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Abstract

Background: Estimating the required sample size is crucial when developing and validating clinical prediction
models. However, there is no consensus about how to determine the sample size in such a setting. Here, the goal
was to compare available methods to define a practical solution to sample size estimation for clinical predictive
models, as applied to Horizon 2020 PRIMAGE as a case study.

Methods: Three different methods (Riley’s; “rule of thumb” with 10 and 5 events per predictor) were employed to
calculate the sample size required to develop predictive models to analyse the variation in sample size as a
function of different parameters. Subsequently, the sample size for model validation was also estimated.

Results: To develop reliable predictive models, 1397 neuroblastoma patients are required, 1060 high-risk
neuroblastoma patients and 1345 diffuse intrinsic pontine glioma (DIPG) patients. This sample size can be lowered
by reducing the number of variables included in the model, by including direct measures of the outcome to be
predicted and/or by increasing the follow-up period. For model validation, the estimated sample size resulted to be
326 patients for neuroblastoma, 246 for high-risk neuroblastoma, and 592 for DIPG.

Conclusions: Given the variability of the different sample sizes obtained, we recommend using methods based on
epidemiological data and the nature of the results, as the results are tailored to the specific clinical problem. In
addition, sample size can be reduced by lowering the number of parameter predictors, by including direct
measures of the outcome of interest.
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Key points

� Estimating the appropriate sample size in clinical
prediction model development is mandatory to
guarantee the robustness of the results.

� The selected method is designed to be applied to
epidemiological data and based on the nature of
outcomes.

� Strategies based on the selection and reduction of
predictor variables are proposed to reduce sample
size.

� The expected recruitment in PRIMAGE project fits
the estimated sample size.
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Background
In research studies, including experimental clinical trials
and observational studies, estimating the sample size is
essential to ensure that the results will be conclusive and
representative of the studied cohort [1]. Inappropriate
size estimates generate uncertainties to provide reliable
and reproducible answers to the questions the study in-
tends to address [2]. Lower number of cases limits the
capacity to detect existing differences, whereas larger
sample size provides reliable results at the cost of in-
creasing resources, expenses and the duration of the
study [3].
Classic univariate research questions involve both de-

scriptive (estimates of a population parameter or change)
and analytical (association and correlation studies) statis-
tics. Both methods apply a collection of well-described
equations that enable the direct estimation of the needed
sample size [4]. For these assessments, a prior estimate
of the parameter to be studied and of its confidence

interval, or the effect size and both the acceptable type I
and type II errors, are needed to perform the calcula-
tions [3]. The sample size estimation in clinical predict-
ive models extracted from observational data is more
complex, since suitable direct equations are not readily
available [5, 6].
When developing predictive models, a widely used

“rule of thumb” to estimate sample size is that based on
simulation studies conducted in the 1990s, stating that
at least 10 events per predictor variable (EPP) must be
included [7–9]. It should be noted that in these observa-
tional predictions, events refer to the number of patients
in the sample with the clinical characteristic of interest
(Fig. 1). Nevertheless, this rule has been widely ques-
tioned due to the context-specific nature of the EPP re-
quired, which may correspond to a number other than
10 EPP [10, 11].
Two methodologies that go beyond simple rule of

thumb are considered as a baseline for sample size

Fig. 1 Factors involved in sample size estimation and model development. Example of the clinical outcomes, events, predictors and predictions
applied to neuroblastoma
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estimation in this study. For logistic and Cox regres-
sion models, the 10 EPP rule of thumb can be relaxed
to as low as to 5 EPP depending on the nature of the
model, either logistic or Cox regression, and whether
the primary predictor variable is binary or continuous
[12]. A new method to calculate the sample size for
parametric predictive models was proposed based on
different factors, such as disease prevalence in the
population, the number of predictor variables, the
number of participants, and the expected fit of the re-
gression model [13]. In this four-step method to cal-
culate the sample size for estimation models, each
step claims to meet a different criterion related to
model performance. These four calculations vary de-
pending on the type of outcome of the model (binary,
continuous or time-to-event) and eventually, the lar-
gest sample size obtained is chosen. Finally, model
validation has an essential role to demonstrate that
an estimative algorithm is reproducible and can be
consistently applied in clinical practice. In this case,
there is a higher consensus that the minimum sample
size for a robust validation should have at least 100
events [14].
This study aimed to use the PRIMAGE project as a

use-case to apply and compare the aforementioned
methods to estimate the sample size required for both
model development and validation. The estimations will
be performed to different scenarios regarding the clinical
endpoints for neuroblastoma (NB) and diffuse intrinsic
pontine glioma (DIPG) patients [15]. Secondly, the re-
quired sample size was compared with the expected re-
cruitment within the project, and different approaches
were explored to reduce the required sample size.

Methods
PRIMAGE project
PRIMAGE (PRedictive In silico Multiscale Analytics
to support cancer personalised diaGnosis and progno-
sis, Empowered by imaging biomarkers) is a Horizon
2020 funded research project (RIA, topic SC1-DTH-
07-2018), an in silico observational study for the
training and validation of machine learning algorithms
and multiscale prediction models [15]. This project
aims to offer precise clinical assistance in the most
relevant paediatric cancers: NB and DIPG. The data
repository contains a high number of variables, in-
cluding clinical, molecular and genetic data (above
300 different variables), as well as imaging data (more
than 100 radiomic features). Throughout the project,
machine learning and image processing deep learning
algorithms will be used to extract pattern information
from the images and link outcome results to known
ground-truth diagnosis.

Sample size estimation
The methodology described by Riley [13, 16, 17] was
that chosen to calculate the sample size needed to de-
velop the computational, in silico, observational predict-
ive model to be used in the PRIMAGE project.
PRIMAGE aims to generate and validate predictive tools
to diagnose and manage malignant childhood NB and
DIPG tumours based on their phenotype and
aggressiveness.
The sample size and EPP calculations for the different

models generated, either binary or time-to-event, were
implemented in R using the pmsampsize package [13].
For comparison, the sample size was also estimated
using the 10 EPP “rule of thumb” and the updated 5
EPP rule. The calculations were applied to different sce-
narios for both NB and DIPG based on the clinical end-
points of interest described in the project, such as
mortality risk at certain timepoint, time to death, time
to relapse/progression, relapse/progression risk, event-
free survival rate, and progression-free survival (PFS). In
the case of NB, some of the clinical endpoints exclu-
sively referred to the high-risk (HR) sub-group, due to
their characteristics and clinical interest. A list of all
these scenarios can be found in Table 1.

Epidemiological data
The clinical endpoint data required by the pmsampsize
package [13] to perform the calculations was obtained
from previous studies after a detailed review [18–21]
(Table 2). In the case of the endpoints for NB, the data
for the 5-year OS rate (30.7%) and time-to-death (me-
dian time-to-event 24.2 months, time of follow-up 60
months) were obtained from [18], and the data for the
prevalence of relapse/progression (25.75%) was from
[20]. For HR NB, the data regarding the 5-year OS rate
(50%), the 5-year event-free survival rate (40.8%), the
prevalence of relapse (56.1%), the median time-to-
relapse (19.08 months) and the median follow-up time
(72.12 months) were all collected from [19]. For the
DIPG endpoints, an extensive systematic review [21]
provided all the necessary data for the calculations of
the different endpoints, including: the 1-year (45%) and
2-year OS rates (16.9%), the 1-year PFS rate (23.5%), the
median time-to-death (11.4 months), the follow-up time
for the time-to-death model (24 months), and the me-
dian time-to-progression (7.7 months) and follow-up
time for the time-to-progression model (12 months).

pmsampsize settings
Among the different parameters of pmsampsize, shrink-
age (that is the regularisation of the variability in the
model’s predictions to reduce overfitting) was set to the
default value of 0.9 and the number of predictor vari-
ables was initially fixed to 30. This initial value was
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chosen as a conservative one, since in clinical predictive
models including radiomic features, the number of pre-
dictor variables is usually lower, between 2 and 20 [22–
26]. Moreover, the risk of overfitting or spurious discov-
eries would increase with the number of predictor par-
ameter included in the models [27, 28]. Regarding the
expected fit of the model, the Cox-Snell pseudo R2

(R2
CS) required by the equations ranged from 0 to a

max(R2CS) < 1, depending on the prevalence of the out-
come. To normalize the value of R2

CS in order to com-
pare between different models, Nagelkerke defined
another pseudo R2 (R2

Nagelkerke) [29], calculated as the ra-
tio between R2

CS and max(R2
CS) (Eq. 1), such that the

R2
CS needed by the equations can be obtained from the

R2
Nagelkerke. With respect to the R2

Nagelkerke value, the au-
thors suggest that in the absence of other information
sample sizes should be derived assuming the R2

CS value

corresponds to an R2Nagelkerke of 0.15. However, if the
predictor variable includes direct measurements or dir-
ect measures of the processes involved in the outcome,
they suggest a more appropriate R2

Nagelkerke value of 0.5
[13]. Given that we do have some information on the
processes involved but we do not have direct measures,
we decided to compromise and chose a R2Nagelkerke value
of 0.3.
For the time-to-event models, the time point of inter-

est for the prediction and the expected average follow-
up time for individuals in the dataset used to develop
the model was set by experienced paediatric oncologists:
24 months for the time-to-death model of NB, for the
time-to-relapse/progression model of HR NB and for the
DIPG time-to-death models; and 12 months for the
DIPG time-to-progression model (Eq. 1: estimation of
the rate of incidence (person-time)).

Table 1 Clinical endpoints and model type

sTumor type Description Type of outcome

Neuroblastoma 5-year mortality risk Binary

Neuroblastoma Relapse/progression risk Binary

Neuroblastoma Time-to-death Time-to-event

HR-Neuroblastoma HR 5-year mortality risk Binary

HR-Neuroblastoma HR 5-year relapse/progression risk Binary

HR-Neuroblastoma HR-time to relapse/progression Time-to-event

DIPG 1-year mortality risk Binary

DIPG 2-year mortality risk Binary

DIPG 1-year progression risk Binary

DIPG Time-to-death Time-to-event

DIPG Time-to-progression Time-to-event

List of the clinical endpoints for neuroblastoma, HR neuroblastoma and DIPG tumors for which the sample size was determined, and the type of outcome for
each of these. DIPG diffuse intrinsic pontine glioma, HR high-risk

Table 2 Required data for sample size calculations

Model Prevalence Median tevent tfollow-up Rate Time point Follow-up

NB 5-year mortality risk 0.307 – – – – –

NB relapse/progression risk 0.258 – – – – –

NB time to death 0.307 24.2 60 0.0063 24 24

HR-NB 5-year mortality risk 0.500 – – – – –

HR-NB 5-year relapse/progression risk 0.408 - – – – –

HR-NB time to relapse/progression 0.561 19.08 72.12 0.0132 24 24

DIPG 1-year mortality risk 0.450 – – – – –

DIPG 2-year mortality risk 0.169 – – – – –

DIPG 1-year progression risk 0.235 – – – – –

DIPG time to death 0.169 11.4 24 0.0077 24 24

DIPG time to progression 0.235 7.7 12 0.0214 12 12

Data related to each clinical endpoint for which the sample size has been determined. The number of parameters and the value of R is the same for all 11
scenarios (30 and 0.3, respectively) and thus, only the prevalence is required for the binary models
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R2
Nage=kerke ¼

R2
Cox−Snell

max R2
Cox−Snell

� � ð1Þ

One of the parameters required by pmsampsize func-
tions to calculate the sample size for time-to-event
models is the rate of incidence or person-time rate.
Briefly, the rate of incidence is the number of new events
during the study follow-up, considered as those patients
that present the outcome under study, relative to the
total time contributed by all subjects during the observa-
tion period (Eq. 2).

person−time rate ¼ new events during the study follow‐up
total follow‐up time

ð2Þ

Since this data is difficult to find from previous stud-
ies, the person-time rate was estimated following the ap-
proach shown in Eqs. 3, 4, and 5 as a function of
prevalence, median time-to-event and median follow-
up-time. Considering that the median time-to-event is
the time at which 50% of subjects become events, the
sum of the total time contributed was considered as the
number of events multiplied by the median time-to-
event (tevent) plus the number of non-events multiplied
by the median time of follow-up (tfollow-up: Eqs. 2 and 3).

person−time rate ¼ events
events�median tevent þ events�median tfollow−up

ð3Þ

Due to the characteristics of the study, only the num-
ber of events and the median follow-up time could be
found. As a consequence, we used Eq. 4 as an approxi-
mation to the incidence rate (person-time), where p is
the proportion between the number of events (number
of patients in the sample with the clinical characteristics
of interest) and the total number of patients in the study
(N), as stated in Eq. 5.

person−time rate ¼ p

p� median teventð Þ þ 1−pð Þ� median tfollow−up
� � ð4Þ

p ¼ events
N

ð5Þ

In the cases where it is not possible to identify the me-
dian follow-up time but the prevalence for a certain time
is available, the time point for which the prevalence data
is given may be considered as the follow-up time for
non-events, as if all non-events had been censored at
that point.

Sample size variability
The effect of the number of predictor variables on the
sample size was studied by executing the pmsampsize
functions, varying the number of variables from 5 to 30
at intervals of 5, and leaving constant all other condi-
tions of the equations. The variability in sample size as a

function of the R2
Nagelkerke was assessed by establishing a

value of 0.15 and 0.5 as indicated previously, and to 0.8
in accordance with a hypothetical situation in which the
expected fit of the model would be higher. For the time-
to-event models, the effect of the ratio between the time
point of prediction and the expected time of follow-up
was analysed by varying this ratio, such that the higher
the ratio the longer the follow-up time relative to the
time point, with ratio values between 1 and 4.

Sample size for model validation
The sample size for model validation was calculated
from equation 4, using 100 as a minimum and 200 as a
desirable number of events [14].

Results
Sample size determination
The sample size for each different endpoint was deter-
mined by applying the pmsampsize algorithms to data
described in Methods. Accordingly, the sample size
needed to develop robust clinical predictive models
ranged from 1111 to 1397 NB patients, from 1043 to
1060 HR NB patients, and from 1043 to 1345 DIPG pa-
tients (Table 3). When more than one endpoint predic-
tion was under study, and therefore more than one
sample size was required, the largest estimated sample
size should be chosen, such that the definite sample size
was selected as the upper limit of the different ranges:
1397 for NB, 1060 for HR NB, and 1345 for DIPG
tumours.
In order to compare the sample size obtained with

other accepted methodologies, sample sizes were also
calculated following the 10 EPP “rule of thumb” [7–9]
and the 5 EPP estimation [12]. In the first case the sam-
ple sizes obtained were smaller, ranging from 978−1166
for the neuroblastoma, 536–736 for the HR neuroblast-
oma, and 668−1776 for the DIPG models. With the 5
EPP estimations the sample sizes were half those calcu-
lated with the 10 EPP rule, 490–584 for neuroblastoma,
268–369 for HR neuroblastoma, and 334–889 for DIPG.
Finally, the EPP for the sample size estimated using
Riley’s methodology was also obtained from pmsampsize,
and the number of events per variable were > 10 in more
than half of the scenarios analysed and ≥ 7 in the rest of
cases.

Sample size variability
To address the possibility of reducing the sample size
while maintaining statistical power, additional calcula-
tions were performed in which conditions of the
pmsampsize equations were varied.
The variation in the number of predictor variables

showed a direct proportional behaviour between sample
size and number of variables in the range 10–30
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Table 3 Results of sample size calculations

Model Riley’s sample size 10 EPP 5 EPP Riley’s EPP

NB 5-year mortality risk 1111 978 490 11.37

NB relapse/progression risk 1168 1166 584 10.03

NB time to death 1397 978 490 7.00

HR-NB 5-year mortality risk 1043 600 300 17.38

HR-NB 5-year relapse/progression risk 1060 736 369 14.42

HR-NB time to relapse/progression 1060 536 268 11.23

DIPG 1-year mortality risk 1043 668 334 15.65

DIPG 2-year mortality risk 1345 1776 889 7.58

DIPG 1-year progression risk 1208 1278 639 9.46

DIPG time to death 1273 1776 889 7.87

DIPG time to progression 1130 1278 639 9.67

Sample size estimated by Riley’s methodology, the 10 EPP “rule of thumb” and 5 EPP. The number of events per predictor (EPP) variable derived from the sample
size obtained with Riley’s methodology was also calculated. EPP event per predictor parameter

Fig. 2 Impact of the number of predictor variables on the sample size. Variability in the sample size relative to the number of predictor variables
included in model development for neuroblastoma (A), HR neuroblastoma (B) and DIPG (C). DIPG diffuse intrinsic pontine glioma, HR high-risk,
NB neuroblastoma
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predictor variables for all the 11 scenarios analysed, as
well as for 6 scenarios in the 5−30 range (Fig. 2). For ex-
ample, the sample size can be reduced by half in all 11
scenarios analysed if the number of variables is reduced
to a half, from 30 to 15 predictors: 556, 584, and 699 pa-
tients in the 5-year mortality risk, relapse risk and time-
to-death models for NB; 522, 530, and 530 in the 5-year
mortality risk, 5-year progression/relapse risk and time-
to-relapse models for HR NB; and 522, 673, 604, 637,
and 565 patients for the 1-year mortality risk, 2-year
mortality risk, 1-year progression risk, time-to-death and
time-to-relapse in the models for DIPG.
Regarding the variability of sample size as a function

of the R2
Nagelkerke, results show that including direct or

indirect measures of the processes involved in the out-
come to be predicted (R2

Nagelkerke = 0.5) as opposed to
not doing so (R2Nagelkerke = 0.15) strongly reduced the
required sample size by an average of 71.2% (Table 4).
This reduction in sample size was slightly lower when
R2

Nagelkerke values of 0.5 and 0.8 were compared. Regard-
ing the number of EPP variables, very high values (max-
imum 37.45) were found when the R2

Nagelkerke was 0.15,
far above that of the classic 10 EPP. By contrast, when
the R2

Nagelkerke was set to 0.8 the EPP value dropped to
as low as 3.75.
In addition, for time to event models, increasing the

ratio between the time of follow-up and the time point
of interest also leads to a lower sample size, with a re-
duction of between 13.8 and 23% when comparing a ra-
tio of 1 and 2 (Fig. 3), although this reduction
diminished as the ratio increased.

Sample size requirements for model validation
Finally, the minimum sample size required to validate
the predictive models, considered as 100 events, was 326

patients for the NB models, 246 for the HR NB models,
and 592 for the DIPG models, with a desirable size (200
events) of 652, 491 and 1184 patients, respectively (Table
5).

Discussion
We have explored a practical solution to estimate the
sample size necessary to develop robust clinical predict-
ive models [13] to the specific case of the observational
PRIMAGE project [5]. Unlike other estimation methods,
such as the 10 EPP rule [7–9], this solution provides a
set of algorithms to calculate the sample size required to
construct and validate robust parametric predictive
models based on model quality criteria, and type of clin-
ical outcome.
The sample size obtained with the proposed method-

ology was compared to its analogous estimation pre-
dicted with other more basic rules, having significant
discrepancies. In addition, when comparing the number
of EPPs obtained when using this method with respect
to the 10 and 5 EPP rules, the number of EPPs rise
above 17 in some scenarios (17.38 EPPs for the HR-NB
5-year mortality risk model) but fall to as low as to 7 in
others (NB 5-year mortality risk). This confirms that 10
and 5 EPP rules may not be generally applicable since
the number of EPPs for sample size estimations might
depend on the context of the study, the prevalence of
the outcome, the quality of the predictor variables
chosen and the type of model to be developed [10, 11].
To explore possible solutions for cases where the re-

quired sample size exceeds the available sample, the size
variation relative to certain parameters used in the cal-
culations was analysed (e.g. the number of predictor var-
iables, estimated R2Nagelkerke and follow-up/time point
ratio). The most feasible option to decrease the required

Table 4 Variability of sample size with R2Nagelkerke
Model R2Nagelkerke = 0.15 R2Nagelkerke = 0.5 R2Nagelkerke = 0.8

Sample size EPP Sample size EPP Sample size EPP

NB 5-year mortality risk 2383 24.39 666 6.82 550 5.63

NB relapse/progression risk 2495 21.42 704 6.04 590 5.06

NB time to death 2951 14.79 858 4.30 749 3.75

HR-NB 5-year mortality risk 2247 37.45 620 10.33 501 8.35

HR-NB 5-year relapse/progression risk 2280 31.01 631 8.58 513 6.98

HR-NB time to relapse/progression 2280 24.15 631 6.68 513 5.43

DIPG 1-year mortality risk 2247 33.70 620 9.30 501 7.52

DIPG 2-year mortality risk 2848 16.04 824 4.64 713 4.02

DIPG 1-year progression risk 2575 20.17 731 5.73 618 4.84

DIPG time to death 2705 16.72 775 4.79 663 4.10

DIPG time to progression 2419 20.69 679 5.81 563 4.82

Sample size calculations with different values of R2Nagelkerke (0.15, 0.5, and 0.8). The number of events per predictor variable was obtained with the
pmsampsize package
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sample size is to reduce the number of predictor vari-
ables included in the model as the number of predictors
and the sample size have a directly proportional relation-
ship in the range of 5 to 30 predictor variables. One pro-
posed strategy is to decrease the potential predictive

variables to be included in the models. For this purpose,
we propose to carry out an exhaustive manual selection
process of the variables to be collected in the design
phase of the study. To this end, it is of great important
to have the opinion of experts in the field of interest, as
well as to carry out a rigorous analysis of the related lit-
erature, thus selecting the candidate predictor variables
considered most important in function of the outcome
to be predicted [30, 31].
Other possible approaches are to include measures of

the outcome to predict which would result in an in-
crease of the R2

Nagelkerke value from 0.3 to 0.5, reducing
the sample size by an average of 39.8 ± 0.7% (mean ±
standard deviation).
Other mitigation strategies may include subject-wise

cross-validation [32], resampling techniques [33], or data
augmentation methods for medical images [34], and
even exploring data imputation solutions for clinical data
as suggested by Pezoulas et al. [35]. In some cases, the
required sample size is not achievable even after apply-
ing sample reduction strategies. This is a study limita-
tion, and researchers should be careful with the degree
of evidence of the results.

Fig. 3 How the follow-up/timepoint ratio affects the sample size. Analysis of the variation in sample size for the time-to-event models relative to
the ratio between the expected average follow-up of the dataset and the time points of interest for the predictions. DIPG diffuse intrinsic pontine
glioma, HR high-risk, NB neuroblastoma

Table 5 Sample sizes for external validation

Model 100 events 200 events

NB 5-year mortality risk 326 652

NB relapse/progression risk 288 776

NB time to death 326 652

HR-NB 5-year mortality risk 200 400

HR-NB 5-year relapse/progression risk 246 491

HR-NB time to relapse/progression 179 357

DIPG 1-year mortality risk 223 445

DIPG 2-year mortality risk 592 1184

DIPG 1-year progression risk 426 852

DIPG time to death 592 1184

DIPG time to progression 426 852

The sample size for the external validation of the models has been calculated
considering a minimum effective sample size of 100 events and a desirable
situation of 200 events
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Considering that the expected sample size in the
PRIMAGE project is more than 2900 NB cases, of
which at least 1500 are HR NB, the expected cohort
is therefore appropriate to develop reliable models
with up to 30 predictive variables. However, the num-
ber of DIPG patients expected in PRIMAGE project
(n = 700) falls below the sample size estimated with
the default parameters for the pmsampsize equations
(1345 cases). A downsizing strategy should be consid-
ered by applying feature reduction/selection methods
and reducing the number of predictive parameters. In
this way, 673 DIPG cases would be required when
the number of predictive variables included in the
prediction models is set to 15.
It should also be highlighted that the most important

step in clinical prediction models is the validation phase,
in which the true fit of the model and its applicability to
daily clinical practice is assessed to ensure reproducibil-
ity. Using the lower limit of 100 events, the minimum
sample size obtained for the external validation of the
PRIMAGE models was 326 patients for NB and 592 for
DIPG, which is an achievable number in the case of NB
but somewhat more challenging for DIPG given its
lower incidence.
Regarding the possible biases, the pmsampsize for-

mulas were developed considering only linear regres-
sion models for continuous outcomes, logistic
regression for binary outcomes, or proportional haz-
ards regression models for time-to-event data. These
three different algorithms are parametric, suitable to
obtain predictive models when the relationships be-
tween the different variables in the dataset are known
and well-defined. However, when the relationships be-
tween variables are not direct, it seems more appro-
priate to apply non-parametric models that can
efficiently exploit the more complex relationships be-
tween the variables, such as the k-nearest neighbours,
support vector machines or decision tree algorithms.
Therefore, the quality of the variables, the selection of
the most appropriate algorithm for the data model,
and the process of hyperparameter tuning are essen-
tial to obtain robust predictive models.
In summary, we have applied a recently devised

method to determine sample sizes for clinical predictive
model development and validation to the use-case of the
observational PRIMAGE project, providing an overview
of different sample size reduction approaches. This
methodology is based on the epidemiological data and
the nature of the outcome, tailoring the obtained sample
size to the specific medical problem of interest. A com-
mon research framework for sample size estimation
methodologies for the development and validation of
clinical predictive models should be defined by the clin-
ical research community.
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