Document downloaded from:

http://hdl.handle.net/10251/202263
This paper must be cited as:

Alarcén, B.; Gutiérrez Gil, R.; Lucas Alba, S. (2006). Context-Sensitive Dependency Pairs.
Lecture Notes in Computer Science. 4337:297-308. https://doi.org/10.1007/11944836_28

The final publication is available at

https://doi.org/10.1007/11944836_28

Copyright - gpringer-Verlag

Additional Information

Context-Sensitive Dependency Pairs*

Beatriz Alarcén, Raul Gutiérrez, and Salvador Lucas

DSIC, Universidad Politécnica de Valencia, Spain
{balarcon, rgutierrez, slucas}@dsic.upv.es

Abstract. Termination is one of the most interesting problems when
dealing with context-sensitive rewrite systems. Although there is a good
number of techniques for proving termination of context-sensitive rewrit-
ing (CSR), the dependency pair approach, one of the most powerful tech-
niques for proving termination of rewriting, has not been investigated in
connection with proofs of termination of C'SR. In this paper, we show
how to use dependency pairs in proofs of termination of CSR. The im-
plementation and practical use of the developed techniques yield a novel
and powerful framework which improves the current state-of-the-art of
methods for proving termination of CSR.

Keywords: Dependency pairs, term rewriting, program analysis, termination.

1 Introduction

A replacement map is a mapping p : F — P(N) satisfying p(f) C {1,...,k}, for
each k-ary symbol f of a signature F [Luc98]. We use them to discriminate the
argument positions on which the rewriting steps are allowed. In this way, for a
given Term Rewriting System (TRS [Ohl02,Ter03]), we obtain a restriction of
rewriting which we call context-sensitive rewriting (CSR [Luc98,Luc02]). In CSR
we only rewrite u-replacing subterms: ¢; is a p-replacing subterm of f(t1,...,tx)
if i € u(f); every term ¢ (as a whole) is p-replacing by definition. With CSR we
can achieve a terminating behavior with non-terminating TRSs, by pruning (all)
infinite rewrite sequences. Proving termination of CSR has been recently recog-
nized as an interesting problem with several applications in the fields of term
rewriting and programming languages (see [DLMMU06,GM04,Luc02,Luc06] for
further motivation).

Several methods have been developed for proving termination of C'SR under
a replacement map u for a given TRS R (i.e., for proving the p-termination
of R). In particular, a number of transformations which permit to treat ter-
mination of CSR as a standard termination problem have been described (see
[GM04,Luc06] for recent surveys). Direct techniques like polynomial orderings

* This work has been partially supported by the EU (FEDER) and the Span-
ish MEC, under grant TIN 2004-7943-C04-02, the Generalitat Valenciana un-
der grant GV06/285, and the ICT for EU-India Cross-Cultural Dissemination
ALA/95/23/2003/077-054 project.

and the context-sensitive version of the recursive path ordering have also been
investigated [BLR02,GL02,Luc04b,Luc05]. Up to now, however, the dependency
pairs method [AG00,GAO02,GTS04,HM04], one of the most powerful techniques
for proving termination of rewriting, has not been investigated in connection with
proofs of termination of CSR. In this paper, we address this problem.

Roughly speaking, given a TRS R, the dependency pairs associated to R
conform a new TRS DP(R) which (together with R) determines the so called
dependency chains whose finiteness or infiniteness characterize termination of R.
Given a rewrite rule | — r, we get dependency pairs I# — s* for all subterms s of
r which are rooted by a defined symbol'; the notation ¢ for a given term ¢ means
that the root symbol f of ¢ is marked thus becoming f* (often just capitalized:
F). A chain of dependency pairs is a sequence u; — v; of dependency pairs
such that o(v;) rewrites to o(u;4+1) for some substitution o and ¢ > 1. The
dependency pairs can be presented as a dependency graph, where the absence
of infinite chains can be analyzed by considering the cycles in the graph. These
basic intuitions are valid for CSR, although some important differences arise.

Ezample 1. Consider the following TRS R [GM99, Example 1]:

c — a f(a,b,X) — £(X,X,X)

c— b
together with u(£f) = {3}. As shown by Giesl and Middeldorp, among all existing
transformations for proving termination of CSR, only the complete Giesl and
Middeldorp’s transformation [GM04] (yielding a TRS RY,) could be used in this
case, but no concrete proof of termination for RY, is known yet. Furthermore,
RY. has 13 dependency pairs and the dependency graph contains many cycles.
In contrast, R has only one context-sensitive (CS-)dependency pair

F(a,b,X) —> F(X,X,X)
and the corresponding dependency graph has no cycle (due to the replacement

restrictions, since we extend p by u(F) = {3}). As we show below, a direct (and
automatic) proof of u-termination of R is easy now.

Basically, the subterms in the right-hand sides of the rules which are considered
to build the CS-dependency pairs must be p-replacing terms. However, this is
not sufficient to obtain a correct approximation. The following example shows
the need of a new kind of dependency pairs.

Ezample 2. Consider the following TRS R:

a -> c(f(a))

f(c(X)) > X
together with pu(c) = @ and wp(f) = {1}. There is no p-replacing subterm s
in the right-hand sides of the rules which is rooted by a defined symbol. Thus,
there is no ‘regular’ dependency pair. We could wrongly conclude that R is
p-terminating, which is not true:

f(a) —, £(c(f(a))) f(a) —, -

1 A symbol f is said to be defined in a TRS R if R contains a rule f(I1,...,lx) — 7.

Indeed, we must add the following dependency pair
F(c(X)) —> X

which would not be allowed in Arts and Giesl’s approach because the right-hand
side is a variable.

After some preliminaries in Section 2, Section 3 introduces the general framework
to compute and use context-sensitive dependency pairs for proving termination of
CSR. The introduction of a new kind of dependency pairs (as in Example 2) leads
to a new notion of context-sensitive dependency chain. We prove the correctness
and completeness of the new approach, i.e., our dependency pairs approach fully
characterize termination of CSR. We also show how to use term orderings for
proving termination of CSR by means of the new approach. Furthermore, we are
properly extending Arts and Giesl’s approach: whenever p(f) = {1,...,k} for
all k-ary symbols f € F, CSR and ordinary rewriting coincide; coherently, our
results boil down into the standard results for the dependency pair approach.
Section 4 shows how to compute the (estimated) context-sensitive dependency
graph and investigates how to use term orderings together with the dependency
graph to achieve automatic proofs of termination of CSR within the dependency
pairs approach. Section 5 adapts Hirokawa and Middeldorp’s subterm criterion
[HMO04] to CSR. Section 6 provides an experimental evaluation of our techniques.
Section 7 concludes. The proofs are given in an appendix.

2 Preliminaries

Throughout the paper, X denotes a countable set of variables and F denotes a
signature, i.e., a set of function symbols {f, g, ...}, each having a fixed arity given
by a mapping ar : F — N. The set of terms built from F and X is T (F, X).
Positions p, q, ... are represented by chains of positive natural numbers used to
address subterms of t. Given positions p, ¢, we denote their concatenation as p.q.
If p is a position, and @Q is a set of positions, p.Q = {p.q | ¢ € Q}. We denote the
topmost position by A. The set of positions of a term ¢ is Pos(t). Positions of
non-variable symbols in ¢ are denoted as Posz(t), and Posx (t) are the positions
of variables. The subterm at position p of ¢ is denoted as t|, and t[s], is the term
t with the subterm at position p replaced by s. We write t> s if s = ¢|,, for some
p € Pos(t) and t > s if t > s and t # s. The symbol labelling the root of ¢ is
denoted as root(t). A contest is a term C € T(F U {0}, X) with zero or more
‘holes’ O (a fresh constant symbol).

A rewrite rule is an ordered pair (I,r), written | — r, with I,r € T(F,X),
I ¢ X and Var(r) C Var(l). The left-hand side (lhs) of the rule is [and r is the
right-hand side (rhs). A TRS is a pair R = (F, R) where R is a set of rewrite
rules. Given R = (F, R), we consider F as the disjoint union F = C W D of
symbols ¢ € C, called constructors and symbols f € D, called defined functions,
where D = {root(l) | | - r € R} and C = F — D.

Context-sensitive rewriting. A mapping p : F — P(N) is a replacement map
(or F-map) it Vf € F, u(f) C{1,...,ar(f)} [Luc9s]. Let M be the set of all

F-maps (or Mg for the F-maps of a TRS (F, R)). A binary relation R on terms
is p-monotonic if ¢t R s implies f(t1,...,ti—1,t, ..., tk) R f(t1, .. ti—1,8, ..., tk)
for all f € F, i € u(f), and ¢,s,t1,...,tx € T(F,X). The set of p-replacing
positions Pos"(t) of t € T(F,X) is: Pos"(t) = {A}, if t € X and Pos(t) =
{4} UUicp(roor(sy) -Pos”(tli), if t & X. The set of replacing variables of ¢ is
Var#(t) = {x € Var(t) | Ip € Pos"(t),t|, = z}. The p-replacing subterm
relation >, is given by ¢ >, s if there is p € Pos"(t) such that s = t|,. We write
t>, sif t>, s and t # s. In context-sensitive rewriting (CSR [Luc98]), we (only)
contract replacing redexes: ¢t p-rewrites to s, written t <, s (or ¢t —x , s and
even t — s), if t g s and p € Pos”(t). A TRS R is p-terminating if <, is
terminating. A term ¢ is pu-terminating if there is no infinite u-rewrite sequence
t=1t, —,ta =, =, ty —, - starting from ¢. A pair (R,) where R is a
TRS and p € My is often called a CS-TRS.

Dependency pairs. Given a TRS R = (F,R) = (CWD, R) anew TRS DP(R) =
(F*, D(R)) of dependency pairs for R is given as follows: if f(t1,...,tym) — 1 €
R and r = Clg(s1,...,Sn)] for some defined symbol g € D and s1,...,s, €
T(F,X), then fi(t1,...,tm) — ¢*(s1,...,5,) € D(R), where f* and g* are
new fresh symbols (called tuple symbols) associated to defined symbols f and g
respectively [AG00]. Let D* be the set of tuple symbols associated to symbols
in D and F* = FUD! As usual, for t = f(t1,...,t) € T(F,X), we write
t* to denote the marked term f#(t1,...,t;). Conversely, given a marked term
t = fHty,...,t), where s1,...,s, € T(F,X), we write t* to denote the term
flt1, ..., tr) € T(F,X). Given T C T(F,X), let T* be the set {t* |t € T}.

A reduction pair (=,) consists of a stable and weakly monotonic quasi-
ordering =, and a stable and well-founded ordering 1 satisfying either = o 1C 1
or J o »= C 1. Note that monotonicity is not required for 1.

3 Context-Sensitive Dependency Pairs

Let M, be a set of minimal non-y-terminating terms in the following sense:
t belongs to My, if ¢ is non-u-terminating and every strict u-replacing sub-
term s (i.e., t >, s) is pu-terminating. Obviously, if t € M, ,,, then root(t) is
a defined symbol. The following proposition establishes that, given a minimal
non-u-terminating term ¢t € M, ,,, there are two ways for an infinite p-rewrite
sequence to proceed. The first one is by using ‘visible’ parts of the rules which
correspond to p-replacing subterms in the right-hand sides which are rooted by
a defined symbol. The second one is by showing up ‘hidden’ non-p-terminating
subterms which are activated by migrating variables in a rule [— r, i.e., vari-
ables « € Var#(r) —Var*(l) which are notp-replacing in the left-hand side ! but
become pu-replacing in the right-hand side 7.

Proposition 1. Let R = (CWD,R) be a TRS and u € Mg. Then for all
t € Mooy, there exist | — r € R, a substitution o and a term v € M, such

>A A
that t —* o(l) = o(r) >, u and either

1. there is a p-replacing subterm s of v such that u = o(s), or
2. there is x € Vart(r) — Vart(l) such that o(z) >, u.

Proposition 1 motivates the following.

Definition 1. Let R = (F,R) = (CWD,R) be a TRS and p € Mg. Let
DP(R,) =DP£(R,u) UDPx (R, 1) be the set of context-sensitive dependency
pairs (CS-DPs) where:

DPE(R,u) = {I* = s* |l —r € R,r>, s,root(s) € D, }%,, s}

and
DPx(R,p) ={lI' > x|l —recR xcVart(r) — Vart(l)}
where p* (f) = p(f) if f € F, and p*(f*) = u(f) if f € D.

A rule ! — r of a CS-TRS (R, i) is p-conservative if Var#(r) C Vart(l), i.e., it
does not contain migrating variables; (R, u) is p-conservative if all its rules are
(see [Luc06]). The following result is immediate from Definition 1.

Proposition 2. For p-conservative CS-TRSs (R,), we have that DP(R, u) =
DP]"(R7 /1’)

Therefore, in order to deal with u-conservative TRSs R we only need to consider
the ‘classical’ dependency pairs in DPz(R, 1) (which are a subset of Arts and
Giesl’s dependency pairs: DP£(R, 1) € DP(R)).

FEzample 3. Consider the TRS R:

g(X) -> h(X) h(d) -> g(c) c—>d
together with u(g) = pu(h) = @ [Zan97, Example 1]. DP(R, u) is:
G(X) —> H(X) H(d) -> G(c)

with p#(G) = pf(H) = @.

If the TRS R contains non-u-conservative rules, then we also need to consider
dependency pairs with variables in the right-hand side.

Ezample 4. Consider the TRS R [Zan97, Example 5]:

if (true,X,Y) —> X f(X) > if(X,c,f(true))
if (false,X,Y) > Y

with p(if) = {1,2}. Then, DP(R, i) is:
F(X) -> IF(X,c,f(true)) IF(false,X,Y) —> Y
with p#(F) = {1} and u(IF) = {1,2}.

Now we introduce the notion of chain of CS-DPs.

Definition 2 (Chain of CS-DPs). Given a CS-TRS (P,u*) of dependency
pairs P C DP(R, i) associated to a CS-TRS (R,), an (R, P, u*)-chain is a
finite or infinite sequence of pairs u; — v; € P, for i > 1 such that there is a
substitution o satisfying both:

*

1. o(vi) =% s 0(uit1), if ug — v; € DP£(R, p), and
2. if u; — v; = u; — x; € DPx(R,), then there is s; € T(F,X) such that
o(x;) >, 8 and sf SR o(uit1).
for i > 1. Here, as usual we assume that different occurrences of dependency
pairs do not share any variable (renamings are used if necessary).
We say that an (R, P, u*)-chain with uy — v; € P as heading dependency
pair is minimal if o(u1)? € Mo, and all dependency pairs in P occur infinitely

often.

Remark 1. When an (R,DP(R, i), u¥)-chain is written for a given substitution
o, we write o(u) —pp(r,u),u¢ 0(v) for steps which use a dependency pair u —
v € DP£(R, ;1) but we rather write o(u) <>pp(r) ¢ s° for steps which use a
dependency pair u — x € DPx (R, 1), where s is as in Definition 2.

In the following, we use DP;(R, 1) to denote the subset of dependency pairs
in DPx (R, 1) whose migrating variables occur on non-u-replacing immediate
subterms in the left-hand side:

DPY (R, p) = {f*(u1,...,ux) — = € DPx(R,p) | 3i,1 <i < k,i & u(f*),z € Var(ui)}

For instance, DP% (R, 1) = DPx (R, i) for the CS-TRS (R, 1) in Example 4. For
this subset of CS-dependency pairs, we have the following.

Proposition 3. There is no infinite (R, P, u*)-chain with P C DP},((R7).

The following result establishes the correctness of the context-sensitive depe-
nency pairs approach.

Theorem 1 (Correctness). Let R be a TRS and p € Mg. If there is no
infinite (R, DP(R, i), ji*)-chain, then R is u-terminating.

As an immediate consequence of Theorem 1 and Proposition 3, we have the
following.

Corollary 1. Let R be a TRS and pn € Mg. If DP(R,) = DPY(R,), then R

18 p-terminating.

Ezample 5. Consider the following TRS R [Luc98, Example 15]

and(true,X) -> X first(0,X) -> nil
and(false,Y) -> false first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
if (true,X,Y) —> X from(X) -> cons(X,from(s(X)))

if (false,X,Y) > Y

add(0,X) -> X

add(s(X),Y) —> s(add(X,Y))
with p(cons) = p(s) = u(from) = @, p(add) = p(and) = p(if) = {1}, and
u(first) = {1,2}. Then, DP(R, 1) = DP%(R, p) is:

ADD(0,X) —> X IF (true,X,Y) -> X

AND (true,X) -> X IF (false,X,Y) —> Y

Thus, by Corollary 1 we conclude the p-termination of R.

Now we prove that the previous CS-dependency pairs approach is not only cor-
rect but also complete for proving termination of CSR.

Theorem 2 (Completeness). Let R be a TRS and p € Mgr. If R is u-
terminating, then there is no infinite (R, DP(R,), uf)-chain.

Corollary 2 (Characterization of u-termination). Let R be a TRS and
p € M. R is p-terminating iff there is no infinite (R, DP(R, 1), u*)-chain.

In the dependency pairs approach, the absence of infinite chains is checked by
finding a reduction pair (>, 1) which is compatible with the rules and the depen-
dency pairs [AGO00]. In our setting, we can relax the monotonicity requirements
and use p-reduction pairs (2, 3) where 2 is a stable and p-monotonic quasi-
ordering which is compatible with the well-founded and stable ordering 1, i.e.,
2 o JCJor Jo 2 C. The following result shows how to use p-reduction pairs
for proving p-termination. This is the context-sensitive counterpart of [AGOO,
Theorem 7]; however, a number of remarkable differences arise due to the treat-
ment of the dependency pairs in DPx (R, ut). Basically, we need to ensure that
the quasi-ordering is able to ‘look’ for a p-replacing subterm inside the instantia-
tion o(x) of a migrating variable = (hence we require >, C 2) and also connect a
term which is rooted by defined symbol f and the corresponding dependency pair
which is rooted by f* (hence the requirement f(x1,...,x1) > fH(z1,...,21)).

Theorem 3. Let R = (F,R) be a TRS, n € Mz. Then, R is p-terminating if
and only if there is a p-reduction pair (Z,3) such that,

1. 127 forall—reR,
2. w 3w for allu — v € DPx(R, u), and
3. whenever DPx (R, 1) # & we have that >, C 2, where &>, is the p-replacing
subterm relation on T (F,X), and
(a) w (> U D) w for all u — v € DPY(R,p), v 3 v for all u — v €
DPx (R,) — DPY (R,), and f(xy,...,2) = fi(z1,...,xx) for all f €
D, or
(b) w(Z U D)v forallu — v € DPx(R, 1) and f(x1,...,xx) 3 fi(z1,...,28)
forall f €D.

4 Context-sensitive dependency graph

As noticed by Arts and Giesl, the analysis of infinite sequences of dependency
pairs can be made by looking at (the cycles € of) the dependency graph associated
to the TRS R. The nodes of the dependency graph are the dependency pairs
in DP(R); there is an arc from a dependency pair u — v to a dependency pair
u’ — v’ if there are substitutions ¢ and 6 such that o(v) —% 6(u).

Similarly, in the context-sensitive (CS-)dependency graph:

1. There is an arc from a dependency pair u — v € DP£(R, 1) to a depen-
dency pair ' — v € DP(R, p) if there are substitutions o and 6 such that

o(v) SR O(u').

2. There is an arc from a dependency pair u — v € DPx (R, u) to each depen-
dency pair v’ — v’ € DP(R, p).

Note that the use of p# (which restricts reductions on the arguments of the de-
pendency pair symbols f*) is essential: given a set of dependency pairs associated
to a CS-TRS (R, i), we have less arcs between them due to the presence of such
replacement restrictions.

Ezample 6. Consider the CS-TRS in Example 1. DP(R,) is:

F(a,b,X) -> F(X,X,X)
with u#(F) = {3}. Although the dependency graph contains a cycle (due to
o(F(X,X,X)) —=* o(F(a,b,Y)) for o(X) = o(Y) = c), the CS-dependency
graph contains no cycle because it is not possible to pf-reduce 0(F(X,X,X))
into 6(F(a,b,Y)) for any substitution 6 (due to uf(F) = {3}).

As noticed by Arts and Giesl, the presence of an infinite chain of dependency
pairs correspond to a cycle in the dependency graph (but not vice-versa).

Again, as an immediate consequence of Theorem 1 and Proposition 3, we
have the following.

Corollary 3. Let R be a TRS, u € Mg and € C DPL.(R,). Then, there is no
minimal (R, €, u¥)-chain.

According to this, and continuing Example 6, we conclude the u-termination of
R in Example 1.

4.1 Estimating the CS-dependency graph

In general, the (context-sensitive) dependency graph of a TRS is not computable
and we need to use some approximation of it. Following [AG00], we describe how
to approximate the CS-dependency graph of a CS-TRS (R, u). Let CAP" be
given as follows: let D be a set of defined symbols (in our context, D = DUD¥):

CaAP!(z) =z if z is a variable

Ty if feD
CaP!(f(ty,... . t)) = {f([h]{, o [tk]{) otherwise

where y is intended to be a new, fresh variable which has not yet been used
and given a term s, [s]{ = CAP'(s) if i € u(f) and [5]{ = sifti & u(f).
Let REN" given by: REN"(z) = y if = is a variable and REN"(f(t1,...,t;)) =
F()d, . [tk]i) for evey k-ary symbol f, where given a term s € TH(F, X),
[s]/ = REN"(s) if i € u(f) and [s]/ = s if i & u(f). Then, we have an arc from
u; — v; to u; — v; if REN"(CAP"(v;)) and u; unify; following [AGO0], we say
that v; and u; are p-connectable. The following result whose proof is similar to
that of [AG00, Theorem 21] (we only need to take into account the replacement
restrictions indicated by the replacement map u) formalizes the correctness of
this approach.

Proposition 4. Let (R,u) be a CS-TRS. If there is an arc from u — v to
u' — v’ in the CS-dependency graph, then v and v’ are u-connectable.

Ezample 7. (Continuing Ex. 6) Since REN“n(CAP"u(F(X,X,X))) = F(X,X,2)
and F(a,b,Y) do not unify, we conclude (and this can be easily implemented)
that the CS-dependency graph for the CS-TRS (R, 1) in Example 1 contains no
cycles.

4.2 Checking p-termination with the dependency graph

For the cycles in the dependency graph, the absence of infinite chains is checked
by finding (possibly different) reduction pairs (>=¢, de) for each cycle € [GAO02,
Theorem 3.5]. In our setting, we use p-reduction pairs.

Theorem 4 (Use of the CS-dependency graph). Let R = (F,R) be a
TRS, u € Mgz. Then, R is p-terminating if and only if for each cycle € in
the context-sensitive dependency graph there is a p-reduction pair (Z¢, Je) such
that, RC Z2¢, € C2¢ U e, and

1. If € N DPx(R,pu) =@, then €N Je # &

2. IfENDPx(R,pn) # @, then >, C 2¢ (where >, is the p-replacing subterm
relation on T(F, X)), and
(a) €N e # @ and f(x1,...,71) 2¢ fH21,...,28) for all f* in &, or
(b) f(z1,...,2) de fA(z1,...,2%) for all f* in .

Following Hirokawa and Middeldorp, the practical use of Theorem 4 concerns
the so-called strongly connected components(SCCs) of the dependency graph,
rather than the cycles themselves (which are exponentially many) [HM04,HMO5].
A strongly connected component in the (CS-)dependency graph is a mazimal
cycle, i.e., it is not contained in any other cycle. According to Hirokawa and
Middeldorp, the adaptation of the subterm criterion to the CS-dependency graph
recursively applies as follows: when considering an SCC €, we remove from €
those pairs u — v satisfying v 3 v. Then, we recompute the SCCs with the
remaining pairs in the CS-dependency graph and start again (see [HMO05, Section
4]). In our setting, it is not difficult to see that, if the condition f(x1,...,zx) de
fH(x1,...,2) for all f € D holds for a given cycle €, then we can remove from
¢ all dependency pairs in DPx (R, 1), thus continuing from € — DPx (R,).

Ezample 8. Consider the CS-TRS (R, 1) in Example 4 and DP(R, p):

F(X) -> IF(X,c,f(true))

IF (false,X,Y) > Y
with pf(F) = {1} and p*(IF) = {1,2}. These two CS-dependency pairs form the
only cycle in the CS-dependency graph. The p-reduction pair (>, >) induced by
the polynomial interpretation

[c] = [true] =0 [l(z) = = [Fl(z) = =
[false] =1 [if](z,y,2) =z +y+ 2 [IF|(z,y,2) =z + =z

can be used to prove the p-termination of R. First, as required by Theorem 4:

[fX0] = X > X =[x
LEEX,Y,D]=X+Y+Z2> X =[X
GEX,Y,D]|=X+Y+Z> Y =]

[fX)] = X > X =[]
LEX,Y,D]=X+Y+Z>X+Z=[IF(X,Y,Z]

Now we have:
[fX)]= X >X=[if(X,c,f(true))]
[if (true,X, V)] =X +Y > X = [X]
[if(false,X,)] =X +Y > Y =[Y]
FX)]= X >X=][IF(X,c,f(true))]
]

[IF(false,X,Y)

Y+1>Y =]

This permits to remove the dependency pair IF(false,X,Y) -> Y from the
cycle. The dependency pair F(X) -> IF(X,c,f(true)) itself conforms no cycle.
Thus, the p-termination of R is proved.

On the other hand, the use of argument filterings, which is standard in the current
formulations of the dependency pairs method, also adapts without changes to
the context-sensitive setting. This is a simple consequence of [AG00, Theorem
11] (using p-monotonicity instead of monotonicity for the quasi-orderings is not
a problem).

5 Subterm criterion

In [HMO04], Hirokawa and Middeldorp introduce a very interesting subterm cri-
terion which permits to ignore certain cycles of the dependency graph.

Definition 3. [HMO04] Let R be a TRS and € C DP(R) such that every depen-
dency pair symbol in € has positive arity. A simple projection for € is a mapping
7 that assigns to every k-ary dependency pair symbol f% in € an argument po-
sition i € {1,...,k}. The mapping that assigns to every term f*(ty,... 1) €
THF,X) with f* a dependency pair symbol in R its argument position w(f*) is
also denoted by 7.

In the following result, for a simple projection m and € C DP(R, pu), we let
7(€) = {r(u) — 7(v) | u — v € €}. Note that u,v € T#(F, X), but 7(u), 7(v) €
T(F,X).

Theorem 5. Let R be a TRS and p € Mg. Let € C DP£(R, 1) be a cycle. If
there exists a simple projection 7 for € such that 7(€) C >,,, and 7(C)N>,, # 2,
then there is no minimal (R, €, u*)-chain.

Note that the result is restricted to cycles which do not include dependency
pairs in DPx (R,). The following result provides a kind of generalization of
the subterm criterion to simple projections which only consider non-p-replacing
arguments of tuple symbols.

Theorem 6. Let R = (F,R) be a TRS, n € Mz and € C DPx(R, u) be a
cycle. Let 2 be a stable quasi-ordering on terms whose strict and stable part >
is well-founded and 7 be a simple projection for € such that for all f* in €,

n(f%) & pH(f¥) and 7(€) C 2.

1. If € N DPx(R, 1) = @ and €N > # @, then there is no minimal (R, €, u*)-
chain.

2. IfENDPx (R, p) # @, >, CZ (where >, is the p-replacing subterm relation
on T(F, X)), and
(a) €N ># @ and f(x1,...,7k) 2 Trepey for all f € D such that ftisin €,

or

(b) f(x1,...,2K) > xr(sny for all f € D such that ftisin €,
then there is no minimal (R, €, u¥)-chain.

Ezample 9. Consider the CS-TRS (R, 1) in Example 3. DP(R,) is:

G(X) -> H(X)
H(d) -> G(c)

where p#(G) = pu#(H) = @. Note that the dependency graph contains a single cycle
including both of them. The only simple projection is 7(G) = w(H) = 1. Since
m(G(X)) = 7(HX)), we only need to guarantee that 7(H(d)) =d > ¢ = 7(G(c))
holds for a stable and well-founded ordering >. This is easily fulfilled by, e.g., a
polynomial ordering.

6 Experiments

We have implemented the techniques described in the previous sections as part
of the tool MU-TERM [Luc04a]. Following Theorem 1, given a CS-TRS (R, 1), the
tool automatically generates the dependency pairs in DP(R, 1) and tries to prove
that no cycle € in the (estimated) context-sensitive dependency graph induces
an infinite (R, €, ;1*)-minimal chain by using Theorems 4, 5, 6, and eventually
Corollary 3. Since our current implementation is based on the use of polynomial
orderings, we actually do not compute any argument filtering function when
using Theorem 4; it is well-known that they are somehow implicit in the compu-
tation of the polynomial interpretations (see, e.g., [AG00]). The following URL:

http://www.dsic.upv.es/~slucas/csr/termination/examples

collects a good number of examples and shows the computed proofs based on CS-
DPs. We have also considered the examples in the 2006 Termination Competition
(TRSs, subcategory Context-Sensitive Rewriting) available through the URL:

http://www.lri.fr/~marche/termination-competition/2006

which collects 90 examples (out from around 20 different references) of CS-TRSs.
We have used our prototype implementation of the CS-dependency pairs tech-
niques described above to obtain a comparison of different techniques for proving
termination of CSR. We consider the CSRPO [BLR02], the polynomial orderings

generated by MU-TERM according to [Luc05], and the transformations introduced
by Giesl and Middeldorp [GMO04] and Zantema [Zan97] which, according to the
analysis in [Luc06], have the most successful (combined) behavior among all ex-
isting ones. Regarding the concrete settings for CS-DP-based automatic proofs
which we have used in our experiments, besides the subterm criterion, we used
p-reduction pairs generated by linear polynomial interpretations whose coeffi-
cients take value on {0, 2,1,2} (see [Luc05] for further details about the use
and generation of such polynomial interpretations) and a timeout of 1 minute.
The termination proofs for the transformed systems Ry, and R’ which are
obtained by MU-TERM also use the dependency pairs techniques described in
this paper but applied to TRSs rather than CS-TRSs (a TRS R can also be seen
as a CS-TRS (R, u1), where ut(f) = {1,...,k} for all k-ary symbols f € F).

The following table summarizes our results (the number of successful proofs
is below each considered technique):

CS-DPs || CSRPO | POL | GM | Z | GM+-Z
39 33 27 12 |27 34

Note from the table that the use of the current techniques developed for the
CS-DPs approach improves on the use of the analogous techniques for the trans-
formed systems (which are TRSs). Even combining the proofs which can be
achieved by using Giesl and Middeldorp’s transformation or Zantema’s trans-
formation (last column), we get better performance with CS-DPs. This suggests
that the direct use of CS-DPs performs better than using DPs on the transformed
TRSs.

Of course, the state-of-the-art of DP-based techniques for proving termi-
nation of rewriting is much more evolved than CS-DPs which we are just in-
troducing in this paper. In fact, we have also tried the transformed systems
(with GM and Z transformations) corresponding to the examples above by us-
ing AProVE [GTSF04]. AProVE is currently the most powerful tool for proving
termination of TRSs and implements most existing results and techniques re-
garding DPs and related techniques. AProVE succeeded (again with a timeout of
1 minute) on 58 examples by using Giesl and Middeldorp’s transformation (on
37 of them) or Zantema’s transformation (on 43 of them) and then using the im-
pressive amount of implemented techniques for proving termination of rewriting,
see [GTSF04,GTS04]. Thus summarizing, all these experimental results suggest
that further research on the CS-DP approach will dramatically improve the cur-
rent state-of-the-art of techniques for proving termination of C'SR.

7 Conclusions

We have shown how to use dependency pairs in proofs of termination of CSR.
The implementation and practical use of the developed techniques yield a novel
and powerful framework which improves the current state-of-the-art of methods
for proving termination of CSR. Some interesting differences arise which can
be summarized as follows: in sharp contrast to the standard dependency pairs

approach, where all dependency pairs have tuple symbols ff both in the left-
and right-hand sides, we have dependency pairs having a single variable in the
right-hand side. These variables reflect the effect of the migrating variables into
the termination behavior of CSR. Given a rule [— r, we say that a replacing
variable x in r is migrating if there is no replacing position of x in [. This leads
to a new definition of chain of context-sensitive dependency pairs which also
differs from the standard approach in that we have to especially deal with such
migrating variables. As in Arts and Giesl’s approach, the presence or absence of
infinite chains of dependency pairs from DP(R, i) characterizes the u-terminaton
of R (Theorems 1 and 2). Furthermore, we are also able to use term orderings
to ensure the absence of infinite chains of context-sensitive dependency pairs
(Theorem 3). In fact, we are properly extending Arts and Giesl’s approach:
whenever u(f) = {1,...,k} for all k-ary symbols f € F, CSR and ordinary
rewriting coincide and all these results and techniques boil down into well-known
results and techniques for the dependency pairs approach.

Regarding the practical use of the CS-dependency pairs in proofs of termi-
nation of CSR, we have shown how to build and use the corresponding CS-
dependency graph to either prove that the rules of the TRS and the cycles in
the CS-dependency graph are compatible with some reduction pair (Theorem
4) or to prove that there are cycles which do not need to be considered at all
(Theorems 5 and 6). We have implemented these ideas as part of the termination
tool MU-TERM; after a thorough comparison with other techniques for proving
termination of C'SR, in particular those implemented by other termination tools
like AProVE (see Section 6), we can conclude that the CS-dependency pairs can
play in CSR the role than dependency pairs play in rewriting.

There are many other aspects of the dependency pairs approach which are
also worth to be considered and eventually extended to CSR (e.g., narrowing
refinements, modularity issues, innermost computations, usable rules, ...). These
aspects provide an interesting subject for future work.

References

[AGO0] T. Arts and J. Giesl. Termination of Term Rewriting Using Dependency
Pairs Theoretical Computer Science, 236:133-178, 2000.

[BLRO2] C. Borralleras, S. Lucas, and A. Rubio. Recursive Path Orderings can be
Context-Sensitive. In Proc. of CADE’02, LNAI 2392:314-331, Springer-
Verlag, Berlin, 2002.

[DLMMUO6] F. Durdn, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving
Operational Termination of Membership Equational Programs. Higher-
Order and Symbolic Computation, to appear, 2006.

[GAOO02] J. Giesl, T. Arts, and E. Ohlebusch Modular Termination Proofs for
Rewriting Using Dependency Pairs. Journal of Symbolic Computation
34(1):21-58, 2002.

[GLO02] B. Gramlich and S. Lucas. Simple termination of context-sensitive rewrit-
ing. In Proc. of RULE’02, pages 29-41, ACM Press, New York, 2002.

[GM99]

[GMO4]

[GTS04]

[GTSF04]

[HMO4]

[HMO5]

[Luc9s]

[Luc02]

[Luc04al

[Luc04b]

[Luc05]

[Luc06]
[Ohl02]
[Ter03]

[Zan97]

J. Giesl and A. Middeldorp. Transforming Context-Sensitive Rewrite Sys-
tems. In Proc. of RTA’99, LNCS 1631:271-285, Springer-Verlag, Berlin,
1999.

J. Giesl and A. Middeldorp. Transformation techniques for context-
sensitive rewrite systems. Journal of Functional Programming, 14(4):
379-427, 2004.

J. Giesl, R. Thiemann, and P. Schneider-Kamp. The Dependency Pair
Framework: Combining Techniques for Automated Termination Proofs.
In Proc. of LPAR’04, LNCS 3452:301-331, Springer-Verlag, Berlin, 2004.
J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated Ter-
mination Proofs with AProVE. In Proc. of RTA’04, LNCS 3091:210-220,
Springer-Verlag, Berlin, 2004. Available at http://www-1i2.informatik.
rwth-aachen.de/AProVE.

N. Hirokawa and A. Middeldorp. Dependency Pairs Revisited. In Proc.
of RTA’04, LNCS 3091:249-268, Springer-Verlag, Berlin, 2004.

N. Hirokawa and A. Middeldorp. Automating the dependency pair
method. Information and Computation, 199:172-199, 2005.

S. Lucas. Context-sensitive computations in functional and functional
logic programs. Journal of Functional and Logic Programming, 1998(1):1-
61, January 1998.

S. Lucas. Context-sensitive rewriting strategies. Information and Com-
putation, 178(1):293-343, 2002.

S. Lucas. MU-TERM: A Tool for Proving Termination of Context-
Sensitive Rewriting In Proc. of RTA’04, LNCS 3091:200-209, Springer-
Verlag, Berlin, 2004. Available at http://www.dsic.upv.es/~slucas/
csr/termination/muterm.

S. Lucas. Polynomials for proving termination of context-sensitive rewrit-
ing. In Proc. of FOSSACS’04, LNCS 2987:318-332, Springer-Verlag,
Berlin 2004.

S. Lucas. Polynomials over the reals in proofs of termination: from theory
to practice. RAIRO Theoretical Informatics and Applications, 39(3):547-
586, 2005.

S. Lucas. Proving termination of context-sensitive rewriting by transfor-
mation. Information and Computation, to appear 2006.

E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag,
Berlin, 2002.

TeReSe, editor, Term Rewriting Systems, Cambridge University Press,
2003.

H. Zantema. Termination of Context-Sensitive Rewriting. In Proc. of
RTA’97, LNCS 1232:172-186, Springer-Verlag, Berlin, 1997.

Proofs

The following twp basic results about CSR will be often used without any explicit
mention.

Proposition 5. [Luc98] Let t € T(F,X) and p = q.¢' € Pos(t). Then p €
Post(t) iff ¢ € Post(t) Nq' € Pos"(t|y)

The following proposition establishes that the replacing nature of a position
within a term does not depend on the context surrounding that position. Here,
the chain of symbols lying on positions above/on p € Pos(t) is prefiz,(A) =
root(t), prefiz,(i.p) = root(t).prefiz,, (p). The strict prefix sprefiz is sprefiz,(A) =
A, sprefiz,(p-i) = prefiz,(p).

Proposition 6. [Luc98] If p € Pos(t) N Pos(s) and sprefiz,(p) = sprefix,(p),
then p € Pos"(t) < p € Pos"(s).

Lemma 1. Let R = (CWD,R) be a TRS, p € Mg andt € T(F,X). Ift is not
p-terminating, then there is a p-replacing subterm s of t such that s € Mo .

Proof. By structural induction. If ¢ is a constant symbol, it is obvious: take s = ¢.
If t = f(t1,...,tx), then we proceed by contradiction. If there is no p-replacing
subterm s of ¢ such that s € M, then in particular ¢t € M ,, i.e., there is
a strict p-replacing subterm s of ¢ which is not p-terminating. By the Induction
Hypothesis, s contains a p-replacing subterm s’ which belongs to M, ,,. But
s" itself is a p-replacing subterm of ¢ which belongs to M ,,, thus leading to a
contradiction.

Lemma 2. Let R = (CWD,R) be a TRS, p € Mg, and t € T(F,X). If t is
p-terminating and t <7, s, then s is p-terminating.

Proposition 1 Let R = (C W D,R) be a TRS and p € Mg. Then for all
t € My, there exist | — r € R, a substitution 0 and a term u € M, ,, such

>A
that t —* o(l) = o(r) >, u and either

1. there is a p-replacing subterm s of v such that u = o(s), or
2. there is x € Var*(r) — Var*(l) such that o(z) >, u.

Proof. Consider an infinite p-rewrite sequence starting from ¢. By definition of
Mo, all proper p-replacing subterms of ¢ are p-terminating. Therefore, ¢ has
an inner reduction to an instance o (1) of the left-hand side of a rule I — r of R:

t<i>4‘ o(l) A o(r). Thus, we can write t = f(t1,...,tx), o(l) = f(l1,...,l) for
some k-ary defined symbol f, and ¢; —* o(l;) for all 4, 1 <4 < k. Since all ¢; are
p-terminating for ¢ € u(f), by Lemma 2, o(l;) and all its p-replacing subterms
also are. Since o(r) is non-y-terminating, by Lemma 1 it contains a u-replacing
subterm v € My ,: 0(r) >, u, i.e., there is a position p € Pos"(o(r)) such that
o(r)|p, = u. We consider two cases:

1. If p € Posx(r), then there is a p-replacing subterm s of r, such that u = o(s).

2. If p & Posg(r), then there is a p-replacing variable position ¢ € Pos"(r) N
Posx(r) such that ¢ < p. Let € Var#(r) be such that |, = x. Then,
o(z) >, u and o(x) is not p-terminating. Since o(l;) is terminating for all
i € u(f) and o(x) is also terminating for all p-replacing variables in I, we
conclude that z € Var*(r) — Var*(l).

Proposition 3 There is no infinite (R, P, uf)-chain with P C DP% (R,).

Proof. By contradiction. Assume that there is an infinite chain which only uses
such dependency pairs u; — x; for ¢ > 1. Then, for all i > 1, w;[;, > x; for

some j; & ,uﬁ(ff). Therefore, by definition of (R,Pﬁiﬁ)—chain, we have that

root(st) = root(u;1) = ffH and j;11 & uﬁ(ff+1). Thus, it follows that s;|;,,, =
0(Uig1)]jis, B 0(Tig1), ie., o(x;) > o(xi41) for all ¢ > 1. Therefore, we get an

infinite sequence o(x1) > o(x2) > - - - which contradicts well-foundedness of r>.

o(u;)|j, = o(@i) By s; for some term s; such that s; —% . o(uiy1), with

Theorem 1 Let R be a TRS and n € My. If there is no infinite (R, DP(R,), u¥)-
chain, then R is p-terminating.

Proof. By contradiction. If R is not p-terminating, then there is t € M, ,. By
Proposition 1, there exist | — r € R, a substitution o and a term v € M,

>/1 A
such that t —* o(l) = o(r) >, u and either

1. there is a p-replacing subterm s of r such that u = o(s), or
2. there is « € Var#(r) — Var#(l) such that o(z) >, wu.

In the first case above, we have a dependency pair I — s* € DP+(R,) such
that u = 0(s) € Mooy, i€, we can start an (R, DP(R, u), u¥)-chain beginning
with o(I*) —pp(r.). o(s%).

In the second case above, since u € M ,, by Proposition 1 there is a rule

A — psuch that u;/’l* o(A) (since we can assume that the variables in this rule do
not occur in I/, we can use the same —conveniently extended— substitution o) and
o(p) contains a subterm in M ,,. Hence, u SR a(\F). Furthermore, there
is a dependency pair I* — x € DPx(R, u) such that o(x) >, u; thus, according
to Definition 2, we can start an (R, DP(R, u1), u*)-chain beginning with

o(lﬁ) ;)DP(R,/,L),/,N u’i

and then continuing with a dependency pair u' — v’ such that «/ = * and
ut 5 o(W).

Thus, in both cases we can start an (R,DP(R, u), uf)-chain which could be
infinitely extended in a similar way by starting from wf. This contradicts our
initial assumption.

Theorem 2 Let R be a TRS and u € Mg. If R is u-terminating, then there is
no infinite (R,DP(R,), u*)-chain.

Proof. By contradiction. If there is an infinite (R, DP(R, 1), uf)-chain, then there
is a substitution o and dependency pairs u; — v; € DP(R, pt) such that

1.

*

o(vi) =% ¢ 0(tit1), if u; — v; € DPx(R, 1), and

2. if u; — v; = u; — x; € DPx(R,), then there is s; € T(F, X) such that

o(xz;) >, s; and sg Rt O(Uit1).

for i > 1. Now, consider the first dependency pair u; — vy in the sequence:

1.

If uz — v1 € DP£(R,p), then v? is a p-replacing subterm of the right-
hand-side 71 of a rule I; — r1 in R. Therefore, 1 = C; [v?]pl for some
p1 € Pos"(r1) and we can perform the p-rewriting step t1 = o(u1) —x,,
o(r) = U(Cl)[a(vi)]pl = s1, where O’(’Ug)ﬁ = o(vy) SRk o(uz) and o(us)
initiates an infinite (R, DP(R,), uu*)-chain. Note that p; € Pos*(s1).

If uy — 2 € DPx(R, i), then there is a rule Iy — r; in R such that u; = lﬁ,
and x € Var*(r1) —Var*(l1), i.e., 11 = Ci[z]q, for some ¢; € Pos"(ry). Fur-
thermore, since there is a subterm s such that o(x)>, s and s* R 0(U2),
we can write o(z) = C}[s],, for some p} € Pos”(o(x)). Therefore, we can
perform the p-rewriting step t1 = o(ly) —r . o(r1) = o(C1)[C][s]y]e, =

>A
51 where sf —Rut 0(u2) (hence s —* ug) and o(uz) initiates an infinite

(R,DP(R, 1), u*)-chain. Note that p; = q1.p) € Pos"(s1).

Since pf(f*) = u(f), and p; € Pos*(s1), we have that s; SR telo(uz)lp, =t
and p; € Pos”(t2). Therefore, we can build in that way an infinite py-rewrite
sequence

*
tl ;)Ryl/b S1 L)R’M t2 <_>R)” oo

which contradicts the p-termination of R.

Theorem 3 Let R = (F,R) be a TRS, u € Mg. Then, R is p-terminating if
and only if there is a p-reduction pair (Z,3) such that,

1.

l2r foralll - reR,

2. w 3w for allu — v € DP£(R,), and
3. whenever DPx(R, p) # @ we have that &>, C 2, where >, is the p-replacing

subterm relation on T (F,X), and

(a) w (> U D w for all u — v € DPY(R,p), v 3 v for all u — v €
DPx (R,) — DPY(R,), and f(xy,...,2x) = fi(z1,...,xx) for all f €
D, or

(b) w(= U D)v forallu — v € DPx (R, 1) and f(z1,...,zx) 3 fi(z1,...,z%)
forall f €D.

Proof. For the if part of the proof, we proceed by contradiction. If R is not
p-terminating, then by Theorem 1 there is an infinite (R, DP(R,), u!)-chain:

* *

o (U1) “DP(R,)t 35 SRt 0(U2) SDP(R), 5ﬁ2 SRt O(U3) SDP(R)t

for some substitution o, where sf =o(v;) if u; — v; € DP£(R,) and sf is such

that o(x;) >, s if u; — v, = u; — x; € DPx(R,), for ¢ > 1. By Proposition
3, the chain contains an infinite number of pairs in DP(R, i) — DP% (R,). For
any dependency pair u; — v; which is used in this sequence, we have that either

1. w; Jw; if u; — v; € DP£(R, u), or

2. w; (> U D) v if u; — v; € DPY (R, p), or

3. if u; — v; € DPx(R, p) — DP% (R, i), then
(a) w; 3 v; and f(z1,...,78) 2 f4(z1,...,7x) for all f € D, or
(b) u; (ZUD)v; and f(x1,...,2x) 3 fHx1,...,25) for all f €D.

By stability, we have o(u;) 3 o(v;) (respectively o(u;) 2 o(v;)). Now, we dis-
tinguish two cases:

L If ui — v; € DP£(R,p), then o(v;) —% . 0(uit1) and by stability, p-
monotonicity and transitivity of 2> we have that o(v;) 2 o(uit1)-

2. If u; — v; = u; — x € DPx(R,u), then o(x;) >, s;. Since >, C >
we have o(z;) 2 s;. Furthermore, since f(x1,...,7x) = f*(z1,...,2) (or
flxy,...,zx) 3 fH21,...,2x)) for all f € D, by stability we have that
Si 2 sg (respectively s; sﬂ). Finally, since st

~ 7 7

Rt 0(uigr) forall i > 1,

#

by stability, p-monotonicity and transitivity of 2 we have that s; 2 o(u;+1).

By using the compatibility conditions of the p-reduction pair, we obtain an
infinite decreasing JJ-sequence which contradicts well-foundedness of .

The only if part follows the proof of [AG00, Theorem 7]. It is possible to
show that the p-termination of R implies the pf-termination of

where: Py = {u — subterm(z) | u — z € DPx(R, 1)} and

S(F,) = {subterm(f(z1,...,xx)) — subterm(x;) | f € F,i € u(f)}
U {subterm(f(z1,...,xx)) — fi(z1,...,2x) | f € D}

and we assume pf (subterm) = @. The TRS S(F, uu) simulates the p-replacing
subterm relation on terms in 7 (F, X): for all t, s € T(F, X), subterm(t) S S F)t

subterm(s) if and only if ¢t >, s. The role of the last subset of rules is ‘marking’
defined symbols as to enable the connection of the minimal subterm s which is
below o(x) after the application of a rule ¥ — x € DPy(R,). Thus, we can
use the p-rewrite relation c—>;‘2,7 ;. to get the required p-reduction pair (2, >),
(where [t] 2 [s] if t —%, ; s and | _] removes the occurrences of subterm

~

everywhere) which fulfills the required properties.

Theorem 4 Let R = (F,R) be a TRS, p € Mz. Then, R is p-terminating if
and only if for each cycle € in the context-sensitive dependency graph there is a
p-reduction pair (Ze, de) such that, RC Z¢, € C 2¢ U de, and

~

1. If€ N DPx(R,pu) =@, then €N e £ @

2. If€ N DPx(R,) # @, then &>, C Z¢ (where >, is the p-replacing subterm
relation on T (F, X)), and
(a) €N e # @ and f(z1,...,2%) ¢ fH(21,...,28) for all f* in &, or
(b) f(z1,...,2) de fA(z1,...,2%) for all f* in .

Proof. The proof is completely analogous to standard ones (see, e.g., [GAO02,
Theorem 3.5]). Just take into account the peculiarities of the use of p-reduction
pairs with context-sensitive dependency pairs already discussed in the proof of
Theorem 3.

Theorem 5 Let R be a TRS and u € M. Let € C DPx(R,) be a cycle. If
there exists a simple projection 7 for € such that 7(€) C >, and 7(€)N>,, # &,
then there is no minimal (R, €, u*)-chain.

Proof. The proof is completely analogous to that of [HM04, Theorem 11]. The
only difference is that we need to deal with the y-subterm relation B> ,; this is
because, we need to use the following commutation property: >>,0 —xr ,C—r ,
o I>,, which does not hold if 1> is used instead.

Theorem 6 Let R = (F,R) be a TRS, i € Mz and € be a cycle in DG(R).
Let > be a stable quasi-ordering on terms whose strict and stable part
> is well-founded and 7 be a simple projection for ¢ such that for all

[in & n(f*) & pf(f%) and 7(€) C 2.

1. If € N DPx(R,n) = @ and €N > # &, then there is no minimal
(R, €, uf)-chain.

2. If € N DPx(R,) # @, >, C 2 (where >, is the p-replacing subterm
relation on 7(F, X)), and
(a) €N ># @ and f(r1,...,71) 2 Tr(sr) for all f € D such that ftis

in ¢, or

(b) f(w1,...,mx) > x(s+) for all f € D such that ftis in €,
then there is no minimal (R, ¢, u*)-chain.

Proof. Assume that there is a minimal (R, €, u*)-chain

U(ul) (_’Q',;Lﬁ Sg (_>:]k27p,ﬁ U(UQ) (_)Q‘,Mﬁ Sg (_>:/k27uﬁ O'(U3) (_)Q',;L” e
for some substitution o, where sg =o(v;) if u; — v; € DP£(R, 1) and sg is such
that o(z;) >, s; if u; — v; = u; — x; € DPx(R, p), for ¢ > 1. All terms o(w;), sg
in this sequence have a dependency pair symbol in € as root symbol for i > 1.
We apply the simple projection 7 to this sequence. Since 7(f*) & u?(f*) for all
these symbols, it follows that ﬂ(sg) = m(o(u;z1)) for all i > 1. For each step
o(u;) —e sg there is u; — v; € € such that 7(u;) 2 7(v;) and, by stability,
o(m(u;)) 2 o(m(v;)). Now, we distinguish two cases:

1. If u; — v; € DP£(R,), then m(o(v;)) = 71'(55) and (o (u;)) = o(m(w;)) 2
o(m(vs)) = 7lo(05)) = n(s5).

2. If uy — vy = uy — x; € DP£(R,), then 7(v;) = w(x;) = x;, and, by
stability, m(o(w;)) = o(w(w;)) 2 o(w(v;)) = o(x;). Since o(x;) >, s;, we have
that o(z;) 2 s; (due to >, C2). Let f* = root(u;41). Since f(z1,...,7x) >

f

i

Trpt), and Si| o (pey = s§|ﬂ(fn) = ﬂ'(sf), by stability we have s; 2 7 (s
m(o(ui) Z ().

Thus, we always have w(o(u;)) 2 ﬂ'(S?). Therefore, we obtain an infinite >
sequence

). Hence,

m(o(u1)) 2 w(s}) = m(o(ug)) 2 m(sh) - -

which, since the dependency pairs in € occur infinitely many, and according to
our assumptions, contains infinitely many > steps, starting from 7 (o (u1)). This
contradicts the well-foundedness of >.

