

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/202279

Gutiérrez Gil, R.; Lucas Alba, S. (2010). Proving Termination in the Context-Sensitive
Dependency Pair Framework. Lecture Notes in Computer Science. 6381:18-34.
https://doi.org/10.1007/978-3-642-16310-4_3

http://doi.org/10.1007/978-3-642-16310-4_3

Springer-Verlag

Proving Termination in the Context-Sensitive
Dependency Pair Framework?

Raúl Gutiérrez1 and Salvador Lucas1

ELP Group, DSIC, Universitat Politècnica de València
Camı́ de Vera s/n, 46022 València, Spain

Abstract. Termination of context-sensitive rewriting (CSR) is an in-
teresting problem with several applications in the fields of term rewrit-
ing and in the analysis of programming languages like CafeOBJ, Maude,
OBJ, etc. The dependency pair approach, one of the most powerful tech-
niques for proving termination of rewriting, has been adapted to be used
for proving termination of CSR. The corresponding notion of context-
sensitive dependency pair (CSDP) is different from the standard one in
that collapsing pairs (i.e., rules whose right-hand side is a variable) are
considered. Although the implementation and practical use of CSDPs
lead to a powerful framework for proving termination of CSR, handling
collapsing pairs is not easy and often leads to impose heavy requirements
over the base orderings which are used to achieve the proofs. A recent
proposal removes collapsing pairs by transforming them into sets of new
(standard) pairs. In this way, though, the role of collapsing pairs for
modeling context-sensitive computations gets lost. This leads to a less
intuitive and accurate description of the termination behavior of the sys-
tem. In this paper, we show how to get the best of the two approaches,
thus obtaining a powerful context-sensitive dependency pair framework
which satisfies all practical and theoretical expectations.

1 Introduction

In Context-Sensitive Rewriting (CSR, [1]), a replacement map µ satisfying µ(f) ⊆
{1, . . . , ar(f)} for every function symbol f of arity ar(f) in the signature F is
used to discriminate the argument positions on which the rewriting steps are
allowed. In this way, a terminating behavior of (context-sensitive) computations
with Term Rewriting Systems (TRSs) can be obtained. CSR has shown useful
to model evaluation strategies in programming languages. In particular, it is
an essential ingredient to analyze the termination behavior of programs in pro-
gramming languages (like CafeOBJ, Maude, OBJ, etc.) which implement recent
presentations of rewriting logic like the Generalized Rewrite Theories [2], see
[3–5].

? Partially supported by the EU (FEDER) and the Spanish MEC/MICINN, under
grant TIN 2007-68093-C02-02.

2 Raúl Gutiérrez and Salvador Lucas

Example 1. Consider the following TRS in [6]:

gt(0, y) → false p(0) → 0
gt(s(x), 0) → true p(s(x)) → x

gt(s(x), s(y)) → gt(x, y) minus(x, y) → if(gt(y, 0),minus(p(x), p(y)), x)
if(true, x, y) → x div(0, s(y)) → 0
if(false, x, y) → y div(s(x), s(y)) → s(div(minus(x, y), s(y)))

with µ(if) = {1} and µ(f) = {1, . . . , ar(f)} for all other symbols f. Note that, if
no replacement restriction is considered, then the following sequence is possible
and the system would be nonterminating:

minus(0, 0)→∗R if(gt(0, 0),minus(0, 0), 0)→∗R . . . ,minus(0, 0), . . .→∗R · · ·

In CSR, though, this sequence is not possible because reductions on the second
argument of the if-operator are disallowed due to µ(if) = {1}.

In [7], Arts and Giesl’s dependency pair approach [8], a powerful technique for
proving termination of rewriting, was adapted to CSR (see [9] for a more recent
presentation). Regarding proofs of termination of rewriting, the dependency pair
technique focuses on the following idea: since a TRS R is terminating if there is
no infinite rewrite sequence starting from any term, the rules that are really able
to produce such infinite sequences are those rules ` → r such that r contains
some defined symbol1 g. Intuitively, we can think of these rules as representing
possible (direct or indirect) recursive calls. Recursion paths associated to each
rule ` → r are represented as new rules u → v (called dependency pairs) where
u = f](`1, . . . , `k) if ` = f(`1, . . . , `k) and v = g](s1, . . . , sm) if s = g(s1, . . . , sm)
is a subterm of r and g is a defined symbol. The notation f] for a given symbol
f means that f is marked. In practice, we often capitalize f and use F instead
of f] in our examples. For this reason, the dependency pair technique starts by
considering a new TRS DP(R) which contains all these dependency pairs for
each `→ r ∈ R. The rules in R and DP(R) determine the so-called dependency
chains whose finiteness characterizes termination of R [8]. Furthermore, the
dependency pairs can be presented as a dependency graph, where the infinite
chains are captured by the cycles in the graph.

These intuitions are valid for CSR, but the subterms s of the right-hand
sides r of the rules ` → r which are considered to build the context-sensitive
dependency pairs `] → s] must be µ-replacing terms. In sharp contrast with the
dependency pair approach, though, we also need collapsing dependency pairs
u → x where u is obtained from the left-hand side ` of a rule ` → r in the
usual way, i.e., u = `] but x is a migrating variable which is µ-replacing in r but
which only occurs at non-µ-replacing positions in ` [7, 9]. Collapsing pairs are
essential in our approach. They express that infinite context-sensitive rewrite
sequences can involve not only the kind of recursion which is represented by the
usual dependency pairs but also a new kind of recursion which is hidden inside

1 A symbol g ∈ F is defined in R if there is a rule `→ r in R whose left-hand side `
is of the form g(`1, . . . , `k) for some k ≥ 0.

Proving Termination in the CSDP Framework 3

(8)
��

// (3) //

��

(7)

uu ��
(1)RR

(4)

--

��

##GGG

��

''

��
(5)

xx

||yyy

��

qq

��

��
(2) (10)WW

��

//

''

��

~~
(6)

(11)
��

>>

##GGG
..

''

77

(12)
��

^^

||yyy
nn

tt

gg

(13)
��

``

//

MM HH

44

(9)

``

ll

(8)
��

// (3) //

��

(7)

ww

(1)RR

(14)

77

��
(15)

MM

rr(2)

Fig. 1. Dependency graph for Example 1 following [6] (left) and [9] (right)

the non-µ-replacing parts of the terms involved in the infinite sequence until a
migrating variable within a rule `→ r shows them up.

In [6], a transformation that replaces the collapsing pairs by a new set of
pairs that simulate their behavior was introduced. This new set of pairs is used
to simplify the definition of context-sensitive dependency chain; but, on the other
hand, we loose the intuition of what collapsing pairs mean in a context-sensitive
rewriting chain. And understanding the new dependency graph is harder.

Example 2. (Continuing Example 1) If we follow the transformational defini-
tion in [6], we have the following dependency pairs (a new symbol U is intro-
duced):

GT(s(x), s(y))→GT(x, y) (1) M(x, y)→ IF(gt(y, 0),minus(p(x), p(y)), x) (7)
M(x, y)→GT(y, 0) (2) D(s(x), s(y))→D(minus(x, y), s(y)) (8)

D(s(x), s(y))→M(x, y) (3) U(minus(p(x), p(y)))→M(p(x), p(y)) (9)
IF(true, x, y)→U(x) (4) U(p(x))→U(x) (10)
IF(false, x, y)→U(y) (5) U(p(y))→U(y) (11)

U(p(x))→P(x) (6) U(minus(x, y))→U(x) (12)
U(minus(x, y))→U(y) (13)

and the dependency graph has the unreadable aspect shown in Figure 1 (left).
In contrast, if we consider the original definition of CSDPs and CSDG in [7, 9],
our set of dependency pairs is the following:

GT(s(x), s(y)) → GT(x, y) (1) M(x, y) → IF(gt(y, 0),minus(p(x), p(y)), x) (7)
M(x, y) → GT(y, 0) (2) D(s(x), s(y)) → D(minus(x, y), s(y)) (8)

D(s(x), s(y)) → M(x, y) (3) IF(true, x, y) → x (14)
IF(false, x, y) → y (15)

and the dependency graph is much more clear, see Figure 1 (right).

The work in [6] was motivated by the fact that mechanizing proofs of termination
of CSR according to the results in [7] can be difficult due to the presence of
collapsing dependency pairs. The problem is that [7] imposes hard restrictions
on the orderings which are used in proofs of termination of CSR when collapsing
dependency pairs are present. In this paper we address this problem in a different

4 Raúl Gutiérrez and Salvador Lucas

way. We keep collapsing CSDPs (and their descriptive power and simplicity)
while the practical problems for handling them are overcome.

After some preliminaries in Section 2, in Section 3 we introduce the notion
of hidden term and hiding context and discuss their role in infinite µ-rewrite
sequences. In Section 4 we introduce a new notion of CSDP chain which is well-
suited for mechanizing proofs of termination of CSR with CSDPs. In Section 5
we introduce our dependency pair framework for proving termination of CSR.
Furthermore, we show that with the new definition we can also use all the existing
processors from the two previous approaches and we can define new powerful
processors. Section 6 shows an specific example of the power of this framework.
Section 7 shows our experimental results. Section 8 discusses the differences
between our approach and the one in [6]. Section 9 concludes. Proofs can be
found in [10].

2 Preliminaries

We assume a basic knowledge about standard definitions and notations for term
rewriting as given in, e.g., [11]. Positions p, q, . . . are represented by chains of
positive natural numbers used to address subterms of t. Given positions p, q, we
denote its concatenation as p.q. If p is a position, and Q is a set of positions,
then p.Q = {p.q | q ∈ Q}. We denote the root or top position by Λ. The set
of positions of a term t is Pos(t). Positions of nonvariable symbols f ∈ F in
t ∈ T (F ,X) are denoted as PosF (t). The subterm at position p of t is denoted
as t|p and t[s]p is the term t with the subterm at position p replaced by s. We
write t D s if s = t|p for some p ∈ Pos(t) and t B s if t D s and t 6= s. The
symbol labeling the root of t is denoted as root(t). A substitution is a mapping
σ : X → T (F ,X) from a set of variables X into the set T (F ,X) of terms built
from the symbols in the signature F and the variables in X . A context is a
term C ∈ T (F ∪ {�},X) with a ‘hole’ � (a fresh constant symbol). A rewrite
rule is an ordered pair (`, r), written ` → r, with `, r ∈ T (F ,X), ` 6∈ X and
Var(r) ⊆ Var(`). The left-hand side (lhs) of the rule is ` and r is the right-hand
side (rhs). A TRS is a pair R = (F , R) where F is a signature and R is a set
of rewrite rules over terms in T (F ,X). Given R = (F , R), we consider F as the
disjoint union F = C] D of symbols c ∈ C, called constructors and symbols
f ∈ D, called defined symbols, where D = {root(`) | `→ r ∈ R} and C = F \ D.

In the following, we introduce some notions and notation about CSR [1]. A
mapping µ : F → ℘(N) is a replacement map if ∀f ∈ F , µ(f) ⊆ {1, . . . , ar(f)}.
Let MF be the set of all replacement maps (or MR for the replacement maps
of a TRS R = (F , R)). The set of µ-replacing positions Posµ(t) of t ∈ T (F ,X)
is: Posµ(t) = {Λ}, if t ∈ X and Posµ(t) = {Λ} ∪

⋃
i∈µ(root(t)) i.Pos

µ(t|i), if
t 6∈ X . The set of µ-replacing variables of t is Varµ(t) = {x ∈ Var(t) | ∃p ∈
Posµ(t), t|p = x} and Var�µ(t) = {x ∈ Var(t) | ∃p ∈ Pos(t) \ Posµ(t), t|p = x} is
the set of non-µ-replacing variables of t. Note that Varµ(t) and Var�µ(t) do not
need to be disjoint. The µ-replacing subterm relation Dµ is given by tDµs if there
is p ∈ Posµ(t) such that s = t|p. We write t Bµ s if t Dµ s and t 6= s. We write

Proving Termination in the CSDP Framework 5

tB
�µ
s to denote that s is a non-µ-replacing strict subterm of t, i.e., there is a non-

µ-replacing position p ∈ Pos(t) \ Posµ(t) such that s = t|p. In CSR, we (only)
contract µ-replacing redexes: t µ-rewrites to s, written t ↪→R,µ s (or t

p
↪→R,µ s to

make position p explicit), iff there are `→ r ∈ R, p ∈ Posµ(t) and a substitution

σ such that t|p = σ(`) and s = t[σ(r)]p; t
>q
↪→R,µ s means that the µ-rewrite step

is applied below position q, i.e., p > q. We say that a variable x is migrating
in ` → r ∈ R if x ∈ Varµ(r) \ Varµ(`). A term t is µ-terminating if there is
no infinite µ-rewrite sequence t = t1 ↪→R,µ t2 ↪→R,µ · · · ↪→R,µ tn ↪→R,µ · · ·
starting from t. A TRS R = (F , R) is µ-terminating if ↪→R,µ is terminating. A
pair (R, µ) where R is a TRS and µ ∈MR is often called a CS-TRS.

3 Infinite µ-Rewrite Sequences

LetM∞,µ be a set of minimal non-µ-terminating terms in the following sense: t
belongs toM∞,µ if t is non-µ-terminating and every strict µ-replacing subterm
s of t (i.e., t Bµ s) is µ-terminating [7]. Minimal terms allow us to character-
ize infinite µ-rewrite sequences [9]. In [9], we show that if we have migrating
variables x that “unhide” infinite computations starting from terms u which are
introduced by the binding σ(x) of the variable, then we can obtain information
about the “incoming” term u if this term does not occur in the initial term of the
sequence. In order to formalize this, we need a restricted notion of minimality.

Definition 1 (Strongly Minimal Terms [9]). Let T∞,µ be a set of strongly
minimal non-µ-terminating terms in the following sense: t belongs to T∞,µ if t
is non-µ-terminating and every strict subterm u (i.e., t B u) is µ-terminating.
It is obvious that root(t) ∈ D for all t ∈ T∞,µ.

Every non-µ-terminating term has a subterm that is strongly minimal. Then,
given a non-µ-terminating term t we can always find a subterm t0 ∈ T∞,µ of

t which starts a minimal infinite µ-rewrite sequence of the form t0
>Λ
↪−→∗R,µ

σ1(`1)
Λ
↪→R,µ σ1(r1) Dµ t1

>Λ
↪−→∗R,µ σ2(`2)

Λ
↪→R,µ σ2(r2) Dµ t2

>Λ
↪−→∗R,µ · · ·

where ti, σi(`i) ∈M∞,µ for all i > 0 [9]. Theorem 1 below tells us that we have
two possibilities:

– The minimal non-µ-terminating terms ti ∈ M∞,µ in the sequence are par-
tially introduced by a µ-replacing nonvariable subterm of the right-hand
sides ri of the rules `i → ri.

– The minimal non-µ-terminating terms ti ∈M∞,µ in the sequence are intro-
duced by instantiated migrating variables xi of (the respective) rules `i → ri,
i.e., xi ∈ Varµ(ri)\Varµ(`i). Then, ti is partially introduced by terms occur-
ring at non-µ-replacing positions in the right-hand sides of the rules (hidden
terms) within a given (hiding) context.

We use the following functions [7, 9]: Renµ(t), which independently renames all
occurrences of µ-replacing variables by using new fresh variables which are not

6 Raúl Gutiérrez and Salvador Lucas

in Var(t), and NarrµR(t), which indicates whether t is µ-narrowable2 (w.r.t. the
intended TRS R).

A nonvariable term t ∈ T (F ,X) \ X is a hidden term [6, 9] if there is a
rule ` → r ∈ R such that t is a non-µ-replacing subterm of r. In the following,
HT (R, µ) is the set of all hidden terms in (R, µ) and NHT (R, µ) the set of
µ-narrowable hidden terms headed by a defined symbol:

NHT (R, µ) = {t ∈ HT (R, µ) | root(t) ∈ D and NarrµR(Renµ(t))}

Definition 2 (Hiding Context). Let R be a TRS and µ ∈ MR. A function
symbol f hides position i in the rule `→ r ∈ R if rB

�µ
f(r1, . . . , rn) for some terms

r1, . . . , rn, and there is i ∈ µ(f) such that ri contains a µ-replacing defined symbol
(i.e., PosµD(ri) 6= ∅) or a variable x ∈ (Var�µ(`)∩Var�µ(r))\(Varµ(`)∪Varµ(r))
which is µ-replacing in ri (i.e., x ∈ Varµ(ri)). A context C[�] is hiding [6] if
C[�] = �, or C[�] = f(t1, . . . , ti−1, C

′[�], ti+1, . . . , tk), where f hides position i
and C ′[�] is a hiding context.

Definition 2 is a refinement of [6, Definition 7], where the new condition x ∈
(Var�µ(`) ∩ Var�µ(r)) \ (Varµ(`) ∪ Varµ(r)) is useful to discard contexts that are
not valid when minimality is considered.

Example 3. The hidden terms in Example 1 are minus(p(x), p(y)), p(x) and p(y).
Symbol minus hides positions 1 and 2, but p hides no position. Without the new
condition in Definition 2, p would hide position 1.

These notions are used and combined to model infinite context-sensitive rewrite
sequences starting from strongly minimal non-µ-terminating terms as follows.

Theorem 1 (Minimal Sequence). Let R be a TRS and µ ∈ MR. For all
t ∈ T∞,µ, there is an infinite sequence

t = t0
>Λ
↪−→∗R,µ σ1(`1)

Λ
↪→R,µ σ1(r1) Dµ t1

>Λ
↪−→∗R,µ σ2(`2)

Λ
↪→R,µ · · ·

where, for all i ≥ 1, `i → ri ∈ R are rewrite rules, σi are substitutions, and
terms ti ∈M∞,µ are minimal non-µ-terminating terms such that either

1. ti = σi(si) for some nonvariable term si such that ri Dµ si, or
2. σi(xi) = θi(Ci[t′i]) and ti = θi(t′i) for some variable xi ∈ Varµ(ri)\Varµ(`i),

t′i ∈ NHT (R, µ), hiding context Ci[�], and substitution θi.

4 Chains of Context-Sensitive Dependency Pairs

In this section, we revise the definition of chain of context-sensitive dependency
pairs given in [9]. First, we recall the notion of context-sensitive dependency
pair.
2 A term s µ-narrows to the term t if there is a nonvariable position p ∈ PosµF (s) and

a rule `→ r such that s|p and ` unify with mgu σ, and t = σ(s[r]p).

Proving Termination in the CSDP Framework 7

Definition 3 (Context-Sensitive Dependency Pairs [9]). Let R = (F , R)
= (C] D, R) be a TRS and µ ∈ MF . We define DP(R, µ) = DPF (R, µ) ∪
DPX (R, µ) to be set of context-sensitive dependency pairs (CSDPs) where:

DPF (R, µ) = {`] → s] | `→ r ∈ R, r Dµ s, root(s) ∈ D, ` 7µ s,NarrµR(Renµ(s))}
DPX (R, µ) = {`] → x | `→ r ∈ R, x ∈ Varµ(r) \ Varµ(`)}

We extend µ ∈MF into µ] ∈MF∪D] by µ](f) = µ(f) if f ∈ F and µ](f]) = µ(f)
if f ∈ D.

Now, we provide a new notion of chain of CSDPs. In contrast to [6], we store
the information about hidden terms and hiding contexts which is relevant to
model infinite minimal µ-rewrite sequences as a new unhiding TRS instead of
introducing them as new (transformed) pairs.

Definition 4 (Unhiding TRS). Let R be a TRS and µ ∈ MR. We define
unh(R, µ) as the TRS consisting of the following rules:

1. f(x1, . . . , xi, . . . , xk)→ xi for all function symbols f of arity k, distinct vari-
ables x1, . . . , xk, and 1 ≤ i ≤ k such that f hides position i in ` → r ∈ R,
and

2. t→ t] for every t ∈ NHT (R, µ).

Example 4. The unhiding TRS unh(R, µ) for R and µ in Example 1 is:

minus(p(x), p(y))→M(p(x), p(y)) (16) minus(x, y)→ y (18)
p(x)→P(x) (17) minus(x, y)→x (19)

Definitions 3 and 4 lead to a suitable notion of chain which captures minimal
infinite µ-rewrite sequences according to the description in Theorem 1. In the
following, given a TRS S, we let SBµ be the rules from S of the form s→ t ∈ S
and sBµ t; and S] = S \ SBµ .

Definition 5 (Chain of Pairs - Minimal Chain). Let R, P and S be TRSs
and µ ∈ MR∪P∪S . A (P,R,S, µ)-chain is a finite or infinite sequence of pairs
ui → vi ∈ P, together with a substitution σ satisfying that, for all i ≥ 1,

1. if vi /∈ Var(ui) \ Varµ(ui), then σ(vi) = ti ↪→∗R,µ σ(ui+1), and

2. if vi ∈ Var(ui) \ Varµ(ui), then σ(vi)
Λ
↪−→∗SBµ ,µ

◦ Λ
↪→S],µ ti ↪→∗R,µ σ(ui+1).

A (P,R,S, µ)-chain is called minimal if for all i ≥ 1, ti is (R, µ)-terminating.

Notice that if rules f(x1, . . . , xk)→ xi for all f ∈ D and i ∈ µ(f) (where x1, . . . , xk
are variables) are used in Item 1 of Definition 4, then Definition 5 yields the
notion of chain in [9]; and if, additionally, rules f(x1, . . . , xk) → f](x1, . . . , xk)
for all f ∈ D are used in Item 2 of Definition 4, then we have the original notion
of chain in [7]. Thus, the new definition covers all previous ones.

Theorem 2 (Soundness and Completeness of CSDPs). Let R be a TRS
and µ ∈MR. A CS-TRS (R, µ) is terminating if and only if there is no infinite
(DP(R, µ),R, unh(R, µ), µ])-chain.

8 Raúl Gutiérrez and Salvador Lucas

5 Context-Sensitive Dependency Pair Framework

In the DP framework [12], proofs of termination are handled as termination
problems involving two TRSs P and R instead of just the ‘target’ TRS R. In
our setting we start with the following definition (see also [6, 9]).

Definition 6 (CS Problem and CS Processor). A CS problem τ is a tuple
τ = (P,R,S, µ), where R, P and S are TRSs, and µ ∈ MR∪P∪S . The CS
problem (P,R,S, µ) is finite if there is no infinite (P,R,S, µ)-chain. The CS
problem (P,R,S, µ) is infinite if R is non-µ-terminating or there is an infinite
minimal (P,R,S, µ)-chain.

A CS processor Proc is a mapping from CS problems into sets of CS problems.
Alternatively, it can also return “ no”. A CS processor Proc is sound if for all
CS problems τ , τ is finite whenever Proc(τ) 6= no and ∀τ ′ ∈ Proc(τ), τ ′ is finite.
A CS processor Proc is complete if for all CS problems τ , τ is infinite whenever
Proc(τ) = no or ∃τ ′ ∈ Proc(τ) such that τ ′ is infinite.

In order to prove the µ-termination of a TRS R, we adapt the result from [12]
to CSR.

Theorem 3 (CSDP Framework). Let R be a TRS and µ ∈ MR. We con-
struct a tree whose nodes are labeled with CS problems or “yes” or “no”, and
whose root is labeled with (DP(R, µ),R, unh(R, µ), µ]). For every inner node
labeled with τ , there is a sound processor Proc satisfying one of the following
conditions:

1. Proc(τ) = no and the node has just one child, labeled with “no”.
2. Proc(τ) = ∅ and the node has just one child, labeled with “yes”.
3. Proc(τ) 6= no, Proc(τ) 6= ∅, and the children of the node are labeled with the

CS problems in Proc(τ).

If all leaves of the tree are labeled with “yes”, then R is µ-terminating. Otherwise,
if there is a leaf labeled with “no” and if all processors used on the path from the
root to this leaf are complete, then R is non-µ-terminating.

In the following subsections we describe a number of sound and complete CS
processors.

5.1 Collapsing Pair Processors

The following processor integrates the transformation of [6] into our framework.
The pairs in a CS-TRS (P, µ), where P = (G, P), are partitioned as follows:
PX = {u→ v ∈ P | v ∈ Var(u) \ Varµ(u)} and PG = P \ PX .

Theorem 4 (Collapsing Pair Transformation). Let τ = (P,R,S, µ) be a
CS problem where P = (G, P) and PU be given by the following rules:

• u→ U(x) for every u→ x ∈ PX ,
• U(s)→ U(t) for every s→ t ∈ SBµ , and

Proving Termination in the CSDP Framework 9

• U(s)→ t for every s→ t ∈ S].

Here, U is a new fresh symbol. Let P ′ = (G ∪{U}, P ′) where P ′ = (P \PX)∪PU,
and µ′ extends µ by µ′(U) = ∅. The processor ProceColl given by ProceColl(τ) =
{(P ′,R,∅, µ′)} is sound and complete.

Now, we can apply all CS processors from [6] and [9] which did not consider any
S component in CS problems.

In our framework, we can also apply specific processors for collapsing pairs
that are very useful, but these only are used if we have collapsing pairs in the
chains (as in [9]). For instance, we can use the processor in Theorem 5 below,
which is often applied in proofs of termination of CSR with mu-term [13, 14].
The subTRS of PX containing the rules whose migrating variables occur on non-
µ-replacing immediate subterms in the left-hand side is P1

X = {f(u1, . . . , uk)→
x ∈ PX | ∃i, 1 ≤ i ≤ k, i 6∈ µ(f), x ∈ Var(ui)}.

Theorem 5 (Basic CS Processor for Collapsing Pairs). Let τ = (P,R,S, µ)
be a CS problem where R = (C]D, R) and S = (H, S). Assume that (1) all the
rules in S] are noncollapsing, i.e., for all s → t ∈ S], t /∈ X (2) {root(t) | s →
t ∈ S]} ∩ D = ∅ and (3) for all s → t ∈ S], we have that s = f(s1, . . . , sk) and
t = g(s1, . . . , sk) for some k ∈ N, funtion symbols f, g ∈ H, and terms s1, . . . , sk.
Then, the processors ProcColl1 given by

ProcColl1 (τ) =


∅ if P = P1

X and
{(P,R,S, µ)} otherwise

is sound and complete.

Example 5. (Continuing Example 1) Consider the CS problem τ = (P4,R,S3, µ
])

where P4 = {(14), (15)} and S3 = {(16), (18), (19)}. We can apply ProcColl1 (τ)
to conclude that the CS problem τ is finite.

5.2 Context-Sensitive Dependency Graph

In the DP-approach [8, 12], a dependency graph is associated to the TRS R. The
nodes of the graph are the dependency pairs in DP(R) and there is an arc from
a dependency pair u→ v to a dependency pair u′ → v′ if there are substitutions
θ and θ′ such that θ(v)→∗R θ′(u′). In our setting, we have the following.

Definition 7 (Context-Sensitive Graph of Pairs). Let R, P and S be TRSs
and µ ∈MR∪P∪S . The context-sensitive (CS) graph G(P,R,S, µ) has P as the
set of nodes. Given u → v, u′ → v′ ∈ P, there is an arc from u → v to u′ → v′

if u→ v, u′ → v′ is a minimal (P,R,S, µ)-chain for some substitution σ.

In termination proofs, we are concerned with the so-called strongly connected
components (SCCs) of the dependency graph, rather than with the cycles them-
selves (which are exponentially many) [15]. The following result formalizes the
use of SCCs for dealing with CS problems.

10 Raúl Gutiérrez and Salvador Lucas

Theorem 6 (SCC Processor). Let τ = (P,R,S, µ) be a CS problem. Then,
the processor ProcSCC given by

ProcSCC (P,R,S, µ) = {(Q,R,SQ, µ) | Q are the pairs of an SCC in G(P,R,S, µ)}

(where SQ are the rules from S involving a possible (Q,R,S, µ)-chain) is sound
and complete.

The CS graph is not computable. Thus, we have to use an over-approximation
of it. In the following definition, we use the function TCapµR(t), which renames
all subterms headed by a ‘defined’ symbol in R by new fresh variables if it can
be rewritten:

Definition 8 (TCapµR [9]). Given a TRS R and a replacement map µ, we let
TCapµR be as follows:

TCapµR(x) = y if x is a variable, and

TCapµR(f(t1, . . . , tk)) =

8<: f([t1]f1, . . . , [tk]fk) if f([t1]f1, . . . , [tk]fk) does not unify
with ` for any `→ r in R

y otherwise

where y is a new fresh variable, [s]fi = TCapµR(s) if i ∈ µ(f) and [s]fi = s if
i 6∈ µ(f). We assume that ` shares no variable with f([t1]f1, . . . , [tk]fk) when the
unification is attempted.

Definition 9 (Estimated CS Graph of Pairs). Let τ = (P,R,S, µ) be
a CS problem. The estimated CS graph associated to R, P and S (denoted
EG(P,R,S, µ)) has P as the set of nodes and arcs which connect them as fol-
lows:

1. there is an arc from u→ v ∈ PG to u′ → v′ ∈ P if TCapµR(v) and u′ unify,
and

2. there is an arc from u→ v ∈ PX to u′ → v′ ∈ P if there is s→ t ∈ S] such
that TCapµR(t) and u′ unify.

We have the following.

Theorem 7 (Approximation of the CS Graph). Let R, P and S be TRSs
and µ ∈ MR∪P∪S . The estimated CS graph EG(P,R,S, µ) contains the CS
graph G(P,R,S, µ).

We also provide a computable definition of the SCC processor in Theorem 8.

Theorem 8 (SCC Processor using TCapµR). Let τ = (P,R,S, µ) be a CS
problem. The CS processor ProcSCC given by

ProcSCC (τ) = {(Q,R,SQ, µ) | Q contains the pairs of an SCC in EG(P,R,S, µ)}

where

– SQ = ∅ if QX = ∅.

Proving Termination in the CSDP Framework 11

– SQ = SBµ ∪{s→ t | s→ t ∈ S],TCapµR(t) and u′ unify for some u′ → v′ ∈
Q} if QX 6= ∅.

is sound and complete.

Example 6. In Figure 1 (right) we show EG(DP(R, µ),R, unh(R, µ), µ]) for R
in Example 1. The graph has three SCCs P1 = {(1)}, P2 = {(8)}, and P3 =
{(7), (14), (15)}. If we apply the CS processor ProcSCC to the initial CS problem
(DP(R, µ),R, unh(R, µ), µ]) for (R, µ) in Example 1, then we obtain the prob-
lems: (P1,R,∅, µ]), (P2,R,∅, µ]), (P3,R,S3, µ

]), where S3 = {(16), (18), (19)}.

5.3 Reduction Triple Processor

A µ-reduction pair (&,A) consists of a stable and µ-monotonic3 quasi-ordering
&, and a well-founded stable relation A on terms in T (F ,X) which are compat-
ible, i.e., & ◦ A⊆A or A ◦ &⊆A [7].

In [7, 9], when a collapsing pair u→ x occurs in a chain, we have to look in-
side the instantiated right-hand side σ(x) for a µ-replacing subterm that, after
marking it, does µ-rewrite to the (instantiated) left-hand side of another pair.
For this reason, the quasi-orderings & of reduction pairs (&,A) which are used
in [7, 9] are required to have the µ-subterm property, i.e. Dµ⊆&. This is equiv-
alent to impose f(x1, . . . , xk) & xi for all projection rules f(x1, . . . , xk) → xi
with f ∈ F and i ∈ µ(f). This is similar for markings: in [7] we have to en-
sure that f(x1, . . . , xk) & f](x1, . . . , xk) for all defined symbols f in the signa-
ture. In [9], thanks to the notion of hidden term, we relaxed the last condi-
tion: we require t & t] for all (narrowable) hidden terms t. In [6], thanks to
the notion of hiding context, we only require that & is compatible with the
projections f(x1, . . . , xk) → xi for those symbols f and positions i such that f
hides position i. However, this information is implicitly encoded as (new) pairs
U(f(x1, . . . , xk))→ U(xi) in the set P. The strict component A of the reduction
pair (&,A) is used with these new pairs now.

In this paper, since the rules in S are not considered as ordinary pairs (in the
sense of [6, 9]) we can relax the conditions imposed to the orderings dealing with
these rules. Furthermore, since rules in S are applied only once to the root of
the terms, we only have to impose stability to the relation which is compatible
with these rules (no transitivity, reflexivity, well-foundedness or µ-monotonicity
is required).

Therefore, we can use µ-reduction triples (&,A,�) now, where (&,A) is a
µ-reduction pair and � is a stable relation on terms which is compatible with &
or A, i.e., � ◦ &⊆& or A ◦ � ⊆A.

Theorem 9 (µ-Reduction Triple Processor). Let τ = (P,R,S, µ) be a CS
problem. Let (&,A,�) be a µ-reduction triple such that

3 A binary relation R on terms is µ-monotonic if for all terms
s, t, t1, . . . , tk, and k-ary symbols f, whenever s R t and i ∈ µ(f) we have
f(t1, . . . , ti−1, s, . . . , tk) R f(t1, . . . , ti−1, t, . . . , tk).

12 Raúl Gutiérrez and Salvador Lucas

1. P ⊆& ∪ A, R ⊆ &, and
2. whenever PX 6= ∅ we have that S ⊆& ∪ A ∪ �.

Let PA = {u → v ∈ P | u A v} and SA = {s → t ∈ S | s A t}. Then, the
processor ProcRT given by

ProcRT (τ) =
{
{(P \ PA,R,S \ SA, µ)} if (1) and (2) hold
{(P,R,S, µ)} otherwise

is sound and complete.

Since rules from S are only applied after using a collapsing pair, we only need to
make them compatible with some component of the triple if P contains collapsing
pairs, i.e., if PX 6= ∅. Another advantage is that we can now remove rules from
S. Furthermore, we can increase the power of this definition by considering the
usable rules corresponding to P, instead of R as a whole (see [6, 16]), and also
by using argument filterings [9].

Example 7. (Continuing Example 6) Consider the CS problem τ = (P3,R,S3, µ
])

where P3 = {(7), (14), (15)}, S3 = {(16), (18), (19)} and R is the TRS in Exam-
ple 1. If we apply ProcRT to the CS problem τ by using the µ-reduction triple
(≥, >,≥) where ≥ and > are the orderings induced by the following polynomial
interpretation (see [17] for missing notation and definitions):

[if](x, y, z) = (1/2× x) + y + z [minus](x, y) = (2× x) + (2× y) + 1/2
[p](x) = (1/2× x) [0] = 0
[false] = 0 [s](x) = (2× x) + 2
[true] = 2 [gt](x, y) = (2× x) + (1/2× y)
[M](x, y) = (2× x) + (2× y) + 1/2 [IF](x, y, z) = (1/2× x) + y + z

then, we have [`] ≥ [r] for all (usable) rules in R and, for the rules in P3 and S3,
we have

[M(x, y)] ≥ [IF(gt(y, 0),minus(p(x), p(y)), x)] [minus(p(x), p(y))] ≥ [M(p(x), p(y))]
[IF(true, x, y)] > [x] [minus(x, y)] > [y]
[IF(false, x, y)] ≥ [y] [minus(x, y)] > [x]

Then, we get ProcRT (τ) = {({(7), (15)},R, {(16)}, µ])}.

5.4 Subterm Processor

The subterm criterion was adapted to CSR in [7], but its use was restricted to
noncollapsing pairs [7, Theorem 5]. In [9], a new version for collapsing pairs
was defined, but in this version you can only remove all collapsing pairs and
the projection π is restricted to µ-replacing positions. Our new version is fully
general and able to remove collapsing and noncollapsing pairs at the same time.
Furthermore, we are also able to remove rules in S. Before introducing it, we
need the following definition.

Definition 10 (Root Symbols of a TRS [9]). Let R = (F , R) be a TRS.
The set of root symbols associated to R is:

Root(R) = {root(`) | `→ r ∈ R} ∪ {root(r) | `→ r ∈ R, r 6∈ X}

Proving Termination in the CSDP Framework 13

Definition 11 (Simple Projection). Let R be a TRS. A simple projection for
R is a mapping π that assigns to every k-ary symbol f ∈ Root(R) an argument
position i ∈ {1, . . . , k}. This mapping is extended to terms by

π(t) =
{
t|π(f) if t = f(t1, . . . , tk) and f ∈ Root(R)
t otherwise

Theorem 10 (Subterm Processor). Let τ = (P,R,S, µ) be a CS problem
where R = (F , R) = (C] D, R), P = (G, P) and S = (H, S). Assume that
(1) Root(P) ∩ D = ∅, (2) the rules in PG ∪ S] are noncollapsing, (3) for all
si → ti ∈ SBµ , root(si), root(ti) /∈ Root(P) and (4) for all si → ti ∈ S],
root(si) /∈ Root(P) and root(ti) ∈ Root(P). Let π be a simple projection for P.
Let Pπ,Bµ = {u→ v ∈ P | π(u)Bµπ(v)} and Sπ,Bµ = {s→ t ∈ S | π(s)Bµπ(t)}.
Then, Procsubterm given by

Procsubterm(τ) =


{(P \ Pπ,Bµ ,R,S \ Sπ,Bµ , µ)} if π(P) ⊆ Dµ

and whenever PX 6= ∅,
then π(S) ⊆ Dµ

{(P,R,S, µ)} otherwise

is sound and complete.

Notice that the conditions in Theorem 10 are not harmful in practice because
the CS problems which are obtained from CS-TRSs normally satisfy those con-
ditions.

Example 8. (Continuing Example 7) We have the CS problem (P5,R,S5, µ
])

where P5 = {(7), (15)} and S5 = {(16)}. We can apply the subterm processor
Procsubterm by using the projection π(IF) = 3 and π(M) = 1:

π(M(x, y)) = x Dµ x = π(IF(gt(y, 0),minus(p(x), p(y)), x))
π(IF(false, x, y)) = y Dµ y = π(y)

π(minus(p(x), p(y))) = minus(p(x), p(y)) Bµ p(x) = π(M(p(x), p(y)))

We obtain the CS problem τ ′ = ({(7), (15)},R,∅, µ) for which we can use
ProcSCC to conclude that there is no cycle, i.e., ProcSCC (τ ′) = ∅.

6 Using the CSDP Framework in Maude

Proving termination of programs in sophisticated equational languages like OBJ,
CafeOBJ or Maude is difficult because these programs combine different features
that are not supported by state-of-the-art termination tools. For instance, the
following Maude program combines the use of an evaluation strategy and types
given as sorts in the specification [3].

fmod LengthOfFiniteLists is

sorts Nat NatList NatIList .

subsort NatList < NatIList .

op 0 : -> Nat .

14 Raúl Gutiérrez and Salvador Lucas

op s : Nat -> Nat .

op zeros : -> NatIList .

op nil : -> NatList .

op cons : Nat NatIList -> NatIList [strat (1 0)] .

op cons : Nat NatList -> NatList [strat (1 0)] .

op length : NatList -> Nat .

vars M N : Nat .

var IL : NatIList .

var L : NatList .

eq zeros = cons(0,zeros) .

eq length(nil) = 0 .

eq length(cons(N, L)) = s(length(L)) .

endfm

Nowadays, mu-term [14, 13] can separately prove termination of order-sorted
rewriting [18] and CSR, but it is not able to handle programs which combine
both of them. Then, we use the transformation developed in [3] to transform
this system into a CS-TRS (without sorts). Such a CS-TRS can be found in the
Termination Problems Data Base4 (TPDB): TRS/CSR Maude/LengthOfFinite-
Lists complete.trs. As far as we know, mu-term is the only tool that can
prove termination of this system thanks to the CSDP framework presented in
this paper5.

7 Experimental Evaluation

From Friday to Saturday, December 18-19, 2009, the 2009 International Termi-
nation Competition took place and a CSR termination category was included.
In the termination competition, the benchmarks are executed in a completely
automatic way with a timeout of 60 seconds over a subset of 37 systems6 of the
complete collection of the 109 CS-TRSs of the TPDB 7.0.

The results in this paper have been implemented as part of the termina-
tion tool mu-term. Our tool mu-term participated in the aforementioned CSR
category of the 2009 Termination Competition. The results of the competition
are summarized in Table 1. Tools AProVE [19] and VMTL [20] implement the
context-sensitive dependency pairs using the transformational approach in [6].
The techniques implemented by Jambox [21] to prove termination of CSR are
not documented yet, to our knowledge. As showed in Table 1, we are able to
prove the same number of systems than AProVE, but mu-term is almost two
4 http://www.lri.fr/~marche/tpdb/
5 On May 12, 2010, we introduced this system in the online version of AProVE http:

//aprove.informatik.rwth-aachen.de/, and a timeout occurred after 120 seconds
(maximum timeout). mu-term proof can be found in http://zenon.dsic.upv.es/

muterm/benchmarks/benchmarks-csr/benchmarks.html
6 See http://termcomp.uibk.ac.at/termcomp/competition/competitionResults.

seam?category=10230\&competitionId=101722\&actionMethod=

competition\%2FcategoryList.xhtml\%3AcompetitionCategories.forward\

&conversationPropagation=begin

Proving Termination in the CSDP Framework 15

Table 1. 2009 Termination Competition Results (Context-Sensitive Rewriting)

Tool Version Proved Average time

AProVE 34/37 3.084s

Jambox 28/37 2.292s

mu-term 34/37 1.277s

VMTL 29/37 6.708s

and a half times faster. Furthermore, we prove termination of 95 of the 109 ex-
amples. To our knowledge, there is no tool that can prove more than those 95
examples from this collection of problems. And, as remarked in Section 6, there
are interesting examples which can be handled by mu-term only.

We have also executed the complete collection of systems of the CSR cate-
gory7, where we compare the 2009 and 2007 competition versions of mu-term. In
the 2007 version, the CSDP framework was not available. Now, we can prove 15
more examples and, when comparing the execution times which they took over
the 80 examples where both tools succeeded (84, 48 seconds vs. 15, 073 seconds),
we are more than 5, 5 times faster now.

8 Related Work

In [6], a transformation of collapsing pairs into ‘ordinary’ (i.e., noncollapsing)
pairs is introduced by using the new notion of hiding context [6, Definition 7]. We
easily and naturally included such a transformation as a new processor ProceColl

in our framework (see Theorem 4). The claimed advantage of [6] is that the notion
of chain is simplified to Item 1 in Definition 5. But, although the definition of
chain in [6] is apparently closer to the standard one [12, Definition 3], this does
not mean that we can use or easily ‘translate’ existing DP-processors (see [12])
to be used with CSR. Besides the narrowing processor in [9, Theorem 16], the
reduction pair processor with usable rules in [6, Theorem 21] is a clear example,
because the avoidance of collapsing pairs does not improve the previous results
about usable rules for CSR investigated in [16].

As we have seen in this paper, collapsing pairs are an essential part of the
theoretical description of termination of CSR. Actually, the transformational ap-
proach in [6] explicitly uses them for introducing the new unhiding pairs in [6,
Definition 9]. This shows that the most basic notion when modeling the termi-
nation behavior of CSR is that of collapsing pair and that unhiding pairs should
be better considered as an ingredient for handling collapsing pairs in proofs of
termination (as implemented by processor ProceColl above). Furthermore, the
application of such a transformation in the very beginning of the termination
analysis of CS-TRSs (as done in [6]) typically leads to obtain a more complex de-
pendency graph (see in Figure 1 (left)) which, as witnessed by our experimental

7 A complete report of our experiments can be found in http://zenon.dsic.upv.es/

muterm/benchmarks/

16 Raúl Gutiérrez and Salvador Lucas

analysis in Section 7, can be more difficult to analyze when proving termination
in practice.

Our approach clarifies the role of collapsing pairs to model the termination
behavior of CSR. Furthermore, the new notions introduced in this paper lead
to a more ‘robust’ framework. For instance, in order to integrate in [6] the
new improvement in the notion of hiding context (see Definition 2), one has to
redefine the notion of context-sensitive dependency pair in [6]. In our approach,
the context-sensitive dependency pairs are always the same.

9 Conclusions

When proofs of termination of CSR are mechanized following the context-sensi-
tive dependency pair approach [7], handling collapsing pairs is difficult. In [6]
this problem is solved by a transformation which disregards collapsing pairs (so
we loose their descriptive power), adds a new fresh symbol U which has nothing
to do with the original CS-TRS, and makes the dependency graph harder to
understand.

We have shown a different way to mechanize the context-sensitive dependency
pair approach. The idea is adding a new TRS, the unhiding TRS, which avoids
the extra requirements in [7]. Thanks to the flexibility of our framework, we can
use all existing processors in the literature, improve the existing ones by taking
advantage of having collapsing pairs, and define new processors. Furthermore, we
have improved the notion of hide given in [6]. Our experimental evaluation shows
that our techniques lead to an implementation which offers the best performance
in terms of solved problems and efficiency.

References

1. Lucas, S.: Context-Sensitive Computations in Functional and Functional Logic
Programs. Journal of Functional and Logic Programming 1998(1) (1998) 1–61

2. Bruni, R., Meseguer, J.: Semantic Foundations for Generalized Rewrite Theories.
Theoretical Computer Science 360(1) (2006) 386–414

3. Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving Operational
Termination of Membership Equational Programs. Higher-Order and Symbolic
Computation 21(1-2) (2008) 59–88

4. Endrullis, J., Hendriks, D.: From Outermost to Context-Sensitive Rewriting. In
Treinen, R., ed.: Proc. of 20th International Conference on Rewriting Techniques
and Applications, RTA’09. Volume 5595 of Lecture Notes in Computer Science.,
Springer-Verlag (2009) 305–319

5. Fernández, M.L.: Relaxing Monotonicity for Innermostt Termination. Information
Processing Letters 93(3) (2005) 117–123

6. Alarcón, B., Emmes, F., Fuhs, C., Giesl, J., Gutiérrez, R., Lucas, S., Schneider-
Kamp, P., Thiemann, R.: Improving Context-Sensitive Dependency Pairs. In
Cervesato, I., Veith, H., Voronkov, A., eds.: Proc. of 15th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, LPAR’08. Volume
5330 of Lecture Notes in Computer Science., Springer-Verlag (2008) 636–651

Proving Termination in the CSDP Framework 17

7. Alarcón, B., Gutiérrez, R., Lucas, S.: Context-Sensitive Dependency Pairs. In
Arun-Kumar, S., Garg, N., eds.: Proc. of 26th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FST&TCS’06. Volume 4337
of Lecture Notes in Computer Science., Springer-Verlag (2006) 297–308

8. Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. The-
oretical Computer Science 236(1–2) (2000) 133–178

9. Alarcón, B., Gutiérrez, R., Lucas, S.: Context-Sensitive Dependency Pairs. Infor-
mation and Computation To appear (2010)

10. Gutiérrez, R., Lucas, S.: Proving Termination in the Context-Sensitive Dependency
Pairs Framework. Technical report, Universidad Politécnica de Valencia (February
2010) Available as Technical Report DSIC-II/02/10.

11. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer-Verlag (2002)
12. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving

Dependency Pairs. Journal of Automatic Reasoning 37(3) (2006) 155–203
13. Lucas, S.: MU-TERM: A Tool for Proving Termination of Context-Sensitive

Rewriting. In Oostrom, V.v., ed.: Proc. of 15th International Conference on Rewrit-
ing Techniques and Applications, RTA’04. Volume 3091 of Lecture Notes in Com-
puter Science., Springer-Verlag (2004) 200–209 Available at http://zenon.dsic.

upv.es/muterm/.
14. Alarcón, B., Gutiérrez, R., Iborra, J., Lucas, S.: Proving Termination of Context-

Sensitive Rewriting with MU-TERM. Electronic Notes in Theoretical Computer
Science 188 (2007) 105–115

15. Hirokawa, N., Middeldorp, A.: Automating the Dependency Pair Method. Infor-
mation and Computation 199 (2005) 172–199

16. Gutiérrez, R., Lucas, S., Urbain, X.: Usable Rules for Context-Sensitive Rewrite
Systems. In Voronkov, A., ed.: Proc. of 19th International Conference on Rewriting
Techniques and Applications, RTA’08. Volume 5117 of Lecture Notes in Computer
Science., Springer-Verlag (2008) 126–141

17. Lucas, S.: Polynomials over the Reals in Proofs of Termination: from Theory to
Practice. RAIRO Theoretical Informatics and Applications 39(3) (2005) 547–586

18. Lucas, S., Meseguer, J.: Order-Sorted Dependency Pairs. In Antoy, S., Albert,
E., eds.: Proc. of 10th International ACM SIGPLAN Sympsium on Principles and
Practice of Declarative Programming, PPDP’08, ACM Press (2008) 108–119

19. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termination
Proofs in the Dependency Pair Framework. In Furbach, U., Shankar, N., eds.:
Proc. of 3rd International Joint Conference on Automated Reasoning, IJCAR’06.
Volume 4130 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2006)
281–286 Available at http://www-i2.informatik.rwth-aachen.de/AProVE.

20. Schernhammer, F., Gramlich, B.: VMTL - A Modular Termination Laboratory. In
Treinen, R., ed.: Proc. of 20th International Conference on Rewriting Techniques
and Applications, RTA’09. Volume 5595 of Lecture Notes in Computer Science.,
Springer-Verlag (2009) 285–294

21. Endrullis, J.: Jambox, Automated Termination Proofs For String and Term Rewrit-
ing (2009) Available at http://joerg.endrullis.de/jambox.html.

