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Abstract

A new experimental design framework has been developed for the discovery and

optimization of catalytic materials when exploring a high-dimensional space. This

is based on a new Soft Computing architecture in which neural networks and a

genetic algorithm are combined for optimizing the discovery of new materials and

process conditions in catalytic reactors at industrial scale. Considering the high

temporal and financial costs required for synthesizing and testing potential solid

catalysts, the application of Soft Computing techniques in this field appears as

an interesting alternative to reduce the number of experiments. The proposed Soft

Computing framework has been employed to optimize a hypothetical function based

on the modelled behaviour of multi-component catalysts explored in the field of

combinatorial catalysis. Moreover, this experimental design framework has been
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applied to a problem with industrial interest such as the optimization of a Ti-silicate

catalyst for the epoxidation ofolefins.

Key words: Soft Computing, Genetic Algorithms, Neural Networks,

High-throughput, Combinatorial Chemistry

1 Introduction

The chemical industry is continuously searching for new efficient catalysts that

would enable to reduce operating costs, while decreasing resid. This involves

in most cases a real task force since we are dealing with high-dimensional

spaces with large number of samples to be prepared, characterized and tested.

Recently, high throughput experimentation techniques are being used in het-

erogeneous catalysis thought a methodology, called Combinatorial Chemistry,

in which large diversities of materials are prepared, processed and tested in

parallel. Nevertheless, the experimentation of a very large number of materials

involves high financial cost that justifies to take into consideration software

techniques, such as artificial intelligence, in order to reduce the number of

samples and to better understand the relationships among data.

We have developed a new Design of Experiments (DoE) framework for the dis-

covery and optimization of catalytic materials when exploring a high-dimensional

space. This framework allows to use the knowledge extracted from the previ-

ous experimentation in the design of the new subset of catalysts to be exper-
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imentally screened in next optimization iteration. It is based on a new soft

computing architecture in which neural networks and a genetic algorithm are

combined for optimizing the discovery of new materials. In this architecture

an artificial neural network (ANN) is employed as an approximated model for

fitness evaluation; and a genetic algorithm (GA) tries to find the optimal solu-

tion by investigating several catalysts simultaneously. This constitutes a novel

approach, which is based on the previous good results obtained in this area

with the application of ANNs (Corma et al. (2002a); Serra et al. (2003b,a);

Moliner et al. (2005)).

In section 2, a deeper description of the combinatorial chemistry problem is

given. A revision of the state of the art in artificial neural networks and genetic

algorithms is carried out in section 3, making emphasis in the latest works in

the combinatorial chemistry field. In section 4, the soft computing frame-

work that we propose is detailed, explaining its five main steps: (i) setting

up process (in which soft computing parameters are set and a suitable ANN

model is built); (ii) ANN re-training (in which ANN model is improved with

new experimental data); (iii) GA operators (in which the candidates for the

new generation are designed by the GA operators); (iv) pre-screening (where

the number of samples to be finally tested is reduced) and (v) experimental

testing. It should be pointed out that the genetic algorithm presented here

employs a new developed codification which allows dealing with optimizations

considering simultaneously complex catalyst formulations and different syn-

thesis/testing conditions as variables. Moreover, in section 5 some application

examples are given, including results with an hypothetical function and a real

industrial problem.
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2 Problem Description

One of the main objectives of the chemical industry is the design and synthesis

of a more active and selective catalysts that will allow chemical processes to

be more efficient and environmentally friendly from the economy, security and

versatility process point of view. However, the discovery of new catalysts still

is in many cases an arduous and rather unpredictable trial-and-error process.

Moreover the tendency today is to consider the chemical process in a global

manner, trying to optimize simultaneously the catalyst and reaction condi-

tions. Therefore, it is worth studying the composition of the catalyst and the

reaction conditions that will boost its performance.

Traditionally, the processing and analysis of the experimental results from

characterization and catalytic testing was normally carried out by the re-

searchers, who applied previous experiences, fundamental knowledge and in-

tuition in order to (i) design new catalyst libraries; and (ii) analyze the data,

and establish relationships between the different experimental results. Nowa-

days, the new development of high throughput experimentation (HTE) tech-

niques in the frame of heterogeneous catalysis (Senkan (1998, 2001); Derouane

(2002)) is enabling the screening of large number of new materials and, there-

fore, it is increasing exponentially the number of catalytic data, derived from

the parallel synthesis, characterisation and catalytic testing. These HTE tech-

niques are employed in a new methodology, called Combinatorial Chemistry,

in which large diversities of materials are prepared, processed and tested in

parallel.

Software techniques can help to the Combinatorial Chemistry methodology
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with (i) the efficient administration and schedule of large amounts of experi-

mental data, (ii) the comprehension and modelling of the organised data and

(iii) the global search strategy to optimise the catalytic performance.

A crucial item in combinatorial catalysis is how to design the experiments in

order to explore and optimize the high-dimensional solution space with the

minimum costs (number of experiments). The techniques employed for experi-

mental design are: (i) statistics procedures like factorial designs (Montgomery

(2001)), (ii) deterministic optimization procedures like simplex, holographic

search (Végvári et al. (2003)) or split & pool (Sun et al. (2002); Aramend́ıa

et al. (2002)) and (iii) stochastic procedures like simulated annealing or genetic

algorithms (GA). Stochastic procedures are well-suited procedures for the op-

timization of multi-dimensional problems, being the application of genetic

algorithms fruitful in the discovery of new heterogeneous catalysts (Kirsten

and Maier (2004)).

On the other hand, the large number of variables involved and the applica-

tion of complex optimization algorithms for the experimental design makes

difficult the direct human interpretation of data derived from high through-

put experimentation. Data mining techniques allow to analyze thoroughly

raw multidimensional data (Corma et al. (2002a); Gedeck and Willett (2001);

Weaver (2004); Wang et al. (2001); Yamada et al. (2001)) in such a way that

knowledge can be systematically extracted, establishing multifactor relation-

ships and patterns amongst input variables (catalyst composition, preparation

and reaction conditions), output variables (catalyst characterization and cat-

alytic performance) and also theoretical parameters concerning the catalyst

components. Hereafter, this available knowledge could be applied to design

the new subset of materials to be screened in a more intelligent and rational
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way (Corma et al. (2002a); Klanner et al. (2004); Omata et al. (2004)). Sev-

eral data mining techniques have been applied in combinatorial chemistry like

clustering models and non-linear regression models, statistical models, asso-

ciation rules and decision trees, rule induction, Kohonen and artificial neural

networks (ANNs).

A further-step optimization approach (Serra et al. (2003c); Klanner et al.

(2003); Gilardoni et al. (2003)) is the combined use of high multidimensional

optimization algorithms with prediction models obtained by data mining, in

such a way that the knowledge extracted from all the previous experimentation

can be applied in the design of the new subset of catalysts to be screened in

the next optimization cycle.

In the following section, these specific artificial intelligent techniques, and more

specifically artificial neural networks and genetic algorithms are discussed.

3 State of the art

Many efforts have been done in the development and optimization of several

artificial intelligent techniques in combinatorial catalysis, in order to allow the

extraction of information and knowledge from high-throughput experimenta-

tion raw data, establishing relationships and patterns between the input and

output variables. Among those AI approaches, both data mining and soft

computing techniques are mainly employed.

Data mining techniques have been applied (Gedeck and Willett (2001); Wang

et al. (2001); Yamada et al. (2001); Rajan et al. (2001)) in order to find

relationships and patterns between the input and output data derived from
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accelerated experimentation.

Regarding soft computing, it is a collection of methodologies that deal with

tolerance for imprecision, uncertainty and partial truth in order to achieve

tractability, robustness and low solution cost (Zadeh (1994)). The principal

constituents of soft computing are fuzzy logic, neural computing, evolutionary

computation, machine learning and probabilistic reasoning. What is partic-

ularly important about soft computing is that it facilitates the use of those

techniques in combination, leading to the concept of hybrid intelligent systems.

In this paper we present a novel soft computing framework for experimental

design in which both artificial neural networks and genetic algorithms are

combined in order to help in the research of new catalysts.

3.1 Artificial Neural Networks

Artificial neural networks (Bishop (1996); Ripley (1996)) are high performance

non-linear analytical tools, which are capable of establishing the relationship

between the input/output data without prior knowledge of the correlation

between the variables involved in the system. They consist of a number of

artificial neurons inter-connected together by synaptic weights to form a net-

work, analogously to biological neurons. The basic unit of a neural network is

the neuron, or node, composed of: a set of connections or inputs, xj(t), each of

which is characterized by a synaptic weight wjk , that represents the intensity

of interactions between each neuron j of a previous layer and the actual neu-

ron k; a propagation rule (1), which determines the effective input of neuron

k from all individual inputs to this neuron; an activation function Fk, that
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determines the output yk (2) of neuron k by means of its level of excitation;

and an additional external input, called polarization or bias (bk), which in-

creases or decreases the excitation threshold of the neuron. The most common

activation functions are sigmoidal functions, such as logistic (3) and tangen-

tial (4), which present an equilibrium between lineal and non-lineal behaviour.

Formulaes associated to a neuron are as follow:

Sk =
n∑

j=1

wjk ∗ xj + bk (1)

yk = Fk(Sk) (2)

Fk(Sk) = 1/(1 + e−Sk) (3)

Fk(Sk) = (eSk − e−Sk)/(eSk + e−Sk) (4)

Two important features of neural networks are the ability to supply fast an-

swers to a problem and the capability of generalizing their answers, providing

acceptable results for unknown patterns. In this way, they need to learn about

the problem under study and this learning is commonly named the training

process. During this training process, neural networks are supplied with a set

of samples belonging to the problem domain and they establish mathematical

correlations between the samples (Ripley (1996)). A large quantity of infor-

mation and time are required for analysis and processing. Supervised learning

consists of supplying the neural network with training patterns having in-

formation about both input and output desired values. During the training

process, the neural network will fit its neurone weights to minimise the error

between the output calculated by the neurone and the desired value. On the

other hand, non-supervised learning consists of supplying the neural network

with only the input values of patterns, without the desired output values.
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Then, the neural network has to classify the inputs and outputs on the basis

of its similarity with other inputs.

One of the most well-known structures of neuronal networks for supervised

learning is the multilayer perceptron, which is generally used for classification

and prediction problems. In the multi-layer perceptron, neurons are grouped

into layers or levels, so each input of a neuron is compose of the outputs of

the neurons of the previous level, except for the neurons in the input layer,

which have as input values those ones belonging to the problem to consider.

The number of nodes at the input and output layers are determined by the

problem features. However, the number of hidden layers, and even the number

of nodes in each of these layers is unpredictable, so it is necessary to evaluate

different structures to establish the neuronal network topology most suitable

for the problem under study. An example of a multilayer perceptron with one

input layer, two hidden layers and one output neuron can be described by the

equation (5) where n is the number of nodes at the input layer, K and L are

the number of hidden nodes and f(·) is the activation function.

y =
L∑

l=1

vlf(
K∑

k=1

w
(2)
kl f(

n∑

i=1

w
(1)
ik xi)) (5)

Neural networks have shown to be effective tools for function approxima-

tion (Jin (2005)). Both feed-forward multi-layer perceptrons and radial-basis-

function networks have widely been used. Moreover, an ANN model is pre-

ferred if the input space (design space) is high-dimensional and the number

of samples is limited. It is recalled that to estimate the unknown parameters

of second-order polynomial model, at least (n + 1) × (n + 2)/2 data samples

are required. Otherwise, the model will be undetermined. Furthermore, if a

multilayer perceptron is used, it is necessary to consider regulating the model
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complexity to avoid overfitting. Regarding the performance of the approxima-

tion model, diverse factors have to be taken into account. The most important

factor is accuracy, in both on training data and testing data.

Concerning catalysis field, ANNs have successfully been applied to conven-

tional catalytic modelling and design of solid catalysts. Two types of ANNs

applications have been described up to now in the frame of combinatorial

catalysis: (i) ANN catalyst compositional models, correlating composition and

synthesis variables with catalytic performance and (ii) ANN kinetic models,

correlating reaction conditions with catalytic performance. The first reported

applications include the design of solid catalyst (Hattori and Kito (1995)) for

different reactions of interest, such as design of ammoxidation of propylene

catalyst (Hou et al. (1997)), design of methane oxidative decoupling catalyst

(Huang et al. (2001)), analysis and prediction of results of the composition of

NO over zeolites (Sasaki et al. (1995)); and the integration of ANNs techniques

with evolutionary strategies for the design of propane ammoxidation catalyst

(Cundari et al. (2001)) or for the material discovery in the oxidative dehy-

drogenation of ethane (ODHE) reaction (Corma et al. (2002a)), allowing the

analysis and prediction of catalytic results within a population of catalysts

produced by combinatorial techniques. Moreover, modelling of multi-phase

crystalline systems in zeolite synthesis by means of ANNs has been described

in (Moliner et al. (2005)). Regarding ANN kinetic models, applications (Bul-

sari (1995); Biniwale et al. (2002); Alaradi and Rohani (2002); Serra et al.

(2003b)) refer to modelling experimental kinetic data in order to obtain rapidly

black box models. These ANN kinetic models could be promptly obtained for

a series of catalysts and rapidly determine which are the reaction conditions

for optimal catalytic performance of each material. In addition, those models
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can be applied for further catalyst scale up, process control and optimization.

For example, in Serra et al. (2003b,a) several ANNs were trained to predict re-

action results based on reactor conditions for the hydroisomerisation of linear

alkanes.

3.2 Genetic Algorithms

Genetic algorithms (GAs) are adaptive methods used to solve search and op-

timization problems, based on genetic processes of biological organisms. GA

was developed in the 1970’s by John Holland and students at the University

of Michigan (Holland (1992)). Their aim was to simulate adaptive process of

natural systems and to develop artificial systems that reattain features of nat-

ural systems. The canonical form of the GA encodes each candidate solution

to a given problem as a binary, integer or real-valued string, referred to as

a chromosome. GAs simulate the genetic state (chromosomes) of a popula-

tion of individuals using recombination operators (crossover and mutation).

Crossover exchanges genetic material between two parents. Mutation flips a

bit in a chromosome. It is conduced to prevent the premature convergence of

the design variables, that is all the bit structures of strings in the mating pool

become identical in an early stage of evolution. However, mutation may also

slow down the searching process, affecting speed convergence. Each individual

is evaluated and fitness assigned in proportion to the value of the objective

function for the individual. New individuals created by these operators are

selected on the basis of their fitness for the next generation.

GAs have had a great measure of success in search and optimization problems

(Oduguwa et al. (2005)). The main reason for their success is their ability to
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exploit the information accumulated about an initially unknown search space

in order to bias subsequent searches into useful subspaces. This is their key

feature, particularly in large, complex, and poorly understood search spaces,

where classical search tools (enumerative, heuristic, etc.) are inappropriate,

offering a valid approach to problems requiring efficient and effective search

techniques.

Regarding fitness evaluations, they are not always straightforward in many

real-word applications (Jin (2005)), like in the field of catalysis in where an

explicit fitness function does not exist, or the evaluation of the fitness is com-

putationally expensive. In both cases, it is necessary to estimate the fitness

function by constructing an approximate model. Several models have been

used for fitness approximation, for instance such as multi-layer perceptrons,

radial-basis-function networks, etc (Jin (2005)). In our case, we have employed

multi-layer perceptrons.

There are two major concerns in using approximate models for the fitness eval-

uation. First, it should be ensured that the evolutionary algorithm converges

to the global optimum or a near-optimum of the original fitness function.

Second, the computational cost should be reduced as much as possible. One

essential point is that it is very difficult to construct an aproximate model

that is globally correct due to the high dimensionality, inhomogeneous distri-

bution and limited number of training samples. If an approximate model is

used for fitness evaluation, it is very likely that the evolutionary computation

will converge to a false optimum. Therefore, it is very essential in most cases

that the approximate model should be used together with the original fitness

function. So in the evolution control, the original fitness function is used to

evaluate some of the individuals or all individuals in some generations. An
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individual or a generation that is evaluated using the original fitness function

is called a controlled individual or generation respectively. There are different

approaches from the viewpoint of evolution control. For example, it is possible

to follow a generation-based evolution control where the evolution control is

carried out once in a fixed number of generations.

Moreover, due to the lack of data and the high dimensionality of input space,

the quality of the approximate model should be improved as much as possible

given a limited number of data. In our case, a previous study of the multi-

layer perceptron topology, training algorithm and error measures selection is

needed.

Genetic algorithms seem quite appropriate for heterogeneous catalysis since a)

GA tolerates noisy data (experimental data) with considerable error, b) GA

uses a population of points to conduct the search, which fits quite well with the

application of HTE techniques, and c) the goal is to find an approximate global

maximum in a high-dimensional space, minimizing the number of trials. GAs

are very powerful tools but they could be dangerous if the problem codification

is not appropriate. If the selected codification for the problem was wrong, it

would be possible that the algorithm would solve a different optimization

problem from the one under study.

Among their different applications, it should be mentioned the development of

novel gasoline isomerization catalysts (Corma et al. (2002b)), carbon monoxide

oxidation catalysts (Pereira et al. (2005)) and propane oxidative dehydrogena-

tion catalysts (Wolf et al. (2000)). Moreover, in Valero et al. (2003, 2004a) a

softcomputing technique allows to discover the best kinetic values for several

n-paraffin reactions inside an specific range of input values. In Corma et al.
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(2005) the synthesis variables of mesoporous Tisilicate materials are inten-

sively and simultaneously explored with the aim of optimising the catalytic

performance of the resulting catalysts for the epoxidation of olefins.

3.3 Discussion

The current iterative optimization algorithms, especially genetic algorithms,

applied to the discovery and optimization of heterogeneous catalyst suffer

mainly from two important points. On one hand, the optimization convergence

is poor, and, therefore, the number of experimental rounds required to reach

a maximum is far too large and sometimes the final catalytic performance of

the found optimum does not satisfies the requirements for scaling-up. That is

especially true for optimizations dealing with high-dimensional spaces, such

as catalyst formulations comprising pools of 30 elements/variables. Moreover,

through the optimization process many samples are experimentally tested,

even when it could be said a priori that the expected catalytic performance

would be poor - fair. On the other hand, the current optimization approaches

do not apply a general and flexible codification method, being high the dan-

ger of divergence towards false objectives. An adequate codification should

integrate (a) complex catalyst formulation comprising different components

such as supports, active phase promoters, enhancers, etc. and (b) associated

(chemical/thermodynamic or final-application-oriented) rules or constraints.

In addition, other variables such as preparation procedure or catalytic testing

conditions (real or categorical) must be also defined in the design tool.

An objective of a new DoE 3 tool would be to increase the convergence rate but

3 Design of Experiment
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maintaining the exploration function. Such a tool would integrate an optimizer

(GA) and an approximate multivariate model (ANN), in such a way that in

each experimental iteration (a) the optimizer will make use of the model for

reducing the number of experiments and (b) the model will be improved by

adding the new available data to the training/fitting dataset. Moreover, the

codification tool should allow the proper definition of the ”chemical problem”

and the associated constraints.

4 SoftComputing Framework

A new optimization tool has been developed for the discovery and optimization

of catalytic materials when exploring a high-dimensional space. Hence, the

knowledge extracted from the previous experimentation can be applied in the

design of the new subset of catalysts to be experimentally screened in next

optimization iteration. This tool follows a new optimized architecture based on

our previous works in which soft computing techniques were applied (Valero

et al. (2004a); Corma et al. (2005); Serra (2004); Valero et al. (2004b)).

The proposed soft computing framework combines a genetic algorithm (GA)

and an artificial neural network (ANN). Thus, ANN is employed as an approx-

imated model for fitness evaluation, whereas the developed GA tries to find

the optimal solution by investigating several catalysts simultaneously. Specif-

ically, this soft computing technique (Figure 1) consists of the following steps:

(i) setting up; (ii) ANN re-training; (iii) GA operators; (iv) pre-screening; and

(v) experimental testing. The steps ii to iv are repeated till the convergence

criteria is satisfied. However, the final actions performed in each step depend

on the configuration of the tool implemented following the suggested frame-

15



���������
	 �� ��	 �

��� � � � � � � � � � � ��� � �! " � �# $!% & ' � � � �( ) & ' � ) & �

*,+ - . - / � 0�� � � ��� � �, " � ��# $ � ) ' 1 ) # & � 2,� ' 3 ( 4 � � ' & ( � " " $
5 6

7 8 9

:; <,; =�>?�@ ACB @ D E @ F!G HIKJ L E M @�J N L N O P F L F

Q R S T U V W U S X UQ V Y Z U V Y R S

[ � � \ & \ � ' � �
% 3 )] � �_^ � � � ) � ' & 3 �

`���� � a b�ced��

f � g / 0 �h� . � / . i j � �!k�lmon . � .Kp � - � � �

q 0 / - / . j r � n + j . - / � 0s t � � \ 3 �u2 � � � ) � ' & 3 �!3 %K& � \ & v & \ 1 � " � w
x y n � � / p � 0 - . js z & ' � � � �!{ v � " 1 � ' & 3 �,3 %K& � & ' & � "  3  1 " � ' & 3 �,w
m|
| * � } � j / 0 ~s � 3  3 " 3 2 $!�o� ) � & � & � 2�� � ) � ��� ' � ) ��w

�,��������� 	 ��a b
a b�c

m|
|�� / - - / 0 ~s t � ' ) � & � & � 2�1 � & � 2h ) � v & 3 1 �2 � � � ) � ' & 3 ��\ � ' ��w

� 	 �� `���	 ���
b
a b�c

� / - 0 � � �m�n n � � y / ph. - / � 0

r � � � � � � � � 0 / 0 ~�   " & ( � ' & 3 �!3 % ' 4 �,t � \ 1 ( ' & 3 ��t � ' & 3

�����������

�K� ���
	 a ���
b�� ���
x y n � � / p � 0 - . jz & ' � � � ��{ v � " 1 � ' & 3 �

�����������

] � �^K� � � ) � ' & 3 �

� U S U V � Z Y R S �  U ¡ R V U
¢ V U £� X V U U S Y S W¤ Y ¥ ¦ 8 § ¨ © ª
¦ 8 § « ª

¦ 8 §

Fig. 1. Structure of the proposed soft computing technique

work. For example, it is possible to get different generations (employing fitness

approximation) before carrying out the pre-screening step.

This software tool has been developed using the Borland DELPHI Enterprise 7

IDE. The computers used are Intel(R) Pentium(R) 4 CPU 2.80GHz processor,

with a system memory of 1024MB RAM, and with the operating system Win-

dows XP Professional Service Pack 2. Moreover, the batch system of the SNNS

(Stuttgart Neural Network Simulator) is employed in all the tasks involving

ANNs (Zell et al. (1995)).

In the following subsections, a more detailed explanation about the most rel-

evant aspects of each algorithm step are shown.

4.1 Setting up

In the setting up process, the problem under study must be codified properly;

next, the soft computing approach parameters are set; following, the starting
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generation of the optimization process is calculated; and finally a suitable

ANN model is obtained for predicting the catalytic performance.

4.1.1 Codification Problem.

The way in which the variables under study are codified is a crucial aspect,

because GAs are very powerful tools but they could be dangerous if the prob-

lem codification is not appropriate. A bad codification selection should cause

the tool to achieve a wrong solution, because it would be possible that the

algorithm would solve a different optimization problem from the one under

study. In the problem faced in this paper, each variable belongs to a con-

tinuous domain so it has been decided to adopt real codification (Goldberg

(1991)).

In this kind of problems, the optimization variables can represent concentra-

tions of the active compounds (catalyst formulation), preparation conditions

or reaction conditions. The developed codification allows the simultaneous op-

timization of these variables. In addition, it is possible to define some rules that

guide and restrict the optimization procedure, i.e., the maximum and mini-

mum quantities of each optimization variable, compatibility between elements

and/or conditions, the number of elements that can be selected simultaneously,

etc.

Specifically, each sample or chromosome (Figure 2) is formed by zero or more

compounds and conditions. The compounds describe the chemical elements

(ingredients) included in the formulation of the material. Each compound can

have one or more sections. Each section groups together those elements that

obey specific characteristics. Moreover, sections are divided into subsections,
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Fig. 2. Chromosome codification schema.

which contain the elements of the material. On the other hand, all the opti-

mization variables concerning to preparation and reaction conditions will be

represented as conditions in the codification. Conditions are also divided into

types, subtypes and final variable values. For both compounds and conditions,

it is possible to define different guiding rules in each division level, enabling to

determine the number of elements to be selected from the lower level, and the

maximum and minimum values of each element. In Figure 3 an example of a

chromosome for a general formulation of a gold-based catalysis is displayed,

showing its hierarchical structure.

Fig. 3. Example of the codification of the general formulation of gold-based catalyis,

including different rules.
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4.1.2 Setting up the soft computing parameters.

This tool allows different ways to carry out the optimization process, being

the users in charge of selecting the most suitable one to their interests. The

different soft computing parameters that must be set are:

• Generations before pre-screening step. This parameter represents the

fixed number of calculated generations before the evolution control is carried

out (when samples are experimentally tested). The GA provides with the

fixed generations, employing the ANN to approximate the fitness of each

individual when needed. It should be pointed out that the frequency of the

evolution control must depend on the fidelity of the approximate model.

Thus, it is convenient to set low values in this parameter while the perfor-

mance of the ANN model obtained is not good enough. Notice that users

can modify this frequency along the optimization process, so the developed

tool allows to follow an adaptive evolution control (Jin (2005)).

• Virtual population. This factor indicates the number of individuals pro-

posed by the GA in each generation. The higher the population size, the

faster the convergence. On the contrary, if the population size is not large

enough, the search would not be able to converge to the global maximum.

• Reduction ratio. One important parameter in the pre-screening strategy

is the reduction ratio (6) of the GA-proposed generation in order to obtain

the final generation to be experimentally tested.

Reduction Ratio% =
Size of Controlled Population

Size of V irtual Population
(6)

Notice that if the reduction ratio is 0%, the pre-screening step will not be

carried out. It should be also noticed that reduction rates higher than 40%

are not convenient, since the error introduced in the optimization system by
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the ANN predictions strongly interferes in the GA behaviour. In this case,

a lot of the fitness approximations are not contrasted with the controlled

values obtained in the experimental process.

• Mutation probability. The mutation is an explorer operator which looks

for new solutions and prevents the premature convergence, ensuring the

diversity of the population. However, mutation may also play a detrimental

role to achieve fast convergence. For this reason, low values of this parameter

are desired (5%..20%).

• Number of genes to be mutate. It is possible to set the number of genes

that will be modified when a sample has been selected by the mutation

operator. With higher values, the mutation operator has more impact.

• α value. Determines the size of the confidence interval used by the crossover

operator and it also affects the performance of this operator. Thus, an α of

0.5 represents that exploring and exploiting capacities are balanced, whereas

higher α values represent an increase in the exploration aptitude and vice

versa.

• Parents proportion. By means of this parameter, the final number of

selected individuals as progenitors is set. The progenitors (best individuals)

are employed to calculate the confidence intervals used by the crossover

operator. A desired value for this parameter will be lower than 30% of the

virtual population.

4.1.3 Starting generation

An initial set of individuals (materials) is obtained following a process that

guarantees the initial population diversity. So, this process consists of creating

several random generations and carrying out a statistical population study
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in order to select the most diverse population. The diversity of the initial

generation ensures that the optimization process gains information for the

whole search space. The starting generation is empirically tested in the reactor.

Therefore, the experimental results of the behaviour of the samples are known.

4.1.4 Getting an ANN model

In order to establish a suitable ANN model for the problem under study, dif-

ferent factors involved in the ANN prediction performance are analyzed: ANN

topology, training algorithms and activation functions. Several experiences fol-

lowing this methodological procedure and the results obtained are explained

in Serra et al. (2003a); Valero et al. (2004a); Moliner et al. (2005); Corma

et al. (2002a).

The experimental results of the starting generation are employed to carry out

these studies. Usually, the initial number of samples is small. So these samples

are grouped in different subsets of training (80%) and testing (20%)samples,

in order to avoid that problem. Thus, each experiment is carried out with

different combinations of training and testing subsets.

Using supervised learning, an incremental method is applied, testing different

neural network topologies based on the multilayer perceptron. Starting with

one single layer and few neurons, the topology is modified by increasing the

number of neurons and the number of hidden layers. Different experiments are

also carried out with those algorithms that turn out to be more suitable for the

multilayer perceptron according to the literature (Bishop (1996)). Specifically,

neural networks are trained with backpropagation and backpropagation with

momentum, with different parameters (learning factor η and momentum µ).
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Fig. 4. Steps of the ANN retraining process

Finally, a study of the activation functions is also carried out, using logistic

sigmoidal or tangential sigmoidal functions in the hidden units (explanation

in 3.1).

4.2 ANN re-training

Regarding the ANN re-training step, new experimental data derived from the

testing of each succeeding generation is divided into training and testing data.

The training set is used to retrain the stored ANN, whereas the testing set is

employed to compare the stored ANN and the newly-retrained ANN. So that

one with the best predicting performance is selected and stored (figure 4).

This procedure prevents the generalizing capacity of the ANN model from

being diminished. Notice the fact that the training data is derived from an

experimental optimization process, so the fitness of the individuals of every

new controlled generation is increased and consequently, the diversity of the

population is progressively reduced. Other training procedures were studied
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(Serra et al. (2005)), being this one selected as the best option.

4.3 GA operators

The candidates for the new generation are designed by the GA operators,

taking into account the previous experimental results. Specifically, the GA

employs mutation and crossover operators, requiring the last one the assistance

of the ANN. Mutation operator modifies in a haphazard way genes with a new

value, jumping randomly anywhere within the allowed gene domain. It do not

only acts modifying genes values, but also modifying the elements selection.

Thus, the mutation is an explorer operator which looks for new solutions and

prevents the system to converge quickly on a local maximum, avoiding the

loss of genetic diversity. The samples modified by the mutation operator are

not further modified by the crossover operator.

The crossover operator proposed by Ortiz et al. (2001) has been adapted to

our interests, considering the rules defines in the developed codification. This

operator based on confidence intervals is associated with the capacity of in-

terpolation (exploitation), related to the belonging of an individual to a confi-

dence interval built from the best individuals of the population (parents). It is

also associated with the capacity of extrapolation (exploration), derived from

its not belonging to the same confidence interval. To obtain that confidence

interval (7), three new individuals 4 formed by the lower ends (CILL), upper

ends (CIUL) and means (CIM) of the parent samples genes are calculated.

Therefore, the individuals CILL and CIUL divide each gene’s domain, Di, into

4 CILL= Confidence Interval Lower Limit; CIUL= Confidence Interval Upper

Limit; CIM= Confidence Interval Mean

23



three subintervals I1, I2 and I3, being Mini and Maxi the lower and upper

limits of the domain Di respectively.

Di ≡ I1

⋃
I2

⋃
I3;

I1 ≡ [Mini, CILL]; I2 ≡]CILL, CIUL[; I3 ≡ [CULL, Maxi, ] (7)

Specifically, the confidence interval I2 (the exploitation interval) is built from

the best individuals of the population under the hypothesis that they are

distributed following a Student’s τ distribution, and there is a probability 1−α

of their genes’ values belonging to that interval. Therefore, α is the probability

that the genes’ values belong to intervals I1 or I3 (exploration intervals). Thus,

an α of 0.5 represents that exploring and exploiting functions are balanced,

whereas higher values represent an increase in the exploration function and

vice versa.

When an individual is crossed, the genes of the new individual are obtained

from the original ones, following crossover rules (Ortiz et al. (2001)) and taking

into account the confidence interval to which it belongs, the fitness values of

the three confidence interval individuals and the quality of the original sample.

In order to calculate the fitness value of the three confidence interval individ-

uals (CILL, CIUL, CIM), it is required to predict their catalytic results by

means of the ANN, which simulates the experimental catalytic testing. Figure

5 shows two illustrating examples of mutation and crossover.
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Fig. 5. Examples of mutation and crossover operations

4.4 Pre-screening

For very complex optimizations like those under study, the selection of the

population size appears to be a crucial issue, and a compromise between ex-

perimental effort and convergence performance to global maximum should be

reached. Therefore, this tool allows to increase the optimization performance,

reducing the real number of catalysts to be experimentally evaluated (con-

trolled samples to be synthesized and tested) by means of the pre-screening

process.

The pre-screening process is done in two phases. Firstly an approximation

fitness value for each sample is calculated by means of the ANN predictions.

Secondly, a controlled generation is obtained from the virtual population, re-

ducing the number of samples according to the value of the reduction ratio

parameter. The individuals that will belong to the controlled generation are

selected with the roulette wheel method (Kecman (2001)). This method con-

sists of a random selection in which the samples with a higher fitness value

have more possibilities to be selected.
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4.5 Experimental Testing

Due the lack of data and the high dimensionality of the input space, it is very

difficult to obtain a perfect global functional approximation of the original

fitness function. For this reason, the approximated model should be used to-

gether with the original fitness function, i.e the reactor in our case. Thus, in

this step, the pre-screened generation is experimentally evaluated, getting the

controlled fitness evaluations of the last generation proposed by the GA. This

controlled values are updated in the system and later, they are employed in

the next optimization loop.

5 Results

5.1 Application examples

An hypothetical function (8), based on the modelled behaviour of multi-

component catalyst explored in the field of combinatorial catalysis, has been

applied to illustrate the diverse optimization possibilities offered by the devel-

oped tool.

Y (x1, x2, x3, x4, x5) = zi(x1, x2) + zj(x2, x3)zk(x3, x4, x5) (8)

where:

∑
xi = 100, xi ≥ 0

zi(u, v) = 0.6g(100u− 35, 100v − 35) +

0.75g(100u− 10, 100v − 10) + 1g(100u− 35, 100v − 10)

zj(u, v) = 0.4g(100u− 10, 100v − 30)
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zk(u, v, w) = 5 + 25(1 − (1 + (u − 0.3)2 +

(v − 0.15)2 + (w − 0.1)2)0.5)

g(u, v) = 100 − (u2 + v2)0.5 +

50(sin(1(u2 + v2)0.5))/((u2 + v2 + 0.001)0.5)

In figure 6, a representation of this hypothetical function is shown. This func-

tion has a complex topology with several local maximums. As it can be seen,

this function presents three high-activity areas while presenting some peri-

odicity. This behaviour is common for heterogeneous catalysts, when varying

their composition and synthesis conditions. The maximum values are in the

lighter areas (values closer to 550).

A suitable ANN model of this function was obtained, training and testing

several ANN topologies with different training algorithms. A multi-layer per-

ceptron with 5 input nodes, 4 nodes in the 1st hidden layer, 3 nodes in the

2nd hidden layer and 1 output node, trained with Backpropagation algorithm

with momentum (learning factor=0.8, momentum term=0.8) was selected.

The influence of the population size on the convergence performance of the

DoE tool was analyzed. For this purpose, a battery of tests has been accom-

plished, using different population sizes within the range typically employed

in the experimental screening of catalysts (i.e. from 15 to 95 samples), repeat-

ing the optimization process ten times for each size. In particular, the soft

computing optimization tool parameters (4.1.2) were set to: generation before

pre-screening step=1; reduction ratio=0% (without pre-screening); mutation

probability=5%; genes to mutate=1; α = 0.9; parents proportion=10%. More-

over, a unique starting random generation was used for each population size,

but considering that the average fitness of each starting generation was very

similar among the different population sizes. That condition was forced in or-

27



ÇÈ
É
ÊË
É
É

Fig. 6. Representation of the hypothetical function in the planes con-

taining the absolute maximum of the function: A) Varying x1 and

x2 with (x3, x4, x5) = (0.3, 0.15, 0.1); B) Varying x2 and x3 with

(x1, x4, x5) = (0.11, 0.15, 0.1)

der to minimize the effect of the quality of the initial generation, since this

aspect was previously postulated to be very important (Valero et al. (2004a)).

Figure 7 shows the average and maximum quality achieved (normalized aver-

age of ten runs) in the optimization process for the different population sizes.

It is clear that the higher the population size, the faster the convergence. Es-

pecially, values closer to the maximum are got with population sizes bigger

than 35. However, when the size is not large enough (for instance 15 samples),

the search does not converge to the global maximum and seems to be blocked.

So, for complex optimization processes, the selection of the population size ap-

pears to be a crucial issue, and a compromise between experimental effort and

convergence performance to global maximum should be reached. Therefore,

it seems to be interesting to use the pre-screening process (4.4), which would
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Fig. 7. Effect of population size on the soft computing tool performance.

allow to increase the optimization performance by reducing the real number

of catalysts to be experimentally tested.

Thus, different reduction rates have been studied together with diverse pop-

ulation sizes with the aim of proving the pre-screening usefulness. As it was

previously mentioned (4.1.2), this configuration of the DoE tool allows the

genetic algorithm to work with virtual population sizes larger than those ones

experimentally tested. Specifically, reduction rates of 20, 30 and 40% have

been tested in order to get real populations of 35, 45 and 55 samples (i.e.

normal reactor capacities). The other parameters of the soft computing tool

were set with the same values used in the previous study about the influence

of the population size. In the same way, the starting generation of each proof

was established following the above-mentioned process. Ten runs were made
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Real size 35. Average Quality
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Real size 45. Average Quality
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Real size 55. Average Quality
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Fig. 8. Effect of the reduction ratio for different real or experimental population

sizes on the soft computing tool performance.

for each combination. In figure 8 the average of the obtained results are shown,

grouped for the same real population size (experimental samples). Specifically,

the average quality obtained by each generation is displayed in left graphics,

whereas the maximum quality average achieved by each generation is exposed

in right graphics.

An improvement in the convergence with regard to using the optimization tool

without pre-screening is observed in figure 8. This improvement is particularly

visible in the initial steps of the optimization, specifically when smaller real

size populations are used (i.e. 35 samples). That behaviour can be explained

considering that the space explored by the GA is larger when pre-screening

procedure is applied. In fact the GA works directly with the virtual population

30



Full Testing (75) vs Pre-screening Strategy
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Full Testing (55) vs Pre-screening Strategy
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Fig. 9. Full testing versus pre-screning strategy. Correlation between performance

and experimental costs

(virtual > real); therefore the convergence to high-quality areas of the search

space is faster. However, reduction rates higher than 40% are not convenient,

since the error introduced in the optimization system by the predicted infor-

mation not contrasted with experimental data strongly interferes in the GA

behaviour.

Finally, figure 9 shows the benefits of using the pre-screening step regarding

the experimental effort. Particularly, the correlations between the average and

maximum of the quality achieved by the different optimization strategies (in

lines) versus the experimental effort needed in each case (in bars) are shown.

In the first case (figure 9- A), four different strategies are compared: virtual

population of 55 samples without pre-screening; virtual population of 56 sam-

ples with a reduction ratio of 20%; virtual population of 50 samples with a

reduction ratio of 30%; and finally, virtual population of 58 samples with a re-

duction ratio of 40%. In the second case (figure 9- B), three different strategies
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are compared: virtual population of 75 samples without pre-screening; virtual

population of 79 samples with a reduction ratio of 30%; and virtual popula-

tion of 75 samples with a reduction ratio of 40%. In all cases the performance

of the optimization process is similar for all the employed strategies, but the

needed experimental effort is lower when a pre-screening strategy is followed.

For instance, the strategy with a virtual population of 75 samples without

pre-screening achieves a maximum of 511.31 in the fifth generation (average

of ten runs), needing 375 experimental samples; whereas when employing a

virtual population of 75 samples with a reduction ratio of 40%, a maximum

of 509.93 is got in the fifth generation (maximum values of the function are

closer to 550), but only 225 experimental samples are needed. So, a meaningful

reduction of experimental samples is achieved, obtaining similar qualities.

5.2 Industrial application

The Soft Computing Tool has been applied to a problem with industrial impli-

cations, trying to optimize Ti-silicate catalysts for the epoxidation of olefins.

In this case, the value of four variables have to be established.

The soft computing tool was parameterized as follows:Generations before pre-

screening step = 1; Virtual population = 37; Reduction ratio = 0%; Mutation

probability = 10%; Number of genes to mutate = 1; α = 0.7; and Parents

proportion = 20%. Moreover, following the procedure explained above(see

4.1.4), a multi-layer perceptron with 4 input nodes, 2 nodes in first hidden

layer, 1 node in second hidden layer and 2 output nodes, trained with Back-

propagation algorithm with Momentum (learning factor=0.8 and momentum

term=0.5) was selected and successfully employed.
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Fig. 10. Quality evolution of samples of the Ti-silicate catalyst for the epoxidation

of oleofins

Through the optimization process three generations of 37 samples were syn-

thesised and tested. Along this procedure, an important improvement in the

activity and selectivity of the starting materials has been achieved as it can

be observed in Figure 10. This figure shows the cyclohexene epoxide yields for

the 3 evolved generations (3x37 samples). Moreover, the best catalyst found (

2nd generation, sample 32) improves in 15% the catalytic performance (epox-

ide yield) with regard to the best previously reported catalyst (Corma et al.

(1998)).

To summarize, a highly active and selective catalyst for the epoxidation of

cyclohexene has been found, that can be applied to the epoxidation of other

olefins, specially propylene. Epoxides are starting materials for commodity

products like plastics or drugs (Taramasso et al. (1983)). The best materials

have low titanium contents, and were extracted and silylated. These materials

have a Ti-MCM-41 structure and a very hydrophobic surface.
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6 Conclusions

A new Design of Experiments framework has been proposed for the intelligent

discovery of new catalytic materials when exploring a high dimensional space.

It has appropriate tools for high-dimensional optimization but maintains in

memory the whole ”history” of the search. So, in the future this method could

be used to reduce the screening of statistically-poor active materials.

The optimization tool implemented following the proposed soft computing

framework 5 could be employed practically in the design of experiments, since

(i) the reduced population size required by the application is in the range em-

ployed by material characterization/testing techniques and (ii) the fast con-

verge exhibited by the developed tool requires a low number of generations to

identify high quality areas in the search space. Therefore, the application of

this soft computing system to high throughput experimentation would reduce

time and costs during HT experimentation.

Another important contribution is the new developed codification, which al-

lows dealing with optimizations considering simultaneously complex catalyst

formulations and different synthesis/testing conditions as variables, being pos-

sible to define different rules between variables. Although we have applied our

technique to catalysis, our proposed codification is general enough to be ap-

plied to other fields such as materials science or drug discovery. Furthermore,

the codification enables to carry out more deeper studies, not only optimizing

the configuration of the samples, but also allowing the analysis of the elements

that compose the samples (for example, identifying the elements that appear

5 http://www.dsic.upv.es/users/ia/sma/tools/doE/index.html
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in the best samples more frequently, in which percentage, etc.).

Finally, an industrial and relevant application of this novel optimization frame-

work has allowed to find a highly active and selective catalyst for the epoxi-

dation of cyclohexene, that can be applied to the epoxidation of other olefins,

specially propylene. This catalyst improves by 15% the catalytic performance

of the best previously reported catalyst (Corma et al. (1998)). Moreover, it

should be pointed out that only three optimization generations (3x37 samples)

have been necessary to obtain this new catalyst.
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Aramend́ıa, M., Borau, V., Jiménez, C., Marinas, J., Romero, F., Urbano, F.,

2002. An approach to the construction of indexed libraries for the combi-

natorial selection of heterogeneous catalysts. Journal of Catalysis 209 (2),

413–416.

Biniwale, R., Labhsetwar, N., Kumar, R., Hasan, M., March 2002. Catalytic

converter modelling: Artificial neural networks for perovskite-based catalyst.

Society of Automotive Engineers, Technical Papers 1676, 49–54.

Bishop, C., 1996. Neural Networks for Pattern Recognition. Oxford Clarendon

Press, Oxford.

Bulsari, A., 1995. Neural Networks for Chemical Engineers. Elsevier, Amster-

dam.

Corma, A., Domine, M., Gaona, J., Jorda, J., Navarro, M., Rey, F., Perez-

Pariente, J., Tsuji, J., McCulloch, B., Nemeth, L., 1998. Strategies to

35



improve the epoxidation activity and selectivity of Ti-MCM-41. Chem.

Comm. 2211.

Corma, A., Serra, J., Argente, E., Botti, V., Valero, S., November 2002a. Ap-

plication of artificial neural networks to combinatorial catalysis: Modelling

and prediction of odhe catalysts. ChemPhysChem 3 (11), 939–945.

Corma, A., Serra, J., Chica, A., 2002b. Application of genetic algorithms to

the development and optimisation of light paraffin isomerisation catalysts.

In: Derouane, E., Parmon, V., Lemos, F., Ramôa Ribeiro, F. (Eds.), Prin-
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