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Abstract

Context-sensitive rewriting (CSR) is a restriction of rewriting which forbids reductions on selected argu-
ments of functions. Proving termination of CSR is an interesting problem with several applications in the
fields of term rewriting and programming languages. Several methods have been developed for proving
termination of CSR. The new version of MU-TERM which we present here implements all currently known
techniques. Furthermore, we show how to combine them to furnish MU-TERM with an expert which is
able to automatically perform the termination proofs. Finally, we provide a first experimental evaluation
of the tool.
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1 Introduction

Restrictions of rewriting can eventually achieve termination of rewriting computa-

tions by pruning all infinite rewrite sequences issued from every term. However, such

kind of improvements can be difficult to prove. Context-sensitive rewriting (CSR

[17,18]) is a restriction of rewriting which is useful for describing semantic aspects of

programming languages (e.g., Maude, OBJ2, OBJ3, or CafeOBJ) and analyzing ter-

mination of the corresponding programs (see [8,9,13,18,22] for further motivation).

In CSR, a replacement map μ discriminates, for each symbol of the signature, the

argument positions μ(f) on which rewritings are allowed. In this way, for a given

Term Rewriting System (TRS), we obtain a restriction of the rewrite relation which
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we call context-sensitive rewriting. A TRS R together with a replacement map μ is

often called a CS-TRS and written (R, μ).

Proving termination of CSR is an interesting problem with several applications

in the fields of term rewriting and programming languages (see [22]). There are two

main approaches to prove termination of a CS-TRS (R, μ):

• direct proofs use adapted versions of term orderings such as RPOs and polynomial

orderings to compare the left- and right-hand sides of the rules [4,11,20,21]; and

• transformations which obtain a transformed TRS Rμ
Θ (where Θ represents the

transformation). If we are able to prove termination of Rμ
Θ (using the standard

methods), then termination of the CS-TRS is ensured (see [22] for a recent sur-

vey).

MU-TERM was the first tool implementing techniques for proving termination of

CSR [19]. The tool is available here:

http://www.dsic.upv.es/∼slucas/csr/termination/muterm

Nowadays, the tool AProVE [15] also accepts context-sensitive termination prob-

lems specified in the TPDB format 3 . However, AProVE’s proofs of termination of

CSR are based on using transformations (i.e., no direct proof method is currently

available). The new version of MU-TERM which we present here implements all

currently known techniques. The new contributions which we report in this paper

are the following:

(i) We have implemented the context-sensitive recursive path ordering described

in [4].

(ii) We have implemented the context-sensitive dependency pairs approach de-

scribed in [2].

(iii) On the basis of recent theoretical and experimental results (see [22]), we have

developed a termination expert for CSR which combines the different existing

techniques for proving termination of CSR without any interaction with the

user.

Finally, we want to mention that the Maude Termination Tool [9]:

http://www.lcc.uma.es/∼duran/MTT

which transforms proofs of termination of Maude programs into proofs of termina-

tion of CSR uses MU-TERM’s expert as an auxiliary tool.

We assume a basic knowledge about term rewriting, see [24] for missing defini-

tions and more information. In Section 2 we briefly describe the new features which

have been added to MU-TERM. Section 3 discusses the termination expert. Section

4 provides an experimental evaluation of the new version of MU-TERM. Section 5

concludes and discusses future work.

3 See http://www.lri.fr/∼marche/tpdb/format.html
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Fig. 1. Screenshot of the main window of MU-TERM 4.3

2 New features in MU-TERM

MU-TERM is written in Haskell 4 , and wxHaskell 5 has been used to develop the

graphical user interface. The system consists of more than 45 Haskell modules

containing more than 14000 lines of code. Compiled versions in several platforms

(Linux, Mac OSX, and Windows) and instructions for the installation are available

on the MU-TERM WWW site. A recent hybrid (Haskell/C#) version of the tool is

also available for the .NET platform [3].

MU-TERM has a graphical user interface (see Figure 1) whose details (menu

structure, supported formats, etc.) are given in [19]. Let us briefly recall the main

features of the tool.

• Modularity: If the modular proofs are activated, then MU-TERM attempts a

safe decomposition of the TRS in such a way that the components satisfy the

modularity requirements described in [10]. If it succeeds in performing a non-

trivial decomposition (i.e., MU-TERM obtains more than one component), then

individual proofs of termination of CSR are attempted for each component.

• Direct methods: MU-TERM implements the use of polynomial interpretations

as described in [20,21]. An interesting feature of MU-TERM is that it generates

polynomial interpretations with rational coefficients.

• Transformations: MU-TERM also implements a number of transformations

for proving termination of CSR (see [13,22]).

4 See http://haskell.org/ .
5 See http://wxhaskell.sourceforge.net .
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In the following, we briefly describe the new features implemented in the current

version of MU-TERM.

2.1 Context-Sensitive Recursive Path Ordering (CSRPO)

CSRPO extends the recursive path ordering (RPO [7]) to context-sensitive terms [4].

The first idea that comes in mind to extend RPO to CSR (CSRPO) is marking the

symbols which are in blocked positions and consider them smaller than the active

ones. Therefore, terms in blocked positions become smaller. However, marking all

symbols in non-replacing positions can unnecessarily weaken the resulting ordering.

Thus, in addition to the usual precedence 6 �F on the symbols of the signature F of

the TRS, a marking map, denoted by m, is also used. The marking map defines, for

every symbol and every blocked position, the set of symbols that should be marked.

By F we denote the set of marked symbols corresponding to F . Given a k-ary

symbol f in F ∪ F and i ∈ {1, . . . , k}, a marking map m provides the subset of

symbols in F that should be marked, i.e. m(f, i) ⊆ F . Marking maps are intended

to mark only blocked arguments, i.e., m(f, i) = ∅ if i ∈ μ(f) for all f ∈ F . In

this way, we mark only the necessary symbols (in blocked positions), see [4] for a

thorough discussion.

Example 2.1 Consider the following TRS R:
from(X) -> cons(X,from(s(X)))
sel(0,cons(X,Y)) -> X
sel(s(X),cons(Y,Z)) -> sel(X,Z)

together with μ(cons) = μ(s) = μ(from) = {1} and μ(sel) = {1, 2}. The μ-

termination of R can be proved by the CSRPO induced by the following precedence

and marking map (computed by MU-TERM, see Figure 2):

sel �F from �F cons �F s

m(cons, 2) = m(cons, 2) = {from}, m(from, 1) = ∅

and lexicographic status for all function symbols.

Although the μ-termination of R in Example 2.1 can be proved by using the

following polynomial interpretation:

[from](X) = 3X + 2 [cons](X,Y ) = X + 1
3Y [0] = 0

[s](X) = 2X + 1 [sel](X,Y ) = 2X2Y + X + Y + 1

the proof using CSRPO is much faster.

2.2 Context-Sensitive Dependency Pairs (CSDPs)

Recently, the dependency pairs approach [1], one of the most powerful techniques

for proving termination of rewriting, has been generalized to be used in proofs of

6 By a precedence, we mean a reflexive and transitive relation.
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Fig. 2. Termination of CSR usingCSRPO

termination of CSR [2].

Roughly speaking, given a TRS R, the dependency pairs u → v associated to

R conform a new TRS DP(R) which (together with R) determines the so-called

dependency chains whose finiteness or infiniteness characterize termination of R.

The dependency pairs can be presented as a dependency graph, where the nodes of

the graph are dependency pairs and the absence of infinite chains can be analyzed

by considering the cycles in the graph. Two dependency pairs u → v and u′ → v′ in

the graph are connected by an arc if there is a substitution σ which makes possible

a (possibly empty) rewrite sequence (in R) from σ(v) to σ(u′). These ideas are

generalized (with a number of non-trivial changes) to CSR.

Example 2.2 Consider the following non-terminating TRS R borrowing the well-

known Toyama’s example [12, Example 1]:
f(a,b,X) -> f(X,X,X) c -> a c -> b

together with μ(f) = {3}. The only dependency pair for this system is:
F(a,b,X) -> F(X,X,X)

where F is a ‘marked’ version (often called a tuple symbol) of f and we further assume

that μ(F) = {3}. It is not difficult to see that there is no substitution σ which is able

to originate a (possibly empty) context-sensitive rewrite sequence (with R !) from

σ(F(X,X,X)) to σ(F(a,b,X)). The replacement restriction μ(F) = {3} is essential

for this. Furthermore, this fact can be easily checked as explained in [2] and so it

is implemented in MU-TERM.

A proof of μ-termination of R in Example 2.2 is not possible by using either

CSRPO or polynomials with non-negative coefficients (see [11]). Also, as shown

by Giesl and Middeldorp (see also [13]), among all the existing transformations for
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Fig. 3. Termination of CSR using dependency pairs

proving termination of CSR, only the complete Giesl and Middeldorp’s transforma-

tion [13] (yielding a TRS Rμ
C) could be used in this case, but no concrete proof of

termination for Rμ
C is known yet. Furthermore, Rμ

C has 13 dependency pairs and

the dependency graph contains many cycles. In contrast, the CS-TRS has only one

context-sensitive dependency pair and the corresponding dependency graph has no

cycle! Thus, a direct and automatic proof of μ-termination of R is easy now (see

Figure 3).

Although the subterms in the right-hand sides of the rules which are considered

to build the context-sensitive dependency pairs are μ-replacing terms, considering

only non-variable subterms (as in Arts and Giesl’s approach [1]) is not sufficient

to obtain a correct approximation. As discussed in [2], in general we also need to

consider dependency pairs with variables in the right-hand sides.

Example 2.3 Consider the TRS R [26, Example 5]:
if(true,X,Y) -> X f(X) -> if(X,c,f(true))
if(false,X,Y) -> Y

with μ(if) = {1, 2}. There are two dependency pairs:
F(X) -> IF(X,c,f(true))
IF(false,X,Y) -> Y

with μ extended by μ(F) = {1} and μ(IF) = {1, 2}.

A direct and automatic proof of μ-termination of R is possible with CSDPs by

using an auxiliary polynomial ordering generated by a linear polynomial interpre-

tation (computed by MU-TERM, see Figure 4).

A proof of μ-termination of R in Example 2.3 is not possible by using CSRPO.

Furthermore, the μ-termination of R cannot be proved by using a polynomial or-
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Fig. 4. Termination of CSR using dependency pairs and polynomials

dering based on a linear polynomial interpretation.

3 Automatically proving termination of CSR with MU-

TERM

On the basis of recent theoretical and experimental results, we have developed a

termination expert for CSR which combines the different existing techniques in a

sequence of proof attempts which do not require any user interaction. The sequence

of techniques which are tried by the expert is as follows:

(i) Context-sensitive dependency pairs with auxiliary polynomial orderings based

on polynomial interpretations using either:

(a) linear interpretations whose coefficients are taken from (1) {0, 1}, (2)

{0, 1, 2}, or (3) {0, 1
2 , 1, 2}, in this order; or

(b) simple-mixed interpretations linear whose coefficients are taken from (1)

{0, 1}, (2) {0, 1, 2}, or (3) {0, 1
2 , 1, 2}, again in this order.

(ii) Context-sensitive recursive path ordering.

(iii) Polynomial orderings generated from either linear or simple-mixed polynomial

interpretations whose coefficients are rational numbers of the form p
q

where

0 ≤ p, q ≤ 5 and q > 0.

(iv) Transformations which obtain a TRS whose termination is proved by using the

standard dependency pairs approach [1]. The transformations are attempted

according to the decision tree in Figure 5 (explained below).

In the following, we motivate some of the choices we made for obtaining the

concrete configuration of the previous sequence.
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Fig. 5. Decision graph for proving termination of CSR by transformation

3.1 Use of polynomial interpretations

As shown in [21,23], the use of rational (or real) coefficients in polynomial interpreta-

tions can be helpful to achieve proofs of termination of (context-sensitive) rewriting.

In this setting, in order to obtain a proof of μ-termination of a TRS R = (F , R), we

use parametric polynomial interpretations for the symbols f ∈ F , whose indetermi-

nate coefficients are intended to be real (or rational) instead of natural or integer

numbers. The termination problem is rephrased as a set of polynomial constraints

on the indeterminate coefficients. This set of constraints is intended to be solved

in the domain of the real numbers. Although such polynomial constraints over the

reals are decidable [25], the difficulty of the procedure depends on the degree and

composition of the parametric polynomials that we use for this. As in [6], we con-

sider classes of polynomials which are well-suited for automatization of termination

proofs: linear and simple-mixed polynomial interpretations.

The automatic generation of rational coefficients can be computationally expen-

sive. For instance, MU-TERM manages rational (nonnegative) coefficients c ∈ Q

in polynomial interpretations as pairs numerator/denominator, i.e., c = p
q
, where

p, q ∈ N and q > 0. Thus, each rational coefficient c involves two integers. This

leads to a huge search space in the corresponding constraint solving process [6,21].

For this reason, MU-TERM is furnished with three main generation modes [21]:

(i) No rationals: here, no rational coefficient is allowed.

(ii) Rationals and integers: here, since rational coefficients are intended to intro-

duce non-monotonicity, we only use them with arguments i 	∈ μ(f).
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(iii) All rationals: where all coefficients of polynomials are intended to be rational

numbers.

These generation modes are orderly used by the expert to try different polynomial

interpretations.

Regarding the range of the coefficients, we follow the usual practice in simi-

lar termination tools, where coefficients are bounded to take values 0, 1, or 2 (see

[6,15,16,27]). Note that (as in those related tools) this choice is heuristic, usually

based on the experience. We do not know of any theoretical or empirical inves-

tigation which tries to guide the choice of appropriate bounds for the coefficients

depending on the concrete termination problem. From our side, we just added the

value 1
2 which enables a minimal (but still fruitful) use of rational coefficients. Again,

these generation modes are orderly used by the expert to try different polynomial

interpretations.

3.2 Use of transformations

In [22] we have investigated how to combine the different transformations for prov-

ing termination of CSR. Figure 5 provides a concrete decision tree for using the

different transformations. Here, LL(R) meas that R is left-linear, CMR is the set

of replacement maps which are not more restrictive than the canonical replacement

map μcan
R of the TRS R. This replacement map has a number of interesting proper-

ties (see [17,18]) and can be automatically computed for each TRS (for instance, the

tool MU-TERM can do that) thus giving the user the possibility of using CSR with-

out explicitly introducing hand-crafted replacement restrictions. Finally, SN(R)?

represeents a check of termination of the TRS R. More details can be found in [22].

4 Experimental evaluation

As remarked in the introduction, besides MU-TERM, AProVE is currently the only

tool which is able to prove termination of CSR by using (non-trivial) transfor-

mations. AProVE is currently the most powerful tool for proving termination of

TRSs and implements most existing results and techniques regarding DPs and re-

lated techniques. AProVE implements a termination expert which successively tries

different transformations for proving termination of CSR and uses a variety of differ-

ent and complementary techniques for proving termination of rewriting, see [15,14].

We have considered the (Linux-based, completely automatic) WST’06-version of

AProVE and the set of 90 termination problems for CSR which have been used in

the 2006 termination competition:

http://www.lri.fr/∼marche/termination-competition/2006

A summary of the benchmarks can be found here:

http://www.dsic.upv.es/∼rgutierrez/muterm/benchmarks.html

The benchmarks were executed on a PC equipped with an AMD Athlon XP proces-

sor at 2.4 GHz and 512 MB of RAM, running Linux (kernel 2.6.12). Both AProVE
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and MU-TERM succeeded (running in a completely automatic way and with a time-

out of 1 minute) on 56 examples; furthermore, the total elapsed time was almost

the same for both tools. The MU-TERM expert used CSDPs in 45 of the 56 cases

(80.4%); CSRPO in 7 cases (12.5%), and transformations in only 4 cases (7.1%,

three of them using Zantema’s transformation and one of them using Giesl and

Middeldorp’s incomplete transformation).

5 Conclusions and Future work

We have presented MU-TERM, a tool for proving termination of CSR. The tool has

been improved with the implementation of new direct techniques for proving ter-

mination of CSR (the context-sensitive dependency pairs and the context-sensitive

recursive path orderings) and an ‘expert’ for automatically proving termination of

CSR. The new features perform quite well and have been shown useful in compar-

ison with previously implemented techniques.

Future extensions of the tool will address the problem of efficiently using neg-

ative coefficients in polynomial interpretations (see [21] for further motivation).

More research is also necessary to make the use of rational coefficients in proofs of

termination much more efficient.

The current implementation of CSRPO is based on an ad-hoc incremental con-

straint solver which could be improved in many different directions. We plan to

explore the reduction of the problem to a SAT-solving format, as described in [5].

We also plan to develop algorithms to solve polynomial constraints over the reals

yielding exact (but not necessarily rational) solutions.

Finally, we want to improve the generation of reports and the inclusion of new,

richer formats for input systems (e.g., Conditional TRSs, Many sorted TRSs, TRSs

with AC symbols, etc.).
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