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Abstract: Accurate monthly evapotranspiration (ET) estimation is essential for many forest, climate, and hydrological 
applications, as well as for some agricultural uses. In this study, the relationship between ET and relative 
evapotranspiration (F) using land surface, and atmospheric variables was assessed with 17 FLUXNET sites data 
in savanna, cropland, and forest land covers, distributed all over the world. A sigmoid (Fs) and a logarithmic (Fl) 
F expression were included in Walker et al.’s (2019a,b) equations to evaluate their impact on the accuracy of ET 
estimations. The new parameterizations of ET outperformed the original expression, showing root mean square 
errors lower than 24% of the mean observed ET. The results presented here suggest that atmospheric parameters, 
coupled with land explanatory variables included in F estimates, produce more precise ET estimations. In addition, 
Soil Moisture Active Passive (SMAP) products were used to obtain global maps of ET and compared with Global Land-
surface Evaporation Amsterdam Methodology (GLEAM) and Terra Moderate Resolution Imaging Spectroradiometer 
(MODIS) MOD16 products, displaying the flexibility of these new parametrizations with different sources of data.
Key words: evapotranspiration, land covers, atmospheric variables, soil moisture, relative evapotranspiration.

Mejora en la estimación de la evapotranspiración mediante el acoplamiento de la humedad del 
suelo y variables atmosféricas en la parametrización de la evapotranspiración relativa
Resumen: La estimación precisa de la evapotranspiración (ET) mensual es esencial para muchas aplicaciones 
forestales, climáticas e hidrológicas y para algunos usos agrícolas. En este estudio, se evaluó la relación entre ET y la 
evapotranspiración relativa (F) utilizando variables de la superficie y atmosféricas con datos de 17 sitios FLUXNET en 
coberturas terrestres de sabana, cultivo y bosques, distribuidos por todo el mundo. Se incluyeron en las ecuaciones 
de Walker et  al. (2019a,b) una expresión de F sigmoidea (Fs) y otra logarítmica (Fl) para evaluar su impacto en 
la precisión de las estimaciones de ET. Las nuevas parametrizaciones de ET superaron a la expresión original, 
mostrando errores cuadráticos medios inferiores al 24% de la ET media observada. Los resultados presentados 
aquí sugieren que los parámetros atmosféricos, junto con las variables explicativas de la superficie incluidas en las 
estimaciones de F, producen estimaciones de ET más precisas. Asimismo, los productos de Soil Moisture Active 
Passive (SMAP) fueron usados para obtener mapas globales de ET y comparados con los productos Global Land-
surface Evaporation Amsterdam Methodology (GLEAM) y Terra Moderate Resolution Imaging Spectroradiometer 
(MODIS) MOD16, mostrando la flexibilidad de estas nuevas parametrizaciones con diferentes fuentes de datos.
Palabras clave: evapotranspiración, coberturas terrestres, variables atmosféricas, humedad del suelo, 
evapotranspiración relativa.

To cite this article: Walker, E., Venturini, V. 2024. Improving the evapotranspiration estimation by coupling soil moisture 
and atmospheric variables in the relative evapotranspiration parameterization. Revista de Teledetección, 63, 65-77. 
https://doi.org/10.4995/raet.2024.20158

http://creativecommons.org/licenses/by-nc-nd/4.0/


REVISTA DE TELEDETECCIÓN  (2024) 63, 65-77

Walker and Venturini

66

1. Introducción

Actual evapotranspiration (ET) is a crucial 
process that represents surface-atmosphere 
interactions, a key component of the terrestrial 
water cycle that links the carbon cycle, and the 
energy balance. Monthly ET estimates with a long 
time series of data are required for applications 
such as vulnerable forests monitoring (wildfire), 
regional water balances, climate change studies, 
ecosystem evolution, and land cover changes 
impact on ET (Fisher et al. 2017; Liu et al. 2021; 
Poulos et al. 2021).

ET is a complex process to simulate given its 
dependence on many interacting processes 
controlling it. Three ET general driving forces were 
identified, i.e., net radiation (Rn), atmospheric 
variables, and surface properties (Ma et al., 2020; 
Zhou et al., 2021). Thus, during the last decades, 
many efforts have been spent on studying the 
relationship between ET and these controlling 
factors to better estimate the ET process. The 
scientific community has proposed several models 
to estimate ET over a wide range of spatial and 
temporal scales, from remotely sensed information 
and ground observation networks (Allen et al., 2001; 
Sun et al., 2011; Walker et al., 2019a,b; Brust et al., 
2021; Laipelt et al., 2021; Yao et al., 2023). Some of 
the abovementioned models have taken advantage 
of the complementary relationship (CR) to calculate 
ET. This relationship establishes a balance between 
ET, potential evapotranspiration (ETpot), and wet 
environmental evapotranspiration (ETw) (Brutsaert, 
2015). The concept of ETw suggests that the surface 
temperature and wetness are unlimited while the 
energy available for evaporation is limited. The 
concept of ETpot represents an extreme situation, 
where there is no limitation for the ET process. 
Bouchet (1963) proposed the first complementary 
model based on an experimental design, for a wide 
range of available energy. In the attempt to derive 
a physically based CR, Granger (1989) assumed 
the inequality ETpot ≥ ETw ≥ ET, where ETw can 
be formulated using either Penman or Priestley–
Taylor (P-T from here on) equations. Examples of 
successful ET models based on CR include those 
developed by Fisher et al. (2008), Venturini et al. 
(2008), Brutsaert (2015), Walker et al. (2019a,b), 
Ma et al. (2020), and Yunfei et al. (2023).

Walker et al.’s models (Walker et al., 2019a,b), 
to estimate ET (named as ETsm and ETwv, 
respectively) were obtained by combining a CR, 
ETw calculated with P-T formulation, and the 
relative evapotranspiration (F) parameter, defined 
as the ratio between ET and ETpot. Indeed, 
Walker et al. (2019a) presented a mathematical 
F formulation based on Komatsu’s expression 
(Komatsu, 2003) that considers the soil moisture 
content (SM), soil type properties and includes 
a calibration parameter X to avoid ET resistance 
coefficients estimation. Later, Walker et al. (2019b) 
presented an F formulation improving the relative 
evapotranspiration introduced by Venturini et al. 
(2008). As a result, the ratio between SM and the 
soil saturation water content (SMsat) replaced the 
original Venturini et al.’s (2008) F formulation in 
agreement with the ET-driven physical process.

It has been demonstrated that SM is a critical 
surface state variable on which ET depends 
(Purdy et al., 2018; Zhou et al., 2021; Yao et al., 
2023), and therefore had an important impact on 
ET/ETpot (Mintz and Walker, 1993; Komatsu, 
2003; Detto et al., 2006, Fisher et al., 2008; 
Teng et al., 2014; An et al., 2018; Brust et al., 
2021). For example, Detto et al. (2006) analysed 
the F-SM relationship in a heterogeneous 
rain-fed Mediterranean ecosystem with three 
different land covers. Komatsu (2003), Teng 
et al. (2014), and later An et al. (2018), studied 
the effect of SM on F from bare soils data, 
acquired under controlled conditions. Fisher 
et al. (2008) proposed to constraint ET by a 
function of SM (fSM), which is an index of SM 
deficit based on the complementary hypothesis 
of Bouchet (1963). Their approach recognizes 
that evaporation is intrinsically driven by the 
saturation vapor pressure deficit (VPD), thus 
they seek a relative variable such as the relative 
humidity (RH) that is sensitive to VPD, therefore 
fSM was parametrized as RHVPD/β, with β 
defining the relative sensitivity to VPD. Then 
the authors defined the relative extractable water 
as a normalized SM ratio. Liu (2022) developed 
different non-linear functions for simulating ET 
through ETpot constrained by SM at a daily scale. 
The ET simulation using non-linear functions 
resulted in higher accuracy than that of linear 
relations and CR methods.
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Most of the abovementioned F parameterization 
did not consider the influence of atmospheric 
variables. Nevertheless, diverse authors such 
as Fisher et al. (2008), Zscheischler et al. 
(2015), Bagley et al. (2017), and Short Gianotti 
et al. (2019) highlighted the importance of the 
atmospheric variables on F variability and 
suggested that atmospheric parameterization 
should be incorporated in F estimation. So, 
atmospheric parameters, coupled with land 
explanatory variables, could reduce the F 
function’s errors and produce more precise ET 
estimations.

Therefore, the current study aims to improve 
the accuracy of the ETsm and ETwv estimations 
by enhancing the F expression. In this sense, 
we propose to derive an F expression, i.e. the 
ET/ETpot ratio, applicable to different land covers, 
that incorporates land surface and atmospheric 
variables. The derived analytical F function will 
be included in ETsm and ETwv expressions and 
contrasted with ground-observed monthly mean 
daily ET measurements to evaluate their impact 
on the accuracy of ET estimations. Moreover, the 
resulting F expression will be coded in the Google 
Earth Engine (GEE) platform to generate ET 
maps.

2. Materials and methods

2.1. Review of ETsm and ETwv models

Walker et al. (2019a) published an expression to 
estimate ET (ETsm) based on Komatsu’s results 
(Komatsu, 2003). He experimentally demonstrated 
that F would be directly linked to the surface 
wetness condition. However, the ET resistances 
are important limiting factors to estimate F at 
large scales using Komatsu’s formulation. In this 
sense, Walker et al. (2019a) modified Komatsu’s F 
expression by introducing SMsat and a calibration 
parameter X to avoid ET resistance coefficients 
estimation. So, the ratio ET/ETpot mainly depends 
on the SM and the soil type properties.

The ET calculation at the regional scale is 
formulated using Bouchet’s CR (Bouchet, 1963), 
P-T equation, and the modified Komatsu’s F 
concept;

 (1)

where SM is the soil moisture of any surface, 
SMsat is the soil moisture of the saturated surface, 
X is a calibration factor, α is the P-T parameter 
typically assumed 1.26, γ is the psychrometric 
constant, ∆ is the slope of the saturation vapor 
pressure curve, F the relative evapotranspiration 
coefficient, Rn is the net radiation and G the 
surface soil heat flux.

Despite the precise ET results obtained, the ETsm 
model is limited to apply at those sites with ground 
observed data to calibrate the X parameter (see 
Walker et al., 2019a).

Afterward, Walker et al. (2019b) presented an F 
formulation (named Fr) improving the relative 
evapotranspiration introduced by Venturini 
et al. (2008). As in Venturini et al. (2008), the 
assumption that the wind function similarly 
affects actual and potential ET was also used 
in Walker et al. (2019b). However, the authors 
proposed to estimate the surface actual water 
vapour pressure using surface texture information 
and SM content. As a result, the ratio SM/SMsat 
replaced the original Venturini et al.’s (2008) F 
formulation, in agreement with the ET-driven 
physical process. Thus, combining the modified 
F parameterization (Fr), P-T equation, and 
Granger’s CR (Granger, 1989), the ETwv model 
was derived as follows;

 (2)

where SM is the soil moisture content, SMsat is 
the soil moisture of the saturated surface, α is the 
P-T parameter, γ is the psychrometric constant, ∆ 
is the slope of the saturation vapor pressure curve, 
Fr is the relative evapotranspiration coefficient, 
Rn is the net radiation and G the surface soil heat 
flux.

Consequently, the derivate ETwv model is based 
on universal relationships, without calibration 
parameters and therefore, it is suitable to different 
data sources and to any remote region. The 
proposed ETsm and ETwv formulations extend 
the P-T equation to different surface wetness 
conditions, assuming that surface moisture and 
the available radiation energy are the driving 
factors in ET estimation. For further details see 
Walker et al. (2019a), and Walker et al. (2019b).
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2.2. Proposed F methodology
Previous F formulations (Mintz and Walker, 
1993; Komatsu, 2003; Detto et al., 2006; An 
et al., 2018; Liu, 2022), did not take into account 
the importance of atmospheric variables in the 
formulation. Considering Fisher et al. (2008), F 
can be explained by VPD, RH, and SM. Venturini 
et al. (2011) also suggested that F can be explained 
by the SM, SMsat, the air temperature (Ta), Rn, 
the slope of the saturation vapor pressure curve 
(Δ), RH, and the shortwave incoming radiation 
(SWin). In this analysis, the land surface properties 
are represented by SM and SMsat, the atmospheric 
conditions are characterized by Ta, Δ, and RH, and 
the available energy variables are summarized in 
Rn, G, and SWin.

Based on the nonlinearity of the F-SM relationship 
published by Mintz and Walker (1993), Orth et al. 
(2013), and Liu (2022), nonlinear functions were 
evaluated to estimate F with the SM, SMsat, Δ, 
Ta, Rn, RH, and SWin explanatory variables, 
specifically logarithmic and sigmoidal expressions 
were analysed. Liu (2022) demonstrated that the 
accuracy of the ET estimations using potential 
and exponential functions was higher than 
that of the linear regression method. In this 
sense, the logarithmic function is the inverse of 
the exponential function, with a general form 
of Y=logbX, where b is the logarithm base. 
Considering Komatsu’s (2003) and Detto et al.’s 
(2006) results, the sigmoidal curve, which is a 
refined exponential model, was also tested in this 
work. The standard form for a sigmoid function, 
also known as a sigmoidal curve or logistic 

function, is 
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 (Von Seggern, 2007).

2.3. Model performance

To analyse the performance of the proposed 
functions the Root Mean Square Error (RMSE), 
bias, and determination coefficient (R2), were 
quantified. The equations are:

 (3)

 (4)

 (5)

where N is the number of observations, ETobs is 
the in situ ET, ETmod is the modelled ET, and 
ETobs is the mean value of ETobs.

2.4. Data

In this study, FLUXNET in situ observations and 
the SMsat map proposed by Walker and Venturini 
(2019) were used to derive F and estimate monthly 
mean daily ET.

The FLUXNET ground observations network 
consists of Eddy Covariance stations installed 
for quantifying carbon, water vapor, and energy 
fluxes (https://fluxnet.fluxdata.org/). Only the 
operative stations with high-quality SM and 
Latent Heat flux (LE) observations, i.e. with at 
least 60% of Rn reliable data and less than 2% of 
LE and SM outliers, were taken into consideration 
here (Purdy et al., 2018; Walker and Venturini, 
2019). In this preliminary analysis, 17 FLUXNET 
Eddy Covariance tower sites, distributed across 
the world were used. These stations are located 
in savanna (SAV), cropland (CRO), and forest 
(FOR) land covers. The site names, land use, and 
data set time span are listed in Table 1.

FLUXNET provides half-hour observations that 
were quality checked and averaged to obtain the 
monthly values of the variables used in this work, 
i.e. Ta (°C), Rn (W/m2), Δ (Kpa/°C), SM (%), 
RH (%), SWin (W/m2) and LE (W/m2). These LE 
observations are then converted to ET using the 
latent heat of vaporization and the water density 
(Walker and Venturini, 2019).

The global SMsat map, published by Walker and 
Venturini (2019), was used to incorporate the soil 
properties spatial variability in F estimations. 
The soil texture classification provided by the 
Harmonized World Soil Database (HWSD) and 
Cosby et al. (1984) soil moisture saturation values 
were combined to create a layer of SMsat values, 
for each soil textural class. The SMsat layer has 
the original HWSD spatial resolution, of about 
1 km (see Walker and Venturini, 2019).

3. Results and discussions

3.1. F estimation

Data from the 17 FLUXNET stations were 
processed without land cover discriminations, 
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during the spring-summer growing time, since 
the warmer season is crucial for ET monitoring 
(Detto et al., 2006, Li et al., 2018). The individual 
contribution of the explanatory variables (SM, 
SMsat, Δ, Ta, Rn, RH, and SWin) on ET, was 
analysed by the r statistic. The highest correlation 
coefficient was found between ET and RH 
(r=0.60). The correlation between ET and Rn, Ta, 
Δ, and, SM variables showed r values of 0.33, 
0.26, 0.24, and 0.21, respectively. On the other 
hand, SMsat and SWin presented low correlations 
with ET, i.e. 0.07 and -0.02 respectively. Hence, 
RH, SM, Rn, Ta, and Δ would make a significant 
contribution to explaining F variation.

As it was mentioned in Section 2.2, two nonlinear 
functions (logarithmic and sigmoid) were 
explored to derive F expressions that consider 
land surface and atmospheric variables. For this 
purpose, the ground observed data was partitioned 
into training and testing data sets. Thus, data 
from 13 FLUXNET Eddy Covariance towers 
were randomly selected for parameter tuning, 
and the data of the remaining four FLUXNET 
stations were used to verify and test the calibrated 
parameters. The selected explanatory variables, 
without further process, were used to fit the 
logarithmic function. To compute the sigmoid 
equation it was necessary to create a dependent 
variable (ω) that combines input variables. Given 

the large r statistic between RH and ET, RH was 
selected to integrate the dimensionless ω variable 
along with SM. Previous to ω calculation, SM was 
divided by SMsat and RH was normalized with 
the maximum and minimum values of the variable 
time series.

According to the least-squares method (Bretscher, 
1995), the best-fitted curves are the following;

 (6)

where ∆ is the mean slope of the saturation vapor 
pressure curve, SM is the soil moisture content, 
SMsat is the soil saturation water content, and RH 
is the mean relative humidity.

 (7)

where ω is the average between SM/SMsat ratio 
and the normalized RH. 0.55, 0.35, and 0.08 are 
calibrated parameters.

The proposed F parameterizations, i.e. Fl and Fs, 
consider the influence of atmospheric variables 
in the formulation as was suggested by Fisher 
et al. (2008), Zscheischler et al. (2015), Bagley 
et al. (2017), Short Gianotti et al. (2019), and Liu 
(2022). Figure 1 presents a boxplot diagram for 
the Fr, Fl, and Fs expressions evaluated here.
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Table 1. FLUXNET Eddy Covariance tower sites location, land cover, and time span of the data.

Country Site Latitude (°) Longitude (°) Land Cover Time Span
Australia AU-Cpr -34.0021 140.5891 SAV 2010-2014
Australia AU-DaS -14.1593 131.3881 SAV 2008-2014
Australia AU-Gin -31.3764 115.7138 SAV 2011-2014
Australia AU-How -12.4943 131.1523 SAV 2001-2014
Australia AU-Tum -35.6566 148.1517 FOR 2001-2014
Belgium BE-Lon 50.5516 4.7461 CRO 2004-2014
Belgium BE-Vie 50.3050 5.9981 FOR 1996-2014
Germany DE-Geb 51.1001 10.9143 CRO 2001-2014
Germany DE-Kli 50.8931 13.5224 CRO 2004-2014
Germany DE-Tha 50.9624 13.5652 FOR 1996-2014
French Guiana GF-Guy 5.2788 -52.9249 FOR 2004-2014

Italy IT-CA3 42.3800 12.0222 FOR 2011-2014
Italy IT-Isp 45.8126 8.6336 FOR 2013-2014
Italy IT-SR2 43.732 10.2910 FOR 2013-2014
USA US-SRM 31.8214 -110.8661 SAV 2004-2014
USA US-Ton 38.4316 -120.9660 SAV 2001-2018
USA US-Tw3 38.1159 -121.6467 CRO 2013-2018
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The Fr formulation, i.e. SM/SMsat, presented 
the largest dispersion of the data and achieved 
the highest maximum value (Max=0.99). The 
logarithmic and sigmoidal functions showed low 
maximum values (Fl=0.59 and Fs=0.55), differing 
from Fr in 0.40 and 0.44 respectively. All the F 
formulations yielded similar minimum and mean 
values. It can be observed that F variability is 
higher for Fr which only depends on the SM 
availability and it decreases if atmospheric 
variables are included in F parameterization. 
Thus, the following session analyses the errors of 
ET models with Fr, Fl and Fs.

3.2. ETsm and ETwv models 
performance evaluation

Six different formulations to estimate ET are obtai-
ned as a result of the combination of the evaluated 
F expressions (Fr, Fl, and Fs) with both ET models 
(ETsm and ETwv). Table 2 presents the resulting 
ET models and the name adopted for each of them.

Table 2. Nomenclature used to identify ET models. ETsm 
and ETwv are the Walker et al. (2019a) and Walker et al. 
(2019b) ET models, respectively. Fr, Fl, and Fs are the 
analysed F parameterizations.

F parameterizations

ET models

ETwv ETsm
Fr ETwvr ETsmr

Fl ETwvl ETsml

Fs ETwvs ETsms

The performance of the six proposed ET models 
was evaluated. Monthly mean daily ET estimations 
obtained from the different methodologies 
were compared with monthly mean daily ET 
observations (ETobs) using the calibration data 
set. The data dispersion of each ET methodology 
versus ETobs is presented in Figure 2. The 
minimum, mean and maximum of ETobs and 
modelled ET are incorporated in this Figure.

The ETwv model presented a similar response to 
the three parameterizations, in contrast with ETsm 
that vary with each F equation. The Fl formulation 
combined with both ET models, i.e., ETsml and 
ETwvl, showed the lowest dispersion of the results 
and the highest number of outliers. On the other 
hand, the ET methods with Fr and Fs expressions 
(ETsmr, ETsms, ETwvr, and ETwvs) seem to 
reproduce the variability of the ETobs data.

The Fl formulation combined with ETwv and 
ETsm models showed the lowest minimum 
values, differing from the minimum ETobs in 
0.71 mm/day and 0.63 mm/day, respectively. 
ETsm methodology yielded similar mean ET 
values than mean ETobs, with differences lower 
than 0.52 mm/day. The ETwv model shows higher 
maximum and mean values than ETobs.

Table 3 presents a summary of the R2, RMSE, and 
bias for each evaluated methodology compared 
with in situ measurements. The ETwv and ETsm 
combined with Fs expression yielded the highest 
correlation with ETobs. The R2 were 0.79 and 
0.74 for ETwvs and ETsms, respectively. On the 
contrary, the lowest correlations were obtained 
using Fr parameterization in both ET models 
(ETwvr=0.59 and ETsmr=0.38). The ETsm and 
ETwv methodologies presented a lower error when 
Fs was incorporated into their formulation. The 
ETsms yielded a RMSE of 1.36 mm/day (22.8% 
in percentage of the mean ETobs) and ETwvs 
shows a RMSE of 1.45 mm/day (24.5% of the 
mean ETobs). The reader can observe that ETsms 
showed the lowest bias compared with the other 
models, and the ETwv method showed similar 
bias using all the proposed F parameterizations.

The contrast between ETobs and estimated ET 
from each proposed methodology is presented 
in Figure 3. It can be observed that ETsmr and 
ETwvr showed the highest dispersion around the 
1:1 line. The ETwv methodology overestimated 

Figure 1. Boxplot diagram for each of the analysed F for-
mulations, i.e. Fr, Fl, and Fs.
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the ground ET measurements using the different F 
formulations. As was expected, ET estimates from 
ETsms and ETwvs models are closer to the 1:1 
line than the other tested methodologies.

The model errors for each land cover class were 
estimated to verify their applicability at a regional 
scale. Thus, crop areas yield RMSE between 1.25 
and 1.97 mm/day, being ETwvs the best model. 
In the case of savanna, the RMSE ranged from 
1.45 mm/day (for ETsms) to 2.46 mm/day (for 
ETwvl). Finally, in forest areas, ETsms yield an 
error of 1.20 mm/day while ETsmr resulted in a 
RMSE of 2.12 mm/day.

The proposed ET methodologies and their 
calibrated parameters were verified using AU_Cpr, 
IT_Isp, Be_Lon, and IT_CA3 FLUXNET stations, 
over different land covers. Figure 4 presents the 
relationship between estimated and ETobs for this 
data set. The R2, RMSE and bias metrics were 
added to the box of each methodology. It can be 
noted that the proposed ET models yielded the 
lowest RMSE in comparison with that obtained 
during the calibration. The accuracy of the ETsms 
and ETwvs methods outperformed the other tested 
methodologies. The RMSE were 1.24 and 1.23 
mm/day for ETwvs and ETsms, respectively. All the 
formulations show high correlations with ETobs, 

Table 3. Determination coefficient (R2), Root Mean Square Error (RMSE), and bias between monthly mean daily observed 
and estimated ET.

Statistic
ETwv ETsm

ETwvr ETwvl ETwvs ETsmr ETsml ETsms
R2 0.59 0.63 0.79 0.38 0.57 0.74
RMSE (mm/day) 1.79 1.75 1.45 2.14 1.70 1.36
RMSE (%) 30.0 29.4 24.5 35.9 28.5 22.8
Bias (mm/day) -0.76 -0.84 -0.81 0.51 0.48 0.40

Best statistics are highlighted in bold.

Figure 2. Boxplot diagram for each evaluated ET methodology (ETsmr, ETsml, ETsms, ETwvr, ETwvl, ETwvs) and obser-
ved ET (ETobs). Statistics minimum, mean, and maximum are included for monthly mean daily ETobs and estimated ET.
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with R2 higher than 0.66. The reader can observe 
that the ETwv method overestimated the in situ ET 
observations using the three F parameterizations. 
In contrast, the ETsm method yielded a moderate 
dispersion of the ET estimation.

In Figure 4 the AU_Cpr station in a SAV land cover 
displays the lowest ET values (see red points). The 
CRO site (BE_Lon) shows the intermediate ET 
values, coloured in green. As was expected, the 
highest ET values (orange and blue points) were 
achieved by the FOR sites IT_CA3 and IT_Isp.

The results presented show that Fs and Fl 
parameterizations surpassed Fr when they were 
incorporated into ETsm and ETwv methods, 
highlighting the importance of coupling driving 
variables in ET/ETpot models. Fisher et al. (2008) 
adjusted the soil evaporation using RH and VPD 
as a proxy of the SM content. They compared their 
result with FLUXNET observations, showing 
a strong correlation (R2=0.90) with an RMSE 
of about 28% of the mean observed value. It is 
noteworthy that Fisher et al. (2008) final expression 
did not incorporate the surface properties and 
the proposed expression is complex. Brust et al. 

(2021) enhanced Terra Moderate Resolution 
Imaging Spectroradiometer (MODIS) ET model, 
(MOD16) using Soil Moisture Active Passive 
(SMAP) SM product. They compared their results 
with FLUXNET data and reported an RMSE 
of 30% of the mean observed ET. Liu (2022) 
applies a soil moisture index similar to that of 
Walker et al. (2019b) to constrain ETpot. He used 
different linear and nonlinear functions to estimate 
F and contrasted the result with FLUXNET 
observations, achieving RMSE of about 27% of 
the mean observed ET. The ET models proposed 
in this work coupled atmospheric and surface 
variables reducing the errors published by the 
aforementioned authors.

3.3. Application of the ET functions in 
Google Earth Engine

Passive microwave low frequencies (<5 GHz) 
are less sensitive to the vegetation biomass and 
the microwave emissions are more representative 
of the soil below to the surface (Entekhabi et al., 
2014). Thus, SMAP images are comparable to 
FLUXNET in situ observations, and the calibrated 

Figure 3. Relationship between monthly mean daily ETsmr, ETsml, ETsms, ETwvr, ETwvl, and ETwvs estimated ET and 
observed ET for the study period using the calibration data set. The solid black line represents the 1:1 line.
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F functions can be applied with SMAP data. The 
ET models with the highest accuracy (ETsms 
and ETwvs) were coded in the GEE platform to 
obtain global ET maps. The Global Land Data 
Assimilation System Version 2.1 (GLDAS), 
SMAP dataset and the SMsat map (Walker and 
Venturini, 2019), were used. The GLDAS provides 
data from 2000 to the present, every eight hours at 
a global scale, with a spatial resolution of 0.25° 
(Rodell et al., 2004). The SMAP mission carries a 
passive radiometer in L-band. It is orbiting since 
2015, and it was devoted to provide global SM 
maps (Entekhabi et al., 2014). In this study, the 
SPL3SMP_E.005 product has been used. This 
product provides SM data every 2-3 days with a 
spatial resolution of 9 km.

The operational global ET products Global Land-
surface Evaporation Amsterdam Methodology 
(GLEAM) and MOD16 were used to compare with 
the proposed ETsms and ETwvs maps. GLEAM 
is a set of algorithms that estimate ET and their 

components based on satellite data and the P-T 
equation (Yang et al., 2017). GLEAM v3.6b offers 
monthly aggregated ET maps at 0.25° spatial 
resolution spanning the period 2003-2021. The 
MOD16A2GF ET product is a 8-day composite 
dataset with a spatial resolution of 500m, covering 
the 2000-2022 time span. MOD16A2GF ET is the 
accumulation of 8-day total water loss (Mu et al. 
2011). Here, GLEAM and MOD16 were converted 
to monthly mean daily ET and compared with the 
proposed ETsms and ETwvs maps.

ETwvs, ETsms, GLEAM, and MOD16 ET 
estimations were analysed for three sites 
distributed in different land covers during the 
2015-2021 period, i.e., in a forest area in the 
Amazonia - Brazil (3°57’58’’ S, 65°37’42’’ W), 
in a cropland area in Rio Cuarto - Argentina 
(33°6’40’’ S, 64°12’58’’ W), and in Oklahoma 
- USA (36°36’18’’ N, 97°29’6’’ W) in a prairie. 
Figure 5 shows the temporal variation of the 
monthly mean daily ET estimations for the study 

Figure 4. Relationship between monthly mean daily observed and estimated ETsmr, ETsml, ETsms, ETwvr, ETwvl, and 
ETwvs ET for verification purposes. The R2, RMSE, and bias statistics are presented for each method. The validation sites 
are indicated in different colors; AU_Cpr (red), IT_CA3 (blue), BE_Lon (green), and IT_Isp (orange).
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sites. In the Amazonia all the evaluated models 
show high ET estimations for the whole study 
period. For the cropland and native prairie sites the 
ET estimations achieve lower values, following an 
annual cycle. It can be observed that the proposed 
ETsms and ETwvs models produce similar ET 
estimations to GLEAM for the three land covers. 
MOD16 shows the lowest ET estimations for 
Amazonia and Oklahoma sites. Nevertheless, it 
achieves high values of ET in the cropland area. 
In this sense, different authors have demonstrated 
that GLEAM is a better product than MOD16 
product in different land covers, compared with 
ground ET observations. Khan et al. (2018) 
evaluated GLEAM and MOD16 products with 
observed ET data in Asia. They suggested that 
MOD16 showed high errors over all vegetation 
conditions compared with GLEAM. Khan et al. 
(2020) published that GLEAM performed well in 
both forest and grassland biomes across Australia, 
although MOD16 tended to underestimate the flux 
tower measurements in all land cover types. More 

recently, Salazar-Martínez et al. (2022) analysed 
GLEAM and MOD16 products at low latitude 
eddy covariance sites. The authors concluded 
that in general GLEAM performs better than the 
MOD16 product. Similar results were published 
by Zhu et al. (2022) using observed data of a 
wide range of land cover types over all continents. 
The proposed ETsms and ETwvs models yield 
ET estimations comparable to the GLEAM data. 
Thus, it is possible to indicate that ETsms and 
ETwvs with GLDAS and SMAP produce reliable 
ET maps.

4. Conclusions

In this work, logarithmic and sigmoid relative 
evapotranspiration functions were proposed 
assuming that it depends on the surface properties 
and atmospheric variables. These two nonlinear 
functions were included in ETsm and ETwv 
models and contrasted with observed ET to 

Figure 5. Monthly mean daily ETsms, ETwvs, GLEAM, and MOD16 ET estimations for a forest (Amazonia- Brazil), cro-
pland (Río Cuarto- Argentina), and native prairie area (Oklahoma- USA) during the 2015-2021 period.
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evaluate their impact on the accuracy of monthly 
mean daily ET results.

The calibrated Fl and Fs parameterizations 
presented were derived from observed SM data 
at point scale and extended to passive microwave 
sensor scale. This extension of the derived models 
reinforces the assumption that the first soil 
layer moisture can be integrated in the relative 
evapotranspiration index, consequently in ET 
models. However, it should be noted that monthly 
ET and coarse spatial resolutions are not entirely 
suitable to small agricultural practices. Although 
in this paper it was demonstrated that the proposed 
models yield good results for vulnerable forests 
monitoring (wildfire), regional water balances, 
climate change studies, and ecosystem evolution 
applications.

The derived ET models are flexible, so could be 
applicable to diverse combinations of dataset and 
to any remote region. In this sense, the proposed 
models improve the operational ET products 
at a global scale. The resulting ET maps are 
comparable to GLEAM maps for different land 
cover during the 2015-2021 period, being Fs and 
Fl scalable for many applications.
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