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Abstract:
This article presents two combinatorial genetic algorithms (GA), unequal earliness tardiness-GA (UET-GA) 
and job-dependent earliness tardiness-GA (JDET-GA) for the single-machine scheduling problem to minimize 
earliness tardiness (ET) cost. The sequence of jobs produced in basic UET and JDET is added to the random 
population of GA. The best sequence from each epoch is also injected as a population member in the subsequent 
epoch of GA. The proposed improvement seeks to achieve convergence in less time to search for an optimal 
solution. Although the GA has been implemented very successfully on many different types of optimization 
problems, it has been learnt that the algorithm has a search ability difficulty that makes computations NP-hard 
for types of optimization problems, such as permutation-based optimization problems. The use of a plain random 
population initialization results in this flaw. The main objective of the article is to develop the combination of 
heuristics (UET, JDET) and the GA to obtain convergence by reinforcing the random population initialization and 
finding a promising solution for the reduction in total ET cost. The cost is further significantly lowered offering the 
due date as a decision variable with JDET-GA. Multiple tests were run on well-known single-machine benchmark 
examples to demonstrate the efficacy of the proposed methodology, and the results are displayed by comparing 
them with the fundamental UET and JDET approaches with a notable improvement in cost reduction.
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1. Introduction

Over the last few decades, operational research 
practitioners have paid close attention to scheduling 
issues. For many years, however, great emphasis 
was placed on regular performance measurements, 
which are based on job tardiness, and total flow 
time. Oyetunji (2009) discussed performance 
measurements related to tardiness and total flow 
time so that their values could be calculated. Gupta 
and Kumar (2016) used the TOPSIS approach for 
flow shop scheduling problems to minimize the 
makespan criterion which is related to total flow 
time performance measure. Performance measures 
concerning tardiness are met by meeting due 
dates. Bari et al. (2022b) studied flow time-related 
measures as well as tardiness-related measures, and 

they used a genetic algorithm (GA) to determine the 
optimal solution for minimizing tardiness measures. 
Manufacturers must make commitments to meet 
promised due dates and complete jobs ahead of 
schedule. However, manufacturers do not want to 
produce too early. When a job is finished ahead of 
schedule, it is referred to as an early job. An early 
job is undesired since it requires warehouse storage, 
which results in inventory and insurance fees. When 
a job is finished later than the assured due date, it is 
referred to as a tardy job. A tardy job is undesirable 
since the manufacturer misses some of its income 
as well as some goodwill and reputation due to 
contract penalties. The rise of the just-in-time (JIT) 
mindset emphasised the significance of evaluating 
the cost configurations related to both early and tardy 
jobs, resulting in the rapid spread of non-regular 
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performance measures (Rolim and Nagano, 2020). 
Many researchers (Shabtay and Steiner, 2007; Kanet 
and Sridharan, 2000; Woodruff and Spearman, 1992; 
Ow and Morton, 1989) mentioned that the goal of 
optimizing total earliness and tardiness in scheduling 
is stable with a JIT concept in which it is preferable 
to finish the jobs as near to their due dates as possible. 
For more than three decades, researchers have been 
studying the earliness tardiness (ET) scheduling 
problem with a common due date or distinct due 
date. The problem is a scheduling problem with a 
common due date if all jobs have the same deadline. 
If the jobs have arbitrary due dates, then the problem 
is a distinct due date scheduling problem. A common 
due date can be considered as a given constraint or 
choice variable in the ET schedule. Due date is issued 
in advance in the context of frequent circumstances 
where factory floor actions must satisfy client needs, 
that are impacted by outside sources. Treating them 
as decision variables, on the other hand, may convert 
production systems that set goals to direct the 
completion of inside tasks. Therefore, the due date 
is either given or regarded as a decision variable. If 
the due date is known to manufacturers then the cost 
function is objective, on the other hand, if the due 
date is uncertain then the due date is an optimization 
criterion for manufacturers.

Arık et al., (2022) studied that usually, there is no 
downtime between any two consecutive jobs to 
generate an optimum sequence with minimum cost. 
When jobs have a common due date, the issue of no 
downtime among jobs is usually inevitably fulfilled, 
excluding at the start of the schedule. When job due 
dates are distinct, incorporating downtime among 
jobs can be advantageous (Baker and Scudder, 
1990). But operating a machine inactively is either 
prohibitively expensive or technologically limited, 
and hence jobs must be completed with no idle time 
in between (Chen et al., 2012; Carlier et al., 2010; 
M’Hallah, 2007; Irani and Pruhs, 2005; Wagner 
et al., 2002; Liaw, 1999). There are numerous real-
world scenarios in which the supposition of no 
idle time between jobs is reasonable. With known 
and common due dates, a scheduling problem is 
classified as a restrictive and unrestrictive scheduling 
problem to optimize the cost function. The optimum 
sequence of jobs on a single machine ET scheduling 
problem is V-shaped (Kanet, 1981). The V-shaped 
feature demonstrates that jobs that are finished early 
are scheduled in the highest to the lowest order of 
processing time, whereas jobs that are finished late 
are scheduled in rising order of processing times.

Akande and Ajisegiri, (2022) discussed three distinct 
tolerance windows, the positive tolerance window, 
in which there is a profit with early jobs, as in some 
industrial systems where demand surpasses supply. 
The negative tolerance window, where early jobs 
are penalized, particularly as a function of inventory 
cost. The window of neutral tolerance where the job’s 
first arrival invites neither advantage nor penalty. 
Based on the tolerance window, the ET problem can 
be classified into three classes, the first benefits from 
early jobs and penalties for jobs that are late. The 
second class is the one where tardy jobs and early 
jobs both carry penalties. JIT is incorporated into 
this model that specifies, the job’s completion time 
should coincide with its due date. The third class has 
no advantage or penalty linked with previous jobs, 
but there is a penalty linked with delayed jobs.

The majority of scheduling problems are NP-
hard. Integer or mixed integer programming 
(MIP) are common methodologies for optimizing 
or heuristically addressing these issues. Total 
ET scheduling, in particular, are NP-hard in the 
strict sense. When the downtime between jobs is 
permitted several investigators have suggested MIP 
formulations (Alidaee et al., 2021), but this may not 
be preferred many a time.

The GA is mostly used to minimize the penalties 
for being early and tardy in the single-machine ET 
problem. Schaller and Valente (2013) suggested a 
GA for minimizing total earliness and tardiness and 
compared it to neighborhood search techniques and 
metaheuristics. Although the GA is employed solely 
in literature to address this topic, it is challenging 
to conclude the optimal solution because of the 
algorithm’s randomness. The performance of 
the method can be enhanced by integrating other 
algorithms, especially to enhance the local search 
principle (Yuce et al., 2017). For single-machine 
scheduling of a group of jobs with a common due 
date, they developed a meta-heuristic to reduce 
the job’s overall earliness and tardiness. They 
created a hybrid genetic bees’ algorithm by fusing 
the exploration capabilities of the GAs with the 
exploitation capabilities of the bees’ algorithm. 
Plateau and Rios-Solis (2010) presented a quadratic 
programming approach for the problem of a common 
due date constraint to optimize the cost function. 
Beyranvand et al. (2012) further improved this 
approach for the same problem. For the problem, 
Arık (2020) proposed simulated annealing (SA), an 
artificial bee colony (ABC), and a GA to optimize 
the solution.
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Dynamic programming-based GA was proposed by 
Allaoua and Osmane (2010), where the population 
size and chromosome of the solution grow as the 
number of iterations rises. Their objective was 
to reduce the total ET penalties in the schedule of 
jobs for a single machine. Raghavan et al., (2018) 
developed a modified GA to address the scheduling 
problem with stochastic rework and reprocessing 
time in the electronics industry. The objective was 
to reduce the total weighted tardiness. The goal 
of Khoshjahan et al. (2013) was to reduce the net 
present value of the ET penalty charges by taking 
into account the resource-constrained project 
scheduling challenge. They applied GA and SA, 
fine-tuning their parameters using response surface 
methodology. Their computational results showed 
that SA does superior to the GA in terms of accuracy 
index, but seeing computation time taking place on 
a computer the GA is better. Stanković et al. (2020) 
provided a model for handling the flexible job shop 
scheduling problem (FJSP), which was built using 
meta-heuristic algorithms like tabu search, GA, and 
ant colony optimization to reduce the time spent in 
planning and scheduling operations on the available 
set of machines. They have proven the value of the 
GA method in solving the FJSP problem, which yields 
positive outcomes when tested. Branco et al. (2016) 
focused the objective of minimizing completion time 
by using a hybrid genetic algorithm using heuristic 
rules in it. The metaheuristic techniques might 
improve the results of the mathematical models and 
proposed heuristics in a significant way (Hatami 
et al., 2015). This motivates our research to combine 
GA with a heuristic technique to reduce ET costs.

The paper is further divided into the sections listed 
below. Section two discusses the ET cost estimation 
for unequal earliness and tardiness penalties, and ET 
cost estimation for different earliness and tardiness 
penalties of jobs with a basic and combinatorial 
algorithm. Section three compares test results to a 
benchmark dataset and discusses those findings. 
Finally, the conclusions and effectiveness of the 
proposed algorithm are highlighted in section four.

2. Approaches for cost estimation 
with earliness and tardiness

In scheduling, earliness is a measure of finishing 
operations before due time. The period by which a 
job is early is known as the number of early days. 
Every early day costs a certain price which is known 
as earliness cost. Tardiness is a measure of a delay 

in executing certain operations. The period by 
which a job is late is known as the number of tardy 
days. Every tardy day costs a certain price which is 
known as tardiness cost. The JIT production concept 
supports the idea that being early as well as being late 
should be discouraged. Table 1 shows the parameters 
and variables used in the pseudo of algorithms.

Table 1. Description of parameters and variables.

Parameters Description
j=1, 2, 3,…, N Number of jobs
Pj Processing time of job j
dd The due date for jobs
df Data_frame (j, Pj, dd) describes jobs with 

processing time and due date
α (earlycost) Earliness cost of jobs
β (tardycost) Tardiness cost of jobs
Ej Earliness of job j
Tj Tardiness of job j
αj Early cost of job j
βj Tardy cost of job j
Variables Description
| X | The number of jobs in list X which is 

empty at the beginning
| Y | The number of jobs in list Y which is 

empty at the beginning
∆ A factor that determines whether a 

scheduling problem is restricted or 
unrestricted

dt Delay in the processing time of jobs at 
the start

δ Due date as a decision variable
Lamt The amount of time prior to the due date
Ramt The amount of time left over after the due 

date
fc Forward counter
bc Backward counter
Reval The ratio value of early jobs that is Pj to αj

Rtval The ratio value of tardy jobs that is Pj to βj

Re List of ratio value of jobs that finishes 
before (early) due date

Rt List of ratio value of jobs that finishes 
after (tardy) due date

The fundamental goal function for the ET cost of 
N jobs is as follows, presuming the cost function is 
linear.

Cos t =
N

∑
j=1

αjEj + βjTj 
 (1)

The Calculate Earliness and Tardiness cost (CETC) 
algorithm provides information on the cost of a 
sequence. Applying the cost of each job that is 
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completed ahead of schedule results in the overall 
early cost of all jobs. Applying the cost of each job 
that is finished after the due date yields the total cost 
of late jobs. Later, the sum of these two costs is used 
to calculate the overall cost.

Algorithm CETC (Sequence, df, dd, earlycost, 
tardycost)
for i in range (|X|)

costearlyjobs = costearlyjobs+(dd-Pj)×earlycost

for i in range (|Y|)
costtardyjobs = costtardyjobs+(Pj-dd)×tardycost

Totalcost = costearlyjobs+costtardyjobs

return Totalcost

A schedule should ideally be designed such that 
dd is halfway through the jobs. It is impossible to get 
enough jobs completed before dd if the due date is 
very tight. This turns into a restricted version. If dd is 
not very constricted it turns out to be an unrestricted 
version. To achieve the goal of minimizing cost and 
maximizing profit, a procedure has been described 
to find the near-optimum sequence in which the jobs 
are processed. The problem can be categorized into 
three main groups based on ET cost.

2.1. Cost estimation with equal earliness 
and tardiness

In the ET problem, let us consider ∝j = 1, βj = 1 
and common due date, the objective function can be 
given as:

Cos t =
N

∑
j=1

Ej + Tj         
 (2)

Bari and Karande, (2022a) studied the cost of equal 
earliness and tardiness. To make their point obvious, 
they also provided numerical examples.

2.2. Cost estimation with Unequal Earliness 
and Tardiness (UET)

The problems with a common earliness cost but a 
different yet common tardiness cost are labelled 
under this section. A regular problem with the 
conditions: αj = α and βj = β follows the cost function 
defined as:

Cos t =
N

∑
j=1

α Ej + β Tj (3)

Algorithm UET( ) provides a detail description of the 
cost estimation process with unequal earliness and 
tardiness. The algorithm is analogous to the equal 
earliness and tardiness algorithm. Initially assume 
two empty sets. The jobs are organized by processing 
time, starting with those that take the longest. 
Determine two values one by considering the value 
of being early (V1), and the other by considering the 
value of being late (V2). The formulation of values is 
shown in algorithm UET( ). If value V1 is less than 
V2 then insert the job in one set else insert the job in 
another set. Repeat this procedure until all jobs are 
scheduled. Now arrange jobs that complete before dd 
of one set in the longest processing time first rule and 
other sets’ jobs that complete after dd in the shortest 
processing time first rule. Calculate the overall 
processing time of jobs that completes before the 
due date (∆) that are jobs in one set. Now compare 
this value with the client’s due date. If the client’s 
due date is greater than ∆, it can be classified as an 
unrestricted scheduling problem otherwise restricted 
scheduling problem.

In an unrestricted solution, the manufacturer can 
ask the client to collect the finished jobs before the 
due date. If the client does not agree to collect the 
jobs early then, the manufacturer can add a buffer 
of certain no-working or idle days in the beginning. 
Otherwise, the task begins on the very first day. 
When there is a schedule conflict, the manufacturer 
begins working on the job from the first day.

Algorithm UET(df)

Input: df(j, Pj, dd), α, β
Create two empty sets X = { } and Y = { }
df = sort (by [Pj], ascending = False)
|X| = Number of jobs in X
|Y| = Number of jobs in Y
for i in range N
begin

V1 = α × |X| 
V2 = β × (1 + |Y|) 

if (V1 < V2) 
X = df (j[i]) 
|X| = |X| + 1

else (V1 > V2 or V1 = V2)
Y = df (j[i]) 
|Y| = |Y| + 1

end
X = sort (by [Pj], ascending = False)
Y = sort (by [Pj], ascending = True)

∆   =
N

∑
j=1

[Pj] of jobs in set X

if ∆ ≤ dd then
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// The unrestricted scheduling case

d t = d d −
|X| 

∑
j=1

[Pj] of jobs in set X

Process the jobs with a dt time unit delay
Sequence = merge (X, Y)
CETC (Sequence, df, dd, α, β)
else
// The restricted scheduling case

Lamt = dd 

Ramt  = (
|Y|

∑
j=1

Pj) − d d

for i in range of N
if (α×Lamt > β×Ramt)
Sequence[fc] = append(df(j[i]))
Pj[fc] = df(Pj[i]) 
Lamt = Lamt - df(Pj[i])
fc = fc + 1
else
Sequence[bc] = append(df(j[i]))
Pj[bc] = df(Pj[i]) 
Ramt = Ramt - df(Pj[i])
bc = bc – 1

//Special case
if (|X| > (N × β)/(α + β)) 

d t = d d −
N

∑
j=1

[Pj] of jobs in set X

Process the jobs with a dt time unit delay
CETC (Sequence, df, δ, αj, βj)

The V-shaped sequence of jobs on a single machine 
is said to be the optimal schedule for ET problems 
(Kanet, 1981). To build a V-shaped schedule, the 
process begins on the first day which means the 
completion time is the summation of the processing 
time of all jobs. At each stage of the process, calculate 
the period available before the due date, and the 
period available after the due date. Formulation of 
the time at each stage is mentioned in algorithm 
UET( ). Compare the amount of time calculated 
before and after the due date. If the amount of time 
before the due date is greater than the time after the 
due date, arrange the job in the first vacant position 
in the sequence, else arrange the job in the last 
existing place in the sequence. Update the value of 
time before and after the due date after setting the job 
in its right location. This procedure will be carried 
out for each job in the system to obtain the optimum 
sequence.

A special sequence can be observed, wherein 
postponing the schedule’s start can save overall 
costs. To find such a schedule, the obtained solution 
with the UET algorithm finally can be verified by 

ensuring the number of jobs that completes before the 
due date. Job processing is delayed by the variance 
between the due date and the total processing time 
of earlier jobs if the number of jobs that are finished 
ahead of schedule is larger than [Nβ/(α+β)]. Finally, 
calculate the cost of an optimum sequence using the 
algorithm CETC( ).

2.3. Cost estimation with Job-Dependent 
Earliness and Tardiness (JDET)

In a manufacturing organization, it is typical 
practice to charge different rates for being early 
and late for different jobs. A regular problem with 
the conditions, αj and βj follows the cost function 
defined in Equation 1. Here due date is the decision 
variable. Calculate the due date (δ) as mentioned in 
JDET( ) algorithm. Divide the jobs into two groups, 
with the jobs that are finished on or before the due 
date being in one set and the jobs which are finished 
ahead of the due date being in the other. Jobs that 
begin later can be sequenced in the rising order of 
the ratio Pj / βj, and jobs that finish earlier or on time 
can be sequenced in the declining order of the ratio 
Pj / αj. Finally, calculate the cost of the obtained 
optimum sequence using the algorithm CETC( ) 
and due date (δ).

Algorithm JDET(df)
Input: df(j, Pj, αj, βj)
Create two empty sets X = { } and Y = { }
df = sort (by [Pj], ascending = False)
|X| = Number of jobs in X
|Y| = Number of jobs in Y
for i in range j
begin

V1=α × |X| 
V2= β × (1+|Y|) 
if (V1 < V2) 

X = df (j[i])  
|X| = |X| + 1

else (V1 > V2 or V1 = V2)
Y = df (j[i]) 
|Y|= |Y|+ 1

end
X = sort (by [Pj], ascending = False)
Y = sort (by [Pj], ascending = True)

δ =
N

∑
j=1

[Pj] of jobs in set X

Create two empty list for storing ratio Re = [ ] and Rt = [ ]
for j in range |X|

Reval = Pj / αj

Re.append(Reval)
Sequence_early =
sort (Re, ascending = False)
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for j in range |Y|
Rtval = Pj / βj

Rt.append(Rtval)
Sequence_tardy = sort (Rt, ascending = True)
Sequence = merge (Sequence_early, Sequence_
tardy)

CETC (Sequence, df, δ, αj, βj)

2.4. Cost estimation with hybrid GA

The two combinatorial techniques used to calculate 
the overall ET cost are explained in this section. 
To reduce costs, the UET and JDET algorithms 
described in sections 2.2 and 2.3 respectively are 
combined with GA. Algorithms UET-GA( ) and 
JDET-GA( ) illustrate the steps involved in these 
approaches. In GA, the population is randomly 
initialized at the start. The sequence generated in 
UET is injected in UET-GA along with a randomly 
initialized population. Here the sequences of jobs 
are termed chromosomes. Now the population 
sequences are used, and the fitness function is 
applied to them. To imitate new sequences, the 
sequence is exposed to the crossover and mutation 
operators of GA. The two-point crossover is used 
to shuffle the positions of jobs. Using the crossover 
operator, offspring sequences are created from 
parent sequences. The crossover operator swaps 
the sub-sequences prior to and after randomly 
chosen positions between two sequences. Two 
new child sequences are created as an effect of 
crossing over two-parent sequences. After this, 
mutation is applied by sequentially swapping two 
arbitrarily chosen jobs. The ET cost function is 
used to evaluate the generated sequences, and the 
sequence with the lowest ET cost is deemed to be 
the optimal sequence for the iteration. The optimal 
sequence is now incorporated into the population 
of the following iteration as one of the members. 
This procedure is repeated for a given number 
of iterations. Finally, the UET-GA algorithm 
determines the optimal sequence with the least 
amount of ET cost. JDET-GA aids like UET-GA 
in optimizing an objective function. JDET-GA is 
a method that combines JDET and GA. Here the 
sequence generated with JDET is injected as one of 
the members of the population. To determine the ET 
cost of a sequence, JDET-GA computes the dd and 
provides it as a decision variable. The subsequent 
steps are the same as in UET-GA for finding the 
best sequence with the lowest cost.

Algorithm UET-GA(df) and JDET-GA(df)
Input: df (j, Pj, αj, βj)
if αj=α and βj=β

Best-sequence = sequence produced by UET ( )
else
Best-sequence=sequence produced by JDET( )
for iteration =1 to number of iterations

Population = Randomly select 200
sequences
Population = Population.Append(Best-sequence)
Apply genetic operator crossover and mutation 
operation to generate offspring population
Calculate cost CETC (Sequence, df, δ, αj, βj) and 
compare it

Best-sequence = Select sequence with less cost
Totalcost = CETC (Best-sequence, df, δ, αj, βj)
Print Best-sequence, Totalcost

3. Results and testing

The main goal of this article is to build a model to 
determine the optimal sequence of jobs for reducing 
ET cost using hybrid GA which includes UET-GA 
and JDET-GA. The Intel(R) Core(TM) i3-9100F 
CPU @ 3.60GHz computer system. Figure 1 shows 
a graphical user interface (GUI) of the model, 
developed using the Python programming language. 
The main window of the model is depicted in 
Figure 1(a), where the user can choose between 
the heuristic techniques, UET-GA and JDET-
GA. If the user opts for heuristic approaches, one 
can pick between the UET and the JDET shown 
in Figure 1(b). Similar to this the user can choose 
UET-GA or JDET-GA. Figure 1(c) shows the GUI 
of the JDET-GA technique. The dataset is selected 
by clicking the “Browse” button and the number 
of iterations is entered as the stopping condition. 
Clicking the “Next” button displays a solution to the 
problem shown in Figure 1(d).

3.1. UET and UET-GA
This section displays the results of 10 instances 
with 10 jobs, each with the names D_UET_1 to 
D_UET_10, here D_ represents the data set and the 
number represents the serial number of instances 
with unequal ET cost. For UET and UET-GA 
algorithms, a data set with the job’s processing 
time, common due date, same earliness costs for all 
jobs, and tardiness costs for all jobs is required. The 
processing times for instances and factor h are taken 
from the benchmark dataset of Biskup and Feldman 
(2001).
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3.1.1. Unrestricted scheduling problem

An unrestricted scheduling case that is discussed in 
section 2.2 is solved by using the UET algorithm. For 
each instance, a fictitious cost for being early or late 
is used. Since the scheduling problem is unrestricted, 
the due date is established with h = 0.8 and it is 

calculated as dd = Sum(Pj)×h. Table 2 presents the 
results using the UET technique with input, earliness 
and tardiness costs for each data set. The sequence 
can be observed, where the overall cost can be 
minimized by introducing idle time at the start of 
the schedule. The algorithm finds the delay and then 
finds the cost of the schedule.

Table 2. Results of UET (Unrestricted, N = 10).

Data Set Sum(P) dd α β

Delay 
Processing 

(dt)
Total 
Cost

D_UET_1 116 93 4 5 20 1037
D_UET_2 129 103 10 2 72 804
D_UET_3 125 100 6 12 12 1932
D_UET_4 102 82 7 15 3 1773
D_UET_5 94 75 8 4 38 844
D_UET_6 88 70 4 2 31 446
D_UET_7 103 82 9 10 17 1727
D_UET_8 79 63 9 1 45 205
D_UET_9 92 74 1 2 4 195
D_UET_10 127 102 5 7 19 1324

When UET-GA is used on the same data set for 100, 
200, 300, 400, 500, and 1000 iterations, it is observed 
that the cost is increased when compared with the 
results of UET as shown in Table 2. The cost for each 
iteration and the minimum cost among all iterations 
for UET-GA is shown in Table 3. It is advisable to 
include idle time, which delays the initial processing 
of jobs and reduces the cost value. Therefore, if the 
schedule is unrestricted, the UET technique performs 
better than UET-GA but considering the delay by dt 
unit of time in processing the sequence.

Table 3. Results of UET-GA (Unrestricted, N = 10).

Data Set
No. of Iterations Minimum 

Cost100 200 300 400 500 1000
D_UET_1 1174 1174 1174 1174 1174 1174 1174
D_UET_2 2512 2512 2502 2512 2522 2504 2502
D_UET_3 1956 1956 1956 1956 1950 1956 1950
D_UET_4 1785 1785 1785 1785 1785 1785 1785
D_UET_5 1284 1288 1284 1284 1284 1280 1280
D_UET_6 722 718 720 722 724 722 718
D_UET_7 1965 1965 1960 1965 1965 1965 1960
D_UET_8 905 906 905 905 905 905 905
D_UET_9 197 197 196 196 196 195 195
D_UET_10 1430 1435 1430 1430 1430 1430 1430

3.1.2. Restricted scheduling problem

The data set has a more restricted due date, and it 
is calculated with h = 0.2 as dd = Sum(Pj)×h. The 
UET algorithm described in section 2.2 is used to 
find the value of the total cost for the data set. The 

(a)

(b)

(c)

(d)
Figure 1. GUI of model.

Int. J. Prod. Manag. Eng. (2024) 12(1), 19-30Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Hybrid genetic algorithm to minimize scheduling cost with unequal and job dependent earliness tardiness cost

25



identical data set was processed using the UET-GA 
technique described in section 2.4. The value of 
the objective function was computed using several 
iterations, including 100, 200, 300, 400, 500, and 
1000. Results of these 10 instances with 10 jobs 
using UET and UET-GA with various iterations are 
shown in Table 4.

Table 4. Results of UET (Restricted) and UET-GA (N = 10).

Data Set
Number of Iterations

UET100 200 300 400 500 1000
D_UET_1 1764 1764 1764 1764 1764 1764 1767
D_UET_2 3196 3196 3196 3196 3196 3196 3196
D_UET_3 2250 2250 2250 2250 2250 2250 2250
D_UET_4 4102 4102 4102 4102 4102 4102 4109
D_UET_5 992 992 992 992 992 992 992
D_UET_6 1755 1755 1755 1755 1755 1755 1755
D_UET_7 2737 2737 2737 2737 2737 2737 2737
D_UET_8 2450 2450 2450 2450 2450 2450 2450
D_UET_9 435 433 433 433 433 433 436
D_UET_10 2020 2020 2020 2020 2020 2020 2028

Figure 2 (a-d) visually displays cost trends for UET 
and UET-GA for 10 instances with 10 jobs. It has been 
found that 6 instances produce the same outcome. 
For the other 4 instances, the costs for UET and UET-

GA differ. In UET, it takes a fraction of a second to 
find the cost, but not in UET-GA. As indicated in 
Figure 3, it takes 6 seconds to 60 seconds for 100 
to 1000 iterations. Additionally, instances of 20 jobs 
are tested and the results are shown in Table 5. It has 
been observed that 4 out of 10 instances (instances 
are highlighted in bold) have obtained less cost after 
applying UET-GA as compared to UET while the 
remaining 6 have the same objective function value. 
Results and trends of the cost function for UET and 
UET-GA are shown in Figure 4 (a-d). Therefore, if 
there are more jobs in the dataset, it will affect the 
cost and UET-GA will perform better than UET even 
if it would take a little longer time to give results.
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Figure 2. Trends of the objective function using UET and UET-GA (N = 10).

Figure 3. Time required to find the value of an objective 
function using UET-GA.
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3.2. JDET and JDET-GA

In this section, the results of JDET and JDET-
GA are compared and discussed. A set of 280 test 
instances created by Biskup and Feldman (2001) 
and made accessible online at (http://people.
brunel.ac.uk/mastjjb/jeb/orlib/schinfo.html) were 
used in the numerical testing. The instance set is 
distributed into seven sets of N = 10, 20, 50, 100, 

200, 500, and 1000 jobs each, with ten instances in 
every group. The problem is categorized as more 
restricted or less restricted against the common 
due date based on the values of h = 0.2, 0.4, 
0.6, and 0.8. The 10 instances with 10 jobs from 
280 test problems are tested with the proposed 
algorithm. These instances are named JDET_1 to 
JDET_10. JDET-GA conducts a global search for 
the schedule. The suggested JDET obtains cost 
values in a fraction of a second, however using 
JDET-GA, it takes about 60 seconds for 1000 
iterations to acquire costs for 10 jobs. Despite 
taking more time, it offers the best value for the 
objective function. A due date that was calculated 
and denoted as a decision variable using the JDET 
approach is shown in Table 6. By using the formula 
dd = Sum(Pj)×h, Biskup and Feldman (2001) 
estimated the due date which is also recorded in 
Table 6.

Table 7 gives the best objective function results 
for the 10 instances produced using the two 
algorithms. The last column of Table 7 represents 
the optimal value of each instance recorded by 
Biskup and Feldman (2001).
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Figure 4. Trends of the objective function using UET and UET-GA (N = 20).

Table 5. Results of UET (Restricted) and UET-GA (N = 20).

Data Set

Number of Iterations

UET100 200 300 400 500 1000

D_UET_1 8733 8730 8730 8730 8730 8730 8736

D_UET_2 9992 9992 9992 9992 9992 9992 9992

D_UET_3 1446 1446 1446 1446 1446 1446 1446

D_UET_4 4762 4762 4762 4762 4762 4762 4762

D_UET_5 17285 17285 17285 17285 17285 17285 17285

D_UET_6 2446 2442 2442 2446 2448 2442 2452

D_UET_7 3864 3864 3864 3864 3864 3864 3864

D_UET_8 8529 8529 8530 8529 8529 8530 8535

D_UET_9 4762 4762 4762 4762 4762 4762 4762

D_UET_10 4884 4848 5034 4802 4853 4873 5551
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Table 6. Given dd and dd as Decision Variable.

N = 10 Sum(Pj)

Due Date

h=0.2 h=0.4 h=0.6 h=0.8
Decision 
Variable

JDET_1 116 23 46 70 93 76

JDET _2 129 26 52 77 103 77

JDET _3 125 25 50 75 100 87

JDET _4 102 20 41 61 82 59

JDET _5 94 19 38 56 75 51

JDET _6 88 18 35 53 70 63

JDET _7 103 21 41 62 82 68

JDET _8 79 16 32 47 63 52

JDET _9 92 18 37 55 74 68

JDET _10 127 25 51 76 102 93

Table 7. Comparison of cost computed with Heuristic 
JDET, JDET-GA and h = 0.8.

Due Date Decision Variable Sum(Pj)* 0.8

N = 10
Heuristic 

JDET JDET-GA h = 0.8
JDET _1 893 818 818
JDET _2 932 877 615
JDET _3 982 977 793
JDET _4 896 815 803
JDET _5 690 521 521
JDET _6 925 849 755
JDET _7 1521 1147 1083
JDET _8 616 599 540
JDET _9 624 562 554
JDET _10 788 695 671

Figure 5 displays an objective function’s cost for 
ten instances graphically. It was found that JDET-
GA outperformed JDET in terms of performance. 
Although it is calculated for a due date with h = 0.8, 
this due date is less restrictive, the cost estimations 

for 10 instances taken from the benchmark dataset 
are less than JDET-GA. This means that the cost 
will increase if the due date is more restrictive. The 
proposed algorithm gives near-about cost with a 
suggested due date lesser than the less restrictive due 
date.

Table 8 displays the JDET and JDET-GA fitness 
values for N = 10, 20, 50, 100, 200, 500, and 1000 
jobs for 5000 iterations. These findings are based 
on a benchmark dataset (First instance) with 10, 
20, 50, 100, 200, 500, and 1000 jobs each. The 
optimal value recorded in the benchmark dataset 
for the instances is 818 (N = 10), 2986 (N = 20), 
17990 (N = 50), 72019 (N = 100), 254268 (N = 200), 
1581233 (N = 500), 6411581(N = 1000). When put 
up against JDET, JDET-GA performs better, if the 
cost is calculated using JDET, it is shown that the 
cost increases in all testing instances. The benchmark 
dataset’s optimal value is lower than JDET-GA, but 
the dd is less restrictive as compared to the dd as 
a decision variable. When compared to the optimal 
value for the benchmark dataset, JDET-GA gives 
approximately the same cost. For situations with 10 
to 500 jobs, the difference in the cost increases in the 
range of 0% to 8% except for 1000 jobs. Thus JDET-
GA is used to determine the optimal sequence and 
suggest a dd that reduces the ET cost.

Figure 5. Objective function values for JDET, JDET-GA 
and DD with h=0.8.
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Table 8. Comparison of fitness value for JDET, JDET-GA and benchmark dataset.

N Sum(Pj ) dd = 0.8× Sum(Pj )
Optimal value recorded 
in benchmark dataset

dd - Decision 
variable

Fitness Value
JDET-GA JDET

10 116 93 818 76 818 893
20 217 174 2986 121 3080 5253
50 549 439 17 990 338 19 401 29 066
100 1136 909 72 019 650 75 101 118 560
200 2129 1703 254 268 1173 274 268 467 681
500 5217 4174 1 581 233 2903 1 688 888 2 688 036
1000 10 611 8489 6 411 581 6091 8 449 072 11 445 102
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4. Conclusions

In this paper, a novel UET-GA and JDET-GA are 
introduced. The results show that the proposed UET-
GA and JDET-GA perform better in a majority of 
instances when used to solve the single-machine 
scheduling problem with ET costs. To improve 
the quality of the sequence to reduce the cost and 
time necessary to converge to optimal outcomes, a 
population initialization process is introduced by 
adding a sequence obtained with heuristic UET and 
JDET approaches. In the unrestricted scheduling 
problem, the UET heuristic results in lower ET costs 
than UET-GA, but it also introduces idle time in the 
beginning, increasing the completion time. In the 

restricted scheduling problem, UET-GA performs 
better than UET, especially if there are more jobs 
in the dataset. JDET-GA is employed to find the 
optimal sequence and suggests a due date. It lowers 
the cost than JDET heuristic approach in all the 
instances. The suggested due date is tighter than the 
due date (h = 0.8) reflected in the benchmark dataset 
and significantly lowers the cost.

A probable direction for further research includes 
using the same UET-GA and JDET-GA methodology 
in the situation of multi-machine scheduling 
problems with general ET penalties to find an 
optimum solution in case of real test problems. This 
research can be further extended with a distinct due 
date for each job.
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