

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/202272

Alarcón, B.; Emmes, F.; Fuhs, C.; Giesl, J.; Gutiérrez Gil, R.; Lucas Alba, S.; Schneider-
Kamp, P.... (2008). Improving Context-Sensitive Dependency Pairs. Lecture Notes in
Computer Science. 5330:636-651. https://doi.org/10.1007/978-3-540-89439-1_44

https://doi.org/10.1007/978-3-540-89439-1_44

Springer-Verlag

Improving Context-Sensitive Dependency Pairs⋆

Beatriz Alarcón1, Fabian Emmes2, Carsten Fuhs2, Jürgen Giesl2, Raúl
Gutiérrez1, Salvador Lucas1, Peter Schneider-Kamp2, and René Thiemann3

1 DSIC, Universidad Politécnica de Valencia, Spain
2 LuFG Informatik 2, RWTH Aachen University, Germany

3 Institute of Computer Science, University of Innsbruck, Austria

Abstract. Context-sensitive dependency pairs (CS-DPs) are currently
the most powerful method for automated termination analysis of context-
sensitive rewriting. However, compared to DPs for ordinary rewriting,
CS-DPs suffer from two main drawbacks: (a) CS-DPs can be collapsing.
This complicates the handling of CS-DPs and makes them less powerful
in practice. (b) There does not exist a “DP framework” for CS-DPs which
would allow one to apply them in a flexible and modular way. This paper
solves drawback (a) by introducing a new definition of CS-DPs. With
our definition, CS-DPs are always non-collapsing and thus, they can be
handled like ordinary DPs. This allows us to solve drawback (b) as well,
i.e., we extend the existing DP framework for ordinary DPs to context-
sensitive rewriting. We implemented our results in the tool AProVE and
successfully evaluated them on a large collection of examples.

1 Introduction

Context-sensitive rewriting [23, 24] models evaluations in programming langua-
ges. It uses a replacement map µ with µ(f) ⊆ {1, ..., arity(f)} for every function
symbol f to specify the argument positions of f where rewriting may take place.

Example 1. Consider this context-sensitive term rewrite system (CS-TRS)

gt(0, y) → false p(0) → 0

gt(s(x), 0) → true p(s(x)) → x
gt(s(x), s(y)) → gt(x, y) minus(x, y) → if(gt(y, 0), minus(p(x), p(y)), x) (1)
if(true, x, y) → x div(0, s(y)) → 0

if(false, x, y) → y div(s(x), s(y)) → s(div(minus(x, y), s(y)))

with µ(if) = {1} and µ(f) = {1, . . . , arity(f)} for all other symbols f to model
the usual behavior of if: in if(t1, t2, t3), one may evaluate t1, but not t2 or t3. It
will turn out that due to µ, this CS-TRS is indeed terminating. In contrast, if
one allows arbitrary reductions, then the TRS would be non-terminating:

⋆ Proc. LPAR ’08, LNAI, 2008. Authors from Valencia were partially supported by the
EU (FEDER) and the Spanish MEC/MICINN, grants TIN 2007-68093-C02-02 and
HA 2006-0007. B. Alarcón was partially supported by the Spanish MEC/MICINN,
FPU grant AP2005-3399. R. Gutiérrez was partially supported by the Spanish
MEC/MICINN, grant TIN 2004-7943-C04-02. Authors from Aachen were supported
by the DAAD under grant D/06/12785 and by the DFG under grant GI 274/5-2.

minus(0, 0) →+ if(gt(0, 0), minus(0, 0), 0) →+ if(..., if(gt(0, 0), minus(0, 0), 0), ...) →+ ...

There are two approaches to prove termination of context-sensitive rewriting.
The first approach transforms CS-TRSs to ordinary TRSs, cf. [13, 26]. But trans-
formations often generate complicated TRSs where all termination tools fail.

Therefore, it is more promising to adapt existing termination techniques from
ordinary term rewriting to the context-sensitive setting. Such adaptions were
done for classical methods like RPO or polynomial orders [8, 19, 25]. However,
much more powerful techniques like the dependency pair (DP) method [6] are
implemented in almost all current termination tools for TRSs. But for a long
time, it was not clear how to adapt the DP method to context-sensitive rewriting.

This was solved first in [1]. The corresponding implementation in the tool
mu-term [3] outperformed all previous tools for termination of CS rewriting.

Nevertheless, the existing results on CS-DPs [1, 2, 4, 20] still have major dis-
advantages compared to the DP method for ordinary rewriting, since CS-DPs
can be collapsing. To handle such DPs, one has to impose strong requirements
which make the CS-DP method quite weak and which make it difficult to extend
refined termination techniques based on DPs to the CS case. In particular, the
DP framework [14, 17, 21], which is the most powerful formulation of the DP
method for ordinary TRSs, has not yet been adapted to the CS setting.

In this paper, we solve these problems. After presenting preliminaries in
Sect. 2, we introduce a new notion of non-collapsing CS-DPs in Sect. 3. This new
notion makes it much easier to adapt termination techniques based on DPs to
context-sensitive rewriting. Therefore, Sect. 4 extends the DP framework to the
context-sensitive setting and shows that existing methods from this framework
only need minor changes to apply them to context-sensitive rewriting.

All our results are implemented in the termination prover AProVE [16]. As
shown by the empirical evaluation in Sect. 5, our contributions improve the power
of automated termination analysis for context-sensitive rewriting substantially.

2 Context-Sensitive Rewriting and CS-Dependency Pairs

See [7] and [23] for basics on term rewriting and context-sensitive rewriting,
respectively. Let Pos(s) be the set of positions of a term s. For a replacement
map µ, we define the active positions Posµ(s): For x ∈ V let Posµ(x) = {ε}
where ε is the root position. Moreover, Posµ(f(s1, . . . , sn)) = {ε} ∪ {i p | i ∈
µ(f), p ∈ Posµ(si)}. We say that s�µ t holds if t = s|p for some p ∈ Posµ(s) and
s�µ t if s�µ t and s 6= t. Moreover, s�

�µ
t if t = s|p for some p ∈ Pos(s)\Posµ(s).

We denote the ordinary subterm relations by � and �.
A CS-TRS (R, µ) consists of a finite TRS R and a replacement map µ. We

have s →֒R,µ t iff there are ℓ → r ∈ R, p ∈ Posµ(s), and a substitution σ with
s|p = σ(ℓ) and t = s[σ(r)]p. This reduction is an innermost step (denoted i→֒R,µ)
if all t with s|p �µ t are in normal form w.r.t. (R, µ). A term s is in normal form
w.r.t. (R, µ) if there is no term t with s →֒R,µ t. A CS-TRS (R, µ) is terminating
if →֒R,µ is well founded and innermost terminating if i→֒R,µ is well founded.

Let D = {root(ℓ) | ℓ → r ∈ R} be the set of defined symbols. For every
f ∈ D, let f ♯ be a fresh tuple symbol of same arity, where we often write “F”
instead of “f ♯”. For t = f(t1, . . . , tn) with f ∈ D, let t♯ = f ♯(t1, . . . , tn).

Definition 2 (CS-DPs [1]). Let (R, µ) be a CS-TRS. If ℓ → r ∈ R, r�µt, and
root(t) ∈ D, then ℓ♯ → t♯ is an ordinary dependency pair.4 If ℓ → r ∈ R, r�µ x
for a variable x, and ℓ 6�µ x, then ℓ♯ → x is a collapsing DP. Let DPo(R, µ) and
DPc(R, µ) be the sets of all ordinary resp. all collapsing DPs.

Example 3. For the TRS of Ex. 1, we obtain the following CS-DPs.

GT(s(x), s(y)) → GT(x, y) (2) M(x, y) → IF(gt(y, 0), minus(p(x),p(y)), x) (5)
IF(true, x, y) → x (3) M(x, y) → GT(y, 0) (6)
IF(false, x, y) → y (4) D(s(x), s(y)) → D(minus(x, y), s(y)) (7)

D(s(x), s(y)) → M(x, y) (8)

To prove termination, one has to show that there is no infinite chain of DPs.
For ordinary rewriting, a sequence s1 → t1, s2 → t2, . . . of DPs is a chain if there
is a substitution σ such that tiσ reduces to si+1σ.5 If all tiσ are terminating,
then the chain is minimal [14, 17, 22]. But due to the collapsing DPs, the notion
of “chains” has to be adapted when it is used with CS-DPs [1]. If si → ti is a
collapsing DP (i.e., if ti ∈ V), then instead of tiσ →֒∗

R,µ si+1σ (and termination
of tiσ for minimality), one requires that there is a term wi with tiσ �µ wi and

w♯
i →֒∗

R,µ si+1σ. For minimal chains, w♯
i must be terminating.

Example 4. Ex. 1 has the chain (5), (3), (5) as IF(gt(s(y), 0), minus(p(x),p(s(y))), x)

→֒∗

R,µ IF(true, minus(p(x),p(s(y))), x) →֒(3),µ minus(p(x),p(s(y))) and (minus(p(x),

p(s(y))))♯ = M(p(x),p(s(y))) is an instance of the left-hand side of (5).

A CS-TRS is terminating iff there is no infinite chain [1]. As in the non-CS
case, the above notion of chains can also be adapted to innermost rewriting. Then
a CS-TRS is innermost terminating iff there is no infinite innermost chain [4].

Due to the collapsing CS-DPs (and the corresponding definition of “chains”),
it is not easy to extend existing techniques for proving absence of infinite chains
to CS-DPs. Therefore, we now introduce a new improved definition of CS-DPs.

3 Non-Collapsing CS-Dependency Pairs

Ordinary DPs only consider active subterms of right-hand sides. So Rule (1) of
Ex. 1 only leads to the DP (5), but not to M(x, y) → M(p(x), p(y)). However, the
inactive subterm minus(p(x), p(y)) of the right-hand side of (1) may become ac-
tive again when applying the rule if(true, x, y) → x. Therefore, Def. 2 creates a
collapsing DP like (3) whenever a rule ℓ → r has a migrating variable x with r�µ

x, but ℓ 6�µ x. Indeed, when instantiating the collapse-variable x in (3) with an
instance of the “hidden term” minus(p(x), p(y)), one obtains a chain which sim-
ulates the rewrite sequence from minus(t1, t2) over if(..., minus(p(t1), p(t2)), ...)

4 A refinement is to eliminate DPs where ℓ �µ t, cf. [1, 9].
5 We always assume that different occurrences of DPs are variable-disjoint and consider

substitutions whose domains may be infinite.

to minus(p(t1), p(t2)), cf. Ex. 4. Our main observation is that collapsing DPs are
only needed for certain instantiations of the variables. One might be tempted to
allow only instantiations of collapse-variables by hidden terms.6

Definition 5 (Hidden Term). Let (R, µ) be a CS-TRS. We say that t is a
hidden term if root(t) ∈ D and if there exists a rule ℓ → r ∈ R with r �

�µ
t.

In Ex. 1, the only hidden term is minus(p(x), p(y)). But unfortunately, only al-
lowing instantiations of collapse-variables with hidden terms would be unsound.

Example 6. Consider µ(g) = {1}, µ(a) = µ(b) = µ(f) = µ(h) = ∅ and the rules

a → f(g(b)) (9) h(x) → x
f(x) → h(x) b → a

The CS-TRS has the following infinite rewrite sequence:

a →֒R,µ f(g(b)) →֒R,µ h(g(b)) →֒R,µ g(b) →֒R,µ g(a) →֒R,µ . . .

We obtain the following CS-DPs according to Def. 2:

A → F(g(b)) H(x) → x (10)
F(x) → H(x) B → A

The only hidden term is b, obtained from Rule (9). There is also an infinite chain
that corresponds to the infinite reduction above. However, here the collapse-
variable x in the DP (10) must be instantiated by g(b) and not by the hidden
term b, cf. the underlined part above. So if one replaced (10) by H(b) → b, there
would be no infinite chain anymore and one would falsely conclude termination.

The problem in Ex. 6 is that rewrite rules may add additional symbols like g

above hidden terms. This can happen if a term g(t) occurs at an inactive position
in a right-hand side and if an instantiation of t could possibly reduce to a term
containing a hidden term (i.e., if t has a defined symbol or a variable at an active
position). Then we call g(2) a hiding context, since it can “hide” a hidden term.
Moreover, the composition of hiding contexts is again a hiding context.

Definition 7 (Hiding Context). Let (R, µ) be a CS-TRS. The function sym-
bol f hides position i if there is a rule ℓ → r ∈ R with r �

�µ
f(r1, . . . , ri, . . . , rn),

i ∈ µ(f), and ri contains a defined symbol or a variable at an active position. A
context C is hiding iff C = 2 or C has the form f(t1, . . . , ti−1, C

′, ti+1, . . . , tn)
where f hides position i and C′ is a hiding context.

Example 8. In Ex. 6, g hides position 1 due to Rule (9). So the hiding con-
texts are 2, g(2), g(g(2)), . . . In the TRS of Ex. 1, minus hides both positions
1 and 2 and p hides position 1 due to Rule (1). So the hiding contexts are
2, p(2), minus(2, 2), p(p(2)), minus(2, p(2)), . . .

To remove collapsing DPs s → x, we now restrict ourselves to instantiations
of x with terms of the form C[t] where C is a hiding context and t is a hidden
term. So in Ex. 6, the variable x in the DP (10) should only be instantiated by

6 A similar notion of hidden symbols was presented in [2, 4], but there one only used
these symbols to improve one special termination technique (the dependency graph).

b, g(b), g(g(b)), etc. To represent these infinitely many instantiations in a finite
way, we replace s → x by new unhiding DPs (which “unhide” hidden terms).

Definition 9 (Improved CS-DPs). For a CS-TRS (R, µ), if DPc(R, µ) 6=∅,
we introduce a fresh7 unhiding tuple symbol U and the following unhiding DPs:

• s → U(x) for every s → x ∈ DPc(R, µ),
• U(f(x1, . . . , xi, . . . , xn)) → U(xi) for every function symbol f of any arity n

and every 1 ≤ i ≤ n where f hides position i, and
• U(t) → t♯ for every hidden term t.

Let DPu(R, µ) be the set of all unhiding DPs (where DPu(R, µ)=∅, if DPc(R, µ)
= ∅). Then the set of improved CS-DPs is DP(R, µ) = DPo(R, µ)∪DPu(R, µ).

Example 10. In Ex. 6, instead of (10) we get the unhiding DPs

H(x) → U(x), U(g(x)) → U(x), U(b) → B.

Now there is indeed an infinite chain. In Ex. 1, instead of (3) and (4), we obtain:8

IF(true, x, y)→U(x) (11) U(p(x))→U(x) (15)
IF(false, x, y)→U(y) (12) U(minus(x, y))→U(x) (16)

U(minus(p(x), p(y)))→M(p(x), p(y)) (13) U(minus(x, y))→U(y) (17)
U(p(x))→P(x) (14)

Clearly, the improved CS-DPs are never collapsing. Thus, now the definition
of (minimal)9 chains is completely analogous to the one for ordinary rewriting.

Definition 11 (Chain). Let P and R be TRSs and let µ be a replacement
map. We extend µ to tuple symbols by defining µ(f ♯) = µ(f) for all f ∈ D and
µ(U) = ∅.10 A sequence of pairs s1 → t1, s2 → t2, . . . from P is a (P ,R, µ)-
chain iff there is a substitution σ with tiσ →֒∗

R,µ si+1σ and tiσ is terminating
w.r.t. (R, µ) for all i. It is an innermost (P ,R, µ)-chain iff tiσ

i→֒∗
R,µ si+1σ, siσ

is in normal form, and tiσ is innermost terminating w.r.t. (R, µ) for all i.

Our main theorem shows that improved CS-DPs are still sound and complete.

Theorem 12 (Soundness and Completeness of Improved CS-DPs). A
CS-TRS (R, µ) is terminating iff there is no infinite (DP(R, µ),R, µ)-chain and
innermost terminating iff there is no infinite innermost (DP(R, µ),R, µ)-chain.

Proof. We only prove the theorem for “full” termination. The proof for innermost
termination is very similar and can be found in [5].

Soundness

M∞,µ contains all minimal non-terminating terms: t ∈ M∞,µ iff t is non-termi-

7 Alternatively, one could also use different U-symbols for different collapsing DPs.
8 We omitted the DP U(p(y)) → P(y) that is “identical” to (14).
9 Since we only regard minimal chains in the following, we included the “minimality

requirement” in Def. 11, i.e., we require that all tiσ are (innermost) terminating.
As in the DP framework for ordinary rewriting, this restriction to minimal chains is
needed for several DP processors (e.g., for the reduction pair processor of Thm. 21).

10 We define µ(U) = ∅, since the purpose of U is only to remove context around hidden
terms. But during this removal, U’s argument should not be evaluated.

nating and every r with t �µ r terminates. A term u has the hiding property iff

• u ∈ M∞,µ and
• whenever u �

�µ
s �µ t′ for some terms s and t′ with t′ ∈ M∞,µ, then t′ is an

instance of a hidden term and s = C[t′] for some hiding context C.

We first prove the following claim:

Let u be a term with the hiding property and let u →֒R,µ v �µ w
with w ∈ M∞,µ. Then w also has the hiding property.

(18)

Let w �
�µ

s �µ t′ for some terms s and t′ with t′ ∈ M∞,µ. Clearly, this also
implies v �

�µ
s. If already u � s, then we must have u �

�µ
s due to the minimality

of u. Thus, t′ is an instance of a hidden term and s = C[t′] for a hiding context C,
since u has the hiding property. Otherwise, u6�s. There must be a rule ℓ → r ∈ R,
an active context D (i.e., a context where the hole is at an active position), and
a substitution δ such that u = D[δ(ℓ)] and v = D[δ(r)]. Clearly, u 6�s implies
δ(ℓ) 6�s and D 6�s. Hence, v �

�µ
s means δ(r)�

�µ
s. (The root of s cannot be

above 2 in D since those positions would be active.) Note that s cannot be at
or below a variable position of r, because this would imply δ(ℓ) � s. Thus, s is
an instance of a non-variable subterm of r that is at an inactive position. So
there is a r′ 6∈ V with r �

�µ
r′ and s = δ(r′). Recall that s �µ t′, i.e., there is a

p ∈ Posµ(s) with s|p = t′. If p is a non-variable position of r′, then δ(r′|p) = t′

and r′|p is a subterm with defined root at an active position (since t′ ∈ M∞,µ

implies root(t′) ∈ D). Hence, r′|p is a hidden term and thus, t′ is an instance of a
hidden term. Moreover, any instance of the context C′ = r′[2]p is hiding. So if we
define C to be δ(C′), then s = δ(r′) = δ(r′)[t′]p = δ(C′)[t′] = C[t′] for the hiding
context C. On the contrary, if p is not a non-variable position of r′, then p = p1 p2

where r′|p1
is a variable x. Now t′ is an active subterm of δ(x) (more precisely,

δ(x)|p2
= t′). Since x also occurs in ℓ, we have δ(ℓ)�δ(x) and thus u�δ(x). Due

to the minimality of u this implies u �
�µ

δ(x). Since u �
�µ

δ(x) �µ t′, the hiding

property of u implies that t′ is an instance of a hidden term and that δ(x) = C[t′]
for a hiding context C. Note that since r′|p1

is a variable, the context C′ around
this variable is also hiding (i.e., C′ = r′[2]p1

). Thus, the context C = δ(C′)[C]
is hiding as well and s = δ(r′) = δ(r′)[δ(x)[t′]p2

]p1
= δ(C′)[C[t′]] = C[t′].

Proof of Thm. 12 using Claim (18)

If R is not terminating, then there is a t ∈ M∞,µ that is minimal w.r.t. �. So
there are t, ti, si, t

′
i+1 such that

t
> ε

−֒→∗
R,µ t1

ε

→R s1 �µ t′2
> ε

−֒→∗
R,µ t2

ε

→R s2 �µ t′3
> ε

−֒→∗
R,µ t3 . . . (19)

where ti, t
′
i ∈ M∞,µ and all proper subterms of t (also at inactive positions)

terminate. Here, “ε” (resp. “> ε”) denotes reductions at (resp. strictly below)
the root.

Note that (18) implies that all ti have the hiding property. To see this, we
use induction on i. Since t trivially has the hiding property (as it has no non-

terminating proper subterms) and all terms in the reduction t
> ε
−֒→∗

R,µ t1 are

from M∞,µ (as both t, t1 ∈ M∞,µ), we conclude that t1 also has the hiding
property by applying (18) repeatedly. In the induction step, if ti−1 has the hiding
property, then one application of (18) shows that t′i also has the hiding property.
By applying (18) repeatedly, one then also shows that ti has the hiding property.

Now we show that t♯i →+
DP(R,µ) t′i+1

♯
and that all terms in the reduction

t♯i →
+
DP(R,µ) t

′
i+1

♯
terminate w.r.t. (R, µ). As t′i+1

♯ > ε
−֒→∗

R,µ t♯i+1, we get an infinite

(DP(R, µ),R, µ)-chain.
From (19) we know that there are ℓi → ri ∈ R and pi ∈ Posµ(si) with

ti = ℓiσ, si = riσ, and si|pi
= riσ|pi

= t′i+1 for all i. First let pi ∈ Pos(ri) with

ri|pi
/∈ V . Then ℓ♯

i → (ri|pi
)♯ ∈ DPo(R, µ) and t♯i = ℓ♯

iσ →DPo(R,µ) (ri|pi
)♯σ =

t′i+1
♯
. Moreover, as ti, t

′
i+1 ∈ M∞,µ, the terms t♯i and t′i+1

♯
are terminating.

Now let pi be at or below the position of a variable xi in ri. By minimality of
ti, xi only occurs at inactive positions of ℓi. Thus, ℓ♯

i → U(xi) ∈ DPu(R, µ) and
ri = Ci[xi] where Ci is an active context. Recall that ti = ℓiσ has the hiding
property and that ti ��µ

σ(xi)�µ t′i+1. Thus, we have σ(xi) = C[t′i+1] for a hiding
context C and moreover, t′i+1 is an instance of a hidden term. Hence we obtain:

t
♯
i = σ(ℓ♯

i)

→DPu(R,µ) U(σ(xi)) since ℓ
♯
i → U(xi) ∈ DPu(R, µ)

= U(C[t′i+1]) for a hiding context C

→∗

DPu(R,µ) U(t′i+1) since U(C[x]) →∗

DPu(R,µ) U(x) for any hiding context C

→DPu(R,µ) t′i+1
♯

since t′i+1 is an instance of a hidden term and

U(t) →DPu(R,µ) t♯ for any instance t of a hidden term

All terms in the reduction above are terminating. The reason is that again
ti, t

′
i+1 ∈ M∞,µ implies that t♯i and t′i+1

♯
are terminating. Moreover, all terms

U(. . .) are normal forms since µ(U) = ∅ and since U does not occur in R.

Completeness

Let there be an infinite chain v1 → w1, v2 → w2, ... of improved CS-DPs. First,
let the chain have an infinite tail consisting only of DPs of the form U(f(x1, ..., xi,
..., xn)) → U(xi). Since µ(U) = ∅, there are terms ti with U(t1)

ε

→DP(R,µ)U(t2)
ε

→DP(R,µ)... Hence, t1 �µ t2 �µ .. which contradicts the well-foundedness of �µ.
Now we regard the remaining case. Here the chain has infinitely many DPs

v → w with v = ℓ♯ for a rule ℓ → r ∈ R. Let vi → wi be such a DP and let
vj → wj with j > i be the next such DP in the chain. Let σ be the substitution
used for the chain. We show that then v♭

iσ →֒∗
R,µ C[v♭

jσ] for an active context

C. Here, (f ♯(t1, . . . , tn))♭ = f(t1, . . . , tn) for all f ∈ D. Doing this for all such
DPs implies that there is an infinite reduction w.r.t. (R, µ).

If vi → wi ∈ DPo(R, µ) then the claim is trivial, because then j = i + 1 and
v♭

iσ →֒R,µ C[w♭
iσ] →֒∗

R,µ C[v♭
i+1σ] for some active context C.

Otherwise, vi → wi has the form vi → U(x). Then v♭
iσ →֒R,µ C1[σ(x)] for an

active context C1. Moreover, U(σ(x)) reduces to U(δ(t)) for a hidden term t and
a δ by removing hiding contexts. Since hiding contexts are active, σ(x) = C2[δ(t)]

for an active context C2. Finally, t♯δ
> ε
−֒→∗

R,µ vjσ and thus, tδ
> ε
−֒→∗

R,µ v♭
jσ. By

defining C = C1[C2], we get v♭
iσ →֒+

R,µ C[v♭
jσ]. ⊓⊔

4 CS Dependency Pair Framework

By Thm. 12, (innermost) termination of a CS-TRS is equivalent to absence
of infinite (innermost) chains. For ordinary rewriting, the DP framework is the
most recent and powerful collection of methods to prove absence of infinite chains
automatically. Due to our new notion of (non-collapsing) CS-DPs, adapting the
DP framework to the context-sensitive case now becomes much easier.11

In the DP framework, termination techniques operate on DP problems in-
stead of TRSs. Def. 13 adapts this notion to context-sensitive rewriting.

Definition 13 (CS-DP Problem and Processor). A CS-DP problem is
a tuple (P ,R, µ, e), where P and R are TRSs, µ is a replacement map, and
e ∈ {t, i} is a flag that stands for termination or innermost termination. We
also call (P ,R, µ)-chains “(P ,R, µ, t)-chains” and we call innermost (P ,R, µ)-
chains “(P ,R, µ, i)-chains”. A CS-DP problem (P ,R, µ, e) is finite if there is
no infinite (P ,R, µ, e)-chain.

A CS-DP processor is a function Proc that takes a CS-DP problem as input
and returns a possibly empty set of CS-DP problems. The processor Proc is sound
if a CS-DP problem d is finite whenever all problems in Proc(d) are finite.

For a CS-TRS (R, µ), the termination proof starts with the initial DP prob-
lem (DP(R, µ),R, µ, e) where e depends on whether one wants to prove termina-
tion or innermost termination. Then sound DP processors are applied repeatedly.
If the final processors return empty sets, then (innermost) termination is proved.
Since innermost termination is usually easier to show than full termination, one
should use e = i whenever possible. As shown in [12], termination and innermost
termination coincide for CS-TRSs (R, µ) where R is orthogonal (i.e., left-linear
and without critical pairs). So (DP (R, µ),R, µ, i) would be the initial DP prob-
lem for Ex. 1, even when proving full termination. In Sect. 4.1 - 4.3, we recapitu-
late 3 important DP processors and extend them to context-sensitive rewriting.

4.1 Dependency Graph Processor

The first processor decomposes a DP problem into several sub-problems. To this
end, one determines which pairs can follow each other in chains by constructing
a dependency graph. In contrast to related definitions for collapsing CS-DPs in
[1, 4], Def. 14 is analogous to the corresponding definition for non-CS rewriting.

Definition 14 (CS-Dependency Graph). For a CS-DP problem (P ,R, µ, e),
the nodes of the (P ,R, µ, e)-dependency graph are the pairs of P, and there is
an arc from v → w to s → t iff v → w, s → t is a (P ,R, µ, e)-chain.

Example 15. Fig. 1 shows the dependency graph for Ex. 1, for both e ∈ {t, i}.12

11 For this reason, we omitted the proofs in this section and refer to [5] for all proofs.
12 To improve readability, we omitted nodes (6) and (14) from the graph. There are

arcs from the nodes (8) and (13) to (6) and from all nodes (11), (12), (15), (16), (17)
to (14). But (6) and (14) have no outgoing arcs and thus, they are not on any cycle.

(7)
KK

// (8) // (5)

uukkkkkkkkkk

��
(2)
SS

(12)

,,

��

##G
GG

��

(11)

��

{{www

��

rr

(16)
��

~~

��

(15)
��

>>

##G
GG

-- (17)
��

``

{{www
nn

(13)

bb

Fig. 1. Dependency graph for Ex. 1

A set P ′ 6= ∅ of DPs is a cycle
if for every v→w, s→t∈P ′, there
is a non-empty path from v → w
to s→t traversing only pairs of P ′.
A cycle P ′ is a strongly connected
component (“SCC”) if P ′ is not a
proper subset of another cycle.

One can prove termination se-
parately for each SCC. Thus, the
following processor (whose sound-
ness is obvious and completely
analogous to the non-context-sensitive case) modularizes termination proofs.

Theorem 16 (CS-Dependency Graph Processor). For d = (P ,R, µ, e),
let Proc(d) = {(P1,R, µ, e), . . . , (Pn,R, µ, e)}, where P1, . . . ,Pn are the SCCs of
the (P ,R, µ, e)-dependency graph. Then Proc is sound.

Example 17. The graph in Fig. 1 has the three SCCs P1 = {(2)}, P2 = {(7)},
P3 = {(5), (11)-(13), (15)-(17)}. Thus, the initial DP problem (DP(R, µ),R, µ, i)
is transformed into the new problems (P1,R, µ, i), (P2,R, µ, i), (P3,R, µ, i).

As in the non-context-sensitive setting, the CS-dependency graph is not com-
putable and thus, one has to use estimations to over-approximate the graph. For
example, [1, 4] adapted the estimation of [6] that was originally developed for
ordinary rewriting: Cap

µ(t) replaces all active subterms of t with defined root
symbol by different fresh variables. Multiple occurrences of the same such sub-
term are also replaced by pairwise different variables. Ren

µ(t) replaces all active
occurrences of variables in t by different fresh variables (i.e., no variable occurs
at several active positions in Ren

µ(t)). So Ren
µ(Cap

µ(IF(gt(y, 0), minus(p(x),
p(y)), x))) = Ren

µ(IF(z, minus(p(x), p(y)), x)) = IF(z′, minus(p(x), p(y)), x).
To estimate the CS-dependency graph in the case e = t, one draws an arc

from v → w to s → t whenever Ren
µ(Cap

µ(w)) and s unify.13 If e = i, then one
can modify Cap

µ and Ren
µ by taking into account that instantiated subterms

at active positions of the left-hand side must be in normal form, cf. [4]. Cap
µ
v (w)

is like Cap
µ(w), but the replacement of subterms of w by fresh variables is not

done if the subterms also occur at active positions of v. Similarly, Ren
µ
v (w) is

like Ren
µ(w), but the renaming of variables in w is not done if the variables

also occur active in v. Now we draw an arc from v → w to s → t whenever
Ren

µ
v (Cap

µ
v (w)) and s unify by an mgu θ where vθ and sθ are in normal form.14

It turns out that for the TRS of Ex. 1, the resulting estimated dependency
graph is identical to the “real” graph in Fig. 1.

13 Here (and also later in the instantiation processor of Sect. 4.3), we always assume
that v → w and s → t are renamed apart to be variable-disjoint.

14 These estimations can be improved further by adapting existing refinements to the
context-sensitive case. However, different to the non-context-sensitive case, for e = i

it is not sufficient to check only for unification of Cap
µ
v (w) and s (i.e., renaming

variables with Ren
µ
v is also needed). This can be seen from the non-innermost ter-

minating CS-TRS (R, µ) from [4, Ex. 8] with R = {f(s(x), x) → f(x, x), a → s(a)}

4.2 Reduction Pair Processor

There are several processors to simplify DP problems by applying suitable well-
founded orders (e.g., the reduction pair processor [17, 21], the subterm criterion
processor [22], etc.). Due to the absence of collapsing DPs, most of these pro-
cessors are now straightforward to adapt to the context-sensitive setting. In the
following, we present the reduction pair processor with usable rules, because it is
the only processor whose adaption is more challenging. (The adaption is similar
to the one in [4, 20] for the CS-DPs of Def. 2.)

To prove that a DP problem is finite, the reduction pair processor generates
constraints which should be satisfied by a µ-reduction pair (%,≻) [1]. Here, % is
a stable µ-monotonic quasi-order, ≻ is a stable well-founded order, and % and
≻ are compatible (i.e., ≻ ◦ % ⊆ ≻ or % ◦ ≻ ⊆ ≻). Here, µ-monotonicity means
that si % ti implies f(s1, ..., si, ..., sn) % f(s1, ..., ti, ..., sn) whenever i ∈ µ(f).

For a DP problem (P ,R, µ, e), the generated constraints ensure that some
rules in P are strictly decreasing (w.r.t. ≻) and all remaining rules in P and R
are weakly decreasing (w.r.t. %). Requiring ℓ% r for all ℓ→ r ∈ R ensures that
in a chain s1 → t1, s2 → t2, ... with tiσ →֒∗

R,µ si+1σ, we have tiσ % si+1σ for
all i. Hence, if a reduction pair satisfies the constraints, then one can delete the
strictly decreasing pairs from P as they cannot occur infinitely often in chains.

To improve this idea, it is desirable to require only a weak decrease of certain
instead of all rules. In the non-context-sensitive setting, when proving innermost
termination, it is sufficient if just the usable rules are weakly decreasing [6]. The
same is true when proving full termination, provided that % is Cε-compatible,
i.e., c(x, y) % x and c(x, y) % y holds for a fresh function symbol c [17, 22].

For a term containing a symbol f , all f -rules are usable. Moreover, if the
f -rules are usable and f depends on h (denoted f ◮R h) then the h-rules are
usable as well. Here, f ◮R h if f = h or if there is a symbol g with g ◮R h and
g occurs in the right-hand side of an f -rule. The usable rules of a DP problem
are defined to be the usable rules of the right-hand sides of the DPs.

As in [4, 20], Def. 18 adapts15 the concept of usable rules to the CS setting,
resulting in U◮(P ,R, µ). But as shown in [20], for CS rewriting it is also helpful
to consider an alternative definition of “dependence” 3R,µ where f also depends

on symbols from left-hand sides of f -rules. Let Fµ(t) (resp. F�µ(t)) contain all
function symbols occurring at active (resp. inactive) positions of a term t.

Definition 18 (CS-Usable Rules). Let Rls(f) = {ℓ → r ∈ R | root(ℓ) = f}.
For any symbols f, h and CS-TRS (R, µ), let f ◮R,µ h if f = h or if there is a
symbol g with g ◮R,µ h and a rule ℓ → r ∈ Rls(f) with g ∈ Fµ(r). Let f 3R,µ h
if f = h or if there is a symbol g with g 3R,µ h and a rule ℓ → r ∈ Rls(f) with

and µ(f) = {1}, µ(s) = ∅. Clearly, Cap
µ

F(s(x),x)(F(x, x)) = F(x, x) does not unify

with F(s(y), y). In contrast, Ren
µ

F(s(x),x)(Cap
µ

F(s(x),x)(F(x, x))) = F(x′, x) unifies with

F(s(y), y). Thus, without using Ren
µ

F(s(x),x) one would conclude that the dependency

graph has no cycle and wrongly prove (innermost) termination.
15 The adaptions can also be extended to refined definitions of usable rules [15, 17].

g ∈ F�µ(ℓ) ∪ F(r). We define two forms of usable rules:

U◮(P ,R, µ) =
⋃

s→t∈P,f∈Fµ(t),f◮R,µg Rls(g)

U3(P ,R, µ) =
⋃

s→t∈P,f∈F�µ(s)∪F(t),f3R,µg
Rls(g) ∪

⋃
ℓ→r∈R,f∈F�µ(r),f3R,µg

Rls(g)

Example 19. We continue Ex. 17. U◮(P1,R, µ) = ∅ for P1 = {(2)}, since there
is no defined symbol at an active position in the right-hand side GT(x, y) of (2).
For P2 = {(7)}, U◮(P2,R, µ) are the minus-, if-, and gt-rules, since minus occurs
at an active position in D(minus(x, y), s(y)) and minus depends on if and gt. For
P3 = {(5), (11)-(13), (15)-(17)}, U◮(P3,R, µ) are the gt- and p-rules, as gt and
p are the only defined symbols at active positions of right-hand sides in P3.

In contrast, all U3(Pi,R, µ) contain all rules except the div-rules, as minus

and p are root symbols of hidden terms and minus depends on if and gt.

As shown in [4, 20], the direct adaption of the usable rules to the context-
sensitive case (i.e., U◮(P ,R, µ)) can only be used for conservative CS-TRSs (if
e = i) resp. for strongly conservative CS-TRSs (if e = t).16 Let Vµ(t) (resp.
V�µ(t)) be all variables occurring at active (resp. inactive) positions of a term t.

Definition 20 (Conservative and Strongly Conservative). A CS-TRS
(R, µ) is conservative iff Vµ(r) ⊆ Vµ(ℓ) for all rules ℓ → r ∈ R. It is strongly
conservative iff it is conservative and moreover, Vµ(ℓ)∩V�µ(ℓ) = ∅ and Vµ(r) ∩
V�µ(r) = ∅ for all rules ℓ → r ∈ R.

Now we can define the reduction pair processor.

Theorem 21 (CS-Reduction Pair Processor). Let (%,≻) be a µ-reduction
pair. For a CS-DP Problem d = (P ,R, µ, e), the result of Proc(d) is

• {(P \ ≻,R, µ, e)}, if P ⊆ (≻ ∪ %) and at least one of the following holds:

(i) U◮(P ,R, µ) ⊆ %, P ∪ U◮(P ,R, µ) is strongly conservative, % is Cε-compatible

(ii) U◮(P ,R, µ) ⊆ %, P ∪ U◮(P ,R, µ) is conservative, e = i

(iii) U3(P ,R, µ) ⊆ %, % is Cε-compatible

(iv) R ⊆ %

• {d}, otherwise.

Then Proc is sound.

Example 22. As U◮(P1,R, µ) = ∅ and P1 = {(2)} is even strongly conservative,
by Thm. 21 (i) or (ii) we only have to orient (2), which already works with the
embedding order. So (P1,R, µ, i) is transformed to the empty set of DP problems.

16 The corresponding counterexamples in [4, 20] show that these restrictions are still
necessary for our new notion of CS-DPs. In cases where one cannot use U◮ , one can
also attempt a termination proof where one drops the replacement map, i.e., where
one regards the ordinary TRS R instead of the CS-TRS (R, µ). This may be helpful,
since U3 is not necessarily a subset of the non-context-sensitive usable rules, as a
function symbol f also 3-depends on symbols from left-hand sides of f -rules.

For P2 = {(7)}, U◮(P2,R, µ) contains the if-rules which are not conservative.
Hence, we use Thm. 21 (iii) with a reduction pair based on the following max-
polynomial interpretation [10]: [D(x, y)] = [minus(x, y)] = [p(x)] = x, [s(x)] =
x+1, [if(x, y, z)] = max(y, z), [0] = [gt(x, y)] = [true] = [false] = 0. Then the DP
(7) is strictly decreasing and all rules from U3(P2,R, µ) are weakly decreasing.
Thus, the processor also transforms (P2,R, µ, i) to the empty set of DP problems.

Finally, we regard P3 = {(5), (11)-(13), (15)-(17)} where we use Thm. 21
(iii) with the interpretation [M(x, y)] = [minus(x, y)] = x + y + 1, [IF(x, y, z)] =
[if(x, y, z)] = max(y, z), [U(x)] = [p(x)] = [s(x)] = x, [0] = [gt(x, y)] = [true] =
[false] = 0. Then the DPs (16) and (17) are strictly decreasing, whereas all other
DPs from P3 and all rules from U3(P3,R, µ) are weakly decreasing. So the
processor results in the DP problem ({(5), (11)-(13), (15)},R, µ, i).

Next we apply [M(x, y)] = [minus(x, y)] = x + 1, [IF(x, y, z)] = max(y, z + 1),
[if(x, y, z)] = max(y, z), [U(x)] = [p(x)] = [s(x)] = x, [0] = [gt(x, y)] = [true] =
[false] = 0. Now (12) is strictly decreasing and all other remaining DPs and usable
rules are weakly decreasing. Removing (12) yields ({(5), (11), (13), (15)},R, µ, i).

Thm. 21 (iii) and (iv) are a significant improvement over previous reduction
pair processors [1, 2, 4, 20] for the CS-DPs from Def. 2. The reason is that all
previous CS-reduction pair processors require that the context-sensitive subterm
relation is contained in % (i.e., �µ ⊆ %) whenever there are collapsing DPs. This
is a very hard requirement which destroys one of the main advantages of the DP
method (i.e., the possibility to filter away arbitrary arguments).17 With our new
non-collapsing CS-DPs, this requirement is no longer needed.

Example 23. If one requires �µ⊆ %, then the reduction pair processor would fail
for Ex. 1, since then one cannot make the DP (7) strictly decreasing. The reason
is that due to 2 ∈ µ(minus), �µ⊆ % implies minus(x, y) % y. So one cannot “filter
away” the second argument of minus. But then a strict decrease of DP (7) to-
gether with µ-monotonicity of % implies D(s(x), s(s(x))) ≻ D(minus(x, s(x)),
s(s(x))) % D(s(x), s(s(x))), in contradiction to the well-foundedness of ≻.

4.3 Transforming Context-Sensitive Dependency Pairs

To increase the power of the DP method, there exist several processors to trans-
form a DP into new pairs (e.g., narrowing, rewriting, instantiating, or forward
instantiating DPs [17]). We now adapt the instantiation processor to the context-
sensitive setting. Similar adaptions can also be done for the other processors.18

17 Moreover, previous CS-reduction pair processors also require f(x1, . . . , xn) %

f ♯(x1, . . . , xn) for all f ∈ D or f(x1, . . . , xn) ≻ f ♯(x1, . . . , xn) for all f ∈ D. This
requirement also destroys an important feature of the DP method, i.e., that tuple
symbols f ♯ can be treated independently from the original corresponding symbols
f . This feature often simplifies the search for suitable reduction pairs considerably.

18 In the papers on CS-DPs up to now, the only existing adaption of such a processor
was the straightforward adaption of the narrowing processor in the case e = t, cf.
[2]. However, this processor would not help for the TRS of Ex. 1.

The idea of this processor is the following. For a DP s → t, we investigate
which DPs v → w can occur before s → t in chains. To this end, we use the same
estimation as for dependency graphs in Sect. 4.1, i.e., we check whether there is
an mgu θ of Ren

µ(Cap
µ(w)) and s if e = t and analogously for e = i.19 Then

we replace s → t by the new DPs sθ → tθ for all such mgu’s θ. This is sound
since in any chain . . . , v → w, s → t, . . . where an instantiation of w reduces to
an instantiation of s, one could use the new DP sθ → tθ instead.

Theorem 24 (CS-Instantiation Processor). Let P ′ = P ⊎ {s → t}. For
d = (P ′,R, µ, e), let the result of Proc(d) be (P ∪ P ,R, µ, e) where

– P = {sθ → tθ | θ = mgu(Ren
µ(Cap

µ(w)), s), v → w ∈ P ′}, if e = t

– P = {sθ → tθ | θ = mgu(Ren
µ
v (Cap

µ
v (w)), s), v → w ∈ P ′, sθ, vθ normal}, if e = i

Then Proc is sound.

Example 25. For the TRS of Ex. 1, we still had to solve the problem ({(5), (11),
(13), (15)},R, µ, i), cf. Ex. 22. DP (11) has the variable-renamed left-hand side
IF(true, x′, y′). So the only DP that can occur before (11) in chains is (5) with the
right-hand side IF(gt(y, 0), minus(p(x), p(y)), x). Recall Ren

µ(Cap
µ(IF(gt(y, 0),

minus(p(x), p(y)), x))) = IF(z′, minus(p(x), p(y)), x), cf. Sect. 4.1. So the mgu is
θ = [z′/true, x′/minus(p(x), p(y)), y′/x]. Hence, we can replace (11) by

IF(true, minus(p(x), p(y)), x) → U(minus(p(x), p(y))) (20)

Here the CS variant of the instantiation processor is advantageous over the non-
CS one which uses Cap instead of Cap

µ, where Cap replaces all subterms with
defined root (e.g., minus(p(x), p(y))) by fresh variables. So the non-CS processor
would not help here as it only generates a variable-renamed copy of (11).

When re-computing the dependency graph, there is no arc from (20) to (15)
as µ(U) = ∅. So the DP problem is decomposed into ({(15)},R, µ, i) (which is
easily solved by the reduction pair processor) and ({(5), (20), (13)},R, µ, i).

Now we apply the reduction pair processor again with the following rational
polynomial interpretation [11]: [M(x, y)] = 3

2x + 1
2y, [minus(x, y)] = 2x + 1

2y,
[IF(x, y, z)] = 1

2x + y + 1
2z, [if(x, y, z)] = 1

2x + y + z, [U(x)] = x, [p(x)] =
[gt(x, y)] = 1

2x, [s(x)] = 2x + 2, [true] = 1, [false] = [0] = 0. Then (20) is strictly
decreasing and can be removed, whereas all other remaining DPs and usable rules
are weakly decreasing. A last application of the dependency graph processor then
detects that there is no cycle anymore and thus, it returns the empty set of DP
problems. Hence, termination of the TRS from Ex. 1 is proved. As shown in our
experiments in Sect. 5, this proof can easily be performed automatically.

5 Experiments and Conclusion

We have developed a new notion of context-sensitive dependency pairs which
improves significantly over previous notions. There are two main advantages:

19 The counterexample of [4, Ex. 8] in Footnote 14 again illustrates why Ren
µ
v is also

needed in the innermost case (whereas this is unnecessary for non-CS rewriting).

(1) Easier adaption of termination techniques to CS rewriting
Now CS-DPs are very similar to DPs for ordinary rewriting and consequently,
the existing powerful termination techniques from the DP framework can
easily be adapted to context-sensitive rewriting. We have demonstrated this
with some of the most popular DP processors in Sect. 4. Our adaptions
subsume the existing earlier adaptions of the dependency graph [2], of the
usable rules [20], and of the modifications for innermost rewriting [4], which
were previously developed for the notion of CS-DPs from [1].

(2) More powerful termination analysis for CS rewriting
Due to the absence of collapsing CS-DPs, one does not have to impose extra
restrictions anymore when extending the DP processors to CS rewriting, cf.
Ex. 23. Hence, the power of termination proving is increased substantially.

To substantiate Claim (2), we performed extensive experiments. We imple-
mented our new non-collapsing CS-DPs and all DP processors from this paper
in the termination prover AProVE [16].20 In contrast, the prover mu-term [3]
uses the collapsing CS-DPs. Moreover, the processors for these CS-DPs are not
formulated within the DP framework and thus, they cannot be applied in the
same flexible and modular way. While mu-term was the most powerful tool for
termination analysis of context-sensitive rewriting up to now (as demonstrated
by the International Competition of Termination Tools 2007 [27]), due to our
new notion of CS-DPs, now AProVE is substantially more powerful. For instance,
AProVE easily proves termination of our leading example from Ex. 1, whereas
mu-term fails. Moreover, we tested the tools on all 90 context-sensitive TRSs
from the Termination Problem Data Base that was used in the competition. We
used a time limit of 120 seconds for each example. Then mu-term can prove
termination of 68 examples, whereas the new version of AProVE proves termi-
nation of 78 examples (including all 68 TRSs where mu-term is successful).21

Since 4 examples are known to be non-terminating, at most 8 more of the 90
examples could potentially be detected as terminating. So due to the results of
this paper, termination proving of context-sensitive rewriting has now become
very powerful. To experiment with our implementation and for details, we refer
to http://aprove.informatik.rwth-aachen.de/eval/CS-DPs/.

References

1. B. Alarcón, R. Gutiérrez, and S. Lucas. Context-sensitive dependency pairs. In
Proc. FSTTCS’06, LNCS 4337, pages 297-308, 2006.

2. B. Alarcón, R. Gutiérrez, and S. Lucas. Improving the context-sensitive depen-
dency graph. In Proc. PROLE’06, ENTCS 188, pages 91-103, 2007.

3. B. Alarcón, R. Gutiérrez, J. Iborra, S. Lucas. Proving termination of context-
sensitive rewriting with mu-term. Pr. PROLE’06, ENTCS 188, p. 105-115, 2007.

20 We also used the subterm criterion and forward instantiation processors, cf. Sect. 4.
21 If AProVE is restricted to use exactly the same processors as mu-term, then it still

succeeds on 74 examples. So its superiority is indeed mainly due to the new CS-DPs
which enable an easy adaption of the DP framework to the CS setting.

4. B. Alarcón and S. Lucas. Termination of innermost context-sensitive rewriting
using dependency pairs. In Proc. FroCoS’07, LNAI 4720, pages 73-87, 2007.

5. B. Alarcón, F. Emmes, C. Fuhs, J. Giesl, R. Gutiérrez, S. Lucas, P. Schneider-
Kamp, and R. Thiemann. Improving context-sensitive dependency pairs. Technical
Report AIB-2008-13, 2008. http://aib.informatik.rwth-aachen.de/.

6. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133-178, 2000.

7. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
8. C. Borralleras, S. Lucas, and A. Rubio. Recursive path orderings can be context-

sensitive. In Proc. CADE’02, LNAI 2392, pages 314-331, 2002.
9. N. Dershowitz. Termination by abstraction. ICLP’04, LNCS 3132, p. 1-18, 2004.

10. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
Maximal termination. In Proc. RTA’08, LNCS 5117, pages 110-125, 2008.

11. C. Fuhs, R. Navarro-Marset, C. Otto, J. Giesl, S. Lucas, and P. Schneider-Kamp.
Search techniques for rational polynomial orders. In Proc. AISC’08, LNAI 5144,
pages 109-124, 2008.

12. J. Giesl and A. Middeldorp. Innermost termination of context-sensitive rewriting.
In Proc. DLT’02, LNCS 2450, pages 231-244, 2003.

13. J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive
rewrite systems. Journal of Functional Programming, 14(4):379-427, 2004.

14. J. Giesl, R. Thiemann, P. Schneider-Kamp. The DP framework: combining tech-
niques for automated termination proofs. In LPAR’04, LNAI 3452, 301-331, 2005.

15. J. Giesl, R. Thiemann, P. Schneider-Kamp. Proving and disproving termination
of higher-order functions. In Proc. FroCoS’05, LNAI 3717, pages 216-231, 2005.

16. J. Giesl, P. Schneider-Kamp, R. Thiemann. AProVE 1.2: Automatic termination
proofs in the DP framework. In Proc. IJCAR’06, LNAI 4130, pages 281-286, 2006.

17. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automatic Reasoning, 37(3):155-203, 2006.

18. B. Gramlich. Generalized sufficient conditions for modular termination of rewrit-
ing. Appl. Algebra in Engineering, Comm. and Computing, 5:131-151, 1994.

19. B. Gramlich and S. Lucas. Simple termination of context-sensitive rewriting. In
Proc. RULE’02, ACM Press, pages 29-41, 2002.

20. R. Gutiérrez, S. Lucas, and X. Urbain. Usable rules for context-sensitive rewrite
systems. In Proc. RTA’08, LNCS 5117, pages 126-141, 2008.

21. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1,2):172-199, 2005.

22. N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: techniques and fea-
tures. Information and Computation, 205(4):474-511, 2007.

23. S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming, 1998(1):1-61, 1998.

24. S. Lucas. Context-sensitive rewriting strategies. Inf. Comp., 178(1):293-343, 2002.
25. S. Lucas. Polynomials for proving termination of context-sensitive rewriting. In

Proc. FOSSACS’04, LNCS 2987, pages 318-332, 2004.
26. S. Lucas. Proving termination of context-sensitive rewriting by transformation.

Information and Computation, 204(12):1782-1846, 2006.
27. C. Marché and H. Zantema. The termination competition. In Proc. RTA’07, LNCS

4533, pages 303-313, 2007.
28. X. Urbain. Modular & incremental automated termination proofs. Journal of

Automated Reasoning, 32(4):315-355, 2004.

