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With this research, we apply range-resolved interferometry (RRI) to the maintenance of wind turbines using some of the most
relevant machine-learning (ML) techniques. Te degeneration of electrical and mechanical components of wind turbines can be
predicted, detected, and anticipated using this method of automatic and autonomous learning. Te vibrations in two diferent
failure states are detected with the help of a scanner laser. In-process measurements taken by RRI agree with manual mea-
surements, laser scanning measurements, and in-process hand measurements made following each working cycle. Consequently,
the proposed method will be very useful for monitoring and diagnosing faults in wind turbines. Te system will also be able to
perform low-cost in-process measurements.

1. Introduction

Te development of new techniques for maintaining wind
power infrastructure in recent years has increased wind
production by about 80% [1]. Monitoring and fault diagnosis
can improve the reliability, safety, and proftability of a wind
turbine. Traditionally, fault tree analysis and spectral anal-
ysis have been used to maintain wind turbines.

As digital and mobile technology advances, artifcial
intelligence is becoming more popular. In these felds,
machine learning is having an even greater impact due to
new hardware and cloud-based solutions [2]. Te cause of
vibration is usually a mechanical or electrical failure. It is
also possible to detect failures of gears and bearings by
vibrations. Rolling elements wear primarily because their
surface position changes continuously as the load increases.
Introducing new hardware and cloud-based solutions has
made machine learning even more impactful in these areas
[3]. Besides geometric imperfections, vibrations can also
occur as a result of the failure of components, cage failures,
imbalances, and misalignments. Te central point of

illumination and detection provided by interferometric
techniques (including RRI) makes it easier to integrate them
into mounting structures. As an interferometric technique
similar to RRI [4–6], optical coherence tomography (OCT)
is widely used inmonitoring. In principle, OCTcan achieve a
resolution of 0.01mm (compared to RRI’s maximum
working range of 10 cm). Consequently, self-referencing 3D
scanners cannot be determined using OCT systems because
their operating range is limited. Furthermore, typical swept-
source OCT systems for monitoring processing applications
cost about $200 k, which compromises the low-capital-cost
advantage of surveillance and fault detection. As a result of
its use of monolithic laser diodes and fbre components that
are less expensive than traditional systems, RRI’s OCT
system compares favourably against conventional systems,
which utilize expensive laser sources. Machine learning
works perfectly with AI [7]. Tere are some limitations to
this type of methodology, as well as some drawbacks.
Maintenance methodologies allow automatic detection,
detection, and categorization of malfunctioning functions.
Machine learning reduces response times, reduces errors,
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and allows for fexible ofshore implementation and feed-
back learning through the use of data management and
analysis. To implement AI on a real system without causing
costly errors, the method must be validated. With AI
methodologies, all types of failures can be analysed and
prevented [8]. Te use of prototypes and test benches is
helpful whenever you are developing new techniques,
conducting studies, and so on. When validating fault di-
agnosis techniques, it is also helpful to understand how these
systems work. Broken wind turbines are expensive to re-
place, as well as losing energy, since they cannot produce
power during peak times.

In ofshore wind farms with expensive repair and
maintenance costs, detecting and diagnosing faults early is
essential if the machine is to be stopped [9]. To reduce
downtime and defective product costs, maintenance activ-
ities must be managed efciently. Our prototype detects
failures, supervises them, and anticipates them based on
algorithms that anticipate and prevent problems. Te study
presents a method for monitoring and diagnosing faults in a
prototype wind turbine using vibration analysis and RRI
techniques. Diferent bearing failure types can be detected
automatically using the algorithm presented here. Data
collection and analysis were followed by a comparison of the
results after a literature review. Te study ends with several
conclusions.

2. Research Methodology

In turbine bearings, vibration can be detected and moni-
tored with diferent methods based on the bearing’s char-
acteristics. Because of this, the characteristics of the bearing
may not always match the characteristics of the fault.
Trough machine learning and laser scanning, we demon-
strate how vibration measurements from another bearing
can improve accuracy and predict failure.

2.1. Artifcial Intelligence. In wind turbine fault detection,
machine-learning techniques focus on detecting anomalous
behaviour and classifying faults. Additionally, this technique
enables a quick response to failures or anticipated problems,
enhancing both the performance and the security of the
system.Most machine-learningmethods are supervised [10].
Te output of supervised learning is already known. Un-
supervised learning has no known outcome. Incoming and
outgoing processes are the same. In contrast to supervised
learning, only binary logic is required for unsupervised
learning. Tere is no use of references. Data must frst be
classifed before any type of learning can be applied. Te
solution to this problem can be achieved by using a variety of
classifcation algorithms. For a wind turbine, k-nearest
neighbor (KNN) and support vector machine (SVM) are two
of the most important algorithmic classifers [11].

2.2. Support Vector Machines. An SVM is a machine-
learning algorithm based on statistical learning theory. Tis
method works well for classifcation and regression, such as
in fault diagnosis, when we use small samples. It is shown

that a linear classifer can separate two simple classes. Tese
two types of samples are represented by triangles and
squares in Figure 1. Two classes can be separated by a
hyperplane H. In these two classes, the planes H1 and H2
(shown in dashed lines) are parallel to H and pass-through
samples that are closest to H. Margins are calculated by
taking the distance between H1 and H2. In the SVM, linear
boundaries are placed between two distinct classes H1 and
H2. Te margin is maximized, so the generalization error is
the smallest. Support vectors are often used to measure
margins, and they include the closest points to the margin
[12]. A quadratic function is minimized under linear in-
equality constraints by reducing it to convex optimization
[12]. Assume that we have a training set of samples
[(xi, (yi)], where i� 1 to N, and N represents the total
number of samples. To fnd the separation plane with the
least generalization error out of each linear separation plane,
we need to determine how to divide the input samples into
two classes. It is possible to divide the samples into two
classes, i.e., triangular and square. A triangle class has a (yi �

−1 label. A square class has a yi � +1 label. For nonseparable
data, slack variables are not considered (nor P 0). Using the
following optimization problem, you can obtain the hy-
perplane for f (x)� 0 from the given data:
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where C is a constant representing the error penalty. In-
troducing Lagrange multipliers to the optimization problem
above leads to the following result:
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Tere are several advantages and limitations to AI
classifers, as shown in Table 1.

Te use of machine learning has recently demonstrated
state-of-the-art performance in areas such as computer vi-
sion, audio recognition, and fault diagnosis [13], and sup-
port vector machines (SVM) and k-nearest neighbour
(KNN) have been used to diagnose rotating machinery
faults. AI classifers are compared in Table 2.

2.3. Range-Resolved Interferometry (RRI). Monolithic laser
diodes are a more cost-efcient alternative to OCT that can
be utilized with RRI via diferent processing algorithms. It is
described in [14, 15] how RRI works. As part of this tech-
nique, a diode laser is modulated with a sinusoidal optical
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frequency, and refected light is delivered from a target (layer
surface), and the light refected from a fbre tip is interfered.
Using a smooth window function to demodulate an inter-
ference signal gives a sinusoidal signal with a frequency
indicating how far away the target was from the fbre tip and
amplitude indicating the intensity of the refection.
Whenever sinusoids whose amplitudes exceed a certain
threshold are recorded, their centre position relative to the
fbre tip position is measured.

2.4. Implementation of Scanned RRI. Following the meth-
odology, study, and design carried out by [6], RRI’s in-
strument provides a 4.8 kHz data rate. In Figure 2, the data
output is the galvanometer scan angle and the signal amplitude
(corresponding to the distance along the laser beam from the

fbre tip at each instance). According to [6] the RRI head unit
can convert polar coordinates into Cartesian coordinates using
the geometrical relations given in equations (3)–(5) using the
distance between the galvanometer mirror and the refection
and the galvanometer angle:

QC � a − al( 􏼁cos θ, (3)

WC � a − al( 􏼁sin θ, (4)

tC � 0. (5)

In addition to the galvanometer angle, the distance between
the galvanometer and the refection d, as well as the distance
between the galvanometer and the fbre tip al determines the
galvanometer angle θ. It is possible to accurately calibrate the

+ve class
-ve class

Margin

Separating
Hyperplane

Support Vectors

Figure 1: Optimal hyperplane for binary classifcation by an SVM.

Table 1: Artifcial intelligence: advantages and limitations.

Algorithm Advantages Limitations

SVM High sorting accuracy
Can deal with high-dimensional features

Low efciency for big data
No physical meaning

Deep learning Automatic fault recognition and learning features
It does not need the function extractor

Large sample needs
No physical meaning
A lot of training

Table 2: Performance comparison.

SVM Deep learning
Sorting speed ∗∗∗ ∗
Overall accuracy ∗∗∗ ∗∗∗
Noise robustness ∗ ∗∗∗
Overftting ∗ ∗∗
Robustness to parameters ∗ ∗∗
Physical explanation ∗ ∗
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galvanometer length by turning the mirror directly back to-
wards the fbre tip with the RRI instrument. According to [6] if
the galvanometer mirror angle θ is zero and the beam is angled
vertically, then the equation describes a two-dimensional case in
which components on the y-axis are absent (i.e., the 3D diagram
shown in Figure 2). Tus, the RRI instrument outputs a point
cloud that describes refections occurring at specifc spatial
locations and times qc, wc, tc, each given by an array of values
[6].

3. Case Study

Detailed information is provided regarding the industrial
environment, the components, and the location of the laser
within the system in the report. We also explore a method of
acquiring data.

3.1. Prototype. Figure 3 illustrates how a small wind tur-
bine’s parts wear and deteriorate, along with its efects [16].
By testing diagnostic techniques before deterioration oc-
curs, parts can be replaced before deterioration occurs. It is
possible to install the scanning laser at diferent locations
on the prototype wind turbine. It is possible to position the
scanning laser in each stage of the multiplier based on state
monitoring techniques and machine design. Input bearings
can be monitored with a laser for vibrations caused by fast
shaft coupling to generators. Tere will be a propagation of
the signal between the stages, and various failures will afect
the vibrations. On the slow axis, there is also an interesting
bearing for measuring the prototype. It is possible to re-
place this element in some damaged bearings to determine
how the signal behaves after failure as well as how the
bearing itself deteriorates over time. For this research, we
have used the Torlabs GVS005 Galvo scanner and an
adjustable collimator.

3.2. Data Collection. Te galvo scan occurred 90 seconds
after calibration, corresponding to a position along the y-axis
of 1848mm. We measured 7.8 θ angular amplitude with an
angular frequency of 28Hz and 3.9 kHz data rate. Te RRI
instrument falls below detected noise levels on steeper sides
due to too much light refection [6]. Because the angled
sidewalls scatter more light, the RRI instrument will have

better coverage of the sidewalls for materials with less
specular refection. Python scripts are used to control the
measurements of RRI instruments, and they need to be
started manually each time a measurement is conducted.

 . Results

Te simulation is successfully run using the laser scanning
data provided in the previous section. From 0 to
1500 rpm, the prototype is capable of rotating at fve
diferent speeds. Te medium speed in this case was
300 rpm. Wind turbine failures can be tracked, diagnosed,
and prevented with automated learning systems. Based on
an average of 5000 samples generated by a scanning laser,
a 3.9 kHz graphical presentation was generated. In ad-
dition to tracking, preventing, and diagnosing wind
turbine failures, automated learning systems can also
predict them. When an algorithm is properly trained, it
can analyse and categorise data independently after re-
ceiving feedback, enabling it to correctly predict the
future. A good stage and an imbalance were simulated
during the simulation. Te data were acquired using a
galvo-laser scanner, then fltered and then processed,
resulting in four phases of analysis. It is not possible to
analyse a signal generated at random. Te conditioning
and processing of machine-learning algorithms are es-
sential for extracting patterns from signals of this type.
Furthermore, the signal is hard to analyse and learn from
because of its time variations. First, the algorithm must be
fltered and conditioned to ensure that it will work
correctly. A signal processing algorithm reads the in-
variant characteristics of a signal in time. Identifying
faults and conditions requires the extraction of features.
Arithmetic means are calculated based on the number of
tests and examples of each problem. A principal com-
ponent analysis is then used to reduce the dataset to the
minimum number of variables necessary to represent the
original variables. Moreover, we can determine the
standard deviation for each of the stipulated failure
conditions to make future decisions based on a better
understanding of the current state. Compared to the
average, there are many dispersed states in the data, which
means the model should work. Each one-of simulation
will be defned and explained. First, the mathematical

Figure 2: Scanned range-resolved interferometry for 3D implementation.
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Figure 3: Wind turbine test bench.
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Figure 4: (a) Imbalance: predicted output algorithm. (b) Good stage: predicted output algorithm.
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processes explained above are used to generate the two
simulated states. An imbalance can be seen as in
Figure 4(a). Tis machine-learning algorithm consists of a
few interesting aspects to be defned. An imbalance in the
wind turbine prototype is perfectly illustrated by the plot
obtained from Python scripts. Some points appear to have
been misinterpreted as noise by the 3D laser scanner
postprocessor. Considering the limits we have used in this
case, the imbalance algorithm may be outdated. Te
bearing stage shown in Figure 4(b) is a good one. Scanner
laser data are very stable over time. Tere are over 5000
diferent points presented in total. Te algorithm some-
times makes a mistake in predicting the good stage when
there is nothing, but unknowable factors are involved.

In both cases, the data can be grouped well by combining
AI algorithms with laser scanning software. Stages are
classifed and analysed correctly. No matter what the failure
conditions are (imbalance or good stage), the algorithm
produces highly accurate predictions.

Te combination of artifcial intelligence and 3D scanner
lasers is therefore considered to have great potential for
future development in the maintenance sector, as our wind
turbine prototype worked well with the variables, simula-
tions, and results we considered, allowing us to accurately
forecast failures.

5. Conclusions

For AI to be successful and operate properly, data must be
acquired and classifed. Te combination of scanning lasers
and machine-learning systems makes it easier to detect,
monitor, and diagnose faults in wind turbines. Wind
turbine bearing failures are diagnosed and prevented
through vibration analysis by combining both technolo-
gies. With the RRI instrument, it is easier to supervise in-
process activities and diagnose failures. Tere were no
signifcant diferences in quality between results obtained
before and after processing. Up to a scanning angle of 4
degrees, galvanometer measurements of RRI provide good
coverage of the bearing.

By combining AI and scanning lasers, bearing faults can be
diagnosed, which has the advantages such as robustness, high
accuracy, and high processing speed, making it very suitable for
this type of study. Due to the method’s efectiveness, it can be
applied to other mechanical components of wind turbine
prototypes to identify or prevent potential failures. A prototype
can be used to study, develop, and validate fault diagnosis and
supervision techniques, as well as replace worn or defective
parts with new ones. Tests are conducted on prototype wind
turbines to evaluate diagnostic algorithms that are going to be
installed in high-performance turbines. As a result, cost and
time savings are achieved, and algorithms can be verifed,
adjusted, and corrected.
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