
m1 m2 m3

EfficientNet

B0

B1

B2

B3

B4

B5
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Table 7.9: Three-stage training system. Confusion Matrix EfficientNetV2 in Fold 0.

Method level
m1 m2 m3

EfficientNetV2

B0

B1

B2

B3

S

M

The chapter uses the F1-score (higher is better), which is calculated as the
harmonic mean between precision and recall, to choose among models. We can
observe the increase in performance that the training in three steps confers to
the design of the system, very much irrespective of the hyperparameters chosen
(learning rate, number of epochs and optimizer).

Table 7.10: Three-stage training system for several baseline models. F1-score, number of
trainable parameters and number of non-trainable parameters in Fold 0.

Method level
m1 m2 m3

Model

VGG16
F1-score (%) 84 88 76

# trainable parameters 2.050 14.678.018 14.716.738
# non-trainable parameters 14.715.712 39.744 1.024

InceptionV3
F1-score (%) 78 82 87

# trainable parameters 8.194 401.410 21.776.546
# non-trainable parameters 21.806.880 21.413.664 38.528

ResNet50
F1-score (%) 80 83 89

# trainable parameters 8.194 5.518.338 23.542.786
# non-trainable parameters 23.591.808 18.081.664 57.216
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Table 7.11: Three-stage training system for several variants of EfficientNet. F1-score,
number of trainable parameters and number of non-trainable parameters in Fold 0.

Method level
m1 m2 m3

EfficientNet

B0
F1-score (%) 79 83 88

# trainable parameters 5.122 1.126.706 4.012.670
# non-trainable parameters 4.052.131 2.930.547 44.583

B1
F1-score (%) 81 85 92

# trainable parameters 5.122 1.355.602 6.518.306
# non-trainable parameters 6.577.799 5.227.319 64.615

B2
F1-score (%) 81 85 92

# trainable parameters 5.634 1.637.594 7.706.628
# non-trainable parameters 7.771.385 6.139.425 70.391

B3
F1-score (%) 81 84 87

# trainable parameters 6.146 1.946.210 10.702.378
# non-trainable parameters 10.786.607 8.846.543 90.375

B4
F1-score (%) 80 81 91

# trainable parameters 7.170 2.643.314 17.555.786
# non-trainable parameters 17.677.407 15.041.263 128.791

B5
F1-score (%) 80 86 89

# trainable parameters 8.194 3.446.914 28.348.978
# non-trainable parameters 28.517.623 25.078.903 176.839

Table 7.12: Three-stage training system for several variants of EfficientNetV2. F1-score,
number of trainable parameters and number of non-trainable parameters in Fold 0.

Method level
m1 m2 m3

EfficientNetV2

B0
F1-score (%) 85 85 88

# trainable parameters 5.122 594.226 6.865.174
# non-trainable parameters 6.933.684 6.344.580 73.632

B1
F1-score (%) 85 85 86

# trainable parameters 5.122 594.226 6.865.174
# non-trainable parameters 6.933.684 6.344.580 73.632

B2
F1-score (%) 82 83 85

# trainable parameters 5.634 700.406 8.692.720
# non-trainable parameters 8.772.190 8.077.418 85.104

B3
F1-score (%) 80 85 83

# trainable parameters 6.146 860.892 12.827.552
# non-trainable parameters 12.933.694 12.078.948 112.288

S
F1-score (%) 85 87 88

# trainable parameters 5.122 938.050 20.182.610
# non-trainable parameters 20.333.920 19.400.992 156.432

M
F1-score (%) 82 82 91

# trainable parameters 5.122 3.050.626 52.863.478
# non-trainable parameters 53.152.948 50.107.444 294.592

In addition, transfer learning from Imagenet allows us to rapidly fine-tune the
architecture in three stages, achieving high accuracy with limited training time.

The system is implemented using Keras with the following hyperparameters:

• m1 (lr = 1e− 2, dropout = 0.2, epochs = 50)

• m2 (lr = 1e− 4, epochs = 10)
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• m3 (lr = 1e− 4, epochs = 30)

where ‘adam’ is the choice of optimizer and the GPU used in the experiments
is a Tesla V100 SXM2 (16 GB).

Once the desired model is obtained in Fold 0, we pursue a thorough testing
across folds (10-fold crossvalidation) to choose the weights that give better ac-
curacy on a given test subset, see Figure 7.5. In particular, we evaluate the
mean and the standard deviation to determine statistical significance of the
result.

For the evaluation, we perform 10-fold crossvalidation loading the weights from
m3 and retraining on each fold with epochs = 30.

7.3.3 Evaluation and Discussion

The chapter builds on VGG16, InceptionV3 and ResNet50 as baseline models
of the methodology, and then propose to use variants of EfficientNet to achieve
state-of-the-art performance.

Fold 0

Fold 1

Fold 9

Model *

Model *

Model *

F1-score

F1-score

F1-score

Model **

Data

Crossvalidation
(10-fold) Metric

Evaluation Selection Model
(Best F1-score)

Figure 7.5: Visual description of the evaluation. The weights obtained in the prelimi-
nary stage using Fold 0 (Model*: obtained from m3) are then used in 10-fold crossvalidation
to retrain the network for each fold, and select the best weights of the model (Model **)
according to F1-score.

Extensive evaluation of every model across folds is performed. Tables 7.13,
7.14 and 7.15 show the F1-score across all folds of the dataset evaluating the
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method under consideration using as initial weights the corresponding weights
of m3, that is, the result of the three-stage training in one fold, for each given
model. Best results are highlighted, showing the statistical significance of the
outputs by computing the mean and standard deviation along the folds.

Plots of accuracy of every model on the sets of training and validation for each
fold are shown in Tables 7.16, 7.17 and 7.18 in order to visualize the level of
generalization of the architecture.

Table 7.13: Evaluation of the F1-score: baseline models of the method consisting on
VGG16, InceptionV3 and ResNet50. Thorough testing across folds with mean and standard
deviation for the F1-score of all models under evaluation.

Fold Statistics
0 1 2 3 4 5 6 7 8 9 Mean stdev

Baseline models
VGG16 83 88 89 83 95 93 60 90 86 65 83,2 1,1

InceptionV3 91 94 86 92 93 90 91 94 89 92 91,1 2,4
ResNet50 88 88 82 87 92 85 92 88 91 93 88,9 3,3

Table 7.14: Evaluation of the F1-score (%): methods based on EfficientNet. Thorough
testing across folds with mean and standard deviation for the F1-score of all models under
evaluation.

Fold Statistics
0 1 2 3 4 5 6 7 8 9 Mean stdev

EfficientNet

B0 99 99 97 86 97 95 98 98 98 87 96,6 3,7
B1 92 99 98 94 98 98 97 98 94 93 95,9 2,4
B2 89 100 96 97 92 98 97 97 98 96 96,1 2,9
B3 89 99 98 94 98 92 95 98 96 96 95,5 3,0
B4 97 98 97 98 98 98 96 97 98 91 96,6 2,0
B5 91 98 97 94 94 96 97 98 94 99 95,8 2,3

Table 7.15: Evaluation of the F1-score (%): methods based on EfficientNetV2. Thorough
testing across folds with mean and standard deviation for the F1-score of all models under
evaluation.

Fold Statistics
0 1 2 3 4 5 6 7 8 9 Mean stdev

EfficientNetV2

B0 86 95 96 97 95 93 94 96 93 97 94,3 3,3
B1 88 95 92 96 96 93 96 96 95 95 94,2 2,5
B2 94 99 91 95 94 95 95 98 95 87 94,5 3,1
B3 95 98 96 96 96 96 97 98 95 89 95,7 2,3
S 93 97 95 97 95 97 97 98 93 93 95,4 1,6
M 88 97 92 89 92 94 91 98 93 91 92,4 3,0
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The three-stage system presented, including variants of both EfficientNet and
EfficientNetV2, considerably outperforms the given baselines (VGG16, Incep-
tionV3 and ResNet50), which are similar in scope to the models reported in
[6] but using the three-stage training introduced in the chapter. In the case of
the baseline models, InceptionV3 has clearly the highest mean F1-score (91.1)
compared to VGG16 (83.2) and ResNet50 (88.9). Although InceptionV3 and
ResNet50 show comparative performance in terms of number of trained pa-
rameters and overall accuracy achieved, the first is more effective with the
problem at hand considering that we are dealing with a dataset in the order
of the thousands. Should the data to train be increased, it would be expected
that ResNet50 achieves slightly better performance due to its better handling
of the gradient backpropagating through the layers.

Figure 7.6: F1 evaluation across folds for each model under study using the
three-stage training procedure. Error bars with mean and standard deviation for each
model are depicted. All architectures based on EfficientNet and EfficientNetV2 outperform
the baseline methods (VGG16, InceptionV3 and ResNet50) being EfficientNet B4 and Effi-
cientNetV2 S the best performing techniques.

EfficientNet models perform slightly better in terms of F1-score than Efficient-
NetV2, although variants of EfficientNetV2 show a better standard deviation
across folds; being B2 the model that achieves higher accuracy on a given fold
(100 in Fold 1), and B0 and B4 the ones that achieve best mean F1 across
folds (96.6), where B4 has the lowest standard deviation (2.0); thus, a better
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generalization is achieved since the results are more consistent. In the case
of EfficientNetV2, V2-B2 achieves the highest accuracy on a given fold (99 in
Fold 1), while V2-B3 is the model that gets best mean F1 score across folds
(95.7), and model S is the more consistent model according to the standard
deviation of the F1-score (1.6). Error bars with mean and standard deviation
are showed in Figure 7.6.

142



7.3 Data and methods

Table 7.16: Evaluation on several model baselines (VGG16, InceptionV3 and ResNet50).
Accuracy across folds (from 0 to 9).

Baseline models
Fold VGG16 InceptionV3 ResNet50

0

1

2

3

4

5

6

7

8

9
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Table 7.17: Evaluation on several variants of EfficientNet (B0-5). Accuracy across folds
(from 0 to 9).

EfficientNet
Fold B0 B1 B2 B3 B4 B5

0

1

2

3

4

5

6

7

8

9
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Table 7.18: Evaluation on several variants of EfficientNetV2 (B0-3, S and M). Accuracy
across folds (from 0 to 9).

EfficientNetV2
Fold B0 B1 B2 B3 S M

0

1

2

3

4

5

6

7

8

9

Accuracy plots across folds show the considerably good ability to generalize
of each model, showing the corresponding curves for the sets of training and
validation.
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The methodology to tackle the problem in many train stages of the same ar-
chitecture presents a robust behavior with state-of-the-art performance. Lim-
itations of the technique mainly are due to EfficientNet and EfficientNetV2,
where we inherit the necessity to train a large number of parameters, that is
clearly less than other state-of-the-art CNN architectures, as the networks are
found using NAS optimizing for overall FLOPS, but still very high compared
to traditional hand-crafted methodologies where the number of parameters to
learn is very low.

7.4 Conclusions and further work

In this work, an intelligent system to automatically detect glaucoma is pre-
sented. The methodology is based on a three-stage training procedure based on
variants of EfficientNet, a recently proposed family of architectures found using
NAS that achieves compelling accuracy on Imagenet, achieving consistent re-
sults that outperform the baseline methods. Transfer Learning from Imagenet
to the given application under study is employed. The training mechanism ap-
plied bestows the system with robustness against hyperparameter choices. We
use a dataset consisting of 17.070 fundus images, a considerable size compared
to the number of samples used in other recent works, and where the sets used
for training, validation and testing are well balanced; such fact confers the ob-
tained models with a low number of false negatives, which is clearly desirable
given the gravity and irreversibility of the pathology. Extensive evaluations
are reported at each stage of the described procedure under study, as well as,
visual interpretation of the results for the sets of training and validation. The
F1-score in the test set is used as the target score metric to choose among
models, along with a classification report and confusion matrix for each model
in the preliminary stage. The proposed system is reliable, highly-accurate,
consistent and resource-efficient.

The methodology achieves a mean average percentage F1-score across folds of
96.6 using EfficientNet-B0 (with standard deviation of 3.7) and EfficientNet-
B4 (with standard deviation of 2.0), where the best F1 on a given fold is 99
on B0 and 98 on B4. For the case of EfficientNetV2, V2-B3 achieves a mean
average F1-score across folds of 95.7 (with standard deviation of 2.3) and V2-S
of 95.4 (with standard deviation of 1.6), where the best F1 on a given fold is 98
for both V2-B3 and V2-S. These results significantly outperform the baselines;
VGG16 (83.2), InceptionV3 (91.1) and ResNet50 (88.9), and are also clearly
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better than the state-of-the-art reported results found in the literature, [6].

The three stage-training mechanism using variants of EfficientNet and Effi-
cientNetV2 proposed, although targeted for the particular application of de-
tecting the pathology of glaucoma, achieves a superior classification baseline
to use in other clinical conditions, or in the more general case in any vision
application where extracting features from raw pixel intensities can play an
important role. Indeed, visual sensors are ubiquitous in many applications,
such as self-driving cars or Unmanned Aerial Vehicles, where the use of trans-
fer learning, and subsequent freeze, training and finetuning has proven to be
very effective; therefore, the system proposed could be further integrated into
the detection pipeline of such a system, for instance for lane detection in a
self-driving vehicle, or for target recognition in drones.
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Chapter 8

Discussion

In the realm of modern research, there are few areas as dynamic and promising
as the integration of LLMs into various fields. From the presented publications,
it is apparent that the inclusion of LLMs and the innovations in the field of AI
[35, 36] are significantly shaping and pushing the boundaries in areas such as
truck platooning [37, 38], multi-agent systems [40, 39, 41], UAV scene under-
standing [12, 27], forest fire estimation [44], and medical diagnostics [45].

B5G Truck Platooning Systems: The use of LLMs in B5G truck platoon-
ing systems promises to make transportation not only more efficient but also
safer. The authors illustrate the potential of LLMs in a telecommunication en-
vironment, presenting an ambitious avenue for AI-driven control in vehicular
systems. The discussion on the future of LLMs hints at a world where these
models are deeply embedded in safety-critical domains beyond just transporta-
tion.

Multi-Agent Systems and Evolutionary Coevolution (EC) Theory [42, 43]: The
blend of EC Theory and MASs augmented by LLMs reveals a more profound
understanding of cooperation, competition, and defection in complex environ-
ments. The integration of LLMs into this matrix serves as an innovative form
of human-computer interface, presenting a clear trajectory towards more effi-
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cient and effective strategies within Human-Computer Interaction.

UAV Semantic Scene Understanding: Drones, or UAVs, have rapidly become
pivotal in various sectors. The research introduces a fascinating perspective
of integrating LLMs with UAVs for scene understanding. Such methodologies
can revolutionize surveillance, reconnaissance, and potentially even rescue mis-
sions, emphasizing the versatility of LLMs in practical applications.

Forest Fire Area Estimation: The devastation caused by forest fires worldwide
underscores the need for advanced systems to predict and manage them. The
utilization of advanced ML and DL techniques, like the TabNet combined with
transformers, offers promising avenues for rapid and accurate estimations, po-
tentially saving billions in damages and countless lives.

Glaucoma Detection: In the medical domain, early detection of conditions like
glaucoma can drastically change the prognosis for patients. The three-stage
training methodology using EfficientNet variants sets a benchmark not just for
medical diagnostics but broadly for any vision application. Such advancements
make the goal of reliable, rapid, and affordable diagnostic systems a tangible
reality.

Across all these studies, a recurring theme is the marriage of traditional tech-
niques with state-of-the-art AI methodologies. For instance, traditional PID
controls, well-understood theories from game theory and MASs, established
UAV operations, known statistical techniques for fire estimation, and existing
medical imaging methods are all enhanced exponentially by integrating them
with advanced AI strategies and LLMs. Such a combination does not merely
add to the existing capabilities but often multiplies them, presenting signifi-
cant breakthroughs.

In summation, the presented publications reflect a paradigm shift in the appli-
cation of LLMs across diverse fields [46]. Each study not only showcases the
profound impact of LLMs and DL but also sets a roadmap for future research,
hinting at an era where the boundaries between human intelligence and AI
become increasingly blurred.
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From safer roads with B5G truck platooning systems to a deeper understand-
ing of cooperative behaviors in MASs, from advanced UAVs capable of nuanced
scene understanding to accurate estimations of forest fire devastation, and from
rapid medical diagnostics to potential applications in other vision tasks, the
research underscores the sheer breadth and depth of possibilities with LLMs
and sophisticated learning techniques.

The journey of integrating LLMs into these domains has only just begun. As
technology continues to evolve, it is evident that the confluence of traditional
methods with advanced AI and LLMs will lead to innovative solutions, making
our world safer, more efficient, and more interconnected.

Table 8.1 provides a comparative analysis of these chapters, outlining the tech-
niques employed, key findings, potential applications, and directions for future
research. This summary serves as a concise guide, offering readers a panoramic
view of the topics covered in the doctoral dissertation.

As a summary, throughout the chapters presented, there is a recurring theme
of harnessing the capabilities of LLMs and integrating them with specialized
domains, revealing both their immense potential and the associated challenges.
Chapter 3 underlines the synergy between traditional control systems and the
dawn of AI, illuminating the transformative capabilities of LLMs in steering
complex autonomous systems. Meanwhile, Chapter 4 offers a profound ex-
ploration into the nuanced dance of cooperation and defection, emphasizing
the need to reconcile academic theory with real-world intricacies. Chapter 5
pioneers the realm of semantic interpretation, championing the adaptability
of human-computer interactions, even while acknowledging LLM limitations.
Chapter 6 gravitates towards a pressing environmental concern, showcasing
the promise and requisites of ML in estimating forest fire impacts. Finally,
Chapter 7 stands as a testament to the strides in medical diagnostics through
DL, with the versatility of EfficientNet promising far-reaching applications.
Collectively, these chapters not only contribute to their respective fields but
also illuminate the road ahead, spotlighting areas of potential breakthroughs
and the inherent challenges awaiting advancements.
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Table 8.1: Comparative Analysis of Chapters 3 to 7

Chapter Techniques
&
Method-
ologies
Used

Main
Contribu-
tion-
s/Find-
ings

Potential
Applica-
tions

Future
Research
Directions

Chapter 3 Control
systems,
LLMs (e.g.,
GPT-3.5-
turbo)

Evolution
of control
systems
with LLMs

Engineering
domains

Real-world data
validation for
AI-driven control

Chapter 4 EC Theory,
MASs,
LLMs

Implications
of EC in
business
and societal
contexts

Business
and societal
contexts

Addressing
complexities
inherent in
systems

Chapter 5 UAVs, LLM
pipeline

Socratic
video
under-
standings

Human-
computer
interaction

Probabilistic
reasoning and
visual data
interpretation

Chapter 6 ML, DL,
TabNet

Estimating
forest fire
impact

Predictive
models for
forest fires

Model
performance on
diverse datasets

Chapter 7 variants of
EfficientNet

High
accuracy
glaucoma
detection

Medical
domain,
self-driving
cars, drones

Transfer learning
and integration
into diverse
applications

8.1 Contributions

In a comprehensive effort to understand and harness advanced ML models for
diverse applications, this doctoral thesis presents empirical insights derived
from rigorously designed experiments. Within the landscape of B5G truck
platooning, our exploration into adaptive PID control, reinforced by LLMs,
especially the GPT-3.5-turbo, showed promising enhancements in reliability
and security parameters of vehicle coordination in technologically evolving
communication environments. As we transitioned into examining Multi-Agent
Systems, our EC Theory illuminated previously uncharted dynamics among
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heterogeneous agents. This was further corroborated by our simulation re-
sults which visualized the emergence of cooperative behavior patterns, thus
underscoring LLMs’ potential in facilitating cooperation and resilience in such
systems. Socratic video understanding, as applied in UAVs, achieved a signifi-
cant linguistic complexity with generated texts reaching a GUNNING Fog me-
dian grade level between 7-12. This prowess, combined with the sophisticated
collaboration between BLIP-2 and GPT-3.5-turbo, brought forth actionable
insights from aerial video footage. In our forest fire area estimation study, the
TabNet transformer-based architecture outperformed traditional methods with
a marked reduction in error, showcasing a MSE of 2319 in training and 7781
in testing. Lastly, our efforts in detecting glaucoma using EfficientNet high-
lighted the robustness of a three-stage-training methodology. By iteratively
fine-tuning the model, we achieved unmatched precision in glaucoma detec-
tion, as evidenced by our accuracy and F1-score metrics, while simultaneously
maintaining a lower parameter footprint compared to conventional models like
VGG16 and Resnet50. Collectively, these findings not only substantiate the
value proposition of our research endeavors but also underscore the overarch-
ing theme: the profound influence of LLMs and advanced DL architectures in
shaping the future of intelligent systems across diverse domains.
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Conclusions

9.1 Concluding Remarks

In a world that constantly experiences an upsurge of technological advance-
ments, research efforts such as those presented in the highlighted papers con-
tinue to widen the horizons of both academic and practical applications. By
integrating advanced computational methodologies and AI, these studies are
poised to revolutionize their respective domains.

Collectively, these studies encapsulate the power and potential of intertwin-
ing advanced algorithms, AI, and practical applications. Each paper, while
addressing a distinct domain, underscores the centrality of AI in resolving
real-world challenges.

As technology continues its relentless march forward, these foundational re-
search efforts not only provide insight into current challenges, but also outline
the trajectory of future explorations. Whether it is enhancing transporta-
tion through intelligent truck platooning, fostering human-AI collaboration,
optimizing UAV applications, managing natural calamities, or revolutionizing
healthcare diagnostics, the road ahead promises innovation, integration, and
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improvement.

In the grand tapestry of scientific endeavor, these researches are emblematic
threads, each contributing to the larger understanding of our world and the
technologies that shape it. We eagerly anticipate future endeavors building
on these findings, ultimately advancing humanity’s collective knowledge and
capabilities.

Throughout this thesis, we have delicately navigated the intricate landscapes
of LLMs, advanced DL architectures, and their applications, employing both
theoretical constructs and empirical validations. The mathematical robust-
ness underlying our methodologies, from the adaptive mechanisms in PID
controllers to the nuanced complexities in the EC Theory, provides a strong
foundation for further analytical inquiries. One potential avenue of explo-
ration is the formalization of LLM-enhanced dynamics in multi-agent systems
using differential game theory, G(N ,S,U , f), where N represents the set of
agents, S their state spaces, U their action profiles, and f the state transitions
influenced by LLM insights. This could provide deeper insights into coopera-
tive and non-cooperative equilibria, ε(N ,U), especially in systems where agent
strategies are continually evolving under the influence of LLM-based recom-
mendations. Additionally, the amalgamation of transformer architectures like
TabNet with topological data analysis could pave the way for understanding
high-dimensional, non-linear data structures intrinsic to natural phenomena,
such as forest fires. With EfficientNet’s demonstrated prowess, the adaptation
of its architectural nuances to other domains, perhaps coupled with variational
methods, L(θ, φ;x) = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||pθ(z))], could unlock
unprecedented diagnostic efficiencies. As we stand on the precipice of a new
era in AI and DL, the foundational work of this thesis serves not as a culmi-
nation, but as a beacon, heralding the boundless explorations and innovations
yet to come.

9.2 Publications Included in the Thesis

The following publications, listed below, have been included in this thesis and
represent its core contributions:

1. [47] de Zarzà, I., de Curtò, J., Roig, G., & Calafate, C. T. (2023). “LLM
Adaptive PID Control for B5G Truck Platooning Systems.” Sensors,
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vol(23), 5899. DOI: 10.3390/s23135899 IF 2022: 3.9; SCImago-SJR: 1r
cuartil.

2. [48] de Zarzà, I., de Curtò, J., Roig, G., Manzoni, P., & Calafate, C. T.
(2023). “Emergent Cooperation and Strategy Adaptation in Multi-Agent
Systems: An Extended Coevolutionary Theory with LLMs.” Electronics,
vol(12), 2722. DOI: 10.3390/electronics12122722 IF 2022: 2.9; JCR: 2o
cuartil.

3. [49] de Zarzà, I., de Curtò, J., Calafate, C. T. (2023). “Socratic Video
Understanding on Unmanned Aerial Vehicles.” 27th International Con-
ference on Knowledge Based and Intelligent information and Engineering
Systems (KES 2023), Athens, Greece, 6–8 September, 2023. DOI: pend-
ing assignment. CORE B.

4. [50] de Zarzà, I., de Curtò, J., Calafate, C. T. (2023). “Area Estimation of
Forest Fires using TabNet with Transformers.” 27th International Con-
ference on Knowledge Based and Intelligent information and Engineering
Systems (KES 2023), Athens, Greece, 6–8 September, 2023. DOI: pend-
ing assignment. CORE B.

5. [51] de Zarzà, I., de Curtò, J., Calafate, C. T. (2022). “Detection of glau-
coma using three-stage training with EfficientNet.” Intelligent Systems
with Applications, vol(16), 200140.
DOI: 10.1016/j.iswa.2022.200140 SCImago-SJR: 1r cuartil.

9.3 Related Publications

In addition to the main publications, the following works have been conducted
in relation to the broader research context:

1. [52] de Zarzà, I., de Curtò, J., Cano, J. C., & Calafate, C. T. (2023)
"Drone-Based Decentralized Truck Platooning with UWB Sensing and
Control" Mathematics, vol(11), 4627.
DOI: 10.3390/math11224627 IF 2022: 2.4; JCR: 1r cuartil.

2. [53] de Zarzà, I., de Curtò, J., Roig, G., & Calafate, C. T. (2023). "LLM
Multimodal Traffic Accident Forecasting" Sensors, vol(23), 9225.
DOI: 10.3390/s23229225. IF 2022: 3.9; SCImago-SJR: 1r cuartil.

3. [54] de Curtò, J., de Zarzà, I., & Calafate, C. T. (2023). “Semantic
Scene Understanding with Large Language Models on Unmanned Aerial
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Vehicles.” Drones, vol(7), 114.
DOI: 10.3390/drones7020114 IF 2022: 4.8; SCImago-SJR: 1r cuartil.

4. [55] de Curtò, J., de Zarzà, I., Roig, G., Manzoni, P., & Calafate, C. T.
(2023). “LLM-Informed Multi-Armed Bandit Strategies for Non-Stationary
Environments.” Electronics, vol(12), 2814. DOI: 10.3390/electronics12132814
IF 2022: 2.9; JCR: 2o cuartil.

5. [56] de Zarzà, I., de Curtò, J., Hernández-Orallo, E., & Calafate, C. T.
(2023). “Cascading and Ensemble Techniques in Deep Learning.” Elec-
tronics, vol(12), 3354. DOI: 10.3390/electronics12153354 IF 2022: 2.9;
JCR: 2o cuartil.

6. [57] de Zarzà, I., de Curtò, J., & Calafate, C. T. (2023). “Optimizing
Neural Networks for Imbalanced Data.” Electronics, vol(12), 2674. DOI:
10.3390/electronics12122674 IF 2022: 2.9; JCR: 2o cuartil.

7. [58] de Curtò, J., de Zarzà, I., Roig, G., & Calafate, C. T. (2023). “Sig-
nature and Log-Signature for the Study of Empirical Distributions Gen-
erated with GANs.” Electronics, vol(12), 2192. DOI: 10.3390/electron-
ics12102192 IF 2022: 2.9; JCR: 2o cuartil.

8. [59] de Curtò, J., de Zarzà, I., Roig, G., & Calafate, C. T. (2023). “Sum-
marization of Videos with the Signature Transform.” Electronics, vol(12),
1735. DOI: 10.3390/electronics12071735 IF 2022: 2.9; JCR: 2o cuartil.

9. [60] de Zarzà, I., de Curtò, J., & Calafate, C. T. “UMAP for Geospatial
Data Visualization.” 27th International Conference on Knowledge Based
and Intelligent information and Engineering Systems (KES 2023), Athens,
Greece, 6–8 September, 2023. DOI: pending assignment. CORE B.

10. [61] de Zarzà, I., de Curtò, J., & Calafate, C. T. “Decentralized Pla-
tooning Optimization for Trucks: A MILP and ADMM-based Convex
Approach to Minimize Latency and Energy Consumption.” 6th Interna-
tional Workshop on Vehicular Networking and Intelligent Transportation
Systems (VENITS 2023), Hong Kong. July 18, 2023. Held in conjunction
with the 43rd IEEE International Conference on Distributed Computing
Systems (ICDCS), Hong Kong, 18–21 July, 2023. DOI: 10.1109/ICD-
CSW60045.2023.00031. CORE A.

11. [62] de Zarzà, I., de Curtò, J., & Calafate, C. T. “Decentralized Plan-
ning of Platoons in Road Transport using Reinforcement Learning.” 6th
International Workshop on Vehicular Networking and Intelligent Trans-
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portation Systems (VENITS 2023), Hong Kong. July 18, 2023. Held
in conjunction with the 43rd IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), Hong Kong, 18–21 July, 2023.
DOI: 10.1109/ICDCSW60045.2023.00030. CORE A.

12. [63] de Curtò, J., de Zarzà, I., & Calafate, C. T. (2023). “UWB and MB-
OFDM for Lunar Rover Navigation and Communication.” Mathematics,
vol(11), 3835. DOI: 10.3390/math11183835 IF 2022: 2.4; JCR: 1r cuartil.

13. [64] de Curtò, J., de Zarzà, I., Yan, H., & Calafate, C. T. (2022). “On
the applicability of the Hadamard as an input modulator for problems of
classification.” Software Impacts, vol(13), 100325.
DOI: 10.1016/j.simpa.2022.100325 IF 2022: 2.1; JCR: 3r cuartil.

9.4 Open Science and Reproducibility

In line with the principles of open science and to facilitate the verification and
reproducibility of our results, representative software examples developed as
part of this research has been made publicly available.

9.4.1 Representative Open-Source Code

• LLM Multimodal Traffic Accident Forecasting [53]:

– DOI: 10.6084/m9.figshare.24570478

– Description: This repository contains the VLM code, along with sta-
tistical and DL techniques used to forecast traffic accidents, demon-
strating the application of multimodal AI in traffic accident forecast-
ing in the scenario of autonomous driving. The representative code
examples also highlight the application of probabilistic hashing and
deep feature extraction.

• Drone-Based Decentralized Truck Platooning [52]:

– DOI: 10.6084/m9.figshare.24549

– Description: Available in this repository are the simulation tools used
to study truck platooning systems assisted by drones, showcasing the
integration of autonomous vehicles and UAVs.
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• Detection of Glaucoma Using EfficientNet [51]:

– DOI: 10.24433/CO.8342269.v1

– Description: This code repository provides the implementation of
the three-stage training mechanism using the EfficientNet model for
the detection of glaucoma, emphasizing advances in medical diag-
nostics.

9.5 Future Work

The research carried out in this thesis has opened several avenues for further
exploration, pushing the boundaries of current knowledge and technological
capabilities. As we chart our journey forward, the following areas have emerged
as promising domains for future endeavors:

1. Deepening the Coevolutionary Theory: The introduction of LLMs
in the coevolutionary domain offers a new perspective on emergent co-
operation. Future work could explore the coadaptation of LLMs in vari-
ous dynamic environments, leveraging the symbiotic relationship between
learning and adaptation.

2. Granular Control Mechanisms: The success of the adaptive PID
control for truck platooning opens the door to the investigation of more
granular control strategies. Incorporating AI-driven predictive modeling
could further enhance the responsiveness and efficiency of these systems.

3. Expanding UAV Capabilities: The use of LLMs for semantic scene
understanding on UAVs signifies a pivotal advancement in drone technol-
ogy. There is potential to integrate multi-modal sensor fusion, combining
visual, thermal, and sonar data, to enhance UAV perception in varying
environmental conditions.

4. Forest Fire Prediction: The current work on area estimation of forest
fires can be augmented with real-time prediction models, possibly using
time-series analysis combined with meteorological data. This would be
invaluable for preemptive measures and resource allocation during wildfire
events.

5. Medical Imaging and Diagnostics: The promising results from glau-
coma detection point towards a broader horizon in medical diagnostics.
Combining LLMs with generative networks could potentially simulate
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medical conditions, aiding in training models even with limited real-world
data.

In addition to these specific areas, there remains a perennial quest for enhanc-
ing computational efficiency, ensuring ethical considerations in AI applications,
and bridging the gap between theory and real-world applicability. As we stand
at this juncture, the future beckons with a myriad of challenges and opportu-
nities, each promising to push the boundaries of what we perceive as possible
today.

9.6 Synthesis of Contributions

The body of work presented in this thesis, substantiated through publications
in peer-reviewed journals and conferences, collectively contributes to the field
of AI-enhanced autonomous systems. The following section synthesizes these
contributions to articulate the "big picture" of this research’s impact.

The studies within this thesis represent significant leaps in the realms of con-
trol systems, strategic interactions, scene understanding, environmental man-
agement, and healthcare diagnostics:

• Control Systems Enhancement: The integration of LLMs within ve-
hicular platooning has demonstrated that AI can significantly enhance
communication and decision-making efficacy, setting a precedent for fu-
ture transportation systems.

• Strategic Interactions in MASs: By infusing EC Theory with LLM-
based insights, we have unveiled new cooperative behaviors, establishing
a framework for AI-mediated social and economic interactions.

• UAV Scene Understanding: The development of a Socratic under-
standing model using LLMs and VLMs for UAVs has pushed the enve-
lope in video analysis, enabling nuanced, context-aware interpretations of
visual data streams.

• Environmental Management: The application of TabNet for forest
fire area estimation has proven the potency of DL in environmental appli-
cations, providing a model for disaster management and response strate-
gies.

• Healthcare Diagnostics: Our work with EfficientNet for glaucoma de-
tection exemplifies the transformative potential of DL in medical imag-
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ing, potentially leading to breakthroughs in early diagnosis and treatment
strategies.

The convergence of LLMs, DL, and EC within this thesis underscores the syn-
ergistic potential of hybrid AI approaches. The integration of these method-
ologies addresses complex challenges by leveraging their combined strengths,
thus offering a multidimensional perspective on problem-solving in autonomous
systems.

As we extrapolate from these individual studies, the main narrative that emerges
is one of interconnectedness—between diverse AI technologies and between
computational innovation and its applications. The contributions of this the-
sis are therefore not confined to their immediate fields but extend to influencing
the trajectory of future research and development:

• Interdisciplinary Impact: The methodologies and findings presented
have implications that transcend their respective fields, suggesting poten-
tial crossover applications and interdisciplinary research opportunities.

• Future Research Pathways: The foundational work laid down by this
thesis illuminates the pathway for future exploration, including the in-
tegration of AI in more complex systems, the refinement of models for
greater efficiency and accuracy, and the ethical deployment of AI tech-
nologies.

In conclusion, the collective insights gleaned from the research presented in
this thesis contribute to a broader understanding of how advanced AI method-
ologies can be harnessed to address and solve real-world challenges. As we
reflect on these contributions, it is evident that they embody a stepping stone
towards a future where AI is seamlessly integrated into the fabric of our daily
lives, enhancing our capabilities, and expanding the horizons of human poten-
tial.
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Acronyms

AES Advanced Encryption Standard
AI Artificial Intelligence
DC Drought Code
DL Deep Learning
DMC Duff Moisture Code
DNN Deep Neural Networks
EC Extended Coevolutionary
FFMC Fine Fuel Moisture Code
GPT Generative Pretraining Transformer
HCI Human–Computer Interaction
ISI Initial Spread Index
LLM Large Language Models
MAS Multi-Agent Systems
ML Machine Learning
MSE Mean Squared Error
NAS Neural Architecture Search
NLP Natural Language Processing
PID Proportional-Integral-Derivative
RH Relative Humidity
SMs Socratic Models
UAV Unmanned Aerial Vehicle
V2V Vehicle-to-Vehicle
VLMs Visual Language Models
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