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Abstract. For a single fermionic �eld, an interpretation of the Fierz identities (which
establish relations between the bilinear �eld observables) is given. They appear closely
related to the algebraic class (regular or singular) of the spin 2-form S associated to
the spinor �eld. If S ̸= 0, the Fierz identities follow from the 3+1 decomposition of
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time-like and the axial one being space-like.

Keywords: Fermionic �elds, Fierz identities, Spin 2-form density

Submitted to: Phys. Scr.



Essential Fierz identities for a fermionic �eld 2

1. Introduction

A fermionic �eld is usually described by a four-component spinor Ψ, Ψ(x) ∈ C4 at each

space-time event x. Given a basis of the space-time exterior algebra, say {ΓA}16A=1, a set

of sixteen bilinear forms, Ψ†ΓAΨ, can be constructed from Ψ, where Ψ† is the hermitian

conjugate spinor of Ψ. These bilinear forms reveal physical properties of the �eld and

behave in a speci�c tensorial manner under Lorentz transformations. Substituting the

hermitian conjugate spinor by the Dirac adjoint Ψ̄ = Ψ†γ0, these bilinear forms are

called bilinear Dirac covariants (or local electron observables), where γ0 is the Dirac

conjugation matrix (see, for instance, Ref. [1]).

Reciprocally, Ψ can be obtained (up to a global phase factor) from its 16 bilinear

concomitants, which are not generically independent. This is the spinor reconstruction

theorem (see Ref. [2] and references therein). In fact, in every space-time event, the

bilinear forms are algebraic quantities, in the sense that their de�nition does not depend

on the dynamics (Dirac, Klein-Gordon equations) associated with the �eld. Moreover,

the products of any two bilinear forms, when expressed in terms of linear combinations

of all of them, satisfy certain algebraic relations, which are usually referred as Fierz

identities or Pauli-Fierz-Ko�nk identities [3, 4]. They are derived from the completeness

relations that give the canonical basis of the exterior algebra in terms of the basis under

consideration {ΓA}16A=1 (see, for instance, Refs. [5, 6, 7]).

Fierz identities are meaningful to describe fermionic �elds from a minimum number

of signi�cant degrees of freedom. Roots and branches of this topic are based on

relativistic �eld theory, and they have been extensively analyzed in many works from

diverse perspectives. However, to our knowledge, a complete and not redundant

algebraic interpretation of these identities has not been wholly accomplished, despite

the amount of studies on the subject.

Incidentally, a complete and unambiguous algebraic interpretation of the Fierz

identities could enhance the �eld of their applications or, at least, improve them.

For instance, in Particle Physics theory, a better theoretical understanding can be

useful when dealing with vector and axial density currents and when reducing invariant

expressions for the Lagrangian (or Hamiltonian) density terms describing fermionic

interactions. As it will shown below, the fermionic currents are closely connected with

the light-like directions of a regular spin 2-form. This fact provides a physical motivation

for the current study in mathematical physics: to understand Fierz identities from the

sole algebraic structure of a space-time 2-form.

A similar type of relations involving two di�erent spinors, in particular a �eld and

its derivative [8], appears when the energy tensor of the �eld is analyzed [9], or in the

formulation of the Maxwell-Dirac equations based on the bilinear covariants [10]. For

a compendium of historical references on this topic, see the introduction in Ref. [6],

and also in Ref. [11], where a continuous media model governed by the Dirac equation

is studied. Moreover, in Refs. [12, 13], bilinear Fierz identities for a pair of spinors

have been considered to deal with the coupling of a dynamic spinor with a background
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spinor �eld. And, in Ref. [14] the linear reconstruction of a four component spinor from

a spin 2-form, and the subsequent interpretation of the degrees of freedom involved in

this kind of inverse problem are treated.

Originally, in the case of the β-decay, the Fierz identitities involved four interacting

fermionic �elds [15, 16]. An exhaustive treatment of the generalized Fierz identities,

that is, for a quadruple of fermionic �elds in an arbitrary dimension �with application

beyond the Standard Model of particle physics� is given in Appendix B of Ref.

[17]. Applications of some generalized Fierz relations for fermion interaction processes,

including numerical implementations by hand, are reported in Ref. [18].

The geometry attached to a spin 2-form is tacitly used in Particle Physics theories

[19]. In fact, the Hamiltonian constructed from four interacting fermions takes into

account the light-like currents when the symmetry under parity is broken by the

interaction. The light-like currents of the spin 2-form associated with a charged

lepton and its associated neutrino enter in the Hamiltonian by means of the operators

C± ≡ 1
2
(I ± γ5). Bilinear covariants of the form Ψ̄1γ

µC±Ψ2 are proportional to the sum

or the di�erence of the time-like current Jµ and the space-like current Kµ associated

with Ψ2Ψ̄1. Thus, J
µ ±Kµ provide the light-like leptonic currents, l and n, which are

associated with the fundamental directions of the regular spin 2-form corresponding to

the pair of leptons (for instance, an electron, Ψe, and its associated neutrino Ψνe). The

notation used is introduced in next section.

This paper is devoted to establish the essential set of relations between the bilinear

covariants attached to a single spinor �eld Ψ. By `essential' we means non redundant,

mathematically manageable, and able to retain the whole physical information of the

Fierz identities. There exists a lot of references concerning Fierz identities and its

applications. Nevertheless, to our knowledge, the essential algebraic nature of the Fierz

identities for a sole spinor has not been �rmly stated up to now. We �nd that it is a small,

but perhaps important, gap concerning the standard statements of the Fierz identities.

Particle Physics situations (in which Fierz identities are applied) is the environment

where the results of this research could contributed, having practical use and gaining

some new insight.

In Ref. [6], Minogin obtained a reduced set of 21 Fierz type relations, providing

six di�erent geometric representations for the 16 electron observables, depending on the

chosen laboratory frame and the spinor �eld parameterization. The 21 relations in Ref.

[6] are not exactly the same as the 21 relations deduced directly from the algebraic

structure of a regular spin 2-form S in this work. Here, both sets of 21 identities are

compared, establishing that are linearly related between them and deduced from the

sixteen essential relations given by the algebraic structure of S. Refs. [6, 7, 8] are

written in a clear 3-dimensional Euclidean notation and go beyond earlier works. 2 A

4-dimensional Lorentzian representation of the Fierz identities is done in Refs. [2, 3, 20],

where an overcomplete set of Fierz type relations is reported. This Lorentzian approach

will be here revisited and reinterpreted in terms of the invariant algebraic elements of

the spin 2-form S.
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The paper is distributed as follows. To begin with, in section 2 the necessary

terminology and notation to read the paper and some previous results, which are

related to algebraic properties of a Lorentzian antisymmetric covariant two-tensor (2-

form) and to the bilinear covariants associated to a spinor, are summarized. In section

3, the eigenvector equations for the spin 2-form and its (star or Hodge) dual 2-form

are decomposed with respect to an arbitrary observer. In section 4, the complete

independent set of identities between the local electron observables is written in a

covariant form and its equivalence to the eigenvector equations for the spin 2-form

is established. In section 5, our result is compared with the set of relations presented

in Ref. [6], where the standard 3-dimensional Euclidean notation is used. In section 6,

the algebraic classi�cation of a spinor �eld is revisited, laying stress on the role played

by the character (regular or singular) of the spin 2-form and the Fierz identities for this

classi�cation. A discussion about the results concerns to section 7, which contains our

conclusions.

2. Terminology and Preliminaries

The main sign conventions and notation adopted in this paper are as follows:

(i) g is the metric of the Minkowski space-time, with signature (−,+,+,+). Let

{eµ}3µ=0 be a space-time basis, and {θµ}3µ=0 its algebraic dual, θ
µ(eν) = δµν , with δµν the

Kronecker delta. In concordance with Hestenes's Space-Time Algebra terminology [21],

in biunivocal correspondence with {θµ}3µ=0, there exist four γ-matrices, {γµ}3µ=0, that

satisfy the Cli�ord algebra anti-commutation relations:

γµγν + γνγµ = −2gµνI, (1)

where gµν = g(θµ, θν) and I is the 4× 4 unit matrix.† Notice that there is no limitation

on the causal character of the vectors in the basis.‡
(ii) The bilinear covariants associated with a spinor Ψ and its Dirac adjoint

† Dirac electron theory was originally presented in a γ matrix representation related to an orthonormal
basis [22]. Later, Derrick [23] analyzed the Dirac equation in some unusual basis constituted
by four metrically symmetric vectors (or symmetric frame), and he used their attached γ-matrix
representations. A frame {eA}4A=1 is said to be a symmetric frame (for the metric g) if gAA =

g(eA, eA) = µ and gAB = g(eA, eB) = ν, A ̸= B. Derrick's work would be further developed due
to Derrick basis are representative of seven symmetric causal classes of relativistic frames [24]. Thus,
starting from a Derrick's symmetric frame [23, 24], one obtains four γ-matrices that are metrically
indistinguishable.
‡ From a causal point of view, the relativistic space-time frames (and coordinate systems) have been
classi�ed in 199 causal classes [25, 26]. Then, in accordance with the Cli�ord anti-commutation relations
given by Eq. (1), there exists 199 causal classes of γ-matrix representations. Such an abundance of γ
matrix representations could be used to describe fermion processes in non inertial frames, in order to
develop further the research presented in Ref. [27].
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Ψ̄ = Ψ†γ0 are de�ned by (cf. Refs. [6, 28]),

Ω1 = Ψ̄Ψ,

Jµ = Ψ̄γµΨ,

Sµν = i
2
Ψ̄(γµγν − γνγµ)Ψ,

Kµ = Ψ̄γµγ5Ψ,

Ω2 = i Ψ̄γ5Ψ,

(2)

where i =
√
−1, and γ5 = −iγ0γ1γ2γ3. Here, Ψ and its adjoint Ψ† are represented by a

column and a row complex matrix, respectively.

The bilinear covariants (2) are phase independent and represent physical

observables. In an orthonormal inertial frame,§ they are interpreted as density quantities
that transform in a speci�c tensorial way under the action of the Lorentz group. They

are called: the scalar Ω1, the vector current J = Jµθ
µ, the spin 2-form S = Sµνθ

µ⊗θν =
1
2
Sµνθ

µ∧θν , the axial current K = Kµθ
µ and the pseudoscalar Ω2, densities. The metric

g is used to lower and rise indices.

(iii) η is the metric volume element of g, de�ned by ηαβγδ = −
√
−det g ϵαβγδ, where

det g is the determinant of the metric g in the considered basis and ϵαβγδ stands for

the Levi-Civita permutation symbol, ϵ0123 = 1. The Hodge (or star) dual operator

associated with η is denoted by an asterisk ∗. For instance, the dual spin 2-form ∗S has

components ∗(S)µν = 1
2
ηµνλρS

λρ, and if x, y, z are space-time vectors, one has that

[∗(x ∧ y ∧ z)]α = ηαβγδx
βyγzδ, (3)

where ∧ stands for the wedge or exterior product (antisymmetrized tensor product of

totally antisymmetric tensors).

(iv) Given P and Q second order tensors, the tensor P × Q denotes its matrix

product, or contraction of adjacent indices, that is

(P ×Q)µ
ν = Pµρ Q

ρν .

The trace of P is tr(P ) ≡ P µ
µ . Then, for the spin 2-form S one has

tr(S2) = tr(S × S) = −SµνS
µν , (4)

tr(S × ∗S) = −Sµν(∗S)µν . (5)

§ Accordingly with Eq. (1) and the chosen signature (−,+,+,+), the Dirac representation for the
γ-matrices associated with an orthonormal basis is taken as

γ0
D =

(
I2 02
02 −I2

)
, γ⃗D =

(
02 σ⃗

−σ⃗ 02

)
,

where I2 (02) is the 2× 2 unit (zero) matrix, and σ⃗ = (σ1, σ2, σ3) stands for the Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.
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(v) For a space-time observer of unit velocity u, u2 ≡ g(u, u) = −1, any vector x

splits as:

x = x0u+ x⊥, (6)

where x0 = −x · u ≡ −g(x, u) and x⊥ is orthogonal to u, g(u, x⊥) = 0. From now on,

we write x = (x0, x⃗), where x0 and x⃗ ∈ E⊥ are the time-like and space-like components

of x relative to u, respectively, and E⊥ denotes the three-space orthogonal to u. Given

two vectors x⃗, y⃗ ∈ E⊥, their vector or cross product is expressed as

x⃗× y⃗ = ∗(u ∧ x⃗ ∧ y⃗). (7)

The interior or contracted product by u is denoted by i(u). For instance, if S is

a covariant 2-tensor, one has that [i(u)S]ν = uµSµν is a covector but if S is a mixed

2-tensor, then [i(u)S]ν = uµS ν
µ is a vector.

A 2-form S is decomposed as

S = u ∧ e− ∗(u ∧ h), (8)

where e = −i(u)S and h = −i(u) ∗ S are the electric and magnetic part of S with

respect to u, respectively. Then,∥

∗S = u ∧ h+ ∗(u ∧ e). (9)

Note that to change S by ∗S, S ↪→ ∗S, is equivalent to change the electric and

magnetic parts of S as (e, h) ↪→ (h,−e).

(vi) The characteristic equation of a space-time 2-form S is

λ4 − Aλ2 − B2

4
= 0, (10)

where A and B are quadratic algebraic scalars de�ned as:

A ≡ 1

2
tr(S2) = e2 − h2, B ≡ 1

2
tr(S × ∗S) = 2 e · h. (11)

From (10), the eigenvalues of S are ±α and ±iβ, with

|α| = 1√
2

√√
A2 +B2 + A (12)

and

|β| = 1√
2

√√
A2 +B2 − A . (13)

Consequently,

A = α2 − β2, B = 2αβ . (14)

∥ For any space-time 2-form F , ∗(∗F ) = −F . An extensive treatment on the algebraic properties
of a space-time 2-form can be seen in Ref. [29, 30]. In Ref. [30], the covariant determination of the
eigendirections of F is applied to characterize the di�erential conditions allowing the permanence of
the null character of Maxwell �elds. For the physical meaning of the electric and magnetic parts of the
spin 2-form S, see Refs. [31, 32].
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(vii) A 2-form S is said to be regular if A2 + B2 > 0. Otherwise, A = B = 0,

and S is said to be singular. In terms of the eigenstructure of S one has the following

characterization:

(a) A 2-form S is regular if, and only if, there exist two vectors l, n and two algebraic

invariants α, β, with α2 + β2 ̸= 0 such that¶

i(l)S = −αl , i(n)S = αn ,

i(l) ∗ S = βl , i(n) ∗ S = −βn.
(15)

Then l and n are necessary null (light-like) vectors, l2 = n2 = 0, and are called the

principal directions of S. Moreover, S and ∗S admit the following canonical expressions

S = αn ∧ l + β ∗ (n ∧ l), (16)

∗S = β l ∧ n− α ∗ (l ∧ n), (17)

where, without loss of generality, we have chosen a parameterization of l and n such

that l · n = −1.

(b) A 2-form S is singular if, and only if, there exists a vector l such that

i(l)S = i(l) ∗ S = 0. (18)

Then l is necessarily null, l2 = 0, and de�nes the fundamental direction of S, which can

be expressed as

S = l ∧ p, (19)

where p is a determined space-like vector, up to the transformation p ↪→ p+ µl.

3. Spin eigenvector equations: relative formulation

In this section we express the eigenvector equations of a spin 2-form S with respect to

a given observer u. For a regular S, Eqs. (15) give the eigenstructure of S and ∗S,
where α and β satisfy α2 + β2 > 0 and l and n are the principal directions of S. For

the observer u, l and n decompose as

l = l0u+ l⃗, n = n0u+ n⃗ . (20)

Then, the relation i(l)S = −αl is equivalent to:

αl0 = l⃗ · e⃗ and αl⃗ = l0e⃗+ l⃗ × h⃗ , (21)

and the relation i(n)S = αn can be written as

αn0 = −n⃗ · e⃗ and αn⃗ = −n0e⃗− n⃗× h⃗ , (22)

e⃗ and h⃗ being the electric and magnetic part of S with respect to u, respectively.

¶ Vectors and covectors that are metrically equivalent are denoted with the same symbol without
chance of confusion. For instance, lµ = gµν l

ν is the covector associated to the vector l by the metric.
So, in the equation i(l)S = −αl, the l of the left side of the equation is a vector while the l of the right
side is a covector, when we consider S as an antisymmetric covariant 2-tensor.
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Replacing e⃗ by h⃗ and h⃗ by −e⃗ by means of the Hodge duality, the relations

i(l) ∗ S = βl, i(n) ∗ S = −βn in (15) lead to

βl0 = l⃗ · h⃗ and βl⃗ = l0h⃗− l⃗ × e⃗ , (23)

βn0 = −n⃗ · h⃗ and βn⃗ = −n0h⃗+ n⃗× e⃗, (24)

respectively. Thus, the principal directions, l and n, of a regular spin 2-form S satisfy

Eqs. (21)-(24).

For a singular S, the relations given in (18) lead to

l⃗ · e⃗ = 0 and l0e⃗+ l⃗ × h⃗ = 0 , (25)

l⃗ · h⃗ = 0 and l0h⃗− l⃗ × e⃗ = 0 , (26)

which can also be obtained just making α = β = 0 in (21) and (23). Thus, the

fundamental direction l of a spin 2-form S satis�es Eqs. (25)-(26).

Moreover, the eigenvalues, ±α and ±i β, of the spin 2-form S have a direct relation

with the bilinears Ω1 and Ω2 de�ned in (2). In fact, from the de�nition of S in (2) one

gets that+

tr(S2) = 2(Ω2
2 − Ω2

1), tr(S × ∗S) = 4Ω1Ω2.

Then, from Eqs. (11)-(14), one realizes that

α = Ω2 and β = Ω1. (27)

These relations (27) are consistent with the common appellation used for Ω1 and Ω2

as scalar and pseudo-scalar quantities, respectively. Let {eµ}3µ=0 an orthonormal tetrad

adapted to the geometry of a regular 2-form S, that is,

l =
1√
2
(e0 + e1), n =

1√
2
(e0 − e1). (28)

The parity transformation (e0, e1) ↪→ (e0,−e1) changes l by n and the space-time volume

element changes its sign, η ↪→ −η. Then, (S, ∗S) ↪→ (S,− ∗ S) and, according to Eqs.

(16) and (17), (α, β) ↪→ (−α, β), that is,

(Ω1,Ω2) ↪→ (Ω1,−Ω2) , (29)

under the considered spatial re�ection.

In the next section the algebraic structure of the spin 2-form S is connected to the

bilinear covariants associated with the fermionic �eld Ψ and the Fierz identities they

satisfy.

+ To obtain these results we use the fact that the matrix Z = 4ΨΨ̄ can be decomposed as

Z = Ω1I4 + Jµγ
µ +

i

2
Sµνγ

µγν +Kµγ
µγ5 − i Ω2γ

5,

since Z is not a general multivector but comes from the spinor Ψ. Notice that Z2 = (tr Z)Z, with
tr Z = 4Ω1.
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4. Algebraic interpretation of the Fierz identities

In Ref. [2], an overcomplete set of Fierz identities between the bilinear covariants for

any S ̸= 0 is reported. Using the notation introduced in section 2, these identities are

written as:∗

i(J)S = −αK, i(K)S = −αJ, (30)

i(J) ∗ S = βK, i(K) ∗ S = βJ, (31)

αS − β ∗ S = J ∧K, βS + α ∗ S = ∗(J ∧K), (32)

trS2 = 2(α2 − β2), tr(S × ∗S) = 4αβ. (33)

These overcomplete set can be reduced to an equivalent set of independent identities

according with the following statements.

(a) For a regular spin 2-form, S ̸= 0, the Fierz identities for the corresponding

fermionic �eld are the eigenvector equations for S and ∗S given by (15); they are

a set of 16 one-component relations. Then, the spin 2-form can be written as

S = αn ∧ l + β ∗ (n ∧ l) , (34)

where l and n are the principal null directions of S, and α and β provide the

eigenvalues of S and ∗S.
(b) For a singular spin 2-form, S ̸= 0, the Fierz identities for a fermionic �eld are

the eigenvector equations for S and ∗S, i(l)S = i(l) ∗ S = 0; they are a set of 8

one-component relations. Then, the spin 2-form is given by

S = l ∧ p , (35)

where l is the fundamental direction of S and p a space-like vector orthogonal to l.

(c) For a zero spin 2-form, S = 0, the Fierz identities for a fermionic �eld are

equivalent to the existence of two non-collinear density spinor currents, l and n,

that are null, l2 = n2 = 0, and may be parametrized by taking l · n = −1.

Note that Eq. (15) exclusively involves intrinsic algebraic elements associated with

S: its eigenvalues and eigendirections. Moreover, expressions in (15) can be applied

for any spin 2-form S ̸= 0, that is, when S is regular or singular. The singular case

corresponds to take α = β = 0. On the other hand, when S = 0, the Fierz identities

reduce to three algebraic scalar relations that constrain the causal character of the spinor

current densities.

In the following we present the proof of these statements in separated subsections

and comment on some of their consequences.

∗ They are referred as Eq. (1.3) in Ref. [2], and apply for any (regular or singular) spin 2-form. A
similar set of relations for these identities has been also considered in Ref. [20] and [3] (pages 136,
137). These identities are the starting point to establish the spinor reconstruction theorem (cf. Refs.
[11, 33, 34, 35, 36, 37]).
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4.1. Regular spin 2-form

In order to justify the statement (a), let us consider a regular spin 2-form S. From the

principal directions l and n and the invariants α and β appearing in Eqs. (15), let us

de�ne

Jξ ≡
√

1

2
(α2 + β2) (eξl + e−ξn) (36)

and

Kξ ≡
√

1

2
(α2 + β2) (eξl − e−ξn) , (37)

where ξ is a real parameter. Since l and n are null vectors, l2 = n2 = 0, and taking

l · n = −1 one has

−J2
ξ = K2

ξ = α2 + β2 > 0, Jξ ·Kξ = 0, (38)

for all ξ ∈ R. Moreover, a direct calculation leads to that for every real value ξ, the

double one-parametric family of currents {(Jξ, Kξ)}ξ∈R satis�es the relations (30)-(33).

Therefore, a regular spin 2-form S determines the spinor currents J and K, up to a

boost in the timelike plane {l, n} expanded by the principal directions of S, that is

Jξ = cosh ξ J + sinh ξ K ,

Kξ = sinh ξ J + cosh ξ K .

(39)

For ξ = 0, the spinors currents J0 ≡ J and K0 ≡ K are the associated to the spinor

Ψ0 ≡ Ψ as given in (2); and the relations (38) are called the bilinear Pauli identities (see

Ref. [33, 38, 39]). In addition, the pairs (Jξ, Kξ) satisfy Eqs. (38) and are the currents

for a family of spinors {Ψξ}ξ∈R, which share the same spin 2-form S for any value of ξ.

Note that, at each space-time event, for an observer e0 in the 2-plane {l, n} and

a unit space-like vector in this plane, e1 , orthogonal to e0, the parity transformation

(e0, e1) ↪→ (e0,−e1) interchanges the light-like currents l and n each in another and

tranforms the functions (α, β) into (−α, β). Consequently, from Eqs. (34) and

(35), the family of currents {(Jξ, Kξ)}ξ∈R remains invariant under the above parity

transformation, but its individual currents transform as Jξ ↪→ J−ξ and Kξ ↪→ −K−ξ. On

the other hand, from the time inversion (e0, e1) ↪→ (−e0, e1) one has (l, n) ↪→ (−n,−l),

and then (Jξ, Kξ) ↪→ (−J−ξ, K−ξ).

The spinor reconstruction theorem could be reformulated (for the regular case) in

terms of a set of seven elements (the 6 quantities of S and a real boost parameter ξ).

Moreover, this reformulation could be expressed explicitly in terms of the eigenstructure

of S and the ξ parameter. In fact, the eigenvalues of S are explicitly obtained in terms

of S from (12) and (13). Nevertheless, the explicit obtention of l and n in terms of S

requires to apply the projection method (used in Refs. [29, 30]), which is based on the

minimal polynomial equation that S satis�es.
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4.1.1. Relative formulation of the Fierz identities From now on, the index ξ will be

omitted in the spinor currents without loss of generality, since the relations (30)-(33)

are satis�ed for any ξ ∈ R, for the given regular spin 2-form S.

Note that the statement (a) also allows to express the Fierz identities in a 3-

dimensional formulation. In order to do it, let us split J and K as J = (j0, j⃗) and

K = (k0, k⃗), for a given observer u. Then, by addition and subtraction of the scalar

equations (time-like parts) in Eqs. (21), (22), (23) and (24) between them, one gets:

αj0 = k⃗ · e⃗ , (40)

αk0 = j⃗ · e⃗ , (41)

βj0 = k⃗ · h⃗ , (42)

βk0 = j⃗ · h⃗ , (43)

where we have taken into account that α2 + β2 > 0. Similarly, for the space-like parts

of the same Eqs. (21), (22), (23) and (24), one obtains

αj⃗ = k0e⃗+ k⃗ × h⃗ , (44)

αk⃗ = j0e⃗+ j⃗ × h⃗ , (45)

βj⃗ = k0h⃗− k⃗ × e⃗ , (46)

βk⃗ = j0h⃗− j⃗ × e⃗ . (47)

Then, Eqs. (40)-(47) provide the local physical interpretation (i. e. the relative

formulation with respect a local space-time observer) of the eigenvector equations for a

regular spin 2-form. In section 5, this result is compared with the one obtained in Ref.

[6].

4.2. Singular spin 2-form

In order to justify the statement (b), let us consider a singular spin 2-form S and its

fundamental direction l, which satis�es Eqs. (25)-(26). Now, l is the unique fermionic

light-like density current. Then, the singular case may be understood as a limit situation

of the regular case when α2 + β2 → 0. These can be interpreted in two di�erent ways

from expressions (38):

(b1) The two fermionic currents are light-like and collinear. This is equivalent to

consider that ξ → ±∞ in expressions (39) and corresponds to take a boost in the 2-plane

{l, n} whose velocity goes to the light velocity (tanh ξ → ±1).

(b2) One of the currents becomes light-like and the other one goes to zero, that is,

Jξ ≡ l and Kξ = 0, or reciprocally. In fact, Eq. (25) is equivalent to Eqs. (43) and (47)

by taking α = 0, or (k0, k⃗) = 0, and replacing (j0, j⃗) ↪→ (l0, l⃗). In a similar way, Eq.

(26) is equivalent to Eqs. (43) and (47) by taking β = 0 and the above replacement,

(j0, j⃗) ↪→ (l0, l⃗).

Thus, for the singular case, only the 8 relations given in (25)-(26) are non-trivial

and signi�cantly encode the Fierz identities.
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4.3. Zero spin 2-form, S = 0

Statement (c) says that there exist two density equimodular and orthogonal four-

currents, J and K, one being time-like and the other one being space-like, that is

J2 = −K2 < 0 and J ·K = 0. In fact, one can realize that the 21 relations obtained in

Ref. [6] reduce to the three constraining relations on the vector and the axial density

currents associated with the spinor �eld (see Eqs. (54) and (55) later, in the next

section). Actually, there exist a one-parameter family of spinors having S = 0 and two

currents (39) de�ning the same timelike 2-plane.

5. Fierz identities and electron local observables constraints

In Ref. [6] a set of 21 algebraic equations relating the 16 electron local observables

(there denoted as j0, j⃗, f0, f⃗ , b, g, c⃗ and d⃗) is given. In this section, this set of equations

is compared with the ones obtained in the previous section. To make the comparison

clearer, we �rst report the correspondence between our notation and the one used in

Ref. [6]:

α → g , (48)

β → b , (49)

e⃗ → − d⃗ , (50)

h⃗ → − c⃗ , (51)

(j0, j⃗) → (j0, j⃗) , (52)

(k0, k⃗) → (f 0, f⃗) . (53)

Next, the set of 21 relations established in section 4 is rewritten using this

correspondence in notation and conveniently ordered as:

(i) Currents constraining relations (3 equations):

j20 − j⃗ 2 = b2 + g2 = −f 2
0 + f⃗ 2, (54)

j0f0 = j⃗ · f⃗ , (55)

which correspond to Eqs. (38) since the scalar products are referred to an inertial

frame, as well as j0 = −j0 and f0 = −f 0, according with the chosen Minkowski

metric signature. These three equations correspond to Eq. (31) in Ref. [6] (here

underlined).

(ii) The spin algebraic relations derived from S (2 equations):

bg = c⃗ · d⃗ , (56)

b2 − g2 = c⃗ 2 − d⃗ 2 , (57)

which are Eqs. (11) and (14). The �rst equation, Eq. (56), corresponds to Eq.

(26.2b), and the second one, Eq. (57), results by subtracting (27.3) from (27.2) in

Ref. [6].
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(iii) The scalar relations among the 16 bilinear forms (4 equations):

gj0 = − f⃗ · d⃗ , (58)

gf 0 = − j⃗ · d⃗ , (59)

bj0 = − f⃗ · c⃗ , (60)

bf 0 = − j⃗ · c⃗ , (61)

that is, Eqs. (40), (41), (42) and (43), which, in increasing numbered order,

correspond to Eqs. (26.3b), (26.1b), (26.3a) (26.1a) in Ref. [6], respectively.

(iv) The 3-vectorial Euclidian relations among the 16 bilinear forms (12 equations):

gj⃗ = − f 0d⃗− f⃗ × c⃗ , (62)

gf⃗ = − j0d⃗− j⃗ × c⃗ , (63)

b⃗j = − f 0c⃗+ f⃗ × d⃗ , (64)

bf⃗ = − j0c⃗+ j⃗ × d⃗ , (65)

that is, Eqs. (44), (45), (46) and (47), which, in increasing numbered order,

correspond to Eqs. (28.6), (28.2), (28.7), (28.3) in Ref. [6], respectively.

Therefore, we have shown that the set of 21 equations given in Ref. [6] is equivalent

to the speci�cation of the algebraic structure of S and ∗S. Furthermore, up to linear

combinations, this set transforms into Eqs. (36), (37) and (38) in Ref. [6], which are,

respectively, 6 scalar type equations, 9 vector type equations and 6 tensor type one

component relations.

6. The role of the spin 2-form in the spinor classi�cation

The algebraic classi�cation of a four component space-time spinor (Lounesto

classi�cation) [28] is made by means of its bilinear covariants, given by (2), taking into

account the Fierz identities. This classi�cation splits in six algebraic types of spinors,

which are characterized according to the possible nullities of the algebraic invariants α

and β, the spin 2-form S, and the current K (the current J is taken nonzero) [28]:

(i) α ̸= 0, β ̸= 0.

(ii) α = 0, β ̸= 0.

(iii) α ̸= 0, β = 0.

(iv) α = β = 0, S ̸= 0, K ̸= 0.

(v) α = β = 0, S ̸= 0, K = 0.

(vi) α = β = 0, S = 0, K ̸= 0.

The Lounesto classi�cation of a spinor points out the role played by the spin 2-

form S in distinguishing the general class to which a fermionic �eld belongs. From an

algebraic point of view, the generic class S ̸= 0 splits into two subclasses with di�erent

algebraic character (regular or singular) of S.
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The regular class splits in the types (i), (ii) and (iii) of the Lounesto classi�cation,

and corresponds to Dirac fermionic �elds while the singular class splits in the type (iv)

of �ag dipole spinors and the type (v) of �ag pole-spinors. Concretely, types (iv) and

(v) are identi�ed with cases (b1) and (b2) obtained as a limit situation of the regular

case in subsection 4.2, respectively.♯

The non generic class S = 0 is the Lounesto type (vi) and contains the Weyl (or

massless) neutrino �eld.

The null eigendirections of S and ∗S does not change under a rotation of dualitity,

S̃ = (cos θ)S + (sin θ) ∗ S,

∗S̃ = −(sin θ)S + (cos θ) ∗ S,
(66)

but α and β transform according with:

α̃ = α cos θ − β sin θ, β̃ = α sin θ + β cos θ, (67)

and keeping that α̃2+ β̃2 = α2+β2. Consequently, the current family {Jξ, Kξ}ξ∈R given

by (36) and (37) is invariant under the transformation (66). But, the quadratic scalars

A and B, given by (11), transform as a rotation of angle 2θ,

Ã = A cos 2θ −B sin 2θ, B̃ = A sin 2θ +B cos 2θ , (68)

or equivalently,

α̃2 − β̃2 = (α2 − β2) cos 2θ − 2αβ sin 2θ,

2α̃β̃ = (α2 − β2) sin 2θ + 2αβ cos 2θ.
(69)

For this reason, one has that a duality rotation does not change the regular or

singular character of the 2-form S but it can move the spinor from one spinor type to

another one inside the same subclass (regular or singular) in the spinor classi�cation. For

the regular case, according to (67), the Yvon-Takabayasi angle†† changes by a rotation

of duality.

7. Conclusions and further considerations

In particle physics, for example in the β-decay theory or similar situations in electroweak

interactions, Fierz identities involve algebraic constraints between interacting fermionic

�elds. To deepen in the essential information that such identities encode, we have

♯ This two types have been further analyzed in Ref. [40]. Moreover, type (iv) has also been recently
studied in Refs. [41, 42] where the possibility J = 0 is also contemplated, and type (v) contains the
Majorana fermions and the Elko fermions, both being eigenspinors of the charge conjugation operator
[43, 44, 45, 46, 47, 48, 49]; for a recent physical discussion on this issue see Ref. [50, 51].
††For a spin 2-form S, having invariants α and β, the Yvon-Takabayasi (YT) angle, τ , is de�ned as
τ ≡ tan−1(α/β) = tan−1(Ω2/Ω1) (see Eq. (23) in Ref. [52], and Eq. (210) in Ref. [11]). Notice that
there exists an evident mathematical similitude and correspondence beetween the YT angle and the
Rainich's index [53]. This similitude would help to clarify the physical meaning of the YT angle, if a
conclusive meaning is de�nitively achieved. For some historical remarks and the state of the art about
the physical interpretation of the YT angle see Refs. [54, 55, 56, 57].
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considered the case of a single fermionic �eld. Then, expressing the eigendirections of

a Lorentzian 2-form with respect to an inertial observer (section 3), the Fierz identities

are interpreted in terms of the eigenstructure of the spin density tensor S, both in the

regular and the singular cases (section 4). This study displays how large Fierz identities

appear closely related to the Hestenes space-time algebra.

In Ref. [6] by Minogin, a set of 21 identities that the bilinear electron observables

satisfy were obtained and written in a suitable 3-dimensional Euclidean notation (see

section 5, which summarizes sections 4 and 5 of Ref. [6]). In this paper, a geometric

interpretation of an equivalent set of identities based on the eigenvector relations ful�lled

by S and ∗S has been performed. The di�erences between both sets have been analyzed.

In section 6, the relation of the Fierz identities and the duality rotation with the algebraic

types of the spinor classi�cation has been established.

The algebraic interpretation of the essential Fierz identities between the bilinear

covariants constructed with two spinors in terms of their spin 2-forms requires further

investigation. The existence or not of any connection between the eigenstructures of

a pair of interacting spin 2-forms should be the starting point to extend forward the

present research: (i) the interpretation of the Fierz identities for a pair of fermion �elds,

and (ii) the algebraic classi�cation of the energy tensor of a sole fermionic �eld [9], which

involves the bilinear covariants constructed from the �eld and its �rst derivatives.

Originally, the Fierz identities come from the restrictions that a change of basis

in the space-time induces on the basis of the Minkowski exterior algebra (speci�ed by

four vectors, six 2-planes and four 3-planes). This geometric vision of the whole Fierz

identities is related with the causal classi�cation of the the space-time frames [25]. In

fact, this classi�cation results from the analysis of the whole set of constraints between

the causal characters of the 14 geometric elements of a space-time frame: its 4 directions,

its 6 two-planes and its 4 three-planes. This consideration will help to explore whether

there exists a deeper connection between the Lorentzian structure of the space-time

geometry and the fundamental interactions between elementary particles.

At this point, we would like to add a historical comment. In Ref. [58] (page 1396,

footnote 17), Uhlenberg and Laporte acknowledge a private communication by Rainich

concerning some results and a �rigorous proof of the fact that the Dirac equations possess

only two algebraic quadratic invariants�. In Ref. [59], this idea was further developed.

It seems that Rainich [53] considered the possibility of describing the electron spin

observables constraints on the basis of the algebraic classi�cation of electromagnetic

�elds in Minkowski space-time. This work goes on this Rainich's pioneering idea.
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