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Abstract 15 

Tomato landraces are highly appreciated by consumers, who are willing to pay a price 16 

premium for them. But little is known regarding sensory perception and its relationship with fruit 17 

composition. The Spanish variety “Moruno” was selected as a model for this purpose. A 18 

collection of 30 populations was grown in different environments and evaluated by a consumer 19 

panel. Partial least square (PLS) models were then developed relating determinant flavor 20 

descriptors (sweetness, sourness, taste and aroma intensity, aftertaste persistence and agreeability, 21 

and overall flavor acceptability) with compositional variables such as soluble solids, pH, titratable 22 

acidity, individual sugars, organic acids, volatiles, and derived variables. PLS models identified 23 

relationships that had not been uncovered with correlation and simple regression analysis and 24 

offered low cross-validation errors (<15% of the range of variation). Although plant yield 25 

negatively affected sensory perception, it was possible to identify populations with a good 26 

combination of both traits. 27 
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 28 

Highlights 29 

Volatiles and soluble solids interact in all the sensory descriptors 30 

PLS models uncover the role of compounds not highlighted in correlation analysis 31 

Model error (RMSECV) represented less than 15% of the range of variation  32 

Chemical compounds studied in this article 33 

Fructose (PubChem CID: 5984); Glucose (PubChem CID: 5793); Citric acid (PubChem CID: 34 

311); Malic acid (PubChem CID: 525); Glutamic acid (PubChem CID: 611); 6-Methyl-5-hepten-35 

2-one (PubChem CID:9862). 36 

Keywords: Solanum lycopersicum L., sugar, acid, volatiles, PLS models, consumer panel. 37 

 38 

1. Introduction 39 

Consumer complains on tomato flavor became commonplace during the 90s (Bruhn et 40 

al., 1991). At the same time, the interest in tomato landraces increased exponentially. Quality 41 

markets specialized in high quality produces exploited this interest and their price in the market 42 

quadrupled (Cebolla-Cornejo et al., 2007). 43 

Several causes explain the loss of flavor in modern commercial varieties. First, the 44 

maximization of the limits on productivity did not contribute to maintaining a high level of sugars 45 

in fruit, as photoassimilates have to be partitioned into more sinks, and thus, the accumulation of 46 

hexoses per fruit decreases (Bertin et al., 2000). Apart from raising productivity, the need to 47 

reduce yield losses led to the introgression of genes, most of them from wild relatives. It has been 48 

proven the existence of a considerable level of linkage drag in tomato that can lead to important 49 

metabolomic changes (Zhu et al., 2018). During these selection programs, breeders focused on 50 

production traits and external appearance and little attention was paid to flavor. Consequently, 51 

several favorable alleles regarding the production of aroma volatiles were lost over consecutive 52 

breeding cycles (Tieman et al., 2017), and thus, flavor was deeply deteriorated. Additionally, the 53 

introgression of new specific traits resulted in negative side effects. It would be the case of delayed 54 

fruit ripening, controlled by genes such as rin, which decreases consumer acceptance (Causse et 55 
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al., 2003), probably due to lower carotenoid accumulation and a negative impact on apocarotenoid 56 

production, which affect taste perception. The use of genes such as uniform ripening to improve 57 

external appearance also had a negative impact on sugar accumulation, as it reduced the 58 

accumulation of photoassimilates directly synthesized in fruit (Powell et al., 2012). 59 

In order to establish breeding objectives, tomato flavor started to be modelled from the 60 

seventies. Stevens et al. (1977) determined that tomato flavor was deeply influenced by the 61 

accumulation of sugars, acids and the relation between them. In this sense, Malundo et al. (1995) 62 

established that for a certain sugar content there is an optimal acid accumulation level and 63 

increased acid accumulation had a negative effect on preference. Years later, Baldwin et al. (1998) 64 

reported that the perception of sweetness is better explained by sucrose equivalent levels which 65 

weighs each sugar content by its sweetening power. The contribution to sourness of each organic 66 

acid is more complicated. Malic acid may be perceived as sourer (De Bruyn et al., 1971), but the 67 

accumulation levels of citric acid are higher. It seems that glutamic acid does not play an 68 

important role in sourness, but some studies reported that a high ratio between sucrose equivalents 69 

and glutamic acid may be convenient to improve tomato taste (Bucheli et al., 1999; Fulton et al., 70 

2002). Nonetheless, Casals et al. (2018) concluded the opposite, reporting that consumers value 71 

glutamic acid contents positively, at least in cherry tomatoes. 72 

The volatile profile of tomato is rather complex and it has an impact on flavor in two 73 

ways. The first is the direct impact on aroma. Among the 400 volatiles described in tomato fruit, 74 

the initial studies in tomato confirmed that at least 30 had an impact on tomato aroma (Buttery & 75 

Ling, 1993). Unlike other species such as banana, in tomato there is not a volatile with a major 76 

impact on sensory perception. Additionally, several compounds influence how sweetness and 77 

sourness are perceived (Baldwin et al., 1998). They are classified attending to their chemical 78 

characteristics (alcohols, aldehydes, apocarotenoids…) or their metabolic origin. Branched chain 79 

aminoacid derived volatiles (3- and 2-methylbutanal…) and fatty acid derived volatiles (hexanal, 80 

E-2-hexenal, Z-3-hexenal…) tend to offer green notes to tomato aroma and are usually found at 81 

high concentrations. Apocarotenoids, which are found at low concentrations, are usually 82 

perceived as floral or fruity. On the other hand, phenylalanine derived volatiles, including 83 
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compounds such as phenylacetaldehyde, 2-phenylethanol, guaiacol or eugenol, have a sensory 84 

effect difficult to predict as they have been reported to have both positive and negative effect, 85 

probably depending on their different concentrations (Martina et al., 2021). Tandon et al. (2000) 86 

suggested that tomato flavor would improve by increasing the levels of compounds contributing 87 

to floral (6-methyl-5-hepten-2-one and β-ionone), fruity (cis-3-hexenal and geranylacetone) and 88 

fresh (3-methylbutanol and 1-penten-3-one) notes, or by decreasing the levels in compounds 89 

which contribute to stale (hexanal, trans-2-hexenal and 3-methylbutanal), pungent (2-90 

isobutylthiazole) and alcohol (2-phenylethanol) notes. 91 

Several classic studies have tried to model flavor perception and chemical composition 92 

using linear regression models (i.e. Baldwin et al., 1998; Tandon et al., 2003; Abegaz et al., 2004). 93 

In a first approach, some of them have been performed either using a broad spectrum of variance 94 

represented in few materials. In contrast, recent approaches have analyzed the variation in large 95 

collections of different materials including landraces, commercial cultivars, or even wild 96 

representatives. For example, Tieman et al. (2017) did not offer a prediction model, but 97 

highlighted the importance of 33 chemicals that correlated with consumer liking and 37 that 98 

significantly correlated with flavor intensity, with 28 of them being associated with both overall 99 

liking and flavor intensity.  100 

Few studies have been focused on the analysis of specific landraces and few have 101 

predicted models using similar materials with subtle differences. But the truth is that consumers 102 

highly appreciated tomato landraces and are willing to pay a price premium for them (Cebolla-103 

Cornejo et al., 2007). This is the case of the Spanish Moruno variety of tomato which is highly 104 

appreciated by its organoleptic characteristics (Moreno et al., 2019). Tomato landraces are 105 

exposed to several factors such as seed-mixing, cross-pollination, and farmer selection (Cortes-106 

Olmos et al., 2015) that increase their variability even in the accumulation of taste-related 107 

compounds (Cebolla-Cornejo et al., 2013). Therefore, the analysis of a collection of Moruno 108 

populations offers an incredible opportunity to increase our knowledge regarding consumer 109 

preference in tomato as conditioned by the accumulation of taste and aroma related compounds.   110 

2. Materials and methods 111 
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 112 

2.1. Plant materials and field trials 113 

A collection of 30 populations (accessions) belonging to the Spanish “Moruno” tomato 114 

landrace (Table 1) highly appreciated by consumers due to its high quality, was analyzed in a 4 115 

year-field study. These populations have an indeterminate growth habit and are characterized by 116 

medium to large sized fruits, a dark red or brown colour, strong to medium-ribbing intensity, dark 117 

shoulders and a predominantly flattened shape. All of them were obtained from local farmers or 118 

from the Spanish seedbanks. The study was developed on 10 different populations per year during 119 

the Years 1 to 3; in the Year 4, seven of the populations studied in the previous seasons were 120 

considered. These populations were selected considering their best results in the previous trials 121 

regarding specific parameters including sensory evaluation. Additionally, the commercial control 122 

“Royesta” F1 hybrid (Reimer Seeds), with high acceptance by consumers in Mediterranean areas, 123 

was included as a reference. 124 

Cultivation was performed during the spring-summer growing cycle (May to Sept) at the 125 

experimental farm of the Research Centre “El Chaparrillo”, Regional Institute for Agro-Food and 126 

Forestry Research and Development (39º0’N, 3º56’W, altitude 640 m), in Ciudad Real (Central 127 

Spain). The climate of this region is continental Mediterranean, with a mean, maximum and 128 

minimum air temperatures during the four cropping periods at a range of 20.4 to 22.3°C, 28.3 to 129 

31.0°C and 11.4 to 13.0°C, respectively. 130 

The field trials were conducted in a randomized complete block design with four 131 

replicates. Each experimental plot consisted of eight plants (32 plants per population) staked with 132 

a separation of 2.0 m between rows and 1.0 m between plants. For the different controls, the 133 

central six plants of each plot were considered. Plants were cultivated using organic farming 134 

practices (EC n.834/2007), and no chemical fertilizers nor pesticides were applied. Common 135 

fertilization and trickle irrigation practices for tomato organic farming production cultivation in 136 

the area were followed.  137 

  138 
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 Table 1. Populations evaluated of the “Moruno” tomato landrace and year of cultivation. 139 

Year Accession Local name Origin 
Town Province Coordinates 

1 SL-2 “Plano de El Avellanar” San Pablo de los Montes Toledo 39°32′N 4°19′W 
1 SL-6 “Moruno de San Pablo” San Pablo de los Montes Toledo 39°32′N 4°19′W 
1 SL-11 “Moruno de El Avellanar” San Pablo de los Montes Toledo 39°32′N 4°19′W 
1, 4 SL-25 “Moruno” La Malaguilla Guadalajara 40°49′N 3°15′W 
1 SL-27 “Morado” Anchuras Ciudad Real 39°28′N 4°50′W 
1, 4 SL-33 “Negrillo” Almoguera Guadalajara 40°18’N 2°59′W 
1 SL-41 “Negro rosa” Elche de la Sierra Albacete 38°27′N 2°3′W 
1, 4 SL-62 “Moruno” Socuéllamos Ciudad Real 39°17′N 2°47′W 
1, 4 SL-72 “Bonito” Ciudad Real Ciudad Real 38°59′N 3°55′W 
1 SL-74 “Moruno” Ciudad Real Ciudad Real 39º0’N, 3º56’W 
2, 4 SL-112 “Moruno de Aguas Nuevas” Aguas Nuevas Albacete 38°55′N 1°55′W 
2 SL-113 “Moruno” Aguas Nuevas Albacete 38°55′N 1°55′W 
2 SL-114 “Moruno” Aguas Nuevas Albacete 38°55′N 1°55′W 
2 SL-116 “Moruno” Aguas Nuevas Albacete 38°55′N 1°55′W 
2 SL-122 “Morao” Aguas Nuevas Albacete 38°55′N 1°55′W 
2 SL-136 “Morao” La Poblachuela Ciudad Real 38°59′N 3°55′W 
2 SL-154 “Moruno” Elche de la Sierra Albacete 38°27′N 2°3′W 
2 SL-160 “Moruno” Albacete Albacete 38°59′N  1°51′W 
2 SL-163 “Morao” Arroba de los Montes Ciudad Real 39°09′N 4°32′W 
2 SL-165 “Morado” Navas de Estena Ciudad Real 39°29′N 4°31′W 
3 SL-20 “Gordo” Priego Cuenca 40°27′N 2°19′W 
3 SL-140 “Morao” Arenales de San Gregorio Ciudad Real 39°18′N 3°01′W 
3 SL-143 “Moruno” Socuéllamos Ciudad Real 39°17′N 2°47′W 
3 SL-149 “Negro” Riópar Albacete 38°30′N 2°25′W 
3 SL-150 “Negro” Riópar Albacete 38°30′N 2°25′W 
3, 4 SL-204 “Morao dulce” Priego Cuenca 40°27′N 2°19′W 
3 SL-207 “Negro plano” Brihuega Guadalajara 40°45′N 2°52′W 
3 SL-208 “Morao” Priego Cuenca 40°27′N 2°19′W 
3 SL-209 “Moruno” Elche de la Sierra Albacete 38°27′N 2°3′W 
3, 4 SL-252 “Moruno” El Alcornocal Ciudad Real 40°44′N 3°52′W 

 140 

  141 

http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=San_Pablo_de_los_Montes&params=39.545555555556_N_-4.3280555555556_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=San_Pablo_de_los_Montes&params=39.545555555556_N_-4.3280555555556_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=San_Pablo_de_los_Montes&params=39.545555555556_N_-4.3280555555556_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Malaguilla&params=40.8225_N_-3.2555555555556_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Anchuras&params=39.479444444444_N_-4.8363888888889_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Almoguera&params=40.298888888889_N_-2.9811111111111_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Elche_de_la_Sierra&params=38.4483634_N_-2.0489954_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Socu%C3%A9llamos&params=39.293333333333_N_-2.7941666666667_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Ciudad_Real&params=38.983333333333_N_-3.9166666666667_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Aguas_Nuevas&params=38.92_N_-1.92_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Aguas_Nuevas&params=38.92_N_-1.92_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Aguas_Nuevas&params=38.92_N_-1.92_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Aguas_Nuevas&params=38.92_N_-1.92_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Aguas_Nuevas&params=38.92_N_-1.92_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=La_Poblachuela&params=38.9833_N_-3.91667_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Elche_de_la_Sierra&params=38.4483634_N_-2.0489954_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Albacete&params=38.995555555556_N_-1.8558333333333_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Arroba_de_los_Montes&params=39.153888888889_N_-4.5438888888889_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Navas_de_Estena&params=39.495277777778_N_-4.5208333333333_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Priego&params=40.4487619_N_-2.313508_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Arenales_de_San_Gregorio&params=39.309722222222_N_-3.0255555555556_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Socu%C3%A9llamos&params=39.293333333333_N_-2.7941666666667_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Ri%C3%B3par&params=38.4984626_N_-2.4178567_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Ri%C3%B3par&params=38.4984626_N_-2.4178567_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Priego&params=40.4487619_N_-2.313508_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Brihuega&params=40.760555555556_N_-2.8691666666667_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Priego&params=40.4487619_N_-2.313508_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Elche_de_la_Sierra&params=38.4483634_N_-2.0489954_E_type:city
http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=El_Alcornocal&params=40.740583_N_-3.867676_E_type:landmark
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2.2. Sampling and basic determinations 142 

The total yield was recorded throughout the whole harvest period (kg plant-1). For further 143 

characterization and sensory analysis, fruits in the optimum ripe stage, when the fruit surface was 144 

homogenously red colored, were hand-picked in the middle of the harvesting period (first half of 145 

September). Three healthy fruits representing the predominant external appearance of each 146 

population were taken from each plant (18 fruits per experimental plot, 72 fruits per population) 147 

for the different studies. Mean fruit weight (g), number of locules, and fruit dry matter (obtained 148 

in an oven set at 70ºC until constant weight and expressed as grams per 100 g fresh weight) were 149 

considered. Basic quality parameters were determined including total soluble solids content 150 

(SSC), pH, and total titratable acidity. SSC were measured using a digital refractometer ATAGO 151 

PR-32 (Atago Co. LTD, Tokyo, Japan) with automatic temperature compensation, which 152 

provides values as °Brix. pH was determined using a pH meter, and titratable acidity was 153 

quantified by titrating 5 g of tomato paste with 0.1 mol L−1 NaOH to pH 8.1 with an automatic 154 

sample titrator (TitroMatic 1S- 2B, Crison, Barcelona, Spain). Acidity was expressed as grams of 155 

citric acid equivalent per 100 g fresh weight (% citric acid). Each sample was analyzed three 156 

times. 157 

 158 

2.3. Quantification of sugars, acids, and volatiles 159 

The levels of compounds related to taste and aroma perception were determined in six 160 

additional fruits per experimental plot (one fruit per plant, 24 fruits per population). These 161 

analyses included the quantification of reducing sugars (fructose and glucose), acids (citric, malic, 162 

glutamic), and volatiles related to aroma. For that purpose, fruits were washed with distilled water, 163 

homogenized and stored at -80°C until analysis. 164 

Reducing sugars and acids were determined by capillary zone electrophoresis using a 165 

P/ACE System MDQ (Beckman Instruments, Fullerton, CA, USA), following the method 166 

described by Roselló et al. (2002). Fused silica capillaries (Polymicro technologies, Phoenix, AZ, 167 

USA) were used, with a 50 μm internal diameter, 363 μm external diameter, 67 cm total length, 168 

and 60 cm effective length. Capillaries were initially conditioned with NaOH, then separation 169 
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buffer (20 mM 2,6-piridin dicarboxilic acid and 0.1% w:v hexadimethrine bromide, pH = 12.1) 170 

was run for 20 minutes at 20°C. Samples were thawed and centrifuged (510 g) for 5 minutes. The 171 

upper phase was then diluted (1:10) in deionized water and filtered using 0.2 µm membranes. 172 

Samples were injected hydrodynamically for 20 seconds at 0.5 psi. Then separation took place at 173 

-25 kV fixed voltage and 20°C. Capillary was rinsed with SDS (60 mM) for 3 minutes at 20 psi 174 

between samples, followed by the separation buffer at 20 psi for 3 minutes. Reagents and 175 

standards were purchased from Sigma-Aldrich. Each sample was analysed twice and 176 

quantification was performed with calibration curves of 5 points and R2>0.98. Results were 177 

expressed as g kg-1 fresh weight. This method enables the quantification of glutamic acid, as it 178 

can be seen in its optimization reported by Cebolla-Cornejo et al. (2012). 179 

The extraction and analysis of volatiles related to aroma were performed as described by 180 

Beltran et al. (2006). A tomato sample of 30 g with 5% (w/w) CaCl2 and with the addition of 50 181 

µL of 15 µg mL-1 methyl salicylate-D4 (surrogate/internal standard) were extracted by dynamic 182 

head space (purge-and-trap) using SPE Tenax cartridges (Supelco, Sigma-Aldrich Química S.A., 183 

Madrid, Spain) and solvent elution. Chromatographic determination was carried out using a 184 

Varian CP-3800 gas chromatograph coupled with a mass spectrometry detector (Saturn 4000, 185 

Varian). Separation of the analytes was carried out on a 30 m x 0.25 mm DB-5MS (0.25 µm film 186 

thickness) Varian capillary column, using helium at 1 mL min-1 as carrier gas. The temperature 187 

program was as follows: 45°C for 5 min, then raised to 96ºC at a rate of 3°C min-1, then raised to 188 

150°C at a rate of 6°C/min, and finally raised to 240°C at a rate of 30°C/min, with a final 189 

isothermal stage of 1.5 min (total chromatographic analysis time of 36 min). Injection of 1 µL 190 

(splitless mode, temperature 200°C) was carried out using a Varian 8400 autosampler. The gas-191 

chromatograph was directly interfaced with the ion trap Varian 4000 mass-spectrometer in the 192 

external ionization configuration with an electron ionization energy of 70 eV in the positive ion 193 

mode. Transfer line temperature was established at 250°C and ion source and trap temperatures 194 

were adjusted to 200°C. Quantitation of analytes in the sample extracts was performed using 195 

calibration curves using relative areas to internal standard. 196 
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Reference aroma compounds were obtained from Sigma-Aldrich Química S.A. (Madrid, 197 

Spain; including Supelco and Fluka products) as pure compounds. Stock solutions of the aroma 198 

standards at 500 μg L-1 were prepared in acetone and stored at -18°C. Working solutions were 199 

prepared by volume dilution in diethyl ether-hexane (1:1). The internal standard methyl salicylate-200 

D4 was of 99.5% purity and was purchased from SigmaAldrich Sigma-Aldrich Química S.A. 201 

(Madrid, Spain). Calcium chloride 97% (Riedel de Haen) was purchased from Supelco (Sigma- 202 

Aldrich Química S.A., Madrid, Spain). Organic solvents (hexane, ethyl acetate, diethyl ether) of 203 

trace residue analysis quality were purchased from Scharlab (Barcelona, Spain). Results were 204 

expressed as ng g-1 fresh weight. 205 

 206 

2.4. Sensory analysis 207 

The remaining fruits were used for the sensory analysis by a consumer panel. This panel 208 

consisted of 15 to 20 panellists, depending on the year, including males and females in similar 209 

rates, aged 22-52. The panellists were all familiar with taste panel procedures and the terminology 210 

used, and consumed tomatoes. The sensory analysis was performed within the day after harvest, 211 

and until then the fruits were stored at ~15ºC. Fruits were washed, cut radially into wedges (about 212 

eight wedges per fruit), and coded with random numbers. The panellists ranked the fruit samples 213 

from the different populations according to the following sensory attributes: sweetness, sourness, 214 

taste intensity, aroma intensity, aftertaste persistence, aftertaste agreeability, flesh firmness, skin 215 

firmness, grainy texture, floury texture, juicy texture, and overall flavor acceptability. For rating 216 

the different fruit textures (grainy, floury, or juicy texture), the percentage of panelists who 217 

appreciated each texture is expressed. For the other sensory attributes, a hedonic scale from 1 to 9 218 

(1 = low satisfaction or intensity; 9 = high satisfaction or intensity) was used (Baldwin et al., 219 

2015). The panellists were given water and unsalted crackers between samples, and the tests were 220 

conducted in partitioned booths in a climate controlled tasting room. 221 

 222 

2.5. Statistical analysis 223 
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A Partial Least Square (PLS) regression model for overall flavor acceptability (Y vector) 224 

from the other sensory descriptors (X variables) was developed (Supplementary Table 1). PLS 225 

regression models with the whole set of samples were also obtained for each sensory descriptor 226 

variable (Y vector) from compositional variables (X matrix). SSC, Titratable acidity, pH, malic 227 

acid, citric acid, glutamic acid, fructose, glucose, sucrose, sucrose equivalents, Citric acid 228 

equivalents and 39 volatile compounds were used as direct compositional variables. Several ratios 229 

between sugars and/or acid compounds and inverse or quadratic forms of compositional variables 230 

were also included in the in the PLS models (Supplementary Table 2) using a total of 198 X 231 

variables in the initial models. Sucrose equivalents were calculated as the weighted sum of sugar 232 

concentration using the relative sweetening power of each sugar: 1 for sucrose, 1.73 for fructose 233 

and 0.74 for glucose (Baldwin et al., 1998). Citric acid equivalents were calculated as the weight 234 

sum of citric and malic acid considering their relative sourness: 1 for citric acid and 1.14 for malic 235 

acid (Stevens et al., 1977).  236 

Prior to modelling, data were pretreated using autoscale (mean center and scale each 237 

variable to unit standard deviation) to correct different variable scaling and units. Venetian blinds 238 

was chosen as cross-validation method to allow an estimation of the model performance. Outlier 239 

identification was performed using a graphical evaluation of Q residuals and leverage. Any outlier 240 

point that showed a large Q residual or unusual distribution was removed and the model was 241 

recalculated. Normalized residuals and leverage parameters were also considered for outlier 242 

identification (values < -3 or > 3) and elimination in response variables.   243 

Variable selections were performed to improve the initial PLS models using a multistage 244 

criterion. First, an interval PLS (iPLS) forward variable selection procedure (Nørgaard et al., 245 

2000) starting from the variables reported as determinants in tomato flavour (Baldwin et al., 1998; 246 

Tandon et al., 2003; Abegaz et al., 2004; Tieman et al. 2017) were executed to find the first set 247 

of explaining variables. Second an iPLS reverse variable selection (Nørgaard et al., 2000) from 248 

the previous set of selected variables was executed to refine the initial selection, discarding 249 

irrelevant variables. A final refinement in the variable selection of the model was performed 250 
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discarding variables using the selectivity ratio (Sratio) criterion (0.1 fraction removed per 251 

iteration, Rajalahti et al., 2009) to obtain the final models (Supplementary Tables 1 and 2).  252 

Resulting prediction model performance was evaluated in terms of outlier diagnostics, 253 

the number of latent variables (LV), coefficient of determination of cross-validation (R2
CV), cross-254 

validation bias (CV bias) and root mean square error of cross-validation (RMSECV). The ratios 255 

RMSECV/Range of variation were also calculated as a percentage for each descriptor in order to 256 

contextualize the results. 257 

All PLS models were performed using Matlab v 9.8 (Mathworks Inc, Natick, MA, USA) 258 

and the PLS Toolbox 9.0 for Matlab (Eigenvector Research Inc, Wenatchee, WA, USA). Pairwise 259 

correlations were graphically represented as heatmaps using the software heatmapper 260 

(http://www.heatmapper.ca). Principal component analysis (PCA) biplots were obtained to 261 

describe the variation in volatiles and sensory variables. This analysis was performed with S-plus 262 

v.8.01 (Insightful Corp., Seattle, WA, United States).  263 

 264 

3. Results and discussion 265 

3.1. “Moruno” landrace: Levels of variation in composition and sensory perception 266 

Spain, as the introduction point of tomato from America into Europe, has a high level of 267 

diversity of this species. Centuries of cultivation resulted in a high number of landraces which are 268 

highly appreciated by consumers. Accordingly, they are willing to pay up to 4.7 times the price 269 

of conventional modern varieties in order to recover the true flavor of tomato (Cebolla-Cornejo 270 

et al., 2007). Among these landraces, “Moruno” outstands by the high appreciation of its savory 271 

fruits in the area (Moreno et al., 2019). Consequently, it was considered a good case study to 272 

model consumer perception of tomato landraces.  273 

“Moruno” tomatoes can be recognized by a common external appearance with big ribbed 274 

fruits and dark color, but important differences between populations (accessions) can be found. 275 

Indeed, in the present study, the different “Moruno” populations showed a high level of variation 276 

in morpho-agronomical traits (Fig. 1a). In general, fruits showed medium to big size, with a high 277 

number of locules and dark color, while plant yield remained generally under 10 kg plant-1, but 278 

http://www.heatmapper.ca/
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the coefficient of variation (%CV) for fruit weight reached 28%, being even higher for plant yield 279 

(44%). Previous studies with a lower number of populations of this landrace had already showed 280 

important differences in fruit size and plant yield, as some populations doubled the values reached 281 

by others (Moreno et al., 2019). This seems to be a common trend at least in Spanish tomato 282 

landraces. In this sense, Cebolla-Cornejo et al. (2013) found high levels of variation not only 283 

between populations but within populations of different Spanish landraces.  284 

  285 
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 286 

Fig. 1. Profile of variation in the collection of samples assayed regarding to (a) agronomical traits, 287 
fruit quality parameters and compounds related to taste; (b) principal component analysis biplot 288 
of fruit volatiles representing the variability the volatile profile related to aroma (red dots: 289 
commercial control; blue dots: “Moruno” populations; dot size is proportional to yield); (c) 290 
sensory scores (1: low satisfaction or intensity; 9: high satisfaction or intensity) of the descriptors 291 
evaluated by the consumer panel. Error bars represent standard deviations.  292 
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 293 

Differences in basic quality parameters including dry matter, titratable acidity, pH, or 294 

SSC were more limited (Fig. 1a). pH was the most stable trait with %CV of 2%, followed by SSC 295 

(8%) and dry matter (11%), while the variation in titratable acidity was considerably high (30%). 296 

When individual sugars and acids were analyzed, a higher level of variation was detected. It was 297 

higher in acids than in sugars and especially high in malic acids content (%CV=26%), as expected 298 

considering the high variation detected in titratable acidity. 299 

The variation in the volatile profile was schematized using a principal component analysis 300 

(PCA) (Fig. 1b), which confirmed a high dispersion of the “Moruno“ populations in all the 301 

evaluated volatiles classes: alcohols, aldehydes, apocarotenoids, terpenes and terpenoids, 302 

phenolics, phenylpropanoids, and nitrogenous volatiles. This variability was also found in the F1 303 

hybrid commercial control, highlighting the considerable effect of the environment on the volatile 304 

profile. In this case, it should be considered that the expected variability of commercial F1 hybrids 305 

in genotype is negligible, thus, the differences have to be due to environmental effects. 306 

Interestingly most of the populations with lower and higher yields plotted in a profile 307 

characterized by lower accumulation of most volatiles, specially apocarotenoids. Indeed, these 308 

populations present negative scores for principal component 1 and this component presents 309 

positive loadings with most volatiles, and especially carotenoids. 310 

The high level of variation in individual compounds associated with taste and aroma 311 

perception (Fig. 1a and 1b) was reflected in the values obtained in sensory descriptors evaluated 312 

by the consumer panel (Fig. 1c). This variation was higher in traits related to aroma perception 313 

and sweetness and lower for sourness (Fig. 1c). A PCA confirmed the sensory variability present 314 

in the populations evaluated by the consumer panel (Fig. 2). Environmental effects can be, again, 315 

clearly visualized through the dispersion of the F1 hybrid commercial control. Compared to the 316 

dispersion observed in the volatile profile (Fig. 1b), the effect of the environment on sensory 317 

descriptors is highly reduced (Fig. 2). Consequently, the higher variability observed for sensory 318 

perceptions in populations of “Moruno” landrace must be related to genetic differences. In fact, 319 

it has been suggested that tomato landraces are affected by seed mixing and spontaneous cross-320 
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pollination events (Cortés-Olmos et al., 2015). Then, farmers would apply strong selections to 321 

recover fruit morphology traits typical of the landrace. But variation would be maintained in 322 

internal traits related to functional or organoleptic quality. 323 

 324 

 325 
Fig. 2. Biplot representation (scores and loadings) of principal component analysis of sensory 326 
descriptors of “Moruno” landrace populations (blue dots), and commercial control (C, red dots). 327 
Dot size is proportional to plant yield. 328 

 329 

Interestingly, this biplot (Fig. 2) confirmed the difficulty of combining overall flavor 330 

acceptability and yield (dot size is proportional to plant yield). In this sense, those accessions with 331 

higher yields (close to the best performance of the commercial control) are far from the ideal 332 

consumer perception summarized by the overall flavor acceptability. Thus, accessions with a 333 

lower yield, generally performed better in sensory terms. Nonetheless, it was still possible to 334 

identify accessions with acceptable yields and good sensory performance. Altogether, the high 335 

diversity in soluble solids, volatiles, and sensory perception obtained, enabled the development 336 

of reliable models of consumer flavor perception. 337 
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 338 

3.2. Overall flavor perception as affected by other sensory descriptors 339 

In order to analyze which descriptors had a higher influence on consumer acceptability 340 

of this high quality landrace, a multi-stage selection variable procedure (iPLS and Sratio methods) 341 

was performed. The analysis suggested two latent variables that included sweetness, sourness, 342 

taste, aroma, aftertaste persistence, aftertaste agreeability, and flesh firmness as main 343 

determinants of overall flavor acceptability (Supplementary Table 1). Other textural perceptions 344 

were excluded as they were not significant. The model offered a moderate cross-validation 345 

coefficient of determination (R2
cv =0.61), but with a restricted error, with a root mean square error 346 

of cross-validation (RMSECV) value of 0.41, representing a 15% of the range of variation of the 347 

overall flavor acceptability. PLS overall flavor perception model was exported to a linear model. 348 

According to this model, overall flavor acceptability can be inferred from the regression 349 

coefficients as all descriptors used the same scale. It depended positively on sweetness, taste and 350 

aroma intensities, and negatively of sourness, with similar contributions in absolute values. On 351 

the other hand, aftertaste agreeability, aftertaste persistence, and flesh firmness only introduced 352 

slight tinges. In recent models using neuronal networks, Cortina et al. (2018) described, in Andean 353 

landraces and other materials, a higher preference for tomatoes rated high in sweetness and 354 

intermediate in sourness, a preference already reported by Baldwin et al. (1998) in a collection of 355 

24 cultivars, though in that work they later found correlations of overall acceptability with 356 

sweetness, but not with sourness. This perception seems to agree with our results. 357 

 358 

3.3. Modelling sensory descriptors with compositional variables  359 

Specific compositional PLS models were developed for each sensory descriptor 360 

(Supplementary Table 2, Fig. 3). After identifying and removing outliers, iPLS forward models 361 

were initially ran considering each sensory descriptor and the concentrations of taste and aroma 362 

related compounds, as well as inverse and quadratic derivatives,  other derived variables such as 363 

ratios between sugars and acids, sucrose equivalents or citric acid equivalents, which had been 364 

previously linked to tomato flavor as they weight with the sweetening or acidulant power of each 365 
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compound (Galiana-Balaguer et al., 2018). In some cases, such as in sweetness, the initially 366 

obtained model excluded compounds or variables that had been previously described as important 367 

in similar regressions or that showed high linear correlation. Accordingly, the models were 368 

repeated forcing the initial inclusion of these variables in the iPLS forward analysis. 369 
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 370 
Fig. 3. Performance of PLS models relating sensory descriptors and chemical composition. 371 
RMSE: Root Mean Square Error; C: calibration; CV: cross-validation; RMSECV/Range (%): 372 
ratio RMSECV to range of variation of the descriptor. Red line: Linear regression model between 373 
predicted and measured values. Green line: 1:1 relationship between predicted and measured 374 
values. 375 

Overall flavor acceptability

8 Latent Variables
RMSEC = 0.1564
RMSECV = 0.2503
RMSECV / Range (%) = 9.24
Calibration Bias = -1.78 e-15
CV Bias = -0.0041
R2 (Cal, CV) = 0.94, 0.84

Sweetness

3 Latent Variables
RMSEC = 0.3086
RMSECV = 0.3703
RMSECV / Range (%) = 10.89
Calibration Bias = 8.88 e-16
CV Bias = 0.0135
R2 (Cal, CV) = 0.87, 0.82

Sourness

7 Latent Variables
RMSEC = 0.2664
RMSECV = 0.3603
RMSECV / Range (%) = 13.98
Calibration Bias = 8.88 e-16
CV Bias = -0.0048
R2 (Cal, CV) = 0.79, 0.63

Taste intensity

6 Latent Variables
RMSEC = 0.2765
RMSECV = 0.3734
RMSECV / Range (%) = 13.63
Calibration Bias = 0
CV Bias = 0.0226
R2 (Cal, CV) = 0.84, 0.73

Aroma intensity

2 Latent Variables
RMSEC = 0.3822
RMSECV = 0.4763
RMSECV / Range (%) = 13.15
Calibration Bias = 0
CV Bias = 0.0124
R2 (Cal, CV) = 0.81, 0.70

Aftertaste persistence
6 Latent Variables
RMSEC = 0.4203
RMSECV = 0.5421
RMSECV / Range (%) = 12.56
Calibration Bias = - 8.88 e-16
CV Bias = -0.0122
R2 (Cal, CV) = 0.90, 0.83

Aftertaste agreeability
5 Latent Variables
RMSEC = 0.5375
RMSECV = 0.6400
RMSECV / Range (%) = 13.62
Calibration Bias = - 8.88 e-16
CV Bias = -0.0251
R2 (Cal, CV) = 0.81, 0.74
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Although the model performance improved in some cases, it was necessary to check if all 376 

the forced variables were really required. For that purpose, a subsequent iPLS reverse analysis 377 

was performed to discard spurious variables and the performance increased after deleting some 378 

of the initially required variables. Alternative variable selection methods such as VIP (variable 379 

importance in projection) or Sratio (selectivity ratio), that focus on variables with higher linear 380 

correlation, were also evaluated, but the resulting PLS models showed a worse performance, with 381 

higher RMSECV values and lower R2
cv. Accordingly, the models for the different sensory 382 

descriptors did not always include variables with high linear correlation. For example, sweetness 383 

presented relevant (>|0.4|) positive correlations with SSC, titratable acidity, hexanal, 6-methyl-5-384 

hepten-2-one, and beta-cyclocitral and negative with fructose to glucose ratio, 2-phenylethanol, 385 

alpha-pinene, and 3-carene (Supplementary Fig. 1). But the final model did not include most of 386 

these compounds. Even when they were initially forced to participate in the model, its 387 

performance worsened considerably. In a final stage, the Sratio variable selection method was 388 

applied to the selected set of variables to identify variables that could be excluded considering 389 

their low contribution to the phenotype. Some of the variables with low mean contribution to the 390 

final predicted value were discarded. The final PLS models obtained applying the described multi-391 

stage variable selection procedure for each descriptor were exported to linear models and  the 392 

mean contribution of each variable to the predicted descriptor value was calculated (Fig. 4). In 393 

some cases, variables with low contribution to the descriptor values were included in the model, 394 

but their removal decreased both RMSECV and R2
cv values, so they were maintained. 395 

Sweetness perception was finally modelled using three latent variables that included 19 396 

initial variables. The model offered a R2
cv value of 0.82 and a RMSECV of 0.37 was obtained, 397 

which represented a 10.89% of the range of variation of the descriptor, %RMSECV 398 

(Supplementary Table 2, Fig. 3). SSC, sucrose equivalents and glutamic-2 were included in the 399 

model, with a large mean contribution to the descriptor of the former (Fig. 4). 400 

  401 
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 402 
Fig. 4. Mean phenotypic contribution of each compound to the mean predicted value of 403 
each descriptor calculated with PLS models. Groups of compounds: sugars and acids, 404 
alcohols, aldehydes, phenylpropanoids, apocarotenoids, terpenes & terpenoids, 405 
phenolics, nitrogenous volatiles. 406 
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The model also included 16 variables related to volatile contents, with minor 407 

contributions to the descriptor. Among them, stands out the positive contribution of 6-methyl-5-408 

hepten-2-one. The inverse negative relationship of beta-cyclocitral indicated a positive role, while 409 

negative roles were identified in nonanal and z-citral (neral). 410 

The perception of sweetness depends on the amount of sugars present in the fruit. These 411 

contents are represented in the model by SSC and sucrose equivalents (SE). The last variable 412 

represents the sum of individual sugars weighed by their sweetening power. SE already showed 413 

a high correlation with sweetness perception in the models developed by Baldwin et al (1998). 414 

Tandon et al. (2003) also found a higher relationship between SE and sweetness than with the use 415 

of total sugars. In the model obtained in the present work, SE nuances the contribution of SSC. 416 

The participation of acids in the model was expected, but no variable related with acidity was 417 

selected in the model. Traditionally, titratable acidity has been linked with the perception of not 418 

only sourness but also sweetness (Kader et al., 1977; Tandon et al., 2003). In our case,  419 

glutamic-2 made slight contributions to the descriptor value, indicating a preference for higher 420 

glutamic values. Few studies have analyzed in depth the role of glutamic acid in tomato flavor 421 

perception. Bucheli et al. (1999) revealed a major role of the SE glutamic-1 ratio, thus suggesting 422 

a negative role. But in a more recent study, Casals et al. (2018) confirmed the importance not only 423 

of acidity in the perception of sweetness, but also glutamic acid levels in cherry and standard fresh 424 

market tomatoes, as in our model. 425 

Several works have remarked the influence of volatiles in the perception of sweetness. In 426 

1998, Baldwin et al. already described the importance of apocarotenoids, offering fruity or floral 427 

notes, which were related to this sensory perception, as well as some alcohols, while Krumbein 428 

and Auerswald in the same year highlighted the role of 1-penten-3one and 2-methyl-4-pentenal. 429 

Later, Tandon et al. (2003) found high correlation levels between sweetness and isobutylthiazole 430 

and acetone, and more recently, Baldwin et al. (2015) confirmed the relevance of volatiles such 431 

as acetaldehyde, hexanal, trans-2-hexenal, 1-penten-2-one, 6-methyl-5-hepten-2-one, 432 

geranylacetone, b-ionone, 2 + 3-methylbutanol, cis-3-hexenol and methylsalicylate in the 433 

perception of sweetness. Tieman et al. (2012), in a large studio including commercial varieties 434 
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and landraces, reported that sweetness was related to fructose, geranial, 2-methylbutanal, 3-435 

methyl-1-butanol and other compounds associated with flavor intensity, including 2-butylacetate, 436 

cis-3-hexen-1-ol, citric acid, 3-methyl-1-butanol, 2-methylbutanal, 1-octen-3-one, and E,E-2,4-437 

decadienal. Following a similar approach years later, Tieman et al. (2017) highlighted the role of 438 

apocarotenoids in the perception of sweetness, though the analysis of correlations was focused on 439 

overall liking and flavor intensity. In addition, not all the studies have included as many volatiles 440 

in the perception of sweetness. For example, in a recent study, Cheng et al. (2020) only stood out 441 

the role of E,E-2,4-decadienal. In our model, a high number of variables (16) related to 12 442 

volatiles were selected, including one alcohol, two aldehydes, three apocarotenoids, three 443 

terpenoids, one phenylpropanoid and two phenolics (Fig. 4). However, the contribution of several 444 

of them to the descriptor value was very low, and only phenylacetaldehyde, 6-methyl-5-hepten-445 

2-one, nonanal, z-citral, beta-cyclocitral and alpha-terpineol outstood. 446 

Although apocarotenoids appear consistently related to the perception of sweetness, it 447 

seems clear that other volatiles also play an important role. It also can be concluded that 448 

considering the disparity in the volatiles selected in different works, specific models for flavor 449 

perception would be required for specific materials, considering the divergence between general 450 

models generated with a high number of different genotypes and specific models. It seems clear 451 

though that 6-methyl-5-hepten-2-one plays a major role. Although each volatile makes a low 452 

mean contribution to the descriptor value, altogether represent (in absolute values) a 36.5% of the 453 

mean predicted value of sweetness (Fig. 5). 454 

The model for sourness perception included titratable acidity and the ratios glutamic SE-455 

1 and citric2 malic-2 among soluble compounds, as well as 10 variables related to three aldehydes, 456 

three apocarotenoids, one phenylpropanoid, two phenolics and one nitrogenous volatile (Fig. 4). 457 

Seven latent variables were selected in the PLS model, which offered a moderate performance, 458 

with R2
cv = 0.63 and RMSECV of 0.36, representing a 14% of the range of variation of the 459 

descriptor (Supplementary Table 2, Fig. 3). 460 

  461 
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 462 
Fig. 5. PLS model relating overall flavor acceptability with other sensory constructs and PLS 463 
models relating sensory descriptors and variables related to soluble solids or volatiles contents. 464 
P.C.: phenotypic contribution of each group of variables (sum) to the mean predicted value of the 465 
descriptor. P.C.abs: P.C. calculated with contributions in absolute values. R2

cv: coefficient of 466 
determination of the model for cross-valitation. 467 
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Volatiles played a major role in the phenotypic contribution of the sourness perception, 468 

even higher than soluble solids in absolute values (Fig. 5). Several works have also related not 469 

only sugars and acids but also volatiles in the perception of sourness. Baldwin et al. (1998) 470 

highlighted the correlations with SSC, pH, acetaldehyde, acetone, 2-isobutylthiazole, 471 

geranlyacetone, beta-ionone, ethanol, hexanal and cis-3-hexenal. Tandon et al. (2003) obtained a 472 

more limited model including titratable acidity and pH and considered acetone and beta-ionone 473 

as positively correlated with sourness. In both models, beta-ionone was selected as an important 474 

compound conditioning sourness. However, in our model this compound was not included, but 475 

other apocarotenoids did, including geranylacetone with a positive role, and E-citral (geranial) 476 

and 6-methyl-5-hepten-2-one with a negative role (the latter due to an inverse relationship). 477 

Hexanal was included in the model as in the work by Baldwin et al. (1998). Traditionally, it 478 

became clear that not only acids affect the perception of sourness, as their relationship with acids 479 

is also crucial, being the tomatoes perceived as more acidic with lower values of hexoses. 480 

Interestingly, volatiles also affect sourness perception. In some models, the same compound has 481 

been related both with sweetness and sourness. This effect has also been found with nonanal-1 in 482 

both models. In the case of 6-methyl-5-hepten-2-one, though, higher values contributed positively 483 

to sweetness but negatively to sourness. 484 

It is difficult to compare the rest of the descriptors with previous works, as they are not 485 

usually included. In our case, the model for taste intensity showed a good performance 486 

(Supplementary Table 2, Fig. 3). Six latent variables were selected, offering R2
cv = 0.73 and 487 

RMSECV = 0.37 (13.6% of the range of variation). Sugars seemed to play an important role, 488 

represented with the selection of the variables SSC, SE glutamic-2, and fructose2 glucose-1 ratios 489 

(Fig. 4), with a major contribution of the former. But also one aldehyde, two apocarotenoids, one 490 

terpenoid, three phenolic and one nitrogenous volatiles were included (Fig. 4). Nonetheless, in 491 

this case, the phenotypic value of the descriptor was mainly determined by soluble solids (Fig. 5). 492 

In the aroma intensity model (Supplementary Table 2, Fig. 3), two latent variables were 493 

selected, offering a moderate performance, with R2
cv = 0.70 and RMSECV = 0.48 (13.2% of the 494 

range of variation). As expected, a higher number of volatiles (10) was included in the model, 495 
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with three alcohols, two aldehydes, two apocarotenoids, one terpenoid, one phenylpropanoid and 496 

one phenolic (Fig. 4). But interestingly, soluble solids had a major contribution via SSC, SE 497 

glutamic-2 and glutamic citric-2. In fact, the mean phenotypic contribution in real or absolute 498 

values of soluble solids was higher than that of the volatiles (Fig. 5). 499 

Aftertaste descriptors offered higher RMSECV values (Supplementary Table 2, Fig. 3), 500 

though they represented less than 13.6% of the range of variation. Specifically, aftertaste 501 

persistence was modelled with six latent variables (RMSECV = 0.54 and R2
cv = 0.83) and included 502 

the variables pH, glutamic, the ratio glutamic2 citric-1, and 12 variables related to 11 volatiles: two 503 

alcohols, one aldehyde two apocarotenoids, two terpenoids, and three phenylpropanoids (Fig. 4). 504 

Interestingly, pH made with difference the highest mean contribution to the descriptor value, with 505 

fruits with higher pH offering a higher aftertaste persistence. On the other hand, the model for 506 

aftertaste agreeability (Supplementary Table 2, Fig. 3) required five latent variables (R2
cv = 0.74, 507 

RMSECV = 0.64, %RMSECV = 13.6%). The model selected the ratio citric2 glutamic-2 and 11 508 

volatiles: one alcohol, three aldehydes, two apocarotenoids, two terpenoids, two 509 

phenylpropanoids and one phenolic volatile (Fig. 4). Interestingly, aftertaste persistence was 510 

mainly conditioned by contributions of soluble solids variables while aftertaste agreeability 511 

depended more on volatile variables (Fig. 5). 512 

In the study by Baldwin et al. (1998), aftertaste intensity was found to correlate with 513 

acetaldehyde, beta-ionone and ethanol, though more compounds were related to aftertaste sour 514 

(acetaldehyde, hexanal, and 2-isobutylthiazole) and aftertaste bitter (soluble solids, acetaldehyde, 515 

l-penten-3-one, beta-ionone, ethanol, methanol, and 2+ 3-methylbutanol). Among them, only 2-516 

isobutylthiazole was selected in our case for aftertaste persistence with a positive role and beta-517 

ionone for aftertaste agreeability but with a negative role. It seems necessary then to obtain 518 

specific models for specific materials.  519 

Finally, overall flavor acceptability was modelled with eight latent variables and offered 520 

an excellent fit with R2
cv=0.84 and RMSECV=0.25, representing less than 10% of the range of 521 

variation (Supplementary Table 2, Fig. 3). Soluble solids represented the main mean contributions 522 

to the descriptor value, with high positive contributions of SSC and SE and negative of the ratio 523 
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fructose2 glucose-1. Glutamic-2 and the ratios SE glutamic-2 and malic citric-1 were also included 524 

in the model, but their contributions to the phenotypic value were lower (Fig. 4).  525 

Baldwin et al. (1998) concluded that among soluble solids components, overall 526 

acceptability was related to the ratio total sugars to titratable acidity, SE to titratable acidity and 527 

titratable acidity. Previously Malundo et al. (1995) found that increasing sugars and acids 528 

improved tomato acceptability but only up to a point, at which higher acid levels reduced liking, 529 

justifying the importance of sugar to acids ratio. In our case, with a specific type of tomato, the 530 

role of sugar is clear with the contributions of SSC and SE to acceptability, while the role of acids 531 

is represented by the malic citric-1 ratio. Interestingly, our model highlights the role of glutamic 532 

acid and the ratio SE glutamic-2, suggesting a beneficial effect of increasing concentrations of 533 

glutamic acid considering the negative relationship of these variables with acceptability. Bucheli 534 

et al. (1999) found that the best markers for tomato fruitiness in tomato varieties included reducing 535 

sugars, malic and glutamic acid, with a negative role of the latter. Similarly, in S. pimpinellifolium 536 

breeding lines they observed a positive role of reducing sugars to glutamic acid ratio, reducing 537 

sugars, glucose, and a negative one of glutamic acid. This was one of the first mentions of a 538 

relative role of glutamic acid, which the authors justified considering that the most effective 539 

activity as flavor potentiator of this compound was exerted at a pH (5.5-8.0) higher than tomato 540 

pH (4.0-4.6). Our results revisit the role of glutamic acid, highlighting the fact that, in certain 541 

contexts, glutamic acid can play a positive role in flavor acceptability. Eleven variables related to 542 

10 volatiles were also selected in our model. In absolute values, the contributions of volatiles to 543 

the overall flavor acceptability values (1.58) represented a 26% of the contribution of variables 544 

related to soluble solids (6.1). Considering inverse relationships, according to the model, 545 

acceptability mainly increased with increasing contents of 6-methyl-5-hepten-2-one and R-546 

limonene and decreasing levels of 1-hexanol, camphor, 2-hydroxybenzaldehyde and guaiacol, 547 

some of them due to an inverse relationship. According to The good scent company database 548 

(www.thegoodscentscompany.com), positive volatiles represent fruity and citric notes, while 549 

negative volatiles represent pungent green (1-hexanol), medicinal (camphor and 2-550 

hydroxybenzaldehyde) and spicy woody phenolic notes (guaiacol). Additionally, Z-3-hexanal-2, 551 

http://www.thegoodscentscompany.com/
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2-phenylethanol-2, benzaldehyde2 and ethyl salycilate were also included in the model but with 552 

lower contributions. 553 

Baldwin et al. (1998) found that E-6,10-dimetyl-5,9-undecadien-2-one and 6-methyl-5-554 

hepten-2-one had preferable odors in tomato fruits. Years later, Piambino et al. (2012) found in a 555 

collection of different tomato types that Z-3-hexen-1-ol and 2-isobutylthiazole played a major 556 

positive role, while 2-butanol, benzylalcohol, 6-methyl-5-hepten-2-ol and Z-2-nonenal had a 557 

negative influence. In a latter review, Klee and Tiemann (2018) highlighted the positive role on 558 

consumer preferences of fructose and glucose, 1-nitro-2-phenylethane, 1-nitro-3-methylbutane, 559 

1-penten-3-one, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, 2-isobutylthiazole, 2-phenylethanol, 560 

3-pentanone, 6-methyl-5-hepten-2-ol, 6-methyl-5-hepten-2-one, benzaldehyde, benzyl cyanide, 561 

Z-4-decenal, heptaldehyde, isovaleric acid, isovaleronitrile, nonyl aldehyde, phenylacetaldehyde, 562 

E-2-heptenal, E-2-pentenal, E-3-hexen-1-ol, and a negative role of butyl acetate, eugenol, hexyl 563 

acetate, isobutyl acetate, prenyl acetate and salicylaldehyde. One of the last studies on this topic 564 

developed by Cheng et al. (2020) in a collection of different tomato types, reported that the 565 

volatiles that contributed more to tomato flavor were E,E-2,4-decadienal, E-2-hexenal, 1-(2,6,6-566 

trimethyl1-cyclohexen-1-yl)-2-buten-1-one, 6-methyl-5-hepten-2-one, hexanal, 2-567 

isobutylthiazole, 2,6,6-timethyl-1-cyclohexene1-carboxaldehyde, E-6,10-dimetyl-5,9-568 

undecadien-2-one, 4-allyl-2-methoxyphenol, E-2-heptenal, E-2-octenal, Z-3-hexen-1-ol, and 569 

methyl salicylate. They also found that malic acid, 2-E-3-(3-pentyl-2-oxiranyl)acrylaldehyde, 2-570 

hydroxy-ethyl benzoate, methyl salicylate and 2-methoxyphenol were disliked by the evaluation 571 

panels. All being considered, it seems evident that floral and fruity notes of apocarotenoids are 572 

generally preferred, while pungent and medicinal notes might be negative. But the role of each 573 

specific compound changes depending on the different studies. This seems to point out again that 574 

specific models are required for specific materials and that models generated with a wide diversity 575 

of tomato types may not be as generalizable as it would have been considered. This problem has 576 

also been detected in other contexts related to tomato quality. For example, NIR models 577 

developed with a high number of different varieties representing a wide spectrum of variation are 578 

not as reliable as specific models developed for specific contexts (Ibáñez et al., 2019) 579 
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 580 

4. Conclusions 581 

Models relating sensory evaluation and fruit composition in tomato, despite offering a 582 

general view, are rather variable, probably due to the differences in the materials tested. Even 583 

global models, developed with a high number of varieties grown in different years, seem to do 584 

not apply to specific contexts. Indeed, the soluble solids and volatiles identified as determinants 585 

for flavor perception in the present study showed only a minimum overlap with global scale 586 

studios. Our results confirm the role of volatiles in the definition of descriptors related to taste, as 587 

well as the contribution of soluble solids to aroma perception. In terms of overall acceptability, 588 

tough, soluble solids play a major role that is then tinged by different volatiles. Among them our 589 

work shows that 6-methyl-5-hepten-2-one is a key volatile that should be specially considered in 590 

the development of breeding programs. In this context, the specific accumulation of individual 591 

sugars, should also be addressed, as they tinge sensory descriptors. Nonetheless, it seems clear 592 

that general models do not apply in the case of tomato and it would be required to develop specific 593 

models for specific materials. In this context, this study offers valuable information from the 594 

methodological point of view. PLS methods have proved to be a reliable tool to model tomato 595 

sensory perception, offering low %REMSECV values and highlighting the role of certain 596 

compounds that do not outstand for high linear correlations. The models obtained already 597 

represent ideal targets to be considered in the development of breeding programs, considering the 598 

high acceptability of the tomato landrace “Moruno”. On the other hand, the evaluation of the 599 

sensory profile of different populations of the same landrace again highlights the huge variation 600 

present in these genetic resources. It has become commonplace the generalization that landraces 601 

outstand by their organoleptic characteristics, but the truth is that numerous populations of 602 

landraces have lost during their evolution their valued flavor. It is necessary to continue with 603 

depuration programs to consolidate their presence in high quality markets and their on-farm 604 

conservation. But in the process, it should be considered that extremely high yields would highly 605 

impact the sensory profile of tomatoes. 606 

 607 
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