Document downloaded from:

http://hdl.handle.net/10251/202268
This paper must be cited as:

Alarcén, B.; Gutiérrez Gil, R.; Lucas Alba, S. (2010). Context-Sensitive Dependency Pairs.
Information and Computation. 208(8):922-968. https://doi.org/10.1016/j.ic.2010.03.003

The final publication is available at

https://doi.org/10.1016/j.ic.2010.03.003

Copyright E|sevier

Additional Information

Context-Sensitive Dependency Pairs *

Beatriz Alarcén ® Radl Gutiérrez @ Salvador Lucas?

apDSIC, Universidad Politécnica de Valencia, Spain

Abstract

Termination is one of the most interesting problems when dealing with context-
sensitive rewrite systems. Although there is a good number of techniques for prov-
ing termination of context-sensitive rewriting (CSR), the dependency pair approach,
one of the most powerful techniques for proving termination of rewriting, has not
been investigated in connection with proofs of termination of C'SR. In this paper,
we show how to use dependency pairs in proofs of termination of CSR. The imple-
mentation and practical use of the developed techniques yield a novel and powerful
framework which improves the current state-of-the-art of methods for proving ter-
mination of CSR.

Key words: Dependency pairs, term rewriting, program analysis, termination.

1 Introduction

Most computational systems whose operational principle is based on reduc-
ing expressions can be described and analyzed by using notions and tech-
niques coming from the abstract model of Term Rewriting Systems (TRSs
[BN98,TeR03]). Such computational systems (e.g., functional, algebraic, and
equational programming languages as well as theorem provers based on rewrit-
ing techniques) often incorporate a predefined reduction strategy which is used
to break down the nondeterminism which is inherent to reduction relations.

* This work has been partially supported by the EU (FEDER) and the Span-
ish MEC/MICINN, under grants TIN 2007-68093-C02 and HA 2006-0007. Beat-
riz. Alarcén was partially supported by the Spanish MEC/MICINN under FPU
grant AP2005-3399. Raul Gutiérrez was partially supported by the Spanish
MEC/MICINN grant TIN 2004-7943-C04-02.

Email addresses: balarcon@dsic.upv.es (Beatriz Alarcén),
rgutierrez@dsic.upv.es (Rail Gutiérrez), slucas@dsic.upv.es (Salvador
Lucas).

Preprint submitted to Elsevier

Eventually, this can rise problems, as each kind of strategy only behaves prop-
erly (i.e., it is normalizing, optimal, etc.) for particular classes of programs.
For this reason, the designers of programming languages have developed some
features and language constructs aimed at giving the user more flexible control
of the program execution. For instance, syntactic annotations (which are as-
sociated to arguments of symbols) have been used in programming languages
such as Clean [NSEP92], Haskell [HPW92], Lisp [McC60], Maude [CDEL*07],
OBJ2 [FGJMS5], OBJ3 [GWMFJ00], CafeOBJ [FN97], etc., to improve the ter-
mination and efficiency of computations. Lazy languages (e.g., Haskell, Clean)
interpret them as strictness annotations in order to become ‘more eager’ and
efficient. Eager languages (e.g., Lisp, Maude, OBJ2, OBJ3, CafeOBJ) use them
as replacement restrictions to become ‘more lazy’ thus (hopefully) avoiding
nontermination.

Context-sensitive rewriting (CSR [Luc98,Luc02]) is a restriction of rewriting
that forbids reductions on some subexpressions and that has proved useful
to model and analyze such programming language features at different levels,
see, e.g., [BM06,DLM*04,DLM*08,GM04,Luc01,LM08a]. Such a restriction
of the rewriting computations is formalized at a very simple syntactic level:
that of the arguments of function symbols f in the signature F. As usual,
by a signature we mean a set of function symbols fi,..., f,, ... together with
an arity function ar : F — N which establishes the number of ‘arguments’
associated to each symbol. A replacement map is a mapping p : F — ©(N)
satisfying p(f) C {1,...,k}, for each k-ary symbol f in the signature F
[Luc98]. We use them to discriminate the argument positions on which the
rewriting steps are allowed. In CSR we only rewrite p-replacing subterms:
every term t (as a whole) is p-replacing by definition; and ¢; (as well as all its
p-replacing subterms) is a p-replacing subterm of f(t1,...,t) if i € pu(f).

Example 1 The following nonterminating TRS R can be used to compute the
list of prime numbers by using the well-known Erathostenes sieve® [GM99):

primes — sieve(from(s(s(0))))
from(z) — cons(z,from(s(z)))

head(cons(z, y)

—

8

sieve(cons(z,y)) — cons(z,filt(x,sieve(y)))

)
)
tail(cons(z,y)) — vy
if(true,z,y) — =

if(false,z,y) — y
filt(s(s(x)), cons(y,2)) — if(div(s(s(z)),y), filt(s(s(x)), z), cons(y, £ilt(s(s(z)), 2)))

1 Without appropriate rules for defining symbol div, the TRS has no complete
computational meaning. However, we took it here as given in [GM99] for the purpose
of comparing different techniques for proving termination of CSR by transformation.

Consider the replacement map p for the signature F given by:

p(cons) = u(if) = {1} and u(f) ={1,...,ar(f)} for all f € F—{cons, if}.

This replacement map exemplifies two of the most typical applications of context-
sensitive rewriting as a computational mechanism:

(1) The declaration p(if) = {1} allows us to forbid reductions on the two
alternatives s and t of if-then-else expressions if(b,s,t) whereas it is
still possible to perform reductions on the boolean part b, as required to
implement the usual semantics of the operator.

(2) The declaration p(cons) = {1} disallows reductions on the list part of
the list constructor cons, thus making possible a kind of lazy evaluation
of lists. We can still use projection operators as tail to continue the
evaluation when needed.

1.1 Termination of context-sensitive rewriting

Termination is one of the most interesting practical problems in computation
and software engineering. A program or computational system is said to be
terminating if it does not lead to any infinite computation for any possible
call or input data. Ensuring termination is often a prerequisite for essential
program properties like correctness. Messages reporting (a neverending) “pro-
cessing”, “waiting for an answer”, or even “abnormal termination” (which are
often raised during the execution of software applications) usually correspond
to nonterminating computations arising from bugs in the program. Thus, being
able to automatically prove termination of programs is a key issue in modern
software development.

Termination is also one of the most interesting problems when dealing with
CSR. With CSR we can achieve a terminating behavior with nonterminat-
ing TRSs by pruning (all) infinite rewrite sequences. For instance, as we prove
below, all context-sensitive computations for the TRS R in Example 1 are ter-
minating when the replacement map p in the example is considered. Recently,
proving termination of C'SR has been recognized as an interesting problem

with several applications in the fields of term rewriting and programming lan-
guages [DLM*04,DLM*08,GM04,Luc02,Luc06].

Several methods have been developed for proving termination of C'SR under a
replacement map p for a given TRS R (i.e., for proving the u-termination of
R). A number of transformations which permit to treat termination of CSR as
a standard termination problem have been described (see [GMO04,Luc06] for re-
cent surveys). Polynomial orderings and the context-sensitive version of the re-
cursive path ordering have also been investigated [BLR02,GL02,Luc04b,Luc05].

The dependency pairs method [AG00,GAO02,GTS04,GTSF06,HM04,HMO05],
one of the most powerful techniques for proving termination of rewriting, has
not been investigated in connection with proofs of termination of C'SR. In this
paper, we address this problem.

1.2 Dependency pairs for context-sensitive rewriting

Roughly speaking, given a TRS R, the dependency pairs associated to R
conform a new TRS DP(R) which (together with R) determines the so-called
dependency chains whose finiteness or infiniteness characterize termination or
nontermination of R. Given a rewrite rule [— r, we get dependency pairs
I# — s* for all subterms s of r which are rooted by a defined symbol?; the
notation t* for a given term ¢ means that the root symbol f of ¢ is marked
thus becoming f* (often just capitalized: F, as done in our examples).

Example 2 Consider the TRS R in Example 1. According to [AGO00], the set
DP(R) of dependency pairs in R consists of the following pairs:

PRIMES — SIEVE(from(s(s(0)))) (1 SIEVE(cons(z,y)) — FILT(z, sieve(y)) (5

(1) (z,9))
PRIMES — FROM(s(s(0))) (2) FILT(s(s(x)), cons(y, z)) — FILT(s(s(z)), 2) (
(3) FILT(s(s(x)), cons(y, z)) — FILT(z, sieve(y)) (7
(4) (y,2)) (

FROM(x) — FROM(s(z)) 3
SIEVE(cons(z,y)) — SIEVE(y) 4 FILT(s(s(x)), cons(y, z)) — SIEVE(y) 8
FILT(s(s(z)), cons(y, z)) — IF(div(s(s(z)),y),filt(s(s(x)),), cons(y, £ilt(s(s(x)), 2))) 9)

A chain of dependency pairs is a sequence u; — v; of dependency pairs together
with a substitution o such that o(v;) rewrites to o(u;41) for all ¢ > 1. The
dependency pairs can be presented as a dependency graph, where the absence
of infinite chains can be analyzed by considering the cycles in the graph. For
instance, the dependency graph which corresponds to the TRS R in Example
1 is depicted in Figure 1. The cycle consisting of the node (3) together with the
arc going from this node to itself witnesses the nontermination of R (viewed as
an ordinary rewrite system, without any restriction on its rewriting relation).

In general, these intuitions are valid for CSR: the subterms s of the right-hand
sides r of the rules [— r which are considered to build the context-sensitive
dependency pairs I* — s* must be p-replacing terms now.

Example 3 Consider R and i as in Example 1. Only the dependency pairs
(1), (2), and (9) in Example 2 are also context-sensitive dependency pairs.

2 A symbol f is said to be defined in a TRS R if R contains a rule f(l1,...,) — 7.

Fig. 1. Dependency Graph for the TRS R in Example 1

However, this is not sufficient to obtain a correct approach. The following
example shows the need of a new kind of dependency pairs.

Example 4 Consider the following TRS R:

a—c(f(a)) t(c(x)) —u

together with u(c) = @ and p(f) = {1}. No u-replacing subterm s in the
right-hand sides of the rules is rooted by a defined symbol. Thus, there is no
‘reqular’ dependency pair. If no other dependency pairs are considered, we
could wrongly conclude that R is p-terminating, which is not true:

f(a) —, f(c(f(a))) —p f(a) —u -
Indeed, we must add the following collapsing dependency pair:
Fle(z)) — =

which would not be allowed in Arts and Giesl’s approach [AGO0] because the
right-hand side is a variable.

1.8 Plan of the paper

After some preliminaries in Section 2, we develop the material in the paper in
three main parts:

(1) We investigate the structure of infinite context-sensitive rewrite sequences.

This analysis is essential to provide an appropriate definition of context-
sensitive dependency pair, and the related notions of chains, graph, etc.
Section 3 provides appropriate notions of minimal non-p-terminating
terms and introduces the main properties of such terms. Section 4 in-
troduces the notion of hidden term in a CS-TRS. This notion turns to be
essential for the appropriate treatment of collapsing dependency pairs.
Section 5 investigates the structure of infinite context-sensitive rewrite
sequences starting from minimal non-p-terminating terms.

(2) We define the notions of contezt-sensitive dependency pair and context-
sensitive chain of pairs and show how to use them to characterize termi-
nation of CSR. Sections 6 and 7 introduce the general framework to com-
pute and use context-sensitive dependency pairs for proving termination
of CSR. The introduction of a new kind of dependency pairs (the col-
lapsing dependency pairs, as in Example 4) leads to a notion of context-
sensitive dependency chain, which is quite differente from the standard
one. In Section 8 we prove that our context-sensitive dependency pairs
approach fully characterize termination of CSR.

(3) We describe a suitable framework for dealing with proofs of termination
of CSR by using the previous results. Section 9 provides an adaptation
of the dependency pair framework [GTS04,GTSF06] to CSR by defining
appropriate notions of CS-termination problem and CS-processor which
rely in the notions and results investigated in the second part of the pa-
per. Section 10 introduces the notion of context-sensitive (dependency)
graph and the associated CS-processor which formalizes the usual prac-
tice of analyzing the absence of infinite (minimal) chains by consider-
ing the (maximal) cycles in the dependency graph. As in the standard
case, the CS-dependency graph is not computable, so we show how to
obtain the estimated CS-dependency graph which is a computable over-
stimation of it. Section 11 describes some CS-processors for removing or
transforming collapsing pairs from CS-termination problems in some par-
ticular cases. Section 12 investigates the use of term orderings to achieve
proofs of termination of CSR within the context-sensitive dependency
pairs framework. We introduce the notion of p-reduction pair, which is
the straightforward adaptation of reduction pairs used for dealing with
dependency pairs in the standard case. Nevertheless, some important dif-
ferences with the standard case arise when collapsing pairs are considered
due to the need of imposing some additional conditions. Section 13 adapts
Hirokawa and Middeldorp’s subterm criterion [HMO04] to CSR. Section 14
adapts narrowing transformation of pairs in [GTSF06] to CSR.

The paper ends with an experimental evaluation of our techniques in Sec-
tion 15 and a discussion about related work in Section 16, including a detailed

comparison between the material in this paper and the results in its predeces-
sors [AGL06,AGL07]. Section 17 concludes.

2 Preliminaries

This section collects a number of definitions and notations about term rewrit-
ing. More details and missing notions can be found in [BN98,0h102,TeR03].

Let A be a set and R € A x A be a binary relation on A. We denote the
transitive closure of R by R™ and its reflexive and transitive closure by R*. We
say that R is terminating (strongly normalizing) if there is no infinite sequence
a1 Ras Ras---. A reflexive and transitive relation R is a quasi-ordering.

2.1 Signatures, Terms, and Positions

Throughout the paper, X denotes a countable set of variables and F denotes
a signature, i.e., a set of function symbols {£, g, ...}, each having a fixed arity
given by a mapping ar : F — N. The set of terms built from F and X is
T(F,X). A term is ground if it contains no variable. A term is said to be
linear if it has no multiple occurrences of a single variable.

Terms are viewed as labelled trees in the usual way. Positions p,q,... are
represented by chains of positive natural numbers used to address subterms
of t. We denote the empty chain by A. Given positions p, g, we denote their
concatenation as p.q. Positions are ordered by the standard prefix ordering:
p < q if 3¢’ such that ¢ = p.¢’ If p is a position, and @ is a set of positions,
p.Q = {p.q | ¢ € Q}. The set of positions of a term t is Pos(t). Positions of
nonvariable symbols in ¢ are denoted as Posx(t), and Posy(t) are the positions
of variables. The subterm at position p of ¢ is denoted as t|, and ¢[s], is the
term t with the subterm at position p replaced by s.

We write t&>s, read s is a subterm of t, if s = t|, for some p € Pos(t) and t>s if
t>s and ¢ # s. We write ¢ I7 s and ¢ ¢ s for the negation of the corresponding
properties. The symbol labeling the root of ¢ is denoted as root(t). A context
is a term C' € T (F U {0}, X) with a ‘hole’ O (a fresh constant symbol). We
write C[|, to denote that there is a (usually single) hole O at position p of C.
Generally, we write C[| to denote an arbitrary context and make explicit the
position of the hole only if necessary. C[| = O is called the empty context.

2.2 Substitutions

A substitution is a mapping o : X — 7 (F,X). Denote as ¢ the ‘identity’
substitution: e(z) = x for all z € X. The set Dom(c) = {z € X | o(z) # z}
is called the domain of o.

Remark 1 In this paper, we do not impose that the domain of the substitu-
tions is finite. This is usual practice in the dependency pairs approach, where a
single substitution is used to instantiate an infinite number of variables coming
from renamed versions of the dependency pairs (see below).

Whenever Dom(o)NDom(c’) = @, for substitutions o, ¢’, we denote by cUd”,
a substitution such that (o Uo’)(z) = o(x) if z € Dom(c) and (o U o’)(x) =
o'(z) if x € Dom(o’).

2.3 Renamings and unifiers

A renaming is an injective substitution p such that p(xz) € X for all z € X.
For renamings, we assume that Var(p) is finite (which is the usual practice)
and also idempotency, i.e., p(p(z)) = p(z) for all x € X.

The quasi-ordering of subsumption < over 7 (F,X) ist <t < Jo. ' = o(t).
We denote as 0 < ¢’ the fact that o(z) < o'(x) for all z € X, thus extending
the quasi-ordering to substitutions.

A substitution ¢ such that o(s) = o(t) for two terms s,t € 7 (F,X) is called
a unifier of s and t; we also say that s and t unify (with substitution o). If
two terms s and ¢ unify, then there is a unique (up to renaming of variables)
most general unifier (mgu) 6 which is minimal (w.r.t. the subsumption quasi-
ordering <) among all other unifiers of s and ¢.

A relation R C 7T(F,X) x T(F,X) on terms is stable if for all terms s,t €
T(F,X), and substitutions o, we have o(s) R o(t) whenever s R ¢.

2.4 Rewrite Systems and Term Rewriting

A rewrite rule is an ordered pair (I,7), written [— r, with I,r € T(F,X),
I ¢ X and Var(r) C Var(l). The left-hand side (Ihs) of the rule is [and r is the
right-hand side (rhs). A rewrite rule [— 7 is said to be collapsing if r € X.
A Term Rewriting System (TRS) is a pair R = (F, R), where R is a set of
rewrite rules. Given TRSs R = (F, R) and R’ = (F', R'), we let RUR’ be the
TRS (FUF,RUR'). An instance o(l) of a lhs [of a rule is called a redex.
Given R = (F, R), we consider F as the disjoint union F = C & D of symbols
c € C, called constructors and symbols f € D, called defined functions, where
D ={root(l) |l - r € R} and C =F — D.

Example 5 Consider again the TRS in Example 1. The symbols primes,
sieve, from, head, tail, if and filt are defined, and s, 0, cons, true,

false and div are constructors.

For simplicity, we often write [— r € R instead of | — r € R to express that
the rule [— r is a rule of R.

A term t € T(F,X) rewrites to s (at position p), written t 2 s (or just
t — s, ort —g s),if t|, = o(l) and s = t[o(r)],, for some rule | — r € R,
p € Pos(t) and substitution o. We write ¢t 23 s if t Lx s for some ¢ > p. A
TRS R is terminating if its one step rewrite relation —x is terminating.

2.5 Context-Sensitive Rewriting

A mapping p : F — o(N) is a replacement map (or F-map) if Vf € F, u(f) C
{1,...,ar(f)} [Luc9g]. Let Mz be the set of all F-maps (or Mg for the F-
maps of a TRS (F, R)). Let put be the replacement map given by pr(f) =
{1,...,;ar(f)} for all f € F (i.e., no replacement restrictions are specified).

A binary relation R on terms is pg-monotonic if whenever ¢ R s we have that
f(tl,...,ti_l,t,...,tk) Rf(tl,...,ti_l,s,...,tk) for all f S f" 1€ [Il(f), and
t,s,t1,...,tx € T(F,X). If Ris pr-monotonic, we just say that R is mono-
tonic.

The set of u-replacing positions Pos"(t) of t € T(F,X) is: Pos'(t) = {A},
if t € X and Pos”(t) = {A} U Uicpprootny) i-Pos”(t];), if t ¢ X. When no
replacement map is made explicit, the u-replacing positions are often called
active; and the non-pu-replacing ones are often called frozen. The following
result about CSR is often used without any explicit mention.

Proposition 1 [Luc98] Let t € T(F,X) and p = q.¢" € Pos(t). Then p €
Post(t) iff ¢ € Pos"(t) N q' € Pos'(t],)

The p-replacing subterm relation >, is given by ¢ >, s if there is p € Pos"(t)
such that s = t[,. We write t >, s if t >, s and t # 5. We write tD% s to
denote that s is a non-p-replacing (hence strict) subterm of ¢: ¢ > s if there
is p € Pos(t) — Pos"(t) such that s = t|,. The set of p-replacing variables of a
term ¢, i.e., variables occurring at some p-replacing position in ¢, is Var#*(t) =
{x € Var(t) | t >, x}. The set of non-u-replacing variables of ¢, i.e., variables
occurring at some non-p-replacing position in ¢, is Var#(t) = {x € Var(t) |
Ly x}. Note that Var*(t) and Var#(t) do not need to be disjoint.

A pair (R,) where R is a TRS and p € Mg is often called a CS-TRS. In
context-sensitive rewriting, we (only) contract u-replacing redexes: t u-rewrites
to s, written t <, s (or t <x, s and even t — s), if t 2> s and p € Pos"(t).

Example 6 Consider R and p as in Example 1. Then, we have:
from(0) —, cons(0, from(s(0)) +, cons(0, cons(s(0), from(s(s(0)))

Since the second argument of cons is not p-replacing, we have that 2 &
Post(cons(0, from(s(0))), and the redex from(s(0)) cannot be u-rewritten.

A term ¢ is p-terminating (or (R, p)-terminating, if we want an explicit ref-
erence to the involved TRS R) if there is no infinite p-rewrite sequence
t =1 =ty =, - —,t, —, - starting from ¢. A TRS R is py-terminating
if <, is terminating.

A term ¢ p-narrows to a term s (written t ~g ¢), if there is a nonvariable
p-replacing position p € Pos'z(t) and a rule [— r in R (sharing no variable
with t) such that ¢|, and [unify with most general unifier § and s = 0(¢[r],).

3 Minimal non-u-terminating terms and infinite u-rewrite sequences

Given a TRS R = (C W D, R), the minimal nonterminating terms associated
to R are nonterminating terms ¢t whose proper subterms u (i.e., t > u) are
terminating; 7., is the set of minimal nonterminating terms associated to R
[HM04,HMO07]. Minimal nonterminating terms have two important properties:

(1) Every nonterminating term s contains a minimal nonterminating term
teT, (ie., s> t), and

(2) minimal nonterminating terms ¢ are always rooted by a defined symbol
f€D:Vte Ty, root(t) € D.

Considering the structure of the infinite rewrite sequences starting from a
minimal nonterminating term t = f(t1,...,t;) € 7T is helpful to come to
the notion of dependency pair. Such sequences proceed as follows (see, e.g.,

[HMOA4]):

(1) a finite number of reductions can be performed below the root of ¢, thus
rewriting ¢ into t'; then

(2) arule f(ly,...,lx) — r applies at the root of t' (i.e., t' = o(f(l1,...,lk))
for some substitution o); and

(3) there is a minimal nonterminating term u € 75, (hence root(u) € D) at
some position p of o(r) satisfying that p € Posx(r), (i.e., p is a nonva-
riable position of r) which ‘continues’ the infinite sequence initiated by ¢
in a similar way.

This means that considering the occurrences of defined symbols in the right-
hand sides of the rewrite rules suffices to ‘catch’ every possible infinite rewrite

10

sequence starting from o(r). In particular, no infinite sequence can be issued
below the variables of r (more precisely: all bindings o(x) are terminating
terms). This is summarized as follows:

Proposition 2 [HM04, Lemma 1] Let R = (CW D, R) be a TRS. For all

t € T, there exist | — r € R, a substitution o and a term u € T, such that

root(u) € D, t A, o(l) A o(r)>wu and there is a nonvariable subterm v of

r, r>wv, such that u = o(v).

The standard definition of dependency pair relies on (2) and (3) above: after
marking ¢t = f(t,...,t;) as t* = f¥(t1,...,t), only reductions below the
root of ¢ are possible; then, such rewritings transform #* into o(f*(l1,...,I))
for some substitution ¢ and rule f(ly,...,lxy) — r of the TRS. The set of
dependency pairs f¥(ly,...,lx) — vf for 1 < i < n associated to such a rule
represent all possible ways to continue the infinite sequence initiated by t with
a minimal nonterminating term o (v;).

3.1 Minimal non-u-terminating terms

Before starting our discussion about (minimal) non-g-terminating terms, we
provide an obvious auxiliary result about p-terminating terms.

Lemma 1 Let R = (F,R) be a TRS, p € Mg, and s,t € T(F,X). If t is

u-terminating, then:

(1) If t >, s, then s is p-terminating.
(2) Ift =%, s, then s is p-terminating.

Given a TRS R = (F, R) and a replacement map p € Mx, maybe the most
straightforward definition of minimal non-p-terminating terms is the following:
let 7., be a set of minimal non-p-terminating terms in the following sense:
t belongs to 7o, if ¢ is non-y-terminating and every strict subterm u (i.e.,
t > w) is p-terminating. It is obvious that root(t) € D for all ¢t € T, ,,. We
also have:

Lemma 2 Let R = (F,R) be a TRS, p € Mg, and s € T(F,X). If s is not
p-terminating, then there is a subterm t of s (s>t) such that t € T ,.

PrROOF. By structural induction. If s is a constant symbol, it is obvious:
take t = s. If s = f(sy,...,sk), then we proceed by contradiction. If there is
no subterm ¢ of s such that ¢t € 7, ,, then in particular s € 7 ,, i.e., (since
s is not p-terminating) there is a strict subterm t of s (s > t) which is not
p-terminating. By the Induction Hypothesis, there is t' € 7, such that t>¢'.
Then, we have s > t/, thus leading to a contradiction. O

11

Unfortunately, there can be non-p-terminating terms having no p-replacing
subterm in 7. ,.

Example 7 Consider the CS-TRS (R, 1) in Example 4 and s = £(c(f(a))).
Note that s is not p-terminating, but s ¢ 7o, because £(c(f(a))) > f(a) and
f(a) is not p-terminating. Note that £(c(£(a))) >y £(a). The only p-replacing
strict subterm of s is c(f(a)), which is p-terminating, i.e., c(£(a)) € oo -

Therefore, this kind of minimal non-u-terminating terms are not the most
natural ones because they could occur at non-u-replacing positions, where
no p-rewriting step is possible. So, this simple notion would not lead to an
appropriate generalization of Proposition 2 to CSR. Still, we use them advan-
tageously below; for this reason we pay them some attention here.

There is a suitable generalization of Proposition 2 to CSR (see Proposition 4
below) based on the following notion.

Definition 1 (Minimal non-u-terminating term) Let M, be a set of
minimal non-p-terminating terms in the following sense: t belongs to My ,, if
t is non-p-terminating and every strict p-replacing subterm s of t (i.e., t>,s)
18 W-termanating.

Note that 7, € M. In the following we often say that terms in 7, are
strongly minimal non-p-terminating terms. Now we have the following.

Lemma 3 Let R = (F,R) be a TRS, p € Mg, and s € T(F,X). If s is not
p-terminating, then there is a p-replacing subterm t of s such thatt € My .

Proor. By structural induction. If s is a constant symbol, it is obvious: take

= s. If s = f(s1,...,8k), then we proceed by contradiction. If there is no
p-replacing subterm ¢ of s such that t € M, then in particular s ¢ M ,,
i.e., there is a strict u-replacing subterm t of s which is not u-terminating. By
the Induction Hypothesis, ¢ contains a u-replacing subterm ¢ which belongs
to My . But, since t is a p-replacing subterm of s (i.e., ¢t = s|, for some
p € Post(s)), t' itself is also a p-replacing subterm of s (because ¢ = t|,
for some ¢ € Pos”(t) and p.q € Pos”(s) by Proposition 1) which belongs to
M i, thus leading to a contradiction. O

Obviously, if t € M ,,, then root(t) is a defined symbol. Since p-terminating
terms are preserved under p-rewriting (Lemma 1), it follows that M, is

preserved under inner p-rewritings in the following sense.

Lemma 4 Let R = (F,R) be a TRS, € My, andt € Moo, Ift <S5, u
and u is non-p-terminating, then u € My .

12

Proor. All p-rewritings below the root are issued on p-replacing and u-
terminating terms which remain p-terminating by Lemma 1. Then, if u is not
p-terminating, all its p-replacing subterms (which are the ones which can be
originated or transformed by p-rewritings from ¢ to u) have to be u-terminating
as well. Hence, u € M . O

Lemma 4 does not hold for 7o, ,: consider the CS-TRS (R, 1) in Example 4.
We have that f(a) € 7 ,. Now, f(a) —, f(c(f(a))) and f(c(f(a))) is not
p-terminating. However, f(c(f(a))) € 7, as shown in Example 7.

4 Hidden terms in minimal y-rewrite sequences

Given a CS-TRS (R, uu) the hidden terms are nonvariable terms occurring on
some frozen position in the right-hand side of some rule of R. As we show
in the next section they play an important role in infinite minimal p-rewrite
sequences associated to R.

Definition 2 (Hidden symbols and terms) Let R = (F,R) be a TRS
and pn € Mg. We say that t € T(F,X) — X is a hidden term if there is
arulel — r € R such that r >y t. Let HT (R, p) (or just HT, if R and u
are clear for the context) be the set of all hidden terms in (R, p). We say that
f € F is a hidden symbol if it occurs in a hidden term. Let H(R, u) (or just
H) be the set of all hidden symbols in (R,).

Example 8 For R and p as in Example 1, the mazimal hidden terms are
from(s(x)), filt(z, sieve(y)), £ilt(s(s(z)), 2), and cons(y, £ilt(s(s(z)), 2)).
The hidden symbols are from, filt, sieve, cons and s.

In the following, we also use DH7T = {t € HT | root(t) € D} for the set of
hidden terms which are rooted by a defined symbol.

The following lemma says that frozen subterms ¢ in the contractum o(r) of
a redex o(l) which do not contain t, are (at least partly) ‘introduced’ by a
hidden term in the right-hand side r of the involved rule [— r.

Lemma 5 Let R = (F,R) be a TRS and n € Mg. Lett € T(F,X) and o be
a substitution. If there is a rule | — r € R such that o(l) ¥ t and o(r) >y,
then there is no x € Var(r) such that o(x) > t. Furthermore, there is a term
'€ HT such that r >y t" and o(t') = t.

PROOF. By contradiction. If there is € Var(r) such that o(z) > t, then

since variables in [are always below some function symbol we have o(l) > t,
leading to a contradiction.

13

Since there is no x € Var(r) such that o(x)>t but we have that o(r)>,t, then
there is a nonvariable and non-yu-replacing position p € Posg(r) — Pos”(r) of
r, such that o(r|,) = t. Then, we let t' = r|,. Note that t' € H7. 0

The following lemma establishes that minimal non-p-terminating and non-p-
replacing subterms occurring in a p-rewrite sequence involving only minimal
terms directly come from the first term in the sequence or are instances of a
hidden term.

Lemma 6 Let R = (F,R) be a TRS and p € Mg. Let A be a p-rewrite
sequence t; <ty — -+ —t, witht; € My, foralli, 1 <i<n andn >1.
If there is a term t € My, such that t; ¥ t and t, >y t, then t = o(s) for
some s € DHT and substitution o.

Proor. By induction on n:

(1) If n = 1, then it is vacuously true because t1 ¥ ¢ and ¢; >, ¢ do not
simultaneously hold.

(2) If n > 1, then we assume that ¢; (¢ ¢t and ¢, >yt Let [— r € R be
such that ¢,y = C[o(l)] and t, = C[o(r)] for some context C[] and
substitution o. We consider two cases: either t,,_; >, t holds or not.

(a) If t,—1 > yt, then by the induction hypothesis the conclusion follows.

(b) If ¢, 1 D>yt does not hold, then, since assuming ¢,,_1 >, t leads to a
contradiction (because t,_1 € M, in the hypothesis implies that
t ¢ M), we have that t,_q ¢ t. In particular, o(l) B¢ ¢; then, since
tn >yt there must be o(r) >y ¢. Thus, by Lemma 5 we conclude that
t = o(s) for some s € ‘HT and substitution o. Since t € M, it
follows that root(t) = root(s) € D. Thus, s € DHT.

O

We use the previous results to investigate infinite sequences that combine
p-rewriting steps on minimal non-pu-terminating terms and the extraction of
such subterms as p-replacing subterms of (instances of) right-hand sides of
the rules.

Proposition 3 Let R = (F,R) be a TRS and u € Mg. Let A be a finite or

. . A / >A A 12 >A
infinite sequence of the formt; — s;>,t, R b2 o Sty SRty

with t;, t; € M, for all i > 1. If there is a term t € My, such that t; D%t
for some i > 1, then t; D>yt ort= o(s) for some s € DHT and substitution
0.

Proor. By induction on #:
(1) If i = 1, it is trivial.

(2) Ifi >1and t; >yt then we consider two cases: either ¢; Dyt holds or

14

not.
(a) If t; 1 > y t, then by the induction hypothesis the conclusion follows.
(b) Ift;—4 >t does not hold, then let I — r € R and o be such that ¢;_; =
o(l) and s;_y = o(r) >, t;. Since t,_4 >, t leads to a contradiction
(because t;_1 € M, implies that ¢t ¢ M), we have that t;,_; ¥ t.
Then we consider two cases: either ¢, >t or ¢ 1% t.
(A) If ¢} > t, since t,t € M, the case t] >, t is excluded and the
only possibility is that ¢ >y L. Then, since o(l) = t;_; ¥ t and
o(r) >, t >yt ie. o(r) >, t, by Lemma 5 we conclude that
t = o(s) for some s € H7T and substitution o. Since t € M,
it follows that root(t) = root(s) € D. Thus, s € DHT .
(B) If ¢, t¢ t, then, by applying Lemma 4 and Lemma 6 to the u-

. SA .
rewrite sequence t; =% t; the conclusion follows.

5 Infinite py-rewrite sequences starting from minimal terms

The following proposition establishes that, given a minimal non-p-terminating
term t € M, there are only two ways for an infinite p-rewrite sequence to
proceed. The first one is by using ‘visible’ parts of the rules which correspond to
pu-replacing nonvariable subterms in the right-hand sides which are rooted by a
defined symbol. The second one is by showing up ‘hidden’ non-p-terminating
subterms which are activated by migrating variables in a rule [— r, i.e.,
variables « € Var*(r) — Var#(l) which are not p-replacing in the left-hand
side [but become p-replacing in the right-hand side 7.

Proposition 4 Let R = (F,R) = (CWD, R) be a TRS and u € Mx. Then for
allt € My, there exist | — r € R, a substitution o and a term u € My,

such that t ‘;Aﬁ,kz’# o(l) & o(r) >, u and either

(1) there is a p-replacing subterm s of r, r >, s, such that u = o(s), or
(2) there is x € Var*(r) — Var*(l) such that o(x) >, u.

Proor. Consider an infinite py-rewrite sequence starting from ¢. By definition
of My, all proper p-replacing subterms of ¢ are p-terminating. Therefore, ¢
has an inner reduction to an instance o(l) of the left-hand side of a rule [— r
of R: t dﬁz# o(l) & o(r) and o(r) is not p-terminating. Thus, we can write
t=f(t1,...,tg) and o(l) = f(ly,..., 1) for some k-ary defined symbol f, and
t; —* o(l;) for all i, 1 <14 < k. Since all ¢; are p-terminating for i € u(f), by
Lemma 1, o(l;) and all its p-replacing subterms also are. In particular, o(x)
is pu-terminating for all p-replacing variable x in I: x € Var#(l). Since o(r) is
non-y-terminating, by Lemma 3 it contains a p-replacing subterm v € M

15

o(r) >, u, ie., there is a position p € Pos"(a(r)) such that o(r)|, = u. We
consider two cases:

(1) If p € Posx(r) is a nonvariable position of r, then there is a p-replacing
subterm s of 7, such that u = o(s).

(2) If p & Posz(r), then there is a p-replacing variable position g € Pos”(r)N
Posx(r) such that ¢ < p. Let « € Var#(r) be such that r|, = x. Then,
o(z)>,u and o(x) is not y-terminating (by assumption, u € Mo, is not
p-terminating: by Lemma 1, o(x) cannot be u-terminating either). Since
o(l;) is p-terminating for all € u(f), and o(x) is also u-terminating for
all p-replacing variables in [, we conclude that « € Var#(r) — Var*(l).

O

Proposition 4 entails the following result, which establishes some properties
of infinite sequences starting from minimal non-u-terminating terms.

Corollary 1 Let R = (F,R) be a TRS and 1 € My. For allt € My, there
s an infinite sequence

t 5%, o1(h) S oi(r) Bty S 0a(la) S 0a(ra) Byt e REE

where, for all v > 1, l; — r; € R are rewrite rules, o; are substitutions, and
terms t; € Mo, are minimal non-u-terminating terms such that either

(1) t; = oi(s;) for some s; such that r;>, s;, or
(2) oi(z;) >, t; for some x; € Vart(r;) — Var*(l;).

Remark 2 The (—, U >,)-sequence in Corollary 1 can be easily viewed as
an infinite p-rewrite sequence by just introducing appropriate contexts Ci |,
with p-replacing holes: since o;(r;) >, t;, there is p; € Pos"(o;(r;)) such that
oi(ri) = oi(ri)[ti]p,; Just take Ci[]y, = o(r;)[O]p,. Then we get:

t =x, 01(li) =rpu Ciltily, =k, Ciloa(l2)lp, —ru CilColtalp,)p =R,

Note that, e.g., p1.p2 € Pos"(C1[Calta]py]p) (use Proposition 1).
5.1 Infinite p-rewrite sequences starting from strongly minimal terms

In the following, we consider a function REN" which independently renames
all occurrences of p-replacing variables within a term ¢ by using new fresh
variables which are not in Var(t):

e REN*(z) = y if x is a variable, where y is intended to be a fresh new variable
which has not yet been used (we could think of y as the ‘next’ variable in

16

an infinite list of variables); and

o REN“(f(ty,...,tx)) = f([ti)],... [tr]]) for evey k-ary symbol f, where
given a term s € T(F,X), [s]] = REN“(s) if i € p(f) and [s]/ = s if
i & u(f):

Note that REN*(t) renames all p-replacing positions of variables in ¢ by new
fresh variables y but keeps variables at non-u-replacing positions untouched.
Note that, in contrast to a renaming substitution (often denoted by p), REN*
is not a substitution: it will replace different u-replacing occurrences of the
same variable by different variables.

Proposition 5 Let R = (F,R) = (CWD,R) be a TRS and jp € My. Let t €
T(F,X)—2X be a nonvariable term and o be a substitution. If o(t) <>—A>;‘27M a(l)
for some (probably renamed) rule | — r € R, then REN"(t) is p-narrowable.

PROOF. We can write the sequence from o(t) to o (1) as follows: o(t) = t; 24,

A A . :
ty = - < £, = (1) for some m > 1. We proceed by induction on m.

(1) If m = 1, then o(t) = o(l). Since t ¢ X, t is p-narrowable (at the root
position) using the rule [— r. Therefore, REN*(%) is also y-narrowable by
using the unifier ¢’ which, for each z; € Var*(t) identifies the new fresh
variables yi, ..., yy, introduced by REN* for the M; different p-replacing
positions of z; in t: o'(z) = o(z) for all x € Var(l), o'(y;) = o'(z;) =
o(z;) for all z; € Vart(t) and 1 < j7 < M;, and o'(x) = o(z) for all
x € Var(t) — Var#(t). Clearly, ¢/(REN"(t)) = o'(t) = o'(l) = o(l), i.e.,
REN*(t) is narrowable at the root position using the same rule [— 7.

(2) If m > 1, then we have t; AN ‘iﬁz,u o(l). We consider two cases

according to the position p € Pos"(t1) where the p-rewrite step ¢, A, to

is performed (note that t; = o(t) by assumption).

(a) If p € Posz(t), then there is a rule I’ — " and a substitution 6 such
that o(t)|, = o(t],) = 0(I'). Again, w.l.o.g. we can write o(t],) =
o(l"), i.e., t is p-narrowable at position p using rule I’ — 7’ and
(reasoning as above), we conclude that REN*(¢) also is.

(b) If p & Pos'z(t), then there is a p-replacing variable position ¢ €
Posh(t) of t such that t|, = z € Vart(t), ¢ < p and o(z) —, ta],
Therefore, t1 = o(t[z],) = o(t)[o(z)], and to = o(t)[t2,lq = o' (')
for a term ¢ = t[y|, where y is a new fresh variable y ¢ Var(t)
and a substitution ¢’ given by o'(y) = t2|, and ¢'(z) = o(z) for all
z € Var(t) (including x). Clearly,

By the induction hypothesis, REN*(#') is p-narrowable. Since ¢ and
t" only differ in a variable, we can assume that REN*(') = REN¥(?).
Thus, we conclude that REN”(t) is p-narrowable as well.

17

O

Corollary 2 Let R = (F,R) be a TRS and u € Mg. Lett € T(F, X) — X
be a nonvariable term and o be a substitution such that o(t) € Mu . Then,
REN*(t) is p-narrowable.

Proor. By Proposition 4, there is a rule [— r and a substitution ¢ such
that o(t) dﬁz# o(l) (since we can assume that variables in [and variables
in ¢ are disjoint we can apply the same substitution ¢ to ¢ and [without any
problem). By Proposition 5, the conclusion follows. O

In the following, we write NARR*(¢) to indicate that ¢ is py-narrowable (w.r.t.
the intended TRS R). We also let

NHT (R, u) = {t € DHT | NARR"(REN"(1))}

be the set of hidden terms which are rooted by a defined symbol, and that,
after applying REN", become p-narrowable. As a consequence of the previous
results, we have the following main result which we will use later.

Theorem 1 Let R = (F,R) be a TRS and p € Mx. For all t € T, there
s an infinite sequence

t=1o dﬁz,# o1(lh) < o1(r1) B>uta dﬁz,# aa(l2) s 0(r2) B4 to A%,u

where, for all v > 1, [; — r; € R are rewrite rules, o; are substitutions, and
terms t; € Mo, are minimal non-p-terminating terms such that either

(1) t; = oi(s;) for some s; such that r;>, s;, or
(2) oi(z;) B, t; for some x; € Var*(r;) — Var*(l;) and t; = 0;(t}) for some
ti € NHT and substitution 6;.

PRrROOF. Since 7, € M, by Corollary 1, we have a sequence

t=to (;A;;Q,,u Ul(ll) <£> 0'1(7“1> [ZM 11 (A;{,y O'Q(lg) ‘i O'Q(TQ) [Z,u to (;A};Q,,u R
where, for all ¢ > 1, [; — r; € R, o; are substitutions, ¢; € M, ,, and
either (1) t; = 04(s;) for some s; such that r; >, s; or (2) o;(z;) >, t; for some
x; € Vart(r;) —Var*(l;) (and hence o(I;) >yt and o(r;) >, t; as well). We only
need to prove that terms ¢; are instances of hidden terms in N’H7 whenever
the second condition holds. By Proposition 3, for all such terms ¢;, we have that
either (4) o1(l) >y t; or (B) t; = 0;(;) for some t; € DHT and substitution
0;. In the second case (B), we are done by just considering Corollary 2, which
ensures that ¢, € N’HT. In the first one (A), since ¢ dﬁg’u o1(lh) and oy (1)
is not p-terminating, by Lemma 4 all terms u; in the p-rewrite sequence

>A >A >A
t:ul’ U9 © s © umzal(ll)

18

for m > 1, belong to Mo, 0 u; € My, for all j, 1 < 57 < m. Since t €
Too i, all its strict subterms (disregarding their p-replacing character) are p-
terminating. Therefore, ¢ (¢ t; (because t; is not p-terminating) and by Lemma
6, t; = 0,(t;) for some t, € DHT and substitution ;. Again, by Corollary 2
we have t, € N'HT. O

6 Context-Sensitive Dependency Pairs

Lemma 2 and Theorem 1 are the basis for our definition of Context-Sensitive
Dependency Pairs (and the corresponding chains). Together, they show that
every non-u-terminating term s has an associated infinite u-rewrite sequence
starting from a strongly minimal subterm ¢t € 7, (i.e., s>t). Such a sequence
proceeds by first performing some p-rewriting steps below the root of t to
obtain a term ¢’ (i.e., ¢ \'LA%‘Q# t') and then applying a rule [— r at the topmost
position of t' (i.e., ' = o(l) for some matching substitution). According to

Proposition 4, the application of such a rule either

(1) introduces a new minimal non-p-terminating subterm u having a pre-
fix s which is a p-replacing subterm of r (i.e., r >, s and u = o(s)).
Furthermore, by Corollary 2, REN*(s) must be p-narrowable; or else
(2) takes a minimal non-p-terminating and non-p-replacing subterm w of ¢’
(ie., >y u) and
(a) brings it up to an active position by means of the binding o(x) (i.e.,
o(z) >, u) for some migrating variable x in l — r (i.e., z € Vart(r)—
Vart(1)).

(b) At this point, we know that u, which is rooted by a defined symbol
due to u € My, is an instance of a hidden term v € NHT:
u = 6(u') for some substitution 6.

(c) Afterwards, further inner p-rewritings on u lead to match the left-
hand-side !" of a new rule I’ — 7’ and everything starts again.

This process is abstracted in the following definition of context-sensitive de-
pendency pairs and in the definition of chain below.

Given a signature F and f € F, we let f* be a new fresh symbol (often called
tuple symbol or DP-symbol) associated to a symbol f [AG00]. Let F* be the set
of tuple symbols associated to symbols in F. As usual, for t = f(tq,...,t) €
T(F,X), we write t* to denote the marked term f*(¢,,...,t;). Conversely,
given a marked term t = f¥(ty,...,t;), where t1,...,t;, € T(F,X), we write
t* to denote the term f(ti,...,tx) € T(F,X). Let THF,X) = {t | t €
T(F,X) — X} be the set of marked terms.

Definition 3 (Context-Sensitive Dependency Pairs) Let R = (F, R) =

19

(CWD,R) be a TRS and p € Mg. We define DP(R,) = DP£(R,pu) U
DPx (R, i) to be the set of context-sensitive dependency pairs (CSDPs) where:

DPx(R,u) = {I* = s* |l —r € R,r>, s,root(s) € D, £, s, NARR*(REN"(s))}
DPx(R,u) = {I* = x|l —r¢€R,xcVart(r) — Vart(l)}

We extend p € Mg into it € Mzup: by p*(f) = p(f) if f € F, and p#(f*) =
u(f)if f €D

The CSDPs u — v € DPx(R,) in Definition 3, consisting of collapsing rules
only, are called the collapsing CSDPs.

A rule I — r of a TRS R is p-conservative if Var#(r) C Var#(l), i.e., it does
not contain migrating variables; R is p-conservative if all its rules are (see
[Luc96,Luc06]). The following fact is obvious from Definition 3.

Proposition 6 If R is a p-conservative TRS, then DP(R,u) = DPx(R, p).

Therefore, in order to deal with p-conservative TRSs R we only need to con-
sider the ‘classical’ dependency pairs in DP£(R, u).

Example 9 Consider the following TRS R:

g(«) —h(x) h(d) — g(c)

c—d

together with u(g) = pt) = @ [Zan97, Erxample 1]. Note that R is p-
conservative. DP(R,) consists of the following (noncollapsing) CSDPs:

G(xz) — H(x) H(d) — G(c)
with p#(G) = pf(H) = @.

If the TRS R contains non-pu-conservative rules, then we also need to consider
dependency pairs with variables in the right-hand side.

Example 10 For the CS-TRS (R,) in Ezample 1, we have siz CSDPs: (1),
(2), and (9) as in Example 2 plus the following three collapsing CSDPs:

TAIL(cons(z,y)) —y (10)
IF(true,z,y) —x (11)
IF(false,x,y) —y (12)

20

7 Chains of CSDPs

An essential property of the dependency pairs method is that it provides a
characterization of termination of TRSs R as the absence of infinite (minimal)
chains of dependency pairs [AG00,GTSF06]. As we prove in Section 8, this is
also true for CSR when CSDPs are considered. First, we have to introduce
a suitable notion of chain which can be used with CSDPs. As in the DP-
framework [GTS04,GTSF06], where the procedence of pairs does not matter,
we rather think of another TRS P which is used together with R to build
the chains. Once this more abstract notion of chain is introduced, it can be
particularized to be used with CSDPs, by just taking P = DP(R, u).

Definition 4 (Chain of pairs - Minimal chain) LetR = (F,R) and P =
(G,P) be TRSs and pn € Mzpyg. A (P, R, u)-chain is a finite or infinite se-
quence of pairs u; — v; € P, together with a substitution o satisfying that, for
all1>1:

(1) if vi & Var(u;) — Vart(u;), then o(v;) =%, 0(uiy1), and
(2) ifv; € Var(u;)—Vart(u;), then there is s; € T(F, X) such that o(v;)>,,s;

and s R (i)

As usual, we assume that different occurrences of dependency pairs do not
share any variable (renaming substitutions are used if necessary).

A (P, R, un)-chain is called minimal if for all i > 1,

(1) if v; & Var(u;) — Var*(u;), then o(v;) is (R, p)-terminating, and
(2) if v; € Var(u;) — Var*(u;), then st is (R, u)-terminating and 35; €
NHT (R, i) such that s; = o(5;).

Note that the condition v; € Var(u;) — Var*(u;) in Definition 4 implies that
v; is a variable. Furthermore, since each u; — v; € P is a rewrite rule (i.e.,
Var(v;) € Var(w;)), v; is a migrating variable in the rule u; — v;.

Remark 3 (Conventions about P) The following conventions about the
component P = (G, P) of our chains will be observed during our development:

(1) According to the usual terminology [GTSF06], we often call pairs to the
rules u — v € P.

(2) Marking is part of the definition of chain: we have to mark terms s; €
T(F,X) before connecting them to the instance o(u;11) of the left-hand
side of the next pair. Since marked symbols f* are fresh (w.r.t. the signa-
ture F of the TRSR), we also assume that D*NF = @ and D* C G (since
we only mark defined symbols, we do not need to extend the marking to

F).

21

(3) We also silently assume that P contains a finite set of rules. This is
essential in many proofs.

In the following, the pairs in a CS-TRS (P, u), where P = (G, P), are parti-
tioned according to its role in Definition 4 as follows:

Py ={u—veP|veVar(u) —Var*(u)} and P; = P — Py

Remark 4 (Collapsing pairs) Note that all pairs in Py = (G, Py) are col-
lapsing. The rules in Pg = (G, Pg) can be collapsing as well: a rewrite rule
f(z) — x € P with u(f) = {1} does not belong to P~ but rather to Pg because
x 18 not a migrating variable.

Despite this fact, we refer to Px as the set of collapsing pairs in P because

its intended role in Definition 4 is capturing the computational behavior of
collapsing CSDPs in DPx(R, 11).

Remark 5 (Notation for chains) In general, a (P, R, j1)-chain can be writ-
ten as follows:

o(u1) —py 0 Bk ty =k, o(uy) —py o Bhty =%, -

where, for all i > 1 and u; — v; € P,

(1) if u; — v; € Px, then t; = o(v;),
(2) if u; — v; € Px, thent; = sg for some term s; such that o(v;) >, s;.

The relation 'ZEL is defined as follows:

o s>!tis equivalent to s>, t* if s € T(F,X) and t € THF,X), and
o s>! t is equivalent to s =t for s,t € THF,X).

7.1 Properties of some particular chains

In the following, we let NHT p(R,) C NHT (R, 1) (or just NHT p if R and
w are clear from the context) be as follows:

NHTp(R, 1) = {t e NHT (R, p1) | Ju — v € P, 30,6, 6(t") =%, 0'(u)}

This set contains the narrowable hidden terms which ‘connect’ with some pair

in P.

Remark 6 Note that NHT p(R,) is not computable, in general, due to
the need of checking the reachability of 6'(u) from 0(t*) using CSR. Suitable
(over)approximations are discussed below.

22

We let PL denote the subTRS of Py containing the rules whose migrating
variables occur on non-u-replacing immediate subterms in the left-hand side:

Ph={f(u,...,ux) >z €Px|Fi,1<i<kid¢u(f),ze Var(u)}
Proposition 7 Let R = (F,R) and P = (G, P) be TRSs and 1 € My g.

(1) If NHT p = @, then every infinite minimal (P, R, u)-chain is an infinite
minimal (Pg, R, u)-chain and there is no infinite minimal (Px, R, j1)-
chain.

(2) If P = P2, then there is no infinite (P, R, iu)-chain.
PROOF.

(1) By contradiction. Assume that there is an infinite minimal (P, R, u)-
chain containing any w; — v; € Py. By Definition 4, such a pair must
be followed by a pair u;;; — visy € P such that 6;(5) R O(Uir1)
for some §; € N'HT and substitution 6;. Therefore, t; € N'HT p, but
NHT p = @, leading to a contradiction.

(2) By contradiction. Assume that there is an infinite chain which only uses
dependency pairs u; — z; € P3 for all ¢ > 1. Let f; = root(u;) for i > 1.
Then, by definition of P, for all i > 1 thereis j; € {1,...,ar(f;)} —u(f;)
such that w;|;, > z;. According to Definition 4, we have that o(u;);, >
o(x;) >, s; for some term s; such that s’ % 0(Uiy1), with root(st) =
root(ui+1) = fir1 and jio1 & p(fiy1). Since no p-rewriting step is possible
on the jj;1-th immediate subterm s;|;,,, of s;, it follows that s;|;,, =
0(Uit1)|jiys B 0(@ig1), i€, 0(z;) >0 (2541) for all i > 1. We get an infinite
sequence o (1) > o(z2) > - - - which contradicts well-foundedness of .

O

The following proposition establishes some important ‘basic’ cases of (absence
of) infinite context-sensitive chains of pairs which are used later.

Proposition 8 Let R = (F,R) and P = (G, P) be TRSs and u € Mr,g.

(1) If P = @, then there is no (P, R, u)-chain.

(2) If R = @, then there is no infinite (Px, R, iu)-chain.

(3) Let uw — v € Pg be such that v' = 0(u) for some substitution 6 and
renamed version v’ of v. Then, there is an infinite (P, R, u)-chain.

Proor.

(1) Obvious, by Definition 4.
(2) By contradiction. If there is an infinite (Py, R, 11)-chain, then, since there

23

is no rule in R, there is a substitution ¢ such that
o(u1) —py o(z) Bty = o(ug) —pp o(22) Bty = o (ug) - -

where t; = ¢ for some terms s; € T(F,X) such that o(x;) >, s; for
i > 1. Since z; € Var(u;) and u; is not a variable, we have u; > z;, hence
o(u;) > o(z;) (by stability of &), and also o(u;) > s; for all ¢ > 1. Since
s; and o(u;11) only differ in the root symbol, we can actually say that
5; > s;41 for all © > 1. Thus, we obtain an infinite sequence s; > s9 > - - -
which contradicts the well-foundedness of ©>.

(3) Since we always deal with renamed versions u; — wv; of the pair u —
v € P, for each z € Var(u), we write x; to denote the ‘name’ of the
variable = in u; — v;. According to our hypothesis, we can assume the
existence of substitutions 6,,; such that v; = 6;41(u;11). Note that, for
all x € Var(u) and i > 1, Var(0;41(uiv1)) € Var(v;) € Var(u;). We
can define an infinite (&, {u — v}, u)-chain (hence an (P, R, y1)-chain)
by using the renamed versions u; — v; of u — v for ¢ > 1 together
with o given (inductively) as follows: for all z € Var(u), o(x1) = 21 and
o(x;) = 0(0;(z;)) for all i > 1. Note that o(v;) = 0(0;11(wit1)) = o(Uir1)
for all + > 1.

O

The following example shows that Proposition 8(2) does not hold for TRSs P
with arbitrary rules.

Example 11 Consider P = {F(z) — z,G(z) — F(g(x))} together with a
TRS R with an emtpy set of rules: R = (F, D). Let u be given by u(f) = @
for all f € FUG. Note that Px consists of the pair F(x) — x because x €
Var(F(x)) — Var*(F(z)). Then, we have an infinite chain

F(g(x)) —p, g(x) % G(z) —p, F(g(z)) —ry

Note that this chain is not minimal because NHT = &, hence g(x) is not an
instance of any term in N'HT .

8 Characterizing termination of C'SR using chains of CSDPs

The following result establishes the soundness of the context-sensitive depen-
dency pairs approach. As usual, in order to fit the requirement of variable-
disjointness among two arbitrary pairs in a chain of pairs, we assume that
appropriately renamed CSDPs are available when necessary.

24

Theorem 2 (Soundness) Let R be a TRS and p € My. If there is no infi-
nite minimal (DP(R, 1), R, u*)-chain, then R is p-terminating.

PRrROOF. By contradiction. If R is not p-terminating, then by Lemma 2 there
ist € 7. By Theorem 1, there are rules [; — r; € R, matching substitutions
o;, and terms t; € M, for i > 1 such that

t=1o ‘LA%,# o1(ly) & o1(r1) B>ty ‘iﬁg,# oa(l) & oa(re) B>, to ‘iﬁg,#

where either (D1) ¢; = 0;(s;) for some s; such that 7,5, or (D2) 0;(z;)>,t; for
some z; € Vart(r;)—Vart(l;) and t; = 6;(t}) for some t; € N'HT . Furthermore,
since t;_ ‘iﬁz,u oi(l;) and t;_1 € My, (in particular, tp =t € T, C
M), by Lemma 4, 0;(l;) € M, for all i > 1. Note that, since t; € Mo,
we have that tg is pu-terminating (with respect to R), because all p-replacing
subterms of #; (hence of ¢ as well) are p-terminating and root(t!) is not a

defined symbol of R.

First, note that DP(R,) is a TRS P over the signature G = F U D* and
u* € Mryg as required by Definition 4. Furthermore, Pg = DP£(R, 1) and
Py = DPx(R,). We can define an infinite minimal (DP(R,), R, 11#)-chain
using CSDPs u; — v; for ¢« > 1, where u; = l? and

(1) v; = ¢ if (D1) holds. Since t; € Mo, we have that root(s;) € D and,
because t; = 0;(s;), by Corollary 2 REN"(s;) is p-narrowable. Further-
more, if we assume that s; is a p-replacing subterm of [; (i.e., l; >, s;),
then o;(l;) >, 0;(s;) which (since o;(s;) = t; € M) contradicts that
oi(l;) € M. Thus, I; 14,s;. Hence, u; — v; € DP£(R, pt). Furthermore,
t* = 0;(v;) is p-terminating. Finally, since t; = 0;(s;) dﬁa# oir1(liy1)
and p* extends p to F U DF by puf(f*) = u(f) for all f € D, we also have
that o3(v;) = 04(sf) =5 Tis1 (uig1).

(2) v; = x; if (D2) holds. Clearly, u; — v; € DPx(R, ut). As discussed above,
t§ is p-terminating. Since o;(z;) >, t;, we have that o;(v;) >, t;. Finally,
since t; dﬁa# oi+1(li41), again we have that uf SRt oir1(uiy). Fur-
thermore, t; = 0;(t;) for some t; € N'HT. 7

Regarding o, w.l.o.g. we can assume that Var(l;) N Var(l;) = @ for all i # j,
and therefore Var(u;) N Var(u;) = @ as well. Then, ¢ is given by o(x) =
oi(z) whenever = € Var(u;) for i > 1. From the discussion in points (1)
and (2) above, we conclude that the CSDPs u; — v; for ¢ > 1 together with o
define an infinite minimal (DP(R, i), R, 1#*)-chain which contradicts our initial
assumption. O

As for arbitrary pairs, we use DP% to denote the subset of dependency pairs

in DPy (R, 1) whose migrating variables occur on non-p-replacing immediate
subterms in the left-hand side.

25

As an immediate consequence of Theorem 2 and Propositions 7 and 8, we have
the following.

Corollary 3 (Basic py-termination criteria) Let R be a TRS and p €
Mp.

(1) If DP(R,) = @, then R is p-terminating.
(2) INHT opr,w (R, 1) =@ and DP£(R, 1) = &, then R is p-terminating.
(8) If DP(R, i) = DPY(R,), then R is u-terminating.

Example 12 Consider the following TRS R [Luc98, Example 15]:

and(true,) — add(0,z) —
and(false, y)—>false add(s(z),)Hs(add(x v))
if(true,z,y) — from(z) — cons(z, from(s(x)))
if(false,x,y) — first(0,z) —mnil
first(s(z), cons(y,))—>cons(y,f1rst(x z))

with p(cons) = p(s) = p(from) = &, p(add) = p(and) = p(if) = {1}, and
p(first) = {1,2}. Then, DP(R, 1) = DPY(R, i) is

AND(true,z) — IF(true,z,y) —
ADD(0,z) — x IF(false,z,y) — vy

Note also that NHT ppr) = @. Thus, by any of the last two statements of

Corollary 3, we conclude the p-termination of R.

The following example shows that Corollary 3(3) does not hold for chains
consisting of arbitrary collapsing CSDPs.

Example 13 Consider the CS-TRS (R, i) in Example 4. Note that DP(R, u) =

DPx (R, i) (both DP£(R,) and DP%(R, i) are empty!). We have the follow-
ing infinite (DP(R, i), R, u)-chain:

F(a) = F(c(f(a)) —ppRynut F(2) =Rt -

Now we prove that the previous CS-dependency pairs approach is not only
correct but also complete for proving termination of C'SR.

Theorem 3 (Completeness) Let R be a TRS and p € Mg. If R is p-
terminating, then there is no infinite (DP(R,), R, ui*)-chain.

26

PROOF. By contradiction. If there is an infinite (DP(R, 1), R, u*)-chain, then
there is a substitution o and dependency pairs u; — v; € DP(R, 1) such that

(1) o(vs) R o(uit1), if ui — v; € DP£(R, i), and
(2) if u; — v; = u; — x; € DPx(R, u), then there is s; € 7 (F, X) such that
o(z;) >, s and 3§ ot o(Uig1).

for + > 1. Now, consider the first dependency pair u; — vy in the sequence:

(1) If uy — v, € DP£(R, i), then v? is a p-replacing subterm of the right-
hand-side r; of a rule [y — r; in R. Therefore, r; = Cl[vi]pl for some
p1 € Pos'(r1) and we can perform the p-rewriting step 1 = o(u1) =g,
o(r1) = o(C)[o (V)] = s1, where 0(0])f = (1) <%z o(u2) and o(uy)
initiates an infinite (DP(R,), R, i*)-chain. Note that p; € Pos"(s).

(2) If uy — © € DPx(R, p), then there is a rule [; — 7, in R such that
uy = I}, and z € Var*(ry) — Vart(ly), ie., r = Cy[zl, for some ¢ €
Post(r1). Furthermore, since there is a subterm s such that o(x)>, s and
st —r e 0(u2), we can write o(z) = Cf[s], for some py € Pos"(c())
and context C’{[]pxl . Therefore, we can perform the u-rewriting step t; =
o(li) —ru o(r) = o(C)[Ci[s]y g = s1 where st —r e 0(u2) (hence
s (;A)%,u u3) and o (uy) initiates an infinite (DP(R, u1), R, pif)-chain. Note
that py = ¢1.p} € Pos"(s1) (use Proposition 1).

Since p*(f*) = pu(f), and p; € Pos"(s1), we have that sy —% , ta[o(us)]p, = ta
and p; € Pos"(ty). Therefore, we can build in that way an infinite p-rewrite
sequence

*
tl <_>R7N S c_>'R,/.L t2 <_>’R,,,u, [

which contradicts the p-termination of R. a

According to this, Proposition 8(3) suggests a simple checking of non-p-
termination.

Corollary 4 (Non-u-termination criterion) Let R = (F,R) be a TRS
and pn € Mg. If there is u — v € DPx(R, 1) such that v' = 0(u) for some
substitution 0 and renamed version v’ of v, then R is not u-terminating.

As a corollary of Theorems 2 and 3, we have.

Corollary 5 (Characterization of y-termination) Let R be a TRS and
1€ Mp. Then, R is pu-terminating if and only if there is no infinite minimal
(DP(R, 1), R, pi*)-chain.

27

9 Mechanizing proofs of u-termination using CSDPs

During the last ten years, the dependency pairs method has evolved to a pow-
erful technique for proving termination of TRSs in practice. From the already
classical Arts and Giesl’s article [AGO00] to the last developments correspond-
ing to the so-called dependency pair framework [GTS04,GTSF06,Thi07] many
new improvements have been introduced.

In the DP-approach [AG00], the starting point is a TRS R from which a set of
dependency pairs DP(R) is obtained. Then, such dependency pairs are orga-
nized in a dependency graph DG(R) and the cycles of the graph are analyzed
to show that no infinite chains of DPs can be obtained from them. The depen-
dency pairs approach emphasizes (at least theoretically) a ‘linear’ (although
somehow modular, see [GAOOQ2]) procedure for proving termination. In this
sense, the treatment of strongly connected components of the graph (SCCs)
instead of cycles, as suggested by Hirokawa and Middeldorp [HM04,HMO05],
brought an important improvement in its practical use because it provides
a way to make the proofs more incremental without running out of the ba-
sic DP-approach. In the DP-approach, dependency pairs are considered as
components of the chains (or cycles). Since they only make sense when an
underlying TRS is given as the source of the dependency pairs, transforming
DPs is possible (the narrowing transformation is already described in [AGO00])
but only as a final step because, afterwards, they are not dependency pairs of
the original TRS anymore.

The dependency pair framework solves these problems in a clean way, leading
to a more powerful mechanization of termination proofs.

9.1 Mechanizing termination proofs with the dependency pair framework

An appealing aspect of the DP-framework [GTS04,GTSF06] is that the proce-
dence of pairs does not matter; they can be independent from the considered
TRS. The notion of chain is parametric on both a TRS R and a set of pairs
P (a TRS, actually) which are connected by using R-rewrite sequences. Re-
garding termination proofs, the central notion now is that of DP-termination
problem: given a TRS R and a set of pairs P, the goal is checking the ab-
sence (or presence) of infinite (minimal) chains. Termination of a TRS R is
addressed as a DP-termination problem where P = DP(R). The most im-
portant notion regarding mechanization of the proofs is that of processor. A
(correct) processor basically transforms DP-termination problems into (hope-
fully) simpler ones, in such a way that the existence of an infinite chain in
the original DP-termination problem implies the existence of an infinite chain

28

in the transformed one. Here ‘simpler’ usually means that fewer pairs are in-
volved. Often, processors are not only correct but also complete, i.e., there is
an infinite minimal chain in the original DP-termination problem if and only if
there is an infinite minimal chain in the transformed problem. This is essential
if we are interested in disproving termination.

Processors are used in a pipe (more precissely, a tree) to incrementally simplify
the original DP-termination problem as much as possible, possibly decompos-
ing it into smaller pieces which are then independently treated in the very
same way. The trivial case of this iterative process comes when the set of
pairs P becomes empty. Then, no infinite chain is possible and we can pro-
vide a positive answer yes to the DP-termination problem which is propagated
upwards to the original problem in the root of the tree. In some cases it is also
possible to witness the existence of infinite chains for a given DP-termination
problem; then a negative answer no can be provided and propagated upwards.
Of course, DP-termination problems are undecidable (in general), thus don't
know answers can also be generated (for instance by a time-out system which
interrupts the usually complex search processes which are involved in the
proofs). When all answers are collected, a final conclusion about the whole
DP-termination problem can be given:

(1) if we have positive answers (yes) for all problems in the leaves of the tree,
then we conclude yes as well;

(2) if a negative answer (no) was raised somewhere and the DP-processors
which were used in the path from the root to the node producing the
negative answer were complete, then we conclude no as well,

(3) Otherwise, the conclusion is don't know.

The notions of graph, cycles, SCCs, etc., are also part of the framework but
(1) they are incorporated as processors now, and (2) they do not refer to
dependency pairs anymore, but rather to the pairs in the (different) sets of
pairs which are obtained through the process sketched above. In this way,
we obtain a much more flexible framework to mechanize termination proofs
and also to benefit from new future developments which could lead to the
introduction of new processors.

In the following, we adapt these ideas to CSR to provide a suitable framework
for mechanizing proofs of termination of CSR using CSDPs.

9.2 CS-termination problems and processors

The following definition adapts the notion of (DP-)termination problem in
[GTSF06] to CSR. In our definition, we prefer to avoid ‘DP’ because, as
discussed above, dependency pairs (as such) are relevant in the theoretical

29

framework only for investigating a particular problem (termination of TRSs),
whereas some transformations can yield sets of pairs which are not dependency
pairs of the underlying TRS anymore.

Definition 5 (CS-termination problems) A CS-termination problem T is
a tuple T = (P,R,u), where R = (F,R) and P = (G, P) are TRSs and
1€ Mgog. A CS-termination problem is finite if there is no infinite minimal

(P, R,)-chain.

Finite CS-termination problems correspond to those generating a positive an-
swer yes in the full proof process sketched above. Accordingly, CS-termination
problems which are not finite correspond to a negative answer no.

Remark 7 According to Corollary 5, we can say now that a TRS R is p-
terminating if and only if the CS-termination problem (DP(R,u), R, u*) is
finite.

According to our previous results (Propositions 7 and 8), for some specific
CS-termination problems it is easy to say whether they are finite or not.

Proposition 9 (Basic CS-termination problems) Let R = (F,R) and
P =(G,P) be TRSs and u € Mg, g.

(1) If P=@, or P =P%, or R= @ and P = Py, then the CS-termination
problem (P, R,) is finite.

(2) If there is w — v € Pg such that v' = 6(u) for some substitution 6 and
renamed version v' of v, then the CS-termination problem (P, R, u) is
not finite.

The CS-termination problems in Proposition 9 provide the necessary base
cases for our proofs of termination. The following definition adapts the notion
of processor [GTSF06] to CSR.

Definition 6 (CS-processor) A CS-processor Proc is a mapping from CS-
termination problems into sets of CS-termination problems. A CS-processor
Proc is

e sound if for all CS-termination problems T, T is finite whenever 7' is finite
for all 7" € Proc(7).

e complete if for all CS-termination problems T, whenever T is finite, then 7’
is finite for all 7' € Proc(7).

In the following sections we describe a number of sound and (most of them)
complete CS-processors.

30

10 Context-Sensitive Dependency Graph

CS-termination problems focus our attention on the analysis of infinite min-
imal (P, R, p)-chains. In general, an infinite sequence S = aj,as, ..., ay,,...
of objects a; belonging to a set A can be represented as a path in a graph G
whose nodes are the objects in A, and whose arcs among them are appropri-
ately established to represent S (in particular, an arc from a; to a;y; should
be established if we want to be able to capture the sequence above). Actually,
if A is finite, then the infinite sequence S defines at least one cycle in G: since
there is a finite number of different objects a; € A in S, there is an infinite
tail S" = am, Amy1, - .. of S where all objects a; occur infinitely many times for
all ¢ > m. This clearly corresponds to a cycle in G.

In the dependency pairs approach [AG00], a dependency graph DG(R) is asso-
ciated to the TRS R. The nodes of the dependency graph are the dependency
pairs in DP(R); there is an arc from a dependency pair u — v to a dependency
pair u' — o' if there are substitutions 6 and ¢ such that 6(v) —% 6'(v).

In more recent approaches, the analysis of infinite chains of dependency pairs
as such is just a starting point. Many often, chains of dependency pairs are
transformed into chains of more general pairs which cannot be considered
dependency pairs anymore. This is the case for the narrowing or instantiation
transformations, among others, see [GTSF06] for instance. Still, the analysis
of the cycles in the graph build out from such pairs is useful to investigate the
existence of infinite (minimal) chains of pairs. Thus, a more general notion
of graph of pairs DG(P,R) associated to a set of pairs P and a TRS R is
considered; the pairs in P are used now as the nodes of the graph but they
are connected by R-rewriting in the same way [GTSF06, Definition 7).

In the following section we take into account these points to provide an ap-
propriate definition of context-sensitive (dependency) graph.

10.1 Definition of the context-sensitive dependency graph

According to the discussion above, our starting point are two TRSs R =
(F,R) and P = (G, P) togheter with a replacement map p € Mz g. Our aim
is obtaining a notion of graph which is able to represent all infinite minimal
chains of pairs as given in Definition 4.

When considering pairs © — v € Pg, we can proceed as in the standard case
to define appropriate connections to other pairs v’ — v’ € P: there is an arc
from u — v to v’ — V" if O(v) —% , 0'(v') for some substitutions ¢ and ¢'.
When considering collapsing pairs © — v € Py, we know that such pairs can

31

only be followed by a pair ' — v’ € P such that 6(t*) —%_ , ¢'(«) for some
t € NHT and substitutions 6 and ¢’ (see Definition 4).

Definition 7 (Context-Sensitive Graph of Pairs) Let R = (F,R) and
P = (G,P) be TRSs and u € Mg g. The context-sensitive (CS-)graph asso-
ciated to R and P (denoted G(P,R,u)) has P as the set of nodes and arcs

which connect them as follows:

(1) There is an arc fromu — v € Pg tou' — v € P if there are substitutions
0 and ¢ such that 0(v) —% , 0'(u').

(2) There is an arc from u — v € Py to ' — v € P if there ist €
NHT (R, i) and substitutions 6 and 8" such that 6(t*) —% , 0'(u').

In termination proofs, we are concerned with the so-called strongly connected
components (SCCs) of the dependency graph, rather than with the cycles
themselves (which are exponentially many) [HMO05]. A strongly connected
component in a graph is a mazimal cycle, i.e., a cycle which is not contained
in any other cycle. The following result justifies the use of SCCs for proving
the absence of infinite minimal (P, R, ut)-chains.

Theorem 4 (SCC processor) Let R = (F,R) and P = (G, P) be TRSs
and p € Mryg. Then, the processor Procgoe given by

Procscc(P, R, 1) = {(Q, R,) | Q contains the pairs of an SCC in G(P, R, u)}
1s sound and complete.

ProOOF. We prove soundness by contradiction. Assume that Procgce is not
sound. Then, there is a CS-termination problem 7 = (P, R, 1) such that, for
all 7/ € Procgce(7), 7' is finite but 7 is not finite. Thus, there is an infinite
minimal (P, R, ut)-chain A. Since P contains a finite number of pairs, there
is P/ C P and a tail B of A which is an infinite minimal (P’, R, u)-chain
where all pairs in P’ are infinitely often used. According to Definition 7, this
means that P’ is a cycle in G(P, R, i), hence it belongs to some SCC with
nodes in Q, i.e., P’ C Q. Hence B is an infinite minimal (Q, R, u)-chain, i.e.,
7= (Q, R,) is not finite. Since 7" € Procgoc(7), we obtain a contradiction.

Regarding completenes, since Q C P for some SCC in G(P, R, 1) with nodes
in Q, every infinite minimal (Q, R, yt)-chain is an infinite minimal (P, R, u)-

chain, hence the processor is complete as well. O

As a consequence of this theorem, we can separately work with the strongly
connected components of G(P, R, 1), disregarding other parts of the graph.

Now we can use these notions to introduce the context-sensitive dependency
graph.

32

Definition 8 (Context-Sensitive Dependency Graph) Let R = (F,R)
be a TRS and pn € M. The Context-Sensitive Dependency Graph associated
to R and p is DG(R, i) = G(DP(R, i), R, pi*).

10.2 Estimating the CS-dependency graph

In general, the (context-sensitive) dependency graph of a TRS is not com-
putable: it involves reachability of ¢'(u') from 6(v) (for u — v € Pg) or (%)
(for t € N'HTp) using CSR; as in the unrestricted case, the reachability
problem for C'SR is undecidable. So, we need to use some approximation of it.
Following [AGO00], we describe how to approximate the CS-dependency graph
of a CS-TRS.

Given a set A of ‘defined’” symbols, we let CAPy be as follows:

CAPA(z) = = if x is a variable
Yy if feA

CAPA(f(t1,. .., tr)) =
F([t)d, ... [te])) otherwise

where y is intended to be a new, fresh variable which has not yet been used
and given a term s, [s|/ = CaP4(s) if i € pu(f) and [s]f = s if i & p(f).
Function CAP/y is intended to provide a suitable approximation of reachabil-
ity problems 6(s) —% , 0'(t) by means of unification. The idea is obtaining
the maximal prefix context C[] of s (i.e., s = C|[sy,...,s,] for some terms
S1y ..., 8y) which we know (without any ‘look-ahead’ for applicable rules) that
cannot be changed by any reduction starting from s. Furthermore, terms
S$1,...,8, above must be rooted by defined symbols (i.e., root(s;) € A for
i € {1,...,n}). Now, we replace those subterms s; which are at p-replacing
positions (i.e., s; = s|,, for some p; € Pos”(s)) by some variable z, and we
leave untouched the non-pu-replacing ones.

The following result whose proof is similar to that of [AG00, Theorem 21] (we
only need to take into account the replacement restrictions indicated by the
replacement map p) formalizes the correctness of this approach.

Proposition 10 Let R = (F,R) = (CWD,R) be a TRS and € Mg. Let
s,t € T(F,X) be such that Var(s) N Var(t) = @ and 0,0" be substitutions. If
0(s) =%, 0'(t), then REN"(CAPL(s)) and t unify.

According to Proposition 10, given terms s,t € 7 (F,X) and substitutions

0,0, the reachability of #'(t) from 6(s) by p-rewriting can be approximated as
unification of REN*(CAP/(s)) and t. So, we have the following.

33

15

Fig. 2. Estimated CSDG for the CS-TRS (R, i) in Example 14

Definition 9 (Estimated Context-Sensitive Graph of Pairs) Let R =
(F,R) and P = (G, P) be TRSs and u € Mgzyg. The estimated CS-graph
associated to R and P (denoted EG(P, R, u)) has P as the set of nodes and
arcs which connect them as follows:

(1) There is an arc from uw — v € Pg to u' — v' € P if REN*(CAP}(v)) and
u' unify.

(2) There is an arc from u — v € Py to ' — v € P if there is t €
NHT (R, 1) such that REN*(CAPR(#*)) and u' unify.

According to Definition 7, we would have the corresponding one for the esti-

mated CSDG: EDG(R, 1) = EG(DP(R, i), R, ji).

Example 14 Consider the following TRS R [Zan97, Example 4]:

f(x) — cons(z, f(g(x))) sel(0, cons(x,y)) —x
g(0) — s(0) sel(s(z), cons(y, 2)) — sel(x, z)
g(s(x)) — s(s(g()))

with 11(0) = &, p(f) = p(g) = u(s) = p(cons) = {1}, and p(sel) = {1,2}.
Then, DP(R,) is

G(s(x)) — G(x) (13) SEL(s(x), cons(y, z)) — 2z (15)
SEL(s(z), cons(y, z)) — SEL(z, 2) (14)

and NHT = {f(g(x)),g(x)}. Regarding pairs (13) and (14) in DP£(R, u),
there is an arc from (13) to itself and another one from (14) to itself. Regard-
ing the only collapsing pair (15), we have REN*(CAPL(F(g(z)))) = F(y) and
REN*(CAPL(G(x))) = G(y). Since F(y) does not unify with the left-hand side
of any pair, and G(y) unifies with the left-hand side G(s(z)) of (13), there is
an arc from (15) to (13), see Figure 2. Thus, there are two cycles: {(13)} and

{(14)},

Note that Proposition 10 also provides a way to estimate the set N'HT p: if

34

1"

10 12

Fig. 3. Context-Sensitive Dependency Graph for the CS-TRS (R, 1) in Example 1

t € NHT p, then REN"(CAP4(#)) and v unifiy for some u — v € P. In the
following, our presentations of N'H7 p in the examples are computed in this
way.

Example 15 Consider again the CS-TRS (R, i) in Example 1. Note that
NHT op(r (R, 1) = {£118(, sieve(y)), £118(s(s(x)), 2))

The CSDG is shown in Figure 3 and has no cycle. By Theorem 4 we transform
the CS-problem (DP(R,p), R, u*) into a singleton {(D,R, u*)} containing a
finite CS-termination problem (use Proposition 9). Thus, we conclude that R
18 p-terminating.

11 Treating collapsing pairs

The following result, which is an immediate consequence of Proposition 7(1),
defines a correct and complete CS-processor which removes collapsing pairs
when the set of involved hidden terms N'H7T p is empty.

Theorem 5 Let R = (F,R) and P = (G, P) be TRSs and pn € Mg g. Then,

the processor Proc.ygr given by

{(P =Py, R, 1)} if NHT p = @

Procevur (P, R, p) =
{(P, R, 1)} otherwise

18 sound and complete.

The following result shows how to safely transform collapsing pairs into non-
collapsing ones in some particular cases.

35

Theorem 6 Let R = (F,R) and P = (G, P) be TRSs and pn € Mgyg. Let
P = (FUG, P") where P' = (P—Py)UQ for Q ={u —t* |u — 2 € Py,t €
NHTp} Then, the processor Procynpr given by

{(P",\ R,)} if NHT p(R, 1) € T(F)

PrOCQNHT (IP, R, M) =
{(P,R,u)} otherwise

18 sound.

PROOF. We prove that the existence of an infinite minimal (P, R, u)-chain
implies the existence of an infinite minimal (P’, R, p1)-chain.

First, note that P’ is a TRS: the new rules in @Q are of the form u — t* for
t € NHT p, Since NHT p C T (F), we trivially have Var(t*) C Var(u), i.e.,

u — t! is a rewrite rule.

Consider an infinite minimal (P, R, u)-chain A:
o(ur) —py o Bty =%, 0(us) —py 0 Bty =5, o(ug) —p, 0 BF -

for some substitution o, where, for all i > 1, ¢; is p-terminating and, (1) if
u; — v; € Pg, then t; = o(v;) and (2) if u; — v; = u; — x; € Py, then t; = sg
for some s; such that o(x;) >, s; and s; = 6;(5;) for some 5, € N'HT and
substitution 6;; actually, since t; = st = 6,(5;)! = 6;(5) and ¢ R 0(Uit1),
we can further say that 5, € NHT p.

In the case (2) above, since NHT p C T(F), we have t; = st = 0,(5%) = &, i.e.,
t; € NHT p. Thus, we can use u; — t; € Q instead of u; — z; € Py, because
we still have ¢; —7% , o(u;11). By replacing in this way each u; — x; € Py by
the corresponding u; — t; € Q, each step o(u;) —p, o IZfL t; becomes a step
o(u;) —pr, ti, whereas steps o(u;) —p, o0(v;) =t; for u; — v; € Pg remain
unchanged. Thus, we obtain an infinite minimal (P’, R, u)-chain, as desired.
O

Note that no pair in P’ in Theorem 6 is collapsing. Unfortunately, Proc vy
is not complete.

Example 16 Consider the following TRS:

b — £(c(b))

f(z) —

together with the replacement map p given by pu(f) = wp(c) = @. Then,

36

DP(R,) is:
B — F(c(b))
F(z) — x
and N'HT pp(ry = {b}. Note that R is clearly p-terminating, hence there is

no infinite (P, R, u*)-chain for P = DP(R,), i.e., (DP(R, i), R, i) is finite.
However, by using P’ as in Theorem 0, i.e., with

B — F(c(b))

F(zr) — B

we actually have an infinite (P', R, uf)-chain, i.e, (P', R, u*) is not finite.

12 Use of p-reduction pairs

A reduction pair (2, 1) consists of a stable and monotonic quasi-ordering 2,
and a stable and well-founded ordering 1 satisfying either = o 3 C 3 or
o2 C T [KNT99|.

The absence of infinite chains of (dependency) pairs can be ensured by finding
a reduction pair (2, 3) which is compatible with the rules and the dependency
pairs [AGO00]: [2 r for all rewrite rules | — r and v 2 v or v 1 v for all
dependency pairs u — v. In the dependency pair framework [GTS04,GTSF06]
(but also in [GAO02,HM04,HM05,HMO7]), they are used to obtain smaller
sets of pairs P’ C P by removing the strict pairs, i.e., those pairs u — v € P
such that v 3 v.

Stability is required both for = and T because, although we only check the
left- and right-hand sides of the rewrite rules | — r (with =) and pairs u — v
(with 2 or 1), the chains of pairs involve instances o(l), o(r), o(u), and o(v)
of rules and pairs and we aim at concluding o(l) 2 o(r), and o(u) = o(v)
or o(u) 3 o(v), respectively. Monotonicity is required for 2 to deal with the
application of rules | — r to an arbitrary depth in terms. Since the pairs are
‘applied’ only at the root level, no monotonicity is required for 7 (but, for this
reason, we cannot compare the rules in R using 1). Recently, Endrullis et al.
noticed that transitivity is not necessary for the strict component 3 because
it is somehow ‘simulated’ by the compatibility requirement above [EWZ08].

In our setting, since we are interested in p-rewriting steps only, we can relax
the monotonicity requirements as follows.

Definition 10 (u-reduction pair) Let F be a signature and p € Mg. A
p-reduction pair (2, 3) consists of a stable and p-monotonic quasi-ordering

37

2 and a well-founded stable relation 3 on terms in T (F,X) which are com-
patible, i.e., 2 0 JC J or Jo 2> C .

We say that (2, 3) is p-monotonic if 1 is p-monotonic.

The following result allows us to use a pu-monotonic p-reduction pair to re-
move some rewrite rules from the original rewrite system R before starting a
termination proof.

Proposition 11 Let R be a TRS and p € Mg. Let (2, 3) be a p-monotonic
p-reduction pair on T (F,X) such that | (Z U) r for alll — r € R. Let
S = (F,S) be such that S ={l —r € R |l Ar}. Then, R is u-terminating
if and only iof S is p-terminating.

Proor. Since S C R, the if part is obvious. For the only if part, we proceed
by contradiction. If R is not u-terminating, then there is an infinite p-rewrite
sequence A:

tl TR,u Z52 TR tn TRy

where an infinite number of rules in R — S have been used; otherwise, there
would be an infinite tail t,, —s, tmi1 —s, --- for some m > 1 where
only rules in S are applied, contradicting the u-termination of S. Let J =
{J1,J2, ..} be the infinite set of indices indicating p-rewrite steps t; —x ., tj41
in A, for all j € J, where rules in R — S have been used to perform the
p-rewriting step. Since [I r for all [— r € R — S, by stability and u-
monotonicity of 71, we have that ¢;, 3¢;,41. Since l 2 rforalll —r €S, by
stability and p-monotonicity of 2, we have that ¢;,11 2 ¢;,.,. By compatibility
between 2 and 1, we have t; 1 ¢;,,, for all ¢ > 1. We obtain an infinite
sequence t;, Jt; J--- which contradicts well-foundedness of . O

Reduction pairs are often used in combination with argument filterings, which
discard subexpressions from constraints s 2 ¢ or s ¢ in such a way that
7(s) 2 w(t) (resp. m(s) I w(t)) is often simpler to prove [AG00,GTSF06].

12.1 Argument filterings for CSR

An argument filtering 7 for a signature F is a mapping that assigns to every k-
ary function symbol f € F an argument position i € {1,...,k} or a (possibly
empty) list [y, ..., 4, of argument positions with 1 < iy < -+ < i, < k
[KNT99]. In the following, by the trivial argument filtering 7t for F, we
mean the one given by 7+(f) = [1,...,k] for each k-ary symbol f € F. It
corresponds to the argument filtering which does nothing.

We can use an argument filtering 7 to ‘filter’ either the signature F or any
replacement map p € Mg. In the following, we assume that:

38

(1) The signature F, consists of all function symbols f such that =(f) is
some list [iy, ..., 4,], where, in Fy, the arity of f is m. As usual, we give
the same name to the version of f € F which belongs to F;.

(2) The replacement map u, € Mg, is given as follows: for all f € F such
that f € Fr and 7(f) = [i1,...,im):

Mw(f):{jE{l,...,m}|ij€/£(f)}

An argument filtering induces a mapping from 7 (F,X) to 7 (F,, X), also
denoted by 7:

t if t is a variable
m(t) = m(t;) ift = f(ty,...,tx) and w(f) =1
f(ﬂ_(th)? ce 77T(tim)) ift= f(tla s 7tk) and ’/T(f) = [7;17 s 72m]

Note that, for the top filtering 7, we have that 7., = F, pr, = p for all
€ Mg, and 7r(t) =t for all t € T(F,X). The following auxiliary results
are used later.

Lemma 7 Let F be a signature and © be an argument filtering for F. Let
o be a substitution and o, be a substitution given by o.(x) = w(o(x)) for all

xeX. IfteT(F,X), then, m(o(t)) = o.(7(1)).
PrROOF. By structural induction.

(1) Base case: t is a variable or a constant symbol. If t = z € X', then 7(x) = x
and m(o(x)) = o,(x) = ox(n(x)). If t is a constant symbol, then 7 (t) = ¢
and o(t) =t = 0,(t). Hence, w(o(t)) = w(t) =t = 0,(t) = o.(7w(t)).

(2) Ift = f(t1,...,tx), then we consider the two possible cases according to
(/)

(a) If w(f) = i for some ¢ € {1,...,k}, then n(t) = =(¢;). By the
induction hypothesis, w(o(t;)) = Jﬂ(w(;). Therefore, w(o(t)) =
(o)., 010) = m(o0) = {r(t) = (Fltr- - 1)) =
ox(m(t)).

(b) If7(f) = [i1,- .-, im), then w(t) = f(n(ts,),...,7(t;,)). By the induc-
tion hypothesis, 7T((ti;)) = ox(m(t;;)) for all j € {1,...,m}. There-
fore, 7(a (1)) = 7(f(o(1))......o(t)) = F(r(o(t)......7(o(ts,)) =

P (7)), (7t) = Ox(FGrEn), - 1(12))) = O (1),

O

In the following, given a substitution ¢ and an argument filtering 7, we let o,
be the substitution defined by o, (z) = 7(o(z)) for all x € X.

Proposition 12 Let R = (F,R) be a TRS, n € Mg, and 7 be an argument

39

filtering for F. Let (2, 0) be a pr-reduction pair such that w(1) 2 w(r) for all
Il —r€R, andlet s,t € T(F,X). If s =%, t, then 7(s) 2 7(t).

PROOF.

By induction on the length n of the p-rewrite sequence.

(1) If n = 0, then s = ¢ and, trivially, 7(s) = 7 (¢). Since 2 is reflexive, we
have 7(s) 2 m(t).

(2) Ifn >0, we can write s g, 8" —% , t, where the length of the sequence
from s’ to t is n — 1. Let p € Pos"(s) be the p-replacing position where
the p-rewriting step s —g, s’ is performed. We prove that s —gz, '
implies 7(s) 2 m(s") by induction on the structure of p.

(a)

(b)

If p=A, then s = o(l) and s’ = o(r) for some rewrite rule [— r and
matching substitution o. By Lemma 7, n(s) = w(o(l)) = o(7(l))
and 7w(s") = w(o(r)) = ox(mw(r)). Since 7(l) Z 7(r), by stability of =
we conclude 7(s) = o, (7w(l)) 2 ox(n(r)) = 7(s).
If p = i.q, then we can write s = f(sy,...,8;,...,8;) and s =
f(sh, . .8k, ..., s,) for some nonconstant symbol f (i.e., ar(f) > 0)
and we know that i € u(f), s; —=x, s; and s; = s’ for all j # 4. By
the induction hypothesis, 7(s;) 2 7(s}). We consider the two possible
cases according to 7(f):
(i) If n(f) = j for some j € {1,...,k}, then n(s) = n(s;). If
i # j, then s = s;, hence 7(s;) 2 7(s}), by reflexivity of 2. If
i = j, then we know from above that 7(s;) 2 7(s}). Therefore,

m(s) = 7(s;) 2 w(s) = m(s').

(i) If 7(f) = [i1,...,im], then 7(s) = f(n(si,),...,n(s,,)) and
m(s') = f(m(s;,),...,m(s;)). Consider i; for some j € {1,...,m}.
We have two cases:
(A) If i; = 4, then by the induction hypothesis, 7(s;;) 2

and, by definition of i, j € px(f).

(B) If i; # 4, then sj = s;; and we have 7(s;;) = (s}).
Note that 7(s;;) is the j-th immediate subterm of 7(s). There-
fore, by p,-monotonicity of 2 we have

(s},

m(s) = m(f(s1,. .., 5%))
= f(m(si), - om(siy), o m(sin)
R f(m(si), - m(sy), o m(siy,)
= f(m(siy), o om(sy), - oom(si,)
= m(f(s1,- -1 82))
= 7(s')

where we assume that ¢; = ¢ for some j € {1,...,k}. If no such
j exists, then we would have 7(s) = 7(s'), which also implies
7(s) 2 (s') because 2 is reflexive.

40

Thus, we have proved that s <—x , s’ implies 7(s) 2 7(s’) as desired.
Since 7(s) 2 w(s') and w(s') 2 7w(t) by the induction hypothesis, we

conclude 7(s) 2 w(t) by transitivity of 2.
(]

We often use argument filterings to transform (sets of) rules S as follows:
(s —t) =7(s) — w(t) for a pair s — t, and 7(S) = {n(s = t) | s = t € S}.
Furthermore, for R = (F, R) and P = (G, P), we write 7(R) and 7(P) instead
of m(R) and 7(P), to denote the set of filtered rules (respectively, pairs).

12.2 Remowving pairs using p-reduction orderings

For a given TRS R = (F, R), set of pairs P = (G, P), and replacement map
i € Mgyg, checking the absence of infinite minimal (P, R, ut)-chains can often
be ‘simplified’ to checking the absence of infinite minimal (P’, R, y)-chains for
a proper subset P’ C P by finding appropriate u-reduction pairs (2, 23). The
presence of collapsing pairs u — v = u — x € Py imposes some additional
requirements on the p-reduction pairs. Basically,

(1) We need to ensure that the quasi-ordering 2 is able to ‘look’ for a -
replacing subterm s € 7 (F, X) inside the instantiation o(x) € 7(F, X)
of a migrating variable z: we know that o(z) >, s. Hence we require
>, C 2 where &>, is the p-replacing subterm relation on 7 (F, X).

(2) We need to connect the marked version s* of s (which is known to be an
instance of a hidden term t € NHT p, i.e., s = 0(t) for some substitution
0) with an instance o(u) of the left-hand side u of a pair; hence the
requirement ¢t > t* or t 3 t* for all t € N'HTp which, by stability,
becomes s > s* or s 7 sF.

The following theorem formalizes a generic processor to remove pairs from P
by using argument filterings and p-reduction pairs.

Theorem 7 (u-reduction pair processor) Let R = (F,R) and P = (G, P)
be TRSs and p € Mg,g. Let ™ be an argument filtering for F UG and (Z, 1)
be a pir-reduction pair such that

(1) "(R) €2, 7(P) C2 U2, and
(2) whenever NHT p # @ and Px # &, we have that
(a) forall f € F, either m(f) = [i1, ... im) and u(f) Cw(f), orn(f) =1
and 1u(f) = {i},
(b) >, C2, where>,, is the j.-replacing subterm relation on T (Fy, X),
and
(c) w(t) (Z U D) n(t¥) for allt € NHT p,

41

Let Po={u—v € P|w(u) Jm(v)}. Then, the processor Procgp given by

Procap(P, R, p) = {(P =P, R, 1)} if (1) and (2) hold
{(P,R, 1)} otherwise

18 sound and complete.

PROOF. We have to prove that there is an infinite minimal (P, R, u)-chain
if and only if there is an infinite minimal (P — P+, R, u)-chain. The if part is
obvious. For the only if part, we proceed by contradiction. Assume that there
is an infinite minimal (P, R, u)-chain A, but that there is no infinite minimal
(P — P=, R, iv)-chain. Due to the finiteness of P, we can assume that there is
Q C P such that A has a tail B

o(ur) —gu 0Bk t1 =5, o(ug) =g, 0Bk ty =%, o(us) —gu 0> -

for some substitution o, where all pairs in Q are infinitely often used, and, for
all7 > 1, (1)1fuz—>vze Qg, then t; = o(v;) and (2) if u; — v; = w; — z; €
Oy, then t, = s for some s; such that o(z;) >, s; and s; = 0;(s;) for some
5; € NHT and substitution 6;; actually, since t = s' = 6,(5,)" = 6;(5) and
ti =% 0(uiy1), we can further say that 3; € NHTQ.

Since 7(u;) (2 U 3) 7(v;) for all u; — v; € @ C P, by stability of 2 and 7,
we have o (7(u;)) (2 U 3) ox(m(v;)) for all i > 1.

No pair v — v € Q satisfies that m(u) 2 w(v). Otherwise, we get a contradic-
tion by considering the following two cases:

(1) If u; — v; € Qg, then t; = o(v;) —% , o(u;4+1) and by Proposition 12,
m(t;) 2 m(o(uiy1)). By Lemma 7, 7r() 2 ox(m(u;y1)). Since we have
ox(m(u:)) (X U 3) ox(m(vi)) = m(o(vi)) = 7(ti) (using Lemma 7), by
using transitivity of = and compatibility between 2> and 1, we conclude
that o, (7(u;)) (2 U 3O) o (m(wis1)).

(2) If u; — v; = w; — x; € Qy, then o(v;) =
implies that i € 7(f), we can say that 7(o(z)) = o.(x) >, 7(s;). Since
>, C 2 we have o.(7(v;)) = or(z;) 2 7(s;). Furthermore, we are as-
suming that 7(t) (2 U 3) w(tf) for all t € NHT o C NHTP. Since

= 6,(5;), we have that W(Sl) = 7(6;(s)) = 0;x(7(5;)) (using Lemma
7 again) and, snmlarly, 7(s}) = 0, .(n(5%). By stability we have that
7(s;) (= U 3) n(s?). Hence, by transitivity of > (and compatibility of
> and 1), we have o.(n(v;)) = ox(z;) (= U 3) 7(s}). Finally, since
7(s)) = 7(t;) and ¢; %, 0(uir1) for all # > 1, by Proposition 12 and

Lemma 7, w(t;) 2 o.(m (uz+1). Therefore, again by transitivity of 2 and

compatibility of 2 and 7, we conclude that o (7 (u;))(Z U 3O)or (7 (wit1)).

o(x;) By si. Since i € p(f)

42

Since u — v occurs infinitely often in B, there is an infinite set Z C N such
that o (m(w;)) 3 ox(m(uigq)) for all ¢ € Z. And we have o, (7(u;)) (2 U O
) ox(m(u;iqq)) for all other u; — v; € Q. Thus, by using the compatibility con-
ditions of the p,-reduction pair, we obtain an infinite decreasing J-sequence
which contradicts well-foundedness of 1.

Therefore, Q@ C (P — P+), which means that B is an infinite minimal (P —
P, R,)-chain, thus leading to a contradiction. a

The following example shows that the ‘compatibility’ between the replacement
map p and the argument filtering 7 which is required when collapsing pairs
are present is necessary in Theorem 7.

Example 17 Consider the following TRS:

a— c(h(£(a), b))
fc(x))—z

together with the replacement map p given by p(f) = p(h) = {1} and u(c) =
@. Then, DP(R, i) consists of a single (collapsing) CSDP:

Flc(z))—z
and NHT pp(r,) = {f(a),a}. Note that R is not p-terminating:

f(a) — f(c(h(f(a),b)) — h(f(a),b) — - --

However, by using the argument filtering = given by 7(h) =[], n(F) = n(f) =
[1] and 7(c) = 1, we would get the constraints:

m(a) = a 2 h=m(c(h(f(a),b)))
m(f(c(z)) = £(z) 2 = = n()
m(F(c(x))) = F(x) 3z = 7(x)

which are easily satisfiable (by an RPO with precedence a > h, for instance).
Thus, we would wrongly conclude p-termination of R. Note that w(c) = 1 but
wu(c) = @ and that w(h) =[] but p(h) = {1}. Note also that p,(f) = pu,(F) =
{1} and pr(a) = px(h) = 2.

Example 18 Consider the TRS R [Zan97, Example 5]:

if(true,z,y) —x f(x) — if(x,c, f(true))
if(false,z,y) —y

with pw(if) = {1,2}. Then, DP(R,u) consists of a CSDP in DPx(R,u) and
another one in DPx(R, u):

43

F(x) — IF(x,c, f(true)) IF(false,x,y) —y

with pf(F) = {1} and p(IF) = {1,2}. The u-reduction pair (>,>) induced by
the polynomaial interpretation
c] = [true] = 0 £](z) = @ Fl(z) =
[false] =1 [if](z,y,2) =z +y+ =z [IF](z,y,2) = 2+ 2
can be used to prove the u-termination of R. Consider P = DP(R,u). We

have NHT p = {£(true)}. First, as required by Theorem 7, we can see that
the quasi-ordering includes the p-subterm property for symbols in F:

[fx)]= = >z=][a]
[if(z,y,2)] =2 +y+2 >z = [z]
[if(z,y,2)] =2 +y+2z >y = [y

Now we can see that the condition on the only hidden term in N'HT p is also
fulfilled:

[f(true)] = 0 > 0 = [F(true)]

Finally, for the three rules in R and the two pairs in P, we have:

[f(x)] = = > 2= [if(z,c,f(true))]
[if(true,z,y)] =z +y > z = [z]
i (false,z,y)] = 2+y > y = [y

[F(z)] = = > = [IF(z,c,f(true))]
[IF(false,z,y)] = y+1 >y = [y]

So, we remove the pair IF(false,x,y) — y from P. With the remaining pair
F(x) — IF(x,c,f(true)) no infinite chain is possible. Thus, the p-termination
of R is proved.

The next processor is useful when all terms in N'H7 p are ground. The ad-
vantage is that the quasi-ordering 2 of the p-reduction pair does not need to
have any p-subterm property.

Theorem 8 (u-reduction pair processor for ground hidden terms) Let
R = (F,R) and P = (G, P) be TRSs and u € Mg g. Let ™ be an argument
filtering for F UG such that, for allt € NHT p, w(t) is ground. Let (=,3)
be a p,-reduction pair such that

(1) 71(R) C =, m(Pg) €=U, and

44

(2) for allu — v € Py and all t € NHT p, w(u) (Z U 2) w(t)

Let Po={u—v € Pg|m(u) Dr(v)}U{u—v € Px|Vte NHT p,m(u) 3
m(t*)}. Then, the processor Procgp, given by

{(P—=P=,R,n)} if (1) and (2) hold

Prockr, (P, R, 1) =
{(P,R, 1)} otherwise

18 sound and complete.

PrROOF. The proof is analogous to that of Theorem 7. Assume the facts
and notation in the first paragraph of such a proof. Again, we proceed by
contradiction and assume that a pair u — v € Q is in P—. Again, we have
ox(m(u;)) (2 U D) ox(m(uiy)) for all pairs u; — v; € Qg.

Now, if u; — v; = u; — x; € Qy, then since 7(u;) (= U 1) w(¢*) for all
t € NHT o C N'HT p, by stability we have that o, (7(u;)) (Z U 2) o (7(t%)).
Since 7(t) is ground, we have o, (w(u;)) (= U 1) (). Therefore, since s; €
NHT g and t; = s¢, we have o (m(u;)) (= U 2) 7(t;). Finally, since s* = t;
and t; —% , 0(u;y1) for all i > 1, by Proposition 12 and Lemma 7, we have
that 7(t;) 2 o (m(ui11)). Thus, we also have o (7(w;)) (Z U 2O) ox(m(wipq)).

Since u — v occurs infinitely often in B, by using the compatibility conditions
of the pu,-reduction pair, we obtain an infinite decreasing J-sequence which
contradicts well-foundedness of . In particular, if v — v € Qx NP, then
m(u) 3 7(t*) for all t € NHT o, so each time that u — v is used, a strict
decrease occurs. O

The following example shows that Theorem 8 can succeed when Theorem 7
fails.

Example 19 Consider the TRS R:

a—1f(d(c(a))) (
£(c(z)) == (17)
d(c(x)) —b (

together with the replacement map p given by pu(c) = @ and p(f) = p(d) =
{1}. This TRS has three CSDPs:

A—F(d(c(a))) (19)
A—D(c(a)) (20)
F(c(z)) —x (21)

Take P = {(19),(21)}. Then, since NHTp = {a} # @ and F(c(z)) — «
1s a collapsing CSDP, according to Theorem 7 we would require that any p-

45

reduction ordering used in the theorem satisfies >, C 2 (assume the trivial
filtering mr here) and that a (2, U 1) A. In this case, though, since d(c(a)) >,
c(a), we must have d(c(a)) 2 c(a); by p-monotonicity of 2, F(d(c(a))) =
F(c(a)). Now, one of the following two cases must hold:

(1) A JF(d(c(a))) and F(c(x)) (2 U O) z. Then, by stability of 2, and 3, we
have F(c(a)) (2 U O) a. Hence,

A JF(d(c(a))) 2 Fle(a)) (RUT)a (X UT)A

By compatibility of 2 and 3, we have A 1 --- 1 A, contradicting the
well-foundedness of .
(2) A(Z U D) F(d(c(a))) and F(c(z)) O x. Hence,

A(Z UD)F(d(c(a))) 2 Flc(a)) TJa(z UD)A
Again, by compatibility of 2 and 1, we have A 73 --- 1 A.
Thus, Theorem 7 cannot be used with this example.

Since NHTp C T(F), Theorem 8 is applicable here. The p-reduction pair
(>,>) induced by the following polynomial interpretation? :

[=1 [b] =0 [cl(z) =«
1 [F](x) =0

can be used to remove (19) from P. For the three rules in R and pair (19), we
have:

)= 1 >3 =[f(d(c(a)))]
[f(c()] = z+1 >z = [a]
[d(c(2))] = 2+ 1 = 0 = [b]

A= 1 >3 =[F(d(c(a)))]

The collapsing pair (21) generates a constraint F(c(z)) (2, U 2) A which is also
satisfied by the previous interpretation:

F(c(z))] =x+1>1=[A]

So, we remove (19) from P to obtain P'. With P' = {(21)}, no infinite chain
is possible because NHT p = &. Thus, the p-termination of R is proved.

On the other hand, even when NH7p» C 7 (F), Theorem 7 can be helpful
when Theorem 8 fails.

3 See [Luc05,Luc07] for details about the use of this kind of polynomial intepreta-
tions with rational coefficients.

46

Example 20 Consider R and p as in Example 16. Theorem 8 cannot be used
here because, reasoning as in Example 16, we would obtain constraints which
are incompatible with the well-foundedness of 1. However, the p-termination
of R can be easily proved with Theorem 7. The p-reduction pair (>,>) gen-
erated by the following polynomial interpretation:

[b] =1 [c](z) =0 [fl(z) =

[B]

!
[\)
)
&
I
8
+
=

satisfies the requirements of Theorem 8 and can be used to show a weak de-
crease of the rules and a strict decrease of the two CSDPs which can both be
removed.

Our last result establishes that if we are able to provide a strict compari-
son between unmarked and marked versions of the (filtered) hidden terms in
NHT p, then we can remove all collapsing pairs at the same time.

Theorem 9 (u-reduction pair processor for collapsing pairs) Let R =
(F,R) and P = (G, P) be TRSs and j1 € Mzyg. Let m be an argument filtering
for FUG and (2,3) be a pir-reduction pair such that

(1) 7(R) €2, 7(P) C2 U3, and
(2) w(t) D w(t*) for allt € NHT p and
(a) forall f € F, either w(f) = [i1,...,im) and p(f) C w(f), orw(f) =1
and p(f) = {i},

(b) ©>,.C2, where™>,, is the pu-replacing subterm relation on T (F, X).

Then, the processor Procgp. given by

{(Pg,R,)} if (1) and (2) hold

Procgp.(P, R, 1) =
{(P,R,p)} otherwise

18 sound and complete.

PROOF. As in the proof of Theorem 7, we proceed by contradiction. We
assume that there is an infinite minimal (P, R, u)-chain A, but that there is no
infinite minimal (Pg, R, j1)-chain. Thus, there is @ C P such that QNPx # &
and A has a tail B as in the proof of Theorem 7. Now, we assume the notation
as in the first paragraph of such a proof.

We have o.(m(u;)) (2 U J) 7(t;) and 7(t;) 2 ox(7(uitq)) for all pairs u; —
v; € Pg. If u; — v; = u; — x; € Qu, then by applying the considerations in
the corresponding item of the proof of Theorem 7 and taking into account that
m(t) 3 w(t*) for all t € N'HT p, we have now that o, (m(u;)) (Z U 3) oy (;) 3
7(t;) 2 ox(m(uir1)). Since pairs u; — v; € Qx occur infinitely often in B,

47

by using the compatibility conditions of the u,-reduction pair, we obtain an
infinite decreasing J-sequence which contradicts well-foundedness of 7. O

13 Subterm criterion

In [HM04,HMO07], Hirokawa and Middeldorp introduce a very interesting sub-
term criterion which permits to ignore certain cycles of the dependency graph
without paying attention to the rules of the TRS. Hirokawa and Middeldorp’s
result applies to cycles in the dependency graph. Recently, Thiemann has
adapted it to the DP-framework [Thi07, Section 4.6]. In our adaptation to
CSR, we take ideas from both works. Our first definition is inspired by Thie-
mann’s head symbols [Thi07, Definition 4.36].

Definition 11 (Root symbols of a TRS) Let R = (F, R) be a TRS. The
set of root symbols associated to R is:

Root(R) = {root(l) | l = r € R} U{root(r) |l = r € R,r ¢ X}

The following result relates Root(P) and the set Hp of hidden symbols occur-
ring at the root of terms in NH7T p(R,). It is silently used in the statements
of some theorems below.

Lemma 8 Let R = (F,R) = (CWD,R) and P = (G, P) be TRSs such that
Root(P)ND = @, and u € Mz g. For all f € Hp, we have f* € Root(P).

PROOF. If f € Hp, then there ist € N'HT p such that f = root(t). Therefore,
there are substitutions 6 and 6’ such that 6(t*) —% , ¢’ (u) for some u — v € P.

Since f* ¢ F, p-rewritings on 6(¢*) using R do not remove it. Thus, root(u) =
f*and f* € Root(P). O

Thiemann uses argument filterings (see Section 12.1) instead of Hirokawa and
Middeldorp’s simple projections (see [HMO04, Definition 10]). We find more
convenient to follow Hirokawa and Middeldorp’s style, so we generalize their
definition to be used with TRSs rather than cycles in the dependency graph.

Definition 12 (Simple projection) Let R be a TRS. A simple projection
for R is a mapping ® that assigns to every k-ary symbol f € Root(R) an
argument position i € {1,...,k}. The mapping that assigns to every term
t= f(ty,... . tp) with f € Root(R) its subterm m(t) = t|rp is also denoted by
m; we also let m(z) =z if v € X.

Given a simple projection 7 for a TRS R, we let 7(R) = {n(l) — =(r) | | —
re R}

48

Theorem 10 (Subterm processor for noncollapsing pairs) Let R =
(F,R) = (CWD,R) and P = (G, P) be TRSs such that P contains no collaps-
ing rule, i.e., for allu — v € P, v &€ X, and Root(P)ND = @. Let u € Mg g
and let 7 be a simple projection for P. Let Py, = {u — v € P | n(u)>,7m(v)}.
Then, the processor Procsuncon given by

{<7D - PT",D;AJR? :LL)} Zfﬂ-(P) g lzu
{(P,R, 1)} otherwise

Procsusncou(P, R, 1) =

1s sound and complete.

PROOF. We have to prove that there is an infinite minimal (P, R, u)-chain
if and only if there is an infinite minimal (P — Py s, , R, it)-chain. The if part
is obvious. For the only if part, we proceed by contradiction. Assume that
there is an infinite minimal (P, R, u)-chain A but there is no infinite minimal
(P = Prp,, R, pt)-chain. Since P is finite, we can assume that there is Q@ C P
such that A has a tail B which is an infinite minimal (Q, R, u)-chain where
all pairs in Q are infinitely often used. Assume that B is as follows (since
Qx = @, we use a simpler notation):

A A
* * *
to TRy 51 TQopu t TRy 52 TQu 2 TRu

where, there is a substitution o such that, for all ¢ > 1, s; = o(u;) and
t; = o(v;) for some u; — v; € Q. Furthermore, w.l.o.g. we also assume that
to = o(vy) for some uy — vy € P.

Note that, for alli > 1, root(s;) € Root(P) because root(u;) € Root(P) and for
all 1 > 0, root(t;) € Root(P) due to root(v;) € Root(P), which holds because
root(v;) ¢ X. Therefore, we can apply 7 to s,41 and ¢; for all ¢ > 0. Moreover,

since t; —% , siy1 for all i > 0 and Root(P) N'D = &, we can actually write

t; fiﬁz’# Si+1 because p-rewritings with R cannot change root(t;). Hence

m(t;) =%, T(sip1) and also root(t;) = root(s;y1) for all i > 0. Finally, since
m(u;) >, m(v;) for all ¢ > 0, by stability of &>, we have

(i) = m(o(u)) = o (7 (w;)) By o(m(v:)) = w(o(vi)) = 7(t:)
for all 7 > 1.

No pair v — v € Q satisfies that 7(u) >, m(v). Otherwise, we get a contradic-
tion in both of the following two complementary cases:

(1) if w(f) & u(f) for all f € Root(Q), then, for all ¢ > 0, w(t;) = 7(sit1),
because no p-rewritings are possible on the m(root(t;))-th immediate sub-
term 7(t;) of ¢;. Since m(s;41) >, w(ti11), we have that 7(¢;) >, 7(t;+1) for
all i > 0. Furthermore, since we assume m(u) >, 7(v) for some u — v € Q

49

which occurs infinitely often in B, and by stability of >, there is a max-
imal infinite set J = {j1, jo2,...} € N such that 7(t;,) >, 7(t;,+1) for all
i > 1. Thus, we obtain an infinite sequence w(t;,) >, 7(t;,) >, - - - which
contradicts the well-foundedness of > ,.

(2) ifw(f) € u(f) for some f € Root(Q), then, since root(t;) = root(s;y1) and
all pairs in @ occur infinitely often in B, we can assume that root(tg) = f.
Furthermore, since A is minimal, we can assume that t, is u-terminating
(w.r.t. R). Since 7(t;) —%,, 7(sit1) and 7(si1) =, w(tipq) for all @ > 0,
the sequence B is transformed into an infinite —g , U > ,-sequence

m(to) —r, 7(s1) By w(t) =Rk, 7(s2) By () =R, o

containing infinitely many > ,-steps, due to m(u) >, 7(v) for some v —
v € Q which occurs infinitely often in B. Since >, is well-founded, the in-
finite sequence must also contain infinitely many <% ,-steps. By making
repeated use of the fact that >,0 < ,C—g , o>,, we obtain an infinite
—g u-Sequence starting from m(¢g). Thus, 7(¢p) is not p-terminating with
respect to R. Since 7(f) € u(f) and hence tor>, 7(to), this implies that ¢,
is not u-terminating (use Lemma 1(1)). This contradicts p-termination
of t().

Therefore, @ C P — P, .. Hence, B is an infinite minimal (P — Py, R, jt)-
chain. This contradicts our initial argument. O

Example 21 Consider the CS-TRS (R, p) in Example 14. We can apply The-
orem 10 to the two cycles {(13)} and {(14)} in the CSDG (see Figure 2).

(1) Taking 7(G) = 1, we have that w(G(s(x))) = s(x) >, x = 7(G(x)) and we
conclude (by using Proposition 8(1)), that there is no infinite minimal
({(13)}, R, u¥)-chain.

(2) Taking w(SEL) = 1, we have that 7(SEL(s(z), cons(y, 2))) = s(z) >,
x = m(SEL(z, 2)), and similarly conclude that there is no infinite minimal
({(14)}. R. j#)-chain.

Thus, the p-termination of R is proved.

The following examples shows that if we allow collapsing rules in P, then
Theorem 10 does not hold.

Example 22 Consider the TRS R consisting of a rule

h(z) — £(g(h(2)))

and P containing a single collapsing rule

t(g(z)) — =

20

Let p be given by u(f) = {1,...,k} for all symbols f. Note that, as required
in Theorem 10, Root(P) = {f} and D = {h} are disjoint. By using the
projection m(f) = 1, we get m(£(g(x))) = g(x) >, x. After removing the pair in
P, a finite CS-termination problem (&, R, u) is obtained. However, (P, R, 1)
s not finite:

(g(h(2)) —ppu h(x) —rpu Egh(2) —pp -

In the following theorem, we show how to use the subterm criterion to remove
all collapsing pairs from P. The interesting point is that, in contrast with non-
collapsing pairs, we do notneed to have u >, v to be able to remove collapsing
pairs u — v.

Theorem 11 (Subterm processor for collapsing pairs) Let R = (F, R)
= (CWD,R) and P = (G, P) be TRSs such that Pg contains no collapsing
rule, Root(P)N'D = &, and u € Mgyg. Let m be a simple projection for P
such that

(1) ©(P) C >,, and
(2) whenever Py # @, we have w(f*) € u(f*) N u(f) for all f € Hp.

Then, the processor Procgscon given by

{(P—Px,R,p)} if (1) and (2) hold

ProcsubColl(P7 R, ,U) =
{(P,R, 1)} otherwise

1s sound and complete.

PROOF. We have to prove that there is an infinite minimal (P, R, u)-chain
if and only if there is an infinite minimal (P — Py, R, pt)-chain. The if part
is obvious. For the only if part, we proceed by contradiction. Assume that
there is an infinite minimal (P, R, 1)-chain A but there is no infinite minimal
(P — Px, R, u)-chain. Since P is finite, we can assume that there is Q@ C P
such that A has a tail B which is an infinite minimal (Q, R, u)-chain where
all pairs in Q are infinitely often used and Q contains some collapsing pair
u— x € Qy. Assume that B is
t * A f * A f *
0 {_>'R,p, S1 —7Qou© IZ,U, t {_>'R,p, S2 —Qou© IZ,U, to {_>'R,p, e
where there is a substitution o such that, for all i > 1, s; = o(u;) for some
u; — v; € P, and

(1) if v; € X, then t; = o(v;), and

(2) ifv; = ; € X, then z; & Vart(u;) and t; = 7! for some r; € T(F, X) such
that o(z;) >, r;, and r; = 0;(7;) for some 7; € N'HT g and substitution

o1

0;.

W.lLo.g. (because we can freely choose the starting term of B) we assume that
to is a particular case of the second alternative above, i.e., there is a collapsing
pair uy — xy such that o(zg) >, ro and ¢, = 7’8. Note that, for all i > 1,
root(s;) € Root(P) because root(u;) € Root(P). Furtermore, for all i > 0,
root(t;) € Root(P) because:

(1) If u; — v; € Qg, then root(v;) € Root(P) and t; = o(v;).

(2) If u; — v; € Qu, then root(t;) € F*; since t; —% , siy1 and FPNF = @,
rewritings with R cannot remove the marked root symbol in ¢;; hence,
we can further conclude root(t;) = root(s;+1) € Root(P).

Therefore, we can apply 7 to s;41 and ¢; for all © > 0. Moreover, since t; =% ,

siy1 for all i > 0 and Root(P) ND = &, we can actually write ¢; ‘iﬁz# Sit1;
hence 7(t;) <%, 7(si11) and also root(t;) = root(s;;1) for all i > 0.

Since u — x € Qx and B is infinite, it must be Hg # @ (hence Hp # 9).
Thus, we have 7(f*) € u(f) for all f € Hg C Hp. Then, since root(t;) =
root(s;+1) and all pairs in Q occur infinitely often in B, we can assume that
root(ty) = f. Furthermore, since A is minimal, we can assume that ¢, is
p-terminating. We have that w(u;) >, w(v;) for all v; — v; € Q. Now we
distinguish two cases:

(1) If u; — v; € Qg, then s; = o(u;) and t;11 = o(v;). By stability of >, we
have m(s;) &>, m(tis1).

(2) If u; — v; = u; — x; € Qy, then s; = o(u;) and there is a term r;, such
that o(x;) >, r; and Tf = t;41. Since 7(u;) >, x;, by stability of >, we
have

m(s;) = W(U(uz’)) = o(m(u;)) By 0(7;) By i

Note that fi = root(r;) = root(r;) € Hp. Since m(tit1) = tiv1| s
ﬁ| (f =T ’ f) and 7T() () we have that r; >, (ti+1> and thus

m(s;) > © m(tiz1).

Therefore, by applying the simple projection 7, the sequence B is transformed
into an infinite —x , U >,-sequence B’

T(to) =g, m(51) By m(t) =R, 7(s2) B m(te) =R,

Since u — x occurs infinitely often in B, and by the second case above,
B’ contains infinitely many >, steps, starting from 7(ty). Since >, is well-
founded, the infinite sequence must also contain infinitely many <—x ,-steps.
By making repeated use of the fact that >,0 —x ,C—g , ol>,, we obtain an
infinite <—x ,-sequence starting from m(¢y). Thus, 7(¢y) is not p-terminating
with respect to R. Since 7(f*) € u(f*) and hence to >, 7(to), this implies that

52

to is not p-terminating (use Lemma 1(1)). This contradicts u-termination of
to.

Therefore, Q cannot contain any collapsing pair. This contradicts our initial
assumption u — x € Q. O

Remark 8 The use of Theorem 11 only makes sense if P C Pg U PL. If
u — x € Py — PL for some u = f(uy,...,ux), then for all i € {1,... k},
whenever x € Var(u;) we have i € u(f) and u; >y x. Thus, there is no simple
projection w such that m(u) >, x.

Example 23 Consider the following TRS R:

g(z,y) —£(z,y)
f(c(z),y) — gz, 8(y,v))

together with the replacement map p given by p(c) = u(g) = {1} and pu(f) =
@. The CSDPs are:

G(z,y) = F(z,y) (22)
F(e(z),y) —G(z,8(y,v)) (23)
F(c(r),y) —x (24)

and all of them are part of the only SCC P = {(22), (23), (24)} in the CSDG of
(R, u). Note that NHT p = {g(y,y)}, hence Hp = {g}. Consider the simple
projection given by w(F) = 7(G) = 1. Note that 7(G) € pu(G)Nu(g) as required
by Theorem 11. Since

o m(G(r,y) = v, x = 7(F(x,y))
o 7(F(c(z).y)) = c(2) >, @ = 7(G(x, g(y,y))), and
o 7(F(c(x),y)) = c(r) by z = 7(a)

we can first use Theorem 11 to remove the CSDP (24) from the SCC P to
obtain a new problem ({(22),(23)}, R, u*) to which Theorem 10 applies to
finally obtain ({(22)}, R, pi*) for which G({(22)}, R, u*) contains no cycle, thus

proving the p-termination of R.

The following result provides a kind of generalization of the subterm criterion
to simple projections which only take non-u-replacing arguments.

Theorem 12 (Non-u-replacing projection processor) Let R = (F,R) =
(CWD,R) and P = (G, P) be TRSs such that Pg contains no collapsing rule,
Root(P)ND = @, and p € Mzyg Let 2, be a stable quasi-ordering on terms
whose strict and stable part > is well-founded and 7 be a simple projection for

P such that

23

(1) for all f € Root(P), =(f) & u(f),
(2) 7(P) € 2, and,

~)

(3) whenever NHT p # & and Px # &, we have that >, C >, where >, is
the u-replacing subterm relation on T(F,X), and t 2 | (oo)r) for all
te NHT p.

Let P~ = {u— v € P | mw(u) > w(v)}. Then, the processor Procyrp given by

{(P—=P<,R,u)} if (1), (2), and (3) hold
{(P,R,n)} otherwise

PFOCNRP(P, R, u) =

1s sound and complete.

PROOF. We have to prove that there is an infinite minimal (P, R, u)-chain
if and only if there is an infinite minimal (P — P~, R, pt)-chain. The if part
is obvious. For the only if part, we proceed by contradiction. Assume that
there is an infinite minimal (P, R, 1)-chain A but there is no infinite minimal
(P — P~, R, pu)-chain. Since P is finite, we can assume that there is Q@ C P
such that A has a tail B

A A
o(ur) —guolh ty =k, o(us) —guoh ty =k, -

for some substitution ¢ and pairs u; — v; € Q, and

(1) if v; € X, then t; = o(v;), and
(2) if v; = x; € X, then x; & Vart(u;) and t; = sg for some s; such that
o(x;) >, s; and s; = 6,(8;) for some 5; € N'HT p and substitution 6;.

Furthermore, all pairs in Q are used infinitely often in B. As discussed in the
proof of Theorem 10, for all i > 1, root(t;) € Root(P), n(t;) —% , m(0(uis1))
and also root(t;) = root(u;y1) for all i > 1.

No pair v — v € Q satisfies that w(u) > m(v). Otherwise, by applying the
simple projection 7 to the sequence B, for all : > 1 we get a contradiction as
follows:

(1) Since w(f) & p(f) for all f € Root(Q), for alli > 1, w(t;) = m(o(uit1)) =
o(m(uit1)), because no p-rewritings are possible on the m(root(t;))-th
immediate subterm 7(t;) of ¢;, and

(2) Due to m(u;) 2 7w(v;) and by stability of 2, we have that 7(o(u;)) =

~J)

o(m(u;)) 2 o(m(v;)). Now, we distinguish two cases:
(a) If(ui)—> v; € Qg, then 7(t;) = n(o(v;)) = o(mw(v;)). Thus, 7(o(u;)) 2
™ tz .

(b) If u; — v; € Qx, then o(n(v;)) = o(z;). Since o(z;) >, s;, we have
that o(z;) 2 s; (because >, C 2). Let f = root(u;11) = root(t;) =
root(s%). Since t > tla(roottyyy for all t € N'HT p, by stability, we

o4

have s; = 0;(5:) 2 0i(5ilx(s)) = 0i(5:)|n(r) = Siln(s). Since s|q(szy =
ti|7r(fﬁ) = m(t;), we have s; 2 w(t;). Hence, (o (w;)) 2 m(t;).
Thus, we always have w(o(u;)) 2 m(t;). Therefore, we obtain an infinite 2>
sequence

m(o(u)) Z w(ty) = m(o(uz)) Z 7(ta) -

Since the dependency pairs in @ occur infinitely many, this sequence contains
infinitely many > steps starting from 7(o(u1)). This contradicts the well-
foundedness of >.

Therefore, @ C P — P~, which means that B is an infinite minimal (P —
P~, R, u)-chain, thus leading to a contradiction with our initial assumption.
O

Example 24 Consider the CS-TRS (R,) in Example 9. DP(R, u) is

G(x) — H(z) H(d) —G(c)

where pf(G) = p*(H) = @. The dependency graph contains a single cycle in-
cluding both of them. The only simple projection is w(G) = w(H) = 1. Since
7m(G(x)) = w(H(x)), we only need to guarantee that 7(H(d)) =d > ¢ = 7(G(c))
holds for a stable and well-founded ordering >. This is easily fulfilled by, e.q.,
a polynomial ordering.

Theorem 13 (Non-u-replacing projection processor II) Let R = (F, R)
= (CWD, R) and P = (G, P) be TRSs such that Pg contains no collapsing rule,
Root(P)N'D = &, and p € Mg,g Let 2 be a stable quasi-ordering on terms
whose strict and stable part > is well-founded and 7 be a simple projection for

P such that

(1) for all f € Root(P), n(f) & pu(f),
(2) n(P) €%, and,

~7

(3) whenever NHT p # & and Px # &, we have that >, C 2, where >, is
the p-replacing subterm relation on T(F,X), and t > t|(roor(ry) for all
te NHT p.

Then, the processor Procyrps given by

{(P—=Px,R, 1)} if (1), (2), and (3) hold

PI’OCNRPQ<7)7 'R,, Iu) =
{(P,R,un)} otherwise

18 sound and complete.

25

14 Narrowing Transformation

The starting point of a proof of termination is the computation of the estimated
dependency graph (see Definition 9) followed by the use of the SCC processor
(Theorem 4). The estimation of the graph can lead to overestimate the arcs
that connect two dependency pairs.

Example 25 Consider the following example [Luc06, Proposition 7]:

£(0) — cons(0,£(s(0))) p(s(z)) —x

£(s(0)) — £(p(s(0)))

together with u(f) = p(p) = p(s) = p(cons) = {1} and u(0) = @. Then,
DP(R, i) consists of the following pairs:

F(s(0)) = F(p(s(0))) (25)
F(s(0)) —P(s(0)) (26)

The estimated CS-dependency graph contains one cycle: {(25)}. Note, how-
ever, that this cycle does not belong to the CS-dependency graph because there
is no way to p-rewrite F(p(s(0))) into F(s(0))!

As already observed by Arts and Giesl for the standard case [AG00], in our case
the overestimation comes when a (noncollapsing) pair u; — v; is followed in a
chain by a second one u;;; — v;11 and v; and u;,; are not directly unifiable,
i.e., at least one p-rewriting step is needed to u-reduce o(v;) to o(u;y1). Then,
the p-reduction from o(v;) to o(u;41) requires at least one step, i.e., we always
have o(v;) =g 0(v;) =% s 0(uir1). Then, v} is a one-step p-narrowing of
v; and we could require u; J v, (which could be easier to prove) instead of
u; 3 v;. Furthermore, we could discover that v; has no p-narrowings. In this

case, we know that no chain starts from o(v;).

According to the discussion above, we can be more precise when connecting
two pairs © — v and v/ — v’ in a chain, if we perform all possible one-step
p-narrowings on v in order to develop the possible reductions from o(v) to
o(u’). Then, we obtain new terms vy, ..., v, which are one-step p-narrowings
of v using unifiers §; (i.e., v ~g 9, v;) for i € {1,...,n}, respectively. These
unifiers are also applied to the left-hand side u of the pair u — v. Therefore, we
can replace a pair u — v by all its (one-step) p-narrowed pairs 6;(u) — vy,. . .,
On(u) — vy,

As in [AG00,GTSF06], a pair u — v € P may only be replaced by its nar-
rowings if the right-hand side v does not unify with any left-hand side ' of a

26

(possibly renamed) pair v’ — v’ € P (note that this excludes pairs v — v with
v € X). Moreover, the term v must be linear. We need to demand linearity
instead of (the apparently more natural) p-linearity (i.e., something like “no
multiple p-replacing occurrences of the same variable are allowed”).

Example 26 Consider the following TRS which is used in [AG00] to motivate
the requirement of linearity.

f(s(z)) — f(glz, v))
g(0,1)) — s(0)
0—1

We make it a CS-TRS by adding a replacement map i given by pu(£f) = p(s) =
{1}, w(g) = {2}. The only cycle in the CSDG consists of the CSDP

F(s(x)) — Flg(z, v))-

If linearity of the right-hand sides is not required for narrowing CSDPs, then it
will be removed since F(g(x, z)) and the (renamed version of) the left-hand side
F(s(z')) do not unify, thus, there are no p-narrowings. However the system is
not p-terminating:

£(s(0)) — £(g(0,0)) — £(g(0,1)) — £(s(0)). .

The problem is that the u-reduction from o(F(g(x,x))) to o(F(s(2'))) takes
place ‘in o’ and therefore it cannot be captured by p-narrowing. Note that
F(g(z,z)) is “u-linear”.

Another restriction to take into account when p-narrowing a noncollapsing
pair u — v is that the u-replacing variables in v have to be p-replacing in u
as well (this corresponds with the notion of conservativeness). Furthermore,
they cannot be both p-replacing and non-p-replacing at the same time. This
corresponds to the following definition.

Definition 13 (Strongly Conservative [GLUO08]) LetR be a TRS and ju €
Mpz. A rulel — 7 is strongly p-conservative if it is p-conservative and Vart ()N
Varf(l) = Var*(r) N Varf(r) = @.

The following result shows that, under these conditions, the set of CSDPs can
be safely replaced by their pg-narrowings.

Theorem 14 (Narrowing processor) Let R = (F,R) and P = (G, P) be
TRSs and pp € Mzyg. Let uw — v € P be such that

(1) w— v is strongly conservative,

57

(2) v linear, and
(3) for all W' — v € P (with possibly renamed variables), v and v’ do not

unify.

Let @ = (P —{u —v}H)U{u — v | v — v is a p-narrowing of u — v}.
Then, the processor Proc,... given by

{(Q,R, 1)} if (1), (2), and (3) hold

Proc,u (P, R, 1) =
{(P,R,u)} otherwise

18 sound and complete.

ProOF. We have to prove that there is an infinite minimal (P, R, u)-
chain iff there is an infinite minimal (Q, R, u)-chain. The proof of this the-
orem is analogous to the proof of [GTSF06, Theorem 31], which we adapt
here. For the first direction, we prove that given a minimal (P, R, u)-chain
“o,up — U, U — v, Uy — vUg,...7, there is a p-narrowing v’ of v with the
mgu # such that “... u; — v1,0(u) — v',us — vg,...” is also a minimal
(Q, R, u)-chain. Hence, every infinite minimal (P, R, u)-chain yields an infi-
nite minimal (Q, R, p1)-chain.

7

If “... u; — v, u — v,uy — vy,...” is a minimal (P, R, u)-chain, then there
is an substitution ¢ such that for all pairs s — ¢ in the chain,

(1) if s — t € Pg, then o(t) is p-terminating and it p-reduces to the instan-
tiated left-hand side o(s’) of the next pair s’ — ¢’ in the chain

(2) if s =t = s — x € Py then, o(x) has a p-replacing subterm sy, o(z)>,s¢
such that sg is p-terminating and it p-reduces to the instantiated left-
hand side o(s’) of the next pair s’ — ¢’ in the chain; furthermore, there
is 50 € NHT (R, i) such that sy = 6y(5¢) for some substitution 6.

Assume that o is a substitution satisfying the above requirements and such
that the length of the sequence o(v) —% , o(ug) is minimal.

Note that the length of this u-reduction sequence cannot be zero because v
and uy do not unify, that is, o(v) # o(uz). Hence, there is a term ¢ such that
0(v) =R q =%, o(uz). We consider two possible cases:

(1) The reduction o(v) —x, ¢ takes place within a binding of o, i.e., there is
a term r, a p-replacing variable position p € Posh (v), and a p-replacing
variable z € Var#(v) such that v|, = z, ¢ = o(v[r],) and o(z) —r,
r. Since v is linear, x occurs only once in v. Thus, ¢ = o'(v) for the
substitution ¢’ with ¢’(x) = r and o’(y) = o(y) for all variables y # x. As
we assume that all occurrences of pairs in the chain are variable disjoint,
o'(z) behaves like o for all pairs except u — v. We have o(z) —% ,

o8

o'(z) for all z € X. Since u — v is strongly conservative we also have
o(u) =%, o'(u) because all occurrences of z in u must be p-replacing.
Hence, if uy — v; € Pg we have

o'(v1) = o(v1) =g, 0(u) =%, 0 (u)
and if uy — vy € Py, then there is s; € T(F, X) such that
o'(v1) = o(v1) >, 51 and s —pu o) =%, o' (u)
and, in both cases,
o'(v) =q ‘—>3kz,u o(uz) = o' (ug).

Note that, by minimality and because u — v € Pg, o(v) is (R, u)-
terminating and, since o(v) —x,, ¢, the term ¢ is (R, p)-terminating as
well. Therefore, o'(x) = ¢ is (R, pt)-terminating and o’ satisfies the two
conditions above. Since the length of the sequence o'(v) —% , o'(ug) is
shorter than the sequence o(v) —% , o(uz), we obtain a contradiction
and we conclude that the p-reduction o(v) <, ¢ cannot take place in
a binding of o.

(2) The reduction (v) —x,, ¢ ‘touches’ v, i.e., there is a nonvariable position
p € Pos'z(v), and a rewrite rule [— r € R such that o(v|,) = p(l), for
some substitution p and

o(v) = a(v)lo(vlp)ly = o)D)y =ru o ()p(r)ly = q

Since we can assume that variables in [are fresh, we can extend o to
behave like p on variables in [. Thus, o(l) = o(v|,), i.e, [and v|, unify
and there is a mgu 6 and an substitution 7 satisfying o(z) = 7(6(z)) for
all variables . We have that v g-narrows to 6(v)[0(r)], = v" with unifier
0. Again, we can extend o to behave like 7 on the variables of 6(u) and
v'. Therefore, if u; — v; € Pg we have

o(v1) =g, o(u) =7(0(uw) = o (6(u))
and if u; — vy € Py, then there is s; € T (F, X) such that

o(v1) =o(x) >, s1 and sﬁ ;);%,u o(u) =71(0(u)) = o(f(u))

o(v') = 7(v") = 7(0(0))[7(0(r))]p = o ()[o(r)]p = o (V)[p(r)]p = ¢ =% . o (u2)

« 2

Hence, “... ,u3 — v1,0(u) — v, ug — vq,..." is also a minimal chain.

The other side is also analogous to the ‘completeness’ part of [GTSF06, The-
orem 31]. If “... u; — v1,0(u) — v, uy — vq,...” is an infinite minimal

29

(Q, R, i1)-chain where v’ is a one-step p-narrowing of v using the mgu 6, then

[13 9

S, U] — V1, U — U, Uz — Uy,...7 is an infinite minimal (P, R, u)-chain.
There is a substitution o such that

o(v1) =g, o(0(u) if uy — vy € Pg, and

o(v1) = o(x) >, 5, and s} —ru 0(0w) ifu — v € Py
Finally, we also have
a(v') ;)72,“ o(usg).
Since the variables in the pairs are pairwise disjoint, we may extend o to
behave like o(f(x)) on x € Var(u) then o(u) = 0(f(u)) and therefore

o(v1) =g, o(u) if uy — v € Pg, and

0'(01) >, s1 and 32 ;);3,# a(u) if uy — vy € Py

Moreover, by definition of p-narrowing, we have (v) —x , v’. This implies
that o(6(v)) —x, o(v') and since o(v) = 0(6(v)), we obtain

o(v) =rp o(V) =R, o(u2).

Hence, “...,u3 — vi,u — v,up — vy,...” is a minimal (P, R, u)-chain as
well.

O

Example 27 (Continuing Example 25) Since the right-hand side of pair (25)
in Example 25 does not unify with any (renamed) left-hand side of a CSDP
(including itself) and it can be p-narrowed at position 1 (notice that u(£)={1})
by using the rule p(s(x)) — x, we can replace it by its p-narrowed pair:

F(s(0)) — F(0)

The p-narrowed pair does not form any cycle in the estimated narrowed CS-
dependency graph and p-termination s easily proved now.

The following example shows that strongly conservativeness cannot be dropped
for the pair « — v to be p-narrowed*. This requirement was not taken into
account in [AGLO7, Theorem 5.3].

Example 28 Consider the following TRS R:

ce(x)) — d(z,)

a — e(a)

4 We thank Fabian Emmes for providing this example.

60

and P consisting of the following pair:
F(d(z,z)) — F(c(z))

together with p(c) = u(d) = p(F) = {1} and p(e) = @. There is an infinite
(P, R, p)-chain as follows:

F(c(a)) —rp Fcle(a)) —rpu F(d(a,2)) =pyu Flc(a)) —rp -

Since F(c(x)) does not unify with any left-hand side of another pair, we can
w-narrow the pair in P. We obtain P’ consisting of the p-narrowed pair

F(d(e(z),e(x))) — F(d(z,z))
No infinite (P', R, u)-chain is possible now.

Note that P is p-conservative, but it is not strongly p-conservative (the variable
x 1s both p-replacing and non-p-replacing in F(d(z, z))).

15 Experiments

The processors described in the previous sections have been implemented as
part of the tool MU-TERM [AGILO07,Luc04a]. We have tested the impact of
the CSDP-framework in practice on the 90 examples in the Context-Sensitive
Rewriting subcategory of the 2007 Termination Competition:

http://www.lri.fr/~marche/termination-competition/2007
which are part of the Termination Problem Data Base (TPDB, version 4.0):
http://www.lri.fr/~marche/tpdb
We have addressed this task in three different ways:
(1) We have compared CSDPs with previously existing techniques for proving
termination of CSR: transformations, CSRPO, and polynomial orderings.
(2) We have compared the improvements introduced by the different CS-
processors which have been defined in this paper.

(3) We have participated in the CSR subcategory of the 2007 International
Termination Competition.

61

Tool Version Proved Total Time Average Time
CSDPs 65/90 0.31 sec. 0.00 sec.
CSRPO 37/90 0.21 sec. 0.00 sec.
Polynomial Orderings 27/90 0.06 sec. 0.00 sec.
Transformations 56,/90 5.59 sec. 0.10 sec.

Table 1
Comparison among CSR Termination Techniques

15.1 CSDPs vs. other techniques for proving termination of CSR

Several methods have been developed to prove termination of CSR for a given
CS-TRS (R, it). Two main approaches have been investigated so far:

(1) Direct proofs, which are based on using p-reduction orderings (see [Zan97])
such as the (context-sensitive) recursive path orderings [BLR02] and poly-
nomial orderings [GL02,Luc04b,Luc05]. These are orderings > on terms
which can be used to directly compare the left- and right-hand sides of
the rules in order to conclude the p-termination of the TRS.

(2) Indirect proofs which obtain a proof of the p-termination of R as a proof
of termination of a transformed TRS R (where © represents the trans-
formation). If we are able to prove termination of R (using the standard
methods), then the p-termination of R is ensured.

We have used MU-TERM to compare all these techniques with respect to the
aforementioned benchmark examples. The results of this comparison are sum-
marized in Table 1.

Remark 9 A number of transformations © from TRSs R and replacement
maps v that produce TRSs R have been investigated by Lucas (transforma-
tion L [Luc96]), Zantema (transformation Z [Zan97]), Ferreira and Ribeiro
(transformation FR [FR99]), and Giesl and Middeldorp (transformations®
GM, sGM, and C [GM99,GM0}]), see [GMO4, Luc06] for recent surveys about
these transformations which also include a thorough analysis about their rela-
tive power. All these transformations were considered in our erperiments, so
item “Transformations” in Table 1 concentrate the joint impact of all of them.

From the benchmarks summarized in Table 1, we clearly conclude that the
CSDP-framework is the most powerful and fastest technique for proving ter-
mination of CSR. Actually, all examples which were solved by using CSRPO
or polynomial orderings were also solved using CSDPs. Regarding transfor-
mations, there is only one example (namely, Ex9_Luc06, which can be solved
by using transformation GM) that could not be solved with our current im-
plementation of the CS-processors.

® The labels for these transformations correspond to the ones introduced in [Luc06].

62

VZZ?én Narrowing Sgglzcl;ng Subterm Proved Total Time A%?:;ege
rojection
1. No No No 54/90 3.00 sec. 0.05 sec.
2. No No Yes 62/90 0.55 sec. 0.01 sec.
3. No Yes No 57/90 0.82 sec. 0.01 sec.
4. No Yes Yes 65/90 0.49 sec. 0.01 sec.
5. Yes No No 54/90 3.22 sec. 0.06 sec.
6. Yes No Yes 62/90 2.64 sec. 0.04 sec.
7. Yes Yes No 57/90 1.27 sec. 0.02 sec.
8. Yes Yes Yes 65/90 0.31 sec. 0.00 sec.
Table 2

Comparison among CS-processors

15.2 Contribution of the different CS-processors

In our implementation of the CSDP-framework, besides the CS-processor
Procsoc, the p-reduction-pair CS-processors described in Section 12 are the
most basic ones: we use the CS-processors described in Sections 13 and 14 as
much as possible; otherwise, the CS-processors in Section 12 are used.

The impact of the CS-processors in Sections 13 and 14 is summarized in Ta-
ble 2. Our benchmarks show that the CS-processors described in Section 13
play an important role in our proofs. The subterm processors Proc,,,nycon and
Procgucon are quite efficient, but the ones which are based on simple projec-
tions for non-p-replacing arguments (Procyrp and Procygps) also increase the
power and the speed of the CSDPs technique. Furthermore, these two groups
of CS-processors are complementary: the extra problems which are especifi-
cally solved by them are different. Narrowing is useful to simplify the graph,
but it doesn’t play an important role in the benchmarks, because it only ap-
plies to solve two examples (which can be solved without narrowing as well).
Furthermore, we have to carefully use it because recomputing the graph can
be expensive in that case.

Complete details of our experiments can be found here:

http://zenon.dsic.upv.es/muterm/benchmarks/csdp
15.8 CSDPs at the 2007 International Termination Competition
Nowadays, AProVE [GST06] is the only tool (besides MU-TERM) which imple-
ments specific methods for proving termination of C'SR.

Both AProVE and MU-TERM participated in the C'SR subcategory of the 2007

63

International Termination Competition. AProVE participated with a termina-
tion expert for CSR which, given a CS-TRS (R, u), successively tries different
transformations © for proving termination of CSR (those which are enumer-
ated in Remark 9, i.e., © € {C, FR, GM, L, sGM, Z}) and then uses (on the
obtained TRS Rg) a huge variety of different and complementary techniques
for proving termination of rewriting (according to the DP-framework). Ac-
tually, AProVE is currently the most powerful tool for proving termination of
TRSs and implements most existing results and techniques regarding DPs and
related techniques.

However, MU-TERM’s implementation of CSDPs was able to beat AProVE in
the CSR category, thus witnessing that CSDPs are actually a very powerful
technique for proving termination of CSR.

16 Related work

This paper is an extended and revised version of [AGL06,AGL07]. The first
presentation of the context-sensitive dependency pairs was given in [AGLO6].

Besides providing complete proofs for all results, discovering some bugs in
previous results which are reported in the main text of this paper, and giving
many examples about the use of the theory, the main conceptual differences
between [AGL06,AGLO07] and this paper are:

(1) In this paper, we have investigated and successfully combined two dif-
ferent notions of minimal non-u-terminating terms: the so-called strongly
minimal terms (7 ,, which have been introduced and investigated for
the first time in this paper) and the minimal terms (M), which were
introduced in [AGLO06] and further investigated in [AGL07]. The com-
bined use of both of them leads us to a much better development of the
theory which has brought new essential results, remarkably Theorem 1
which is the basis (at the level of pure context-sensitive rewriting) of the
new notions of CSDP and minimal chain.

(2) Although most of the ideas in this first part of the paper (Sections 3, 4,
and 5) were already present in [AGLO7, Section 3], here we have made
explicit some aspects which were only implicit there. For instance, the
essential notion of hidden term, which is a consequence of Lemma 5 and
further developed in Lemma 6 and Proposition 3 was implicit in [AGL07,
Section 3|, but only the notion of hidden symbol was made explicit. Ac-
tually, the proofs of the aforementioned results in this paper correspond
(with minor changes) to that of Lemma 3.4, Lemma 3.5 and Proposition
3.6 in [AGLO7], respectively.

(3) The notion of context-sensitive dependency pairs was first introduced in

64

[AGLO06, Definition 1], but the narrowing condition that we have included
now for the noncollapsing CSDPs is new. Although such a condition is
inspired in the recent extension of the DP-method to Order-Sorted TRSs
[LMO8b], in this paper we have elaborated this in depth to show that it is
a natural requirement, actually (see Section 5.1). In [LMO8b] it is already
showed that including ‘narrowability’ in the usual definition of depen-
dency pair can be useful to automatically prove termination of rewriting.
Similar considerations are valid for CSR.

In [AGLO6], a notion of minimal chain was introduced but not really used
in the main results of the paper. Actually, the notion of minimal chain in
this paper is completely different from the old one and is a consequence
of the analysis of infinite u-rewrite sequences developed in the first part
of the paper. Furthermore, in this paper, the notion of minimal chain of
pairs is essential for the definition of the context-sensitive dependency
graph and the development of the CSDP-framework in the third part of
the paper.

The notion of context-sensitive dependency graph was first introduced
in [AGL06] and further refined in [AGL07] thanks to the introduction of
the hidden symbols. The definition in this paper introduces a new refine-
ment through the notion of ‘narrowable hidden term’ and shows a nice
symmetry between the arcs associated to noncollapsing and collapsing
pairs.

The definition of a CSDP-framework for the mechanization of proofs
of termination of CSR using CSDPs is new. A number of processors
introduced here had a kind of counterpart in [AGLO6] (for instance, the
use of p-reduction orderings was formalized in [AGL06, Theorem 4] and
the subterm criterion for noncollapsing pairs was formalized in [AGLOG,
Theorem 5]) or in [AGL07] (for instance, the narrowing transformation
in [AGLO7, Theorem 5.3]), but they were formulated in a DP-approach
style.

This paper introduces a number of new techniques which can be used
for proving termination of CSR as new processors: the SCC processor 5,
the processors for filtering or transforming collapsing pairs (see Section
11), the use of argument filterings ”, the use of the subterm criterion with
collapsing pairs (Theorem 11), etc.

Finally, for the first time, we have considered how to disprove termination
of CSR within the CSDP framework.

6 This is already mentioned in [AGLO06, Section 4.2] but without any formal de-
scription.

7 Again, this is very briefly mentioned at the end of [AGL06, Section 4.2] but never
formalized.

65

16.1 CSDPs and DPs

Given a TRS R and a replacement map p, if no replacement restrictions are
imposed, i.e., u(f) = {1,...,ar(f)} for all f € F, then no collapsing pair is
possible, and we would have >, = >, and DP(R, 1) = DP£(R, p).

Regarding the CSDPs in DPx(R, i), Definition 3 differs from the standard
definition of dependency pair (e.g., [AG00,GTSF06]) in two additional re-
quirements:

(1) Asin [HMO04], which follows Dershowitz’s proposal in [Der04], we require
that subterms s of the right-hand sides r of the rules | — r which are
considered to build the dependency pairs I* — s* are not subterms of the
left-hand side (i.e., [},s).

(2) Asin [LMO8b], we require ‘narrowability’ of the (appropriately renamed)
term s: NARR"(REN*(s)).

Except for these provisos, we could say that Definition 3 boils down to the
definition of dependency pair when no replacement restrictions are imposed.

Regarding the definition of (minimal) chain (Definition 4), the correspondence
is exact: if p imposes no replacement restriction, then — = g , and our
definition coincides with the standard one (see, e.g., [GTSF06, Definition 3]):
again, since all variables are p-replacing now, item (2) in Definition 4 does
not apply. Due to the absence of replacement restrictions, we have Var#(u) =
Var(u), hence Var(u) — Var*(u) = @ for all w — v € P. Then, the condition
v & Var(u) — Var*(u) vacuously holds and all pairs in P satisfy item (1) of
Definition 4.

17 Conclusions

We have investigated the structure of infinite context-sensitive rewrite se-
quences starting from minimal non-p-terminating terms (Theorem 1). This
knowledge used to provide an appropriate definition of context-sensitive de-
pendency pair (Definition 3), and the related notion of chain (Definition 4). in
sharp contrast to the standard dependency pairs approach, where all depen-
dency pairs have tuple symbols f* both in the left- and right-hand sides, we
have collapsing dependency pairs having a single variable in the right-hand
side. These variables reflect the effect of the migrating variables into the termi-
nation behavior of CSR. At the level of minimal chains, though, this contrast
is somehow recovered by a nice symmetry arising from the central notion of
hidden term (Definition 2): a noncollapsing pair © — v is followed by a pair

66

u — v if o(v) p-rewrites into o(u’) for some substitution o; a collapsing pair
u — v is followed by a pair ' — v’ if there is a hidden term t such that o(t)
p-rewrites into o(u') for some substitution o. We have shown how to use the
context-sensitive dependency pairs in proofs of termination of CSR. As in Arts
and Giesl’s approach, the presence or absence of infinite chains of dependency
pairs from DP(R, 1) characterizes the p-terminaton of R (Theorems 2 and 3).

We have provided a suitable adaptation of Giesl et al.’s dependency pair frame-
work to CSR by defining appropriate notions of CS-termination problem (Def-
inition 5) and CS-processor (Definition 6). In this setting we have described
a number of sound and (most of them) complete CS-processors which can be
used in any practical implementation of the CSDP-framework. In particular,
we have introduced the notion of (estimated) context-sensitive (dependency)
graph (Definitions 7 and 9) and the associated CS-processor (Theorem 4). We
have also described some CS-processors for removing or transforming collaps-
ing pairs from CS-termination problems in some particular cases (Theorems
5 and 6). We are also able to use p-reduction pairs (Definition 10) and argu-
ment filterings to ensure the absence of infinite chains of pairs (Theorems 7, 8,
and 9). We have also adapted Hirokawa and Middeldorp’s subterm criterion
which permits concluding the absence of infinite chains by paying attention
only to the pairs in the corresponding CS-termination problem (Theorems 10
and 11). Following this appealing idea, we have also introduced two new pro-
cessors which work in a similar way but use a very basic kind of orderings
instead of the subterm relation (Theorems 12 and 13). Narrowing context-
sensitive dependency pairs has also been investigated. It can also be helpful
to simplify or restructure the dependency graph and eventually simplify the
proof of termination (Theorem 14).

We have implemented these ideas as part of the termination tool MU-TERM
[AGILO07,Luc04a]. The implementation and practical use of the developed tech-
niques yield a novel and powerful framework which improves the current state-
of-the-art of methods for proving termination of CSR. Actually, CSDPs were
an essential ingredient for MU-TERM in winning the context-sensitive subcat-
egory of the 2007 competition of termination tools.

As for future work, we plan to extend the basic CSDP-framework described
in this paper with further CS-processors integrating the recently introduced
usable rules for CSR [GLUO08] as well as proofs of termination of innermost
CSR using CSDPs [ALO7].

67

Acknowledgements

We thank Jiirgen Giesl and his group of the RWTH Aachen (specially Fabian
Emmes, Carsten Fuhs, Peter Schneider-Kamp, and René Thiemann) for many
fruitful discussions about CSDPs.

References

[AGO0] T. Arts and J. Giesl. Termination of Term Rewriting Using
Dependency Pairs. Theoretical Computer Science, 236(1-2):133-178,
2000.

[AGILO7] B. Alarcén, R. Gutiérrez, J. Iborra, and S. Lucas. Proving
Termination of Context-Sensitive Rewriting with MU-TERM.
Electronic Notes in Theoretical Computer Science, 188:105-115, 2007.

[AGLOG6] B. Alarcén, R. Gutiérrez, and S. Lucas. Context-Sensitive
Dependency Pairs. In S. Arun-Kumar and N. Garg, editors, Proc.
of XXVI Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTETCS 06, volume 4337 of Lecture
Notes in Computer Science, pages 297-308, Kolkata, India, 2006.
Springer-Verlag.

[AGLO7] B. Alarcén, R. Gutiérrez, and S. Lucas. Improving the Context-
Sensitive Dependency Graph. Electronic Notes in Theoretical
Computer Science, 188:91-103, 2007.

[ALO7] B. Alarcén and S. Lucas. Termination of Innermost Context-
Sensitive Rewriting Using Dependency Pairs. In B. Konev and F.
Wolter, editors, Proc. of 6th International Symposium on Frontiers of
Combining Systems, FroCoS’07, LNAI 4720: 73-87, Springer-Verlag,
Berlin, 2007.

[BLRO2] C. Borralleras, S. Lucas, and A. Rubio. Recursive Path Orderings
can be Context-Sensitive. In A. Voronkov, editor, Proc. of XVIII
Conference on Automated Deduction, CADE’02, volume 2392 of
Lecture Notes in Artificial Intelligence, pages 314-331, Copenhagen,
Denmark, 2002. Springer-Verlag.

[BMO6] R. Bruni and J. Meseguer. Semantic foundations for generalized
rewrite theories. Theoretical Computer Science 351(1):386-414, 2006.

[BN9g] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[CDEL107] Clavel, M., F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
and C. Talcott. All About Maude — A High-Performance Logical
Framework. Lecture Notes in Computer Science 4350, 2007.

68

[Der04]

[DLM*04]

[DLM*08]

[EWZ08]

[FGJMS5]

[FNO7]

[FROY]

[GAO02]

[GLO2]

[GLUOS]

[GMO99]

N. Dershowitz. Termination by Abstraction. In B. Demoen and V.
Lifschitz, editors, Proc. of 20th International Conference on Logic
Programming, ICLP’04, LNCS 3132:1-18, Springer-Verlag, Berlin,
2004.

F. Durédn, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Proving
Termination of Membership Equational Programs. In Proc. of 2004
ACM SIGPLAN Symposium on Partial FEvaluation and Program
Manipulation, PEPM’0/, pages 147-158, Verona, Italy, 2004. ACM
Press.

F. Duran, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Proving
Operational Termination of Membership Equational Programs.
Higher-Order and Symbolic Computation, 21(1-2):59-88, 2008.

J. Endrullis, J. Waldmann, and H. Zantema. Matrix Interpretations
for Proving Termination of Term Rewriting. Journal of Automated
Reasoning 40(2-3):195-220, 2008.

K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles
of OBJ2. In Conference Record of the 12th Annual ACM Symposium
on Principles of Programming Languages, POPL’85, pages 52-66,
ACM Press, 1985.

K. Futatsugi and A. Nakagawa. An Overview of CAFE Specification
Environment — An algebraic approach for creating, verifying, and
maintaining formal specification over networks — In Proc. of 1st
International Conference on Formal Engineering Methods, 1997.

M.C.F. Ferreira and A.L. Ribeiro. Context-Sensitive AC-Rewriting.
In P. Narendran and M. Rusinowitch, editors, Proc. of 10th

International Conference on Rewriting Techniques and Applications,
RTA’99, LNCS 1631:286-300, Springer-Verlag, Berlin, 1999.

J. Giesl, T. Arts, and E. Ohlebusch. Modular Termination Proofs
for Rewriting Using Dependency Pairs. Journal of Symbolic
Computation, 34(1):21-58, 2002.

B. Gramlich and S. Lucas. Simple Termination of Context-Sensitive
Rewriting. In B. Fischer and E. Visser, editors, Proc. of IIl ACM
SIGPLAN Workshop on Rule-Based Programming, RULE’02, pages
29-41, New York, United States of America, 2002. ACM Press.

R. Gutiérrez, S. Lucas, and X. Urbain. Usable Rules for Context-
Sensitive Rewrite Systems. In A. Voronkov, editor, Proc. of the 19th

International Conference on Rewriting Techniques and Applications,
RTA’08, LNCS, 5117:126-141, Springer-Verlag, Berlin, 2008.

J. Giesl and A. Middeldorp. Transforming Context-Sensitive Rewrite
Systems. In P. Narendran and M. Rusinowitch, editors, Proc. of X
International Conference on Rewriting Techniques and Applications,

69

[GM04]

[GTS04]

[GSTO6]

[GTSF06]

[GWMF.J00]

[HMO4]

[HMO5]

[HMO?7]

[HPW92]

[KNT99]

RTA’99, volume 1631 of Lecture Notes in Computer Science, pages
271-285, Trento, Italy, 1999. Springer-Verlag.

J. Giesl and A. Middeldorp. Transformation techniques for context-
sensitive rewrite systems. Journal of Functional Programming,
14(4):379-427, 2004.

J. Giesl, R. Thiemann, and P. Schneider-Kamp. The Dependency
Pair Framework: Combining Techniques for Automated Termination
Proofs. In F. Baader and A. Voronkov, editors, Proc. of
XI International Conference on Logic for Programming Artificial
Intelligence and Reasoning, LPAR’04, volume 3452 of Lecture Notes
in Artificial Intelligence, pages 301-331, Montevideo, Uruguay, 2004.
Springer-Verlag.

J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2:
Automatic Termination Proofs in the Dependency Pair Framework. In
U. Furbach and N. Shankar, editors, Proc. of Third International Joint
Conference on Automated Reasoning, IJCAR’06, LNAI 4130:281-
286, Springer-Verlag, Berlin, 2006. Available at http://www-i2.
informatik.rwth-aachen.de/AProVE.

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing
and Improving Dependency Pairs. Journal of Automatic Reasoning,
37(3):155-203, 2006.

J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jouannaud. Introducing OBJ. In J. Goguen and G. Malcolm, editors,
Software Engineering with OBJ: algebraic specification in action,
Kluwer, 2000.

N. Hirokawa and A. Middeldorp. Dependency Pairs Revisited. In
V. van Oostrom, editor, Proc. of XV International Conference on
Rewriting Techniques and Applications, RTA’04, volume 3091 of
Lecture Notes in Computer Science, pages 249-268, Aachen, Germany,
2004. Springer-Verlag.

N. Hirokawa and A. Middeldorp. Automating the Dependency Pair
Method. Information and Computation, 199:172-199, 2005.

N. Hirokawa and A. Middeldorp. Tyrolean termination tool:
Techniques and features. Information and Computation, 205:474-511,
2007.

P. Hudak, S.J. Peyton-Jones, and P. Wadler. Report on the Functional
Programming Language Haskell: a non-strict, purely functional
language. Sigplan Notices, 27(5):1-164, 1992.

K. Kusakari, M. Nakamura, and Y. Toyama. Argument Filtering
Transformation. In G. Nadathur, editor, Proc. of International
Conference on Principles and Practice of Declarative Programming,

70

[Luc96]

[Luc9sg]

[Luc01]

[Luc02]

[Luc04al

[Luc04b]

[Luc05]

[Luc06]

[Luc07]

[LMO8a]

PPDP’99, volume 1702 of Lecture Notes in Computer Science, pages
47-61, Pittsburgh, Pennsylvania, United States of America, 1999.
ACM Press.

S. Lucas. Termination of context-sensitive rewriting by rewriting.
In F. Meyer auf der Heide and B. Monien, editors, Proc. of 23rd.
International Colloquium on Automata, Languages and Programming,
ICALP’96, LNCS 1099:122-133, Springer-Verlag, Berlin, 1996.

S. Lucas. Context-Sensitive Computations in Functional and
Functional Logic Programs. Journal of Functional and Logic
Programming, 1998(1):1-61, 1998.

S. Lucas. Termination of on-demand rewriting and termination of
OBJ programs. In Proc. of 3rd International Conference on Principles
and Practice of Declarative Programming, PPDP’01, pages 82-93,
ACM Press, 2001.

S. Lucas. Context-Sensitive Rewriting Strategies. Information and
Computation, 178(1):293-343, 2002.

S. Lucas. MU-TERM: A Tool for Proving Termination of Context-
Sensitive Rewriting. In V. van Qostrom, editor, Proc. of XV
International Conference on Rewriting Techniques and Applications,
RTA’04, volume 3091 of Lecture Notes in Computer Science, pages
200-209, Aachen, Germany, 2004. Springer-Verlag. Available at
http://zenon.dsic.upv.es/muterm.

S. Lucas. Polynomials for Proving Termination of Context-Sensitive
Rewriting. In I. Walukiewicz, editor, Proc. of VII International
Conference on Foundations of Software Science and Computation
Structures, FOSSACS’04, volume 2987 of Lecture Notes in Computer
Science, pages 318-332, Berlin, Germany, 2004. Springer-Verlag.

S. Lucas. Polynomials over the Reals in Proofs of Termination: from
Theory to Practice. RAIRO Theoretical Informatics and Applications,
39(3):547-586, 2005.

S. Lucas. Proving Termination of Context-Sensitive Rewriting by
Transformation. Information and Computation, 204(12):1782-1846,
2006.

S. Lucas. Practical use of polynomials over the reals in proofs of
termination. In Proc. of 9th International Symposium on Principles
and Practice of Declarative Programming, PPDP’07, pages 39-50,
ACM Press, 2007.

S. Lucas and J. Meseguer. Operational Termination of Membership
Equational Programs: the Order-Sorted Way. In G. Rosu, editor,
Proc. of the Tth International Workshop on Rewriting Logic and its
Applications, WRLA’08, Electronic Notes in Theoretical Computer
Science, to appear, 2008.

71

[LMOSb]

[McC60]

[NSEP92]

[Oh102]

[Thi07]

[TeRO3]
[Zan97]

S. Lucas and J. Meseguer. Order-Sorted Dependency Pairs. In Proc.
of the 10th International ACM SIGPLAN Symposium on Principles
and Practice of Declarative Programming, PPDP’08 , ACM Press, to
appear, 2008.

J. McCarthy. Recursive Functions of Symbolic Expressions and their
Computations by Machine, Part 1. Communications of the ACM,
3(4):184-195, 1960.

E.G.J.M.H. Nécker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and M.J.
Plasmeijer. Concurrent Clean. In E.H.L. Aarts, J. Leeuwen, and M.

Rem, editors, Proc. of Parallel Architectures and Languages Furope,
PARLE’91, LNCS 506:202-219, Springer-Verlag, Berlin, 1992.

E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag,
2002.

R. Thiemann. The DP Framework for Proving Termination of Term
Rewriting. PhD Thesis. Available as Technical Report AIB-2007-17,
RWTH Aachen University, Germany, 2007.

TeReSe. Term Rewriting Systems. Cambridge University Press, 2003.

H. Zantema. Termination of Context-Sensitive Rewriting. In
H. Comon, editor, Proc. of VII International Conference on Rewriting
Techniques and Applications, RTA’97, volume 1232 of Lecture Notes
i Computer Science, pages 172-186, Sitges, Spain, 1997. Springer-
Verlag.

72

