Document downloaded from:

http://hdl.handle.net/10251/202564

This paper must be cited as:

Garcia, ME.; Valero Cubas, S.; Argente, E.; Giret Boggino, AS.; Julian, V. (2008). A FAST
Method to Achieve Flexible Production Programming Systems. IEEE Transactions on

Systems Man and Cybernetics Part C (Applications and Reviews). 38(2):242-252.
https://doi.org/10.1109/TSMCC.2007.913921

The final publication is available at

https://doi.org/10.1109/TSMCC.2007.913921

Copyright |nstitute of Electrical and Electronics Engineers

Additional Information

© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works".

MAS Technology for Flexible and Adaptive
Production Programming

M?® Emilia Garcia, Soledad Valero, Estefania Argente, Adriana Giret and
Vicente Julian

Departamento de Sistemas Informaticos y Computacion,
Universidad Politécnica de Valéncia, Spain
{svalero, mgarcia, eargente, agiret, vinglada}@dsic.upv.es

Abstract. One of the main critical problems in manufacturing systems
domains is the production scheduling process because obtaining an agile
and reactive production planning and scheduling system is essential in
manufacturing. The production scheduling process is a complex problem
in which finding a suitable production scheduling can extremely increase
the effectiveness of highly flexible production processes. Nevertheless,
this high flexibility makes the production scheduling and acquisition of
relevant data quite complicated. Therefore, there is a strong demand
for a universal and flexible tool for production scheduling capable of in-
creasing the utilization of resources and that supports a decision making
process for the selection of production orders. In this paper, a Flexible
and Adaptive Scheduling Tool to develop an adaptable, fault tolerant
and scalable scheduling system for a manufacturing environment is pro-
posed. The proposal is based on multi-agent systems because provides a
natural way to solve problems in domains of this kind.

Keywords: multi-agent systems, production scheduling, agent-based tool.

1 Introduction

The future of the manufacturing sector in the world will be determined by how
it meets the challenges of "new manufacturing”. Such manufacturing systems
will need to satisfy fundamental requirements [18,30], such as: enterprise inte-
gration, distributed organization, heterogeneous environments, interoperability,
open and dynamic structure, cooperation, integration of humans with software
and hardware, agility, scalability and fault tolerance.

Manufacturing requirements impose important properties on modelling man-
ufacturing systems [18]. These properties define functional attributes and specific
requirements for the system structure and the system development process which
must be considered by the methodology. Bearing these requirements in mind
we have studied software engineering methodologies which are best suited for
problems of this kind. We conducted a study [36] on Object-Oriented Method-
ologies, Enterprise Modelling Language and Methodologies and Agent-Oriented

Methodologies. This study has demonstrated that MAS methodologies are good
candidates to work with.

Lastly, an increasing amount of research has been devoted to holonic and
agent based manufacturing over a broad range of both theoretical issues and
industrial applications. We can divide these research efforts into two groups [22]:
Control Architectures and Control Algorithms. Some examples of control archi-
tectures are: PROSA [37], the agent based architecture of Bussmann [7], agents
and function blocks of Deen and Fletcher [11], MetaMorph [21], INTERRAP
based architecture [10]. The developments about Control Algorithms range over
[22] : Planning and Scheduling [13, 5], Execution and Shop Floor Control [12, 16],
and Machine and Device Control [32,33]. In spite of the large number of devel-
opments reported in these areas, there is very little work reported on modelling
manufacturing systems with a Software Engineering Methodology, although its
benefits. To date, many of the developments in the manufacturing field have
been conducted in an almost ”empirical way”, without any design methodology.

Current manufacturing enterprises desire being flexible, responsive, adaptive
and able to cope with the variability of demand. Decisions need to: be made
faster, be more formalized, deal with vast amounts of data, fit with business ob-
jectives, be right, etc. The Intelligent Manufacturing Systems (IMS) programme
aims to fulfill these requirements. One of the promising approaches in this field
is the Agent-Based Manufacturing System paradigm [30] which have proved to
be a successful tool [1,4-6,8,12,14, 15,17, 20,24, 27-29, 31, 33, 35] to implement
systems of the "new manufacturing” era.

Over the last years, a number of researchers have used agent technology
in attempts to resolve the manufacturing scheduling problem, whereas only a
few testbeds and real industrial applications have been developed and reported.
For example, in [25] agent-based systems for shop floor scheduling and machine
control are applied. The prototype systems supported only three industrial sce-
narios sponsored by its project members AMP, General Motors and Rockwell
Automation/Allen-Bradley. Another example is ExPlanTech, a multiagent sup-
port for manufacturing decision making [26]. This framework provides technolog-
ical support for various manufacturing problems and comprises different com-
ponents, which can be assembled to develop a system that supports a user’s
decision making in different aspects of production planning. In [23] CAMPS is
presented, another example of integrating agents with constraint satisfaction,
where a set of intelligent agents tried to coordinate their actions for satisfying
planning and scheduling results by handling several intra-agent and interagent
constraints. Finally, a general methodology of aged-based manufacturing sys-
tems scheduling, incorporating game theoretic analysis of agent cooperation is
presented in [3] to solve the n-job 3-stage flexible flowshop scheduling problem.

Despite the cited applications, new non-domain depended and flexible enough
tools for production scheduling ! are needed, which should be able to increase
utilization of resources and supports a decision making in a selection of orders.

! In the rest of the paper we use the terms production programming and production
scheduling interchangeably.

The flexibility of these tools should allow the system to adapt itself to changes
in the production structure, or to allow using the system by another customer.
In this way, we present FAST (Flexible and Adaptive Scheduling Tool): a Multi-
Agent based tool to develop a flexible, fault tolerant and scalable scheduling
system for the manufacturing area.

The rest of the paper is structured as follows: section 2 focuses on the produc-
tion programming problem; section 3 describes the proposed toolkit, showing its
multi-agent based architecture and the development process; section 4 presents
an application example over a real factory and, finally, some conclusions are
explained in section 5.

2 Production Programming Problem

Almost all of the manufacturing enterprises are facing the problem of how to
set the optimal production programming to effectively exploit the company re-
sources while reaching the highest turnover. To keep business running and to
avoid such critical situations when the company production is not balanced (e.g.
the company does not receive an optimal number of production orders able to
manufacture) an extra attention to production programming must be paid.
The production programming process involves two main steps: (i) definition
of the plan, in which production volumes and boundaries for the next period are
defined; and (ii) production scheduling (weekly) and sequencing (daily), in which
orders are completely assigned to resources and times. Initially, the production
department defines the production volumes for the next period (plan), based on
a compromise between the available production capacity and the sales request for
production, also taking into account forward sales and stock level requirements.
Production programming meetings are normally held on a monthly basis, and
they typically determine the production programme for the next 3 months. Later,
the production department (Figure 1) uses Planning data, information about
Raw Materials availability, Resources Availability, factory and external Events,
Work Orders, Enterprise Goals, etc., to generate the production programming
schedule, in which start time and resource allocation for specific lot productions
are specified. Therefore the orders are assigned to certain build weeks and days
in the different plants according to the available production capacity.
Nowadays, the production programming process is characterized by: (i) weak
automatization, where a large number of schedules are static; (i) not reactive,
where scheduling systems do not face the set of several events happening in
a period (break down, supplier fault, environmental impacts such as humidity,
temperature, etc.); (iii) not taking advantage of singularities, so schedules are
based on global models that do not consider neither the own peculiarity of each
stage of the production process nor the differentiated states of each stage; (iv)
not distributed/no distribution, as schedules are executed on a single, centralized
computer; (v) myopic, as models are based on one simple objective function.
Therefore, the aim of this work is to make available a tool for supporting
new scheduling system developments, in order to improve the current produc-

tion programming process, making it more reactive, dynamic and automatic, so
the production system and customer services are enhanced. Thus, FAST pro-
vides with a powerful framework to develop flexible, fault tolerant and scalable
scheduling systems. Furthermore, this tool supplies the necessary services to
track the scheduling progress, making possible to detect alterations and prevent
problems.

Enterprize Planning

v
- " Raw
ok —p- aroduction “—Materials
Programming -

TEventj Rtsourcts
Availability

Fig. 1. Production Programming Information Needs

3 The FAST Toolkit

The FAST toolkit is a multi-agent based tool which allows developing flexible,
fault tolerant and scalable scheduling systems in the manufacturing environ-
ment. It can be considered as a configurable scheduling tool which supports the
creation, modification and monitoring of production programming schedules.
Obviously, each manufacturing system has its own particularities. Therefore,
the FAST toolkit has been conceived as a helping tool for the developer adding
a specific development process. Thus, this process facilitates the construction of
an integrated production programming system. In next sections, the multi-agent
approach and the suggested development process are described.

3.1 Multi-agent approach

Automated workflow management systems have proved to be the driving force
behind successful decision making in industry. Multi-agent systems (MAS) tech-
nology offers a convenient platform for workflow modelling. A framework where
each agent represents a real information unit of the modelled enterprise is an
appropriate model for optimization and visualization of flows of material, work,
and information. The main features and the most interesting properties of using
the multi-agent system approach in contrast with conventional software systems
are scalability, modularity, flexibility and online reconfigurability.

Every production programming process (no mater the particular manufactur-
ing enterprise in which it is defined) has to address the schedule creation, sched-
ule modification (re-programming), and schedule execution control problems.
Therefore the FAST toolkit provides a set of agents that cover all those activities
(figure 2): (i) Schedule Creation Controller agent, that oversees the information
about a new schedule order; (ii) Schedule Modification Controller agent, which
maintains information about changes needed for adjusting the schedule because
of failures in the manufacturing process; (iii) Scheduler agent, who has the abil-
ity to schedule tasks and resources; (iv) Plant Wrapper agent, that maintains
and provides information about all restrictions and features of each machine and
plant element; (v) Lot Planner agent, that manages all information about task
sequences needed to manufacture a given lot; (vi) Schedule Ezxecution Monitor
agent, which supervises actual execution of a schedule in a specific plan; (vii)
and Manager agent, that maintains the integrity of the system and regulates the
cooperation among its different agents.

nnnnnn

Factory Plant

Fig. 2. MAS architecture

Three main scenarios can be identified: (i) schedule creation; (ii) schedule
execution monitoring; and (iii) schedule modification scenarios. In the schedule
creation scenario, the Production Planning Department provides the Manager
agent with all new planning lots that need to be programmed. Then the Manager
agent starts an instance of a Schedule Creation Controller (SCC) agent, which is
in charge of controlling the creation of the new required program. This SCC agent
starts an interaction with the Lot Planner (LP) agent, which informs about the
appropriated task sequences and the requirements needed to manufacture a given
lot. After this, the SCC agent will send a request to the Scheduler (or Scheduler
group, formed by several Scheduler agents) to obtain the best possible schedule
for the required production lots. During the schedule creation, the Scheduler

agents must interact with the adequate Plant Wrapper (PW) agent to get the
current plant status and specific information about each machine inside the
plant. Once the Scheduler has a valid allocation task proposal, it informs the
corresponding SCC agent which, after checking the proposal, forwards the new
schedule to the Manager Agent and finishes its execution.

In the Schedule modification scenario, when the Manager agent re-
ceives a schedule modification order from the Schedule Execution Monitor (SEM)
agent, it activates a Schedule Modification Controller (SMC) agent whom will
be in charge of the management of the scenario and responsible for getting a
new schedule with the proper re-programmed tasks. This SMC agent requests
the Scheduler to determine start times and resource allocations for that part
of the schedule that needs modification. So the Scheduler initiates a scheduling
process, in which it requests the Plant Wrapper agent to provide the updated in-
formation about the Plant Status. It also queries the Warehouse system in order
to determine Raw Material Availability. With all this information the Scheduler
assigns, if possible, manufacturing tasks to resources. When the scheduling pro-
cess finishes, it communicates the modified schedule to the SMC or indicates the
impossibility to produce it because of unrecoverable plant failures.

In the Schedule execution monitoring scenario, the Manager activates
the Schedule Execution Monitor (SEM) agent (one agent for each plant), and
asks it for information about the current schedule in execution. Then the SEM
agent requests the Plant Wrapper (PW) agent to inform about the actual state of
this schedule. Each time the PW agent detects an error, it notifies the SEM agent,
which evaluates whether this problem can affect other subsequent schedules. If
so, the SEM agent informs the Manager that a subsequent schedule has to be
modified because of errors produced during the actual schedule execution.

Some advantages of MAS for our specific approach are: (i) the system is highly
flexible, enabling to use different models and methods to solve the scheduling
problem in every stage of the manufacturing process and to easily change them
dynamically or even employ them concurrently; (ii) it may integrate and optimize
a range of scheduling goals related to different processes (such as to optimize
production programming to reduce stock levels in warehouses and in transit;
to keep service level at acceptable grade; to achieve a higher responsiveness
to competitor activity and reduction in lost sales opportunity; to ensure that
the schedule is realistic in terms of resource utilization and required dynamic
switches); (iii) it offers intelligent reasoning about the enterprise resources with
the aim to produce accurate estimation of project’s deadline and costs; (iv) it
maintains system state updated and can adapt to changes in the environment
while still achieving overall system goals (online reconfigurability), also allowing
for re-planning, i.e. maintenance of the plans created so far in such a way that
they are dynamically updated with respect to eventual changes in co-operating
agents (e.g. resource/agent breakdown); (v) it improves reactivity to events and
enables dynamic scheduling problem resolution; (vi) it offers rapid response to
new system requirements through the addition of new modules or reconfigu-
ration of existing ones; (vii) it enables to dynamically integrate new agents,

remove existing ones or upgrade agents; (viii) agents operate asynchronously
and concurrently, which results in computational efficiency; (ix) communication
between agents is independent of message content (thanks to FIPA ? protocols);
(x) the system is also prepared for Just-in-Time production by using a real-time
scheduler and providing real-time information to the agents of our platform.

3.2 FAST Development Framework

The FAST toolkit provides a development framework which is formed by a set of
fixed system-independent modules and a set of libraries and files which should be
used and adapted by the system developer. This toolkit offers different utilities as
pre-built modules: the agent execution framework, the set of agents commented
above, error control, predefined interaction processes and a simple scheduling
method which can be adapted or easily replaced by more specific scheduling al-
gorithms. The tool has been developed using the JAVA implementation language
and JADE [9,19] platform for agent creation and management.

This framework can be considered as a flexible skeleton of a production pro-
gramming toolkit which can be adapted with the suitable scheduling algorithms,
product specifications and material definitions as needed. The FAST develop-
ment process tries to make easier the developer work. The different steps of this
process are (see Figure 3):

A. Resources/Plant/Materials Definition: the developer must define the struc-
ture of the production plant, the available resources and the materials used
in the production process. The process of acquiring knowledge from the given
domain is described in this stage, which applies traditional methods such as
analyses of domain texts, expert interviews, and questionnaires. The termi-
nology used by domain experts is defined in this stage. FAST employs an ob-
ject/relational persistence and query service which provides transparent per-
sistence keeping the resulting application portable to all SQL databases. The
object /relational mapping tool requires metadata that governs the transfor-
mation of data from one representation to the other (and vice versa). The
mapping metadata is declared in standard XML text files.

B. Scheduling Process Definition: FAST offers a simple scheduling algorithm
implemented as a plug-in. Thus, it is a flexible system and any change in the
algorithm applied to implement the scheduling process, or even the introduc-
tion of new algorithms, does not affect the whole FAST system functionality.

C. Ewvents/Heuristics Definition: FAST needs a global and updated state view of
the production plant and each of the machines involved in the manufacturing
process. This state view allows the system to detect events that affect the
current execution of a schedule in a specific plant. To detect and control these
events in a suitable way, the Schedule Execution Monitor Agent must be
completed with the definition of these problematic situations. The suggested
toolkit incorporates examples of how to update several methods used by the
Schedule Execution Monitor Agent.

2 http:/ /www.fipa.org

D. Output Interface: The system developer may need to implement specific
interfaces for the environment under development. FAST basically produces
an output formed by the programmed (or re-programmed) orders using a
XML text file. FAST also offers a simple visual interface which can be easily
reimplemented and adapted for specific purposes.

The overall process is conceived as an iterative process. The basic idea be-
hind this iterative development is to develop the FAST system incrementally,
allowing the developer to take advantages of what has been learned through this
development process.

Resources/Plant/Materials
Definition

FAST
Development
Process

Events/Heurisiics

Fig. 3. FAST Development Process

4 Applying FAST

The FAST toolkit has been employed to obtain, in a easy and fast way, a system
that improves the current production programming process in a Ceramic Tile
Factory. The main objective is to make it more reactive, dynamic and automatic,
so then the factory enhances its production system and customer services.

The Ceramic Tile sector is very competitive. This competition is finally re-
flected in an increase of the variety of products and services, together with a
decrease of the production costs. Moreover, the improvement of the customer
service is also needed to stand up to the rising foreign enterprises. In this way,
in the Ceramic Tile Factory under study, different products with diverse sizes,
designs and compositions are produced. Moreover, the factory has to deal with
two kinds of clients: building firms and wholesalers.

Several business processes can be distinguished in a Ceramic Tile Factory.
Firstly, a design department defines which ceramic products will be produced in
the current season. Then, a prediction of sales and orders forecast is taken by
the commercial department, based on historical sales data, orders, etc. Later,
medium term production orders are defined, sequencing the different product

lots to be produced. This sequence configures the Master Plan, which is nor-
mally used as the major input data to generate the production programming,
that includes activities such as determining start time and resource allocation
for a specific lot production. The production department uses Master Plan, in-
formation about Raw Materials availability, Plant Status, etc., to generate the
production programming schedule. Finally, all tasks related with the production
and final storage of the different product lots are carried out. Usually, the Ce-
ramic Tile production process (Figure 4) is represented as a three stage hybrid
flow shop with sequence dependency in which three stages can be identified: press
and glass lines (first stage), kiln (second stage), and classification and packed
lines (third stage) [2]. Each stage is a productive phase with different times, re-
sources and objectives. Finally, the commercial department sells factory products
and manages orders from clients.

sR R V
%ﬂ l Glass Enamel Serigraphy l K|InTunneI I Classification I
=

Press Warehouse Warehouse Packet Machine

1st stage 2nd stage: 3rd stage:

Fig. 4. Ceramic Tile Production Process: three stage hybrid flow shop

Notice that in a job shop manufacturing environment, things rarely go as
expected. An optimal schedule might become unacceptable because of unforeseen
dynamic situations on the shop floor (unavailability of resources and materials,
power system failures, new jobs, etc). If so, a new schedule must be generated
to restore performance.

4.1 Implementation

In this section, we explain the main features of the implemented prototype for the
production scheduling of a ceramic tile factory. The toolkit has been successfully
employed for this specific environment.

The prototype development process has followed these steps:

A. Resources/Plant/Materials Definition. In this step the knowledge ac-
quisition and conceptualization is done. In our case, an analysis of the system
processes was firstly performed on the real factory to collect a glossary of con-
cepts (classes) for the domain. Secondly, an expert interview was conducted.
Then, the domain concepts, instances, relationships and properties were iden-
tified, presented and associated with domain terms. After this, the ontology
(figure 5) was formally represented using the Ontology Web Language (OWL)
[38] and employing Protege [34] as the ontology toolkit. This stage involves the
formalization of each term and the constraints used by the ontology. Terms are
represented through classes, relations, functions and instances.

As a result, there exists three main databases: the order database which sets
the production goals; the product definition database which explains the activi-
ties and resources needed to the manufacturing of an specific ceramic tile; and the
plant database which specifies the available resources and provides information
about the state of the plant.

Schedule_Inf Schedule

Schedule_Order,/Plant YAID_scc Order_Times Works_Stages*
N 4
‘ Order ‘ Plant State ‘ AID L\}esolvem‘ Times ‘Work_Stage
Order_VWorks" \&ines* Processes" Product_Changes*
¥ ¥
‘ Work ‘ ‘ Line ‘ TWork_Line ‘ TChange_Product ‘
E/\lork_Products l;ine_Machines*
Product ‘ Machine

Product_MateriaNroduct_Tasks‘

‘Product_Raw_Material ‘ Task ‘

Raw material

Fig. 5. Ontology concept example for the production scheduling of a ceramic tile fac-
tory

B. Scheduling Process Definition. After the manufacturing data model is
completed, it is necessary to identify the set of choices the scheduler must make
to derive a schedule or schedules that will meet the order deadlines. In this case,
a group of agents in charge of the schedule creation/modification processes has
been modelled. This agent group creates a feasible schedule for the workshop
taking into consideration the existing factory restrictions. It is composed of four
agents: one coordinator agent and three scheduling stage agents. These stage
agents are specialized in constructing partial schedules for each production step
(glazing, kiln and classification), taking into account its particular constraints
and requirements. For this purpose, they dispose of a set of algorithms that are
capable of obtaining the best objective function results. So, each stage agent ex-
ecutes simultaneously different suitable algorithms under diverse circumstances,
selecting the most appropriate result.
Following, we present a brief description of the agents mentioned above.

The Glazing Agent faces the problem of high sequence dependent setup costs
in the glazing production lines. Therefore, it aims to minimize those changes.
Besides, the stability of this particular stage is of high importance because of
the stage dependency on external providers and a high number of human re-
sources. Additionally, the Glazing Agent should consider that not all jobs can
be processed on all machines. It uses two algorithms: one based on dispatching
rules, and the other one on set recovering techniques.

The Kiln Agent’s goal is to minimize changes of the kiln’s temperature curve.
It uses three algorithms, one based on dispatching rules, another on genetic
algorithms and the third one on constraints propagation.

The Classification Agent aims to minimize the job processing times in order
to reduce the number of human resources. It uses two algorithms: one based on
dispatching rules and the other one based on genetic algorithms.

Finally, the Coordinator Agent aims to obtain feasible production schedules
for the whole workshop while considering the jobs proposed by the Lot Planner
agent and the partial schedules for each production stage. It contains algorithms
to prevent infeasibility whenever this is possible. If not, it initiates a negotia-
tion process with each stage agent, supervising them. The Coordinator Agent’s
production programming is based on a predictive-reactive strategy (it does a
foreseen schedule and reacts to events) and a mixed rescheduling policy (cyclic
and event driven). The rescheduling process always takes into account the par-
tial program performance and its longtime stability. Therefore, the Coordinator
Agent is in charge of offering the scheduling service to the rest of agents in the
system, representing the scheduling group.

C. Events/Heuristics Definition At this point, it is necessary to identify
events that could affect the current execution of a schedule in the ceramic tile
plant. The monitorized events can cause a simply schedule modification (solved
by updating predicted start or end times) or a rescheduling (revisiting some
or all of the scheduling decisions). This event identification covers situations
like equipments going out of service, new orders arrival, or possible production
deadlines non-fulfillment due to delays in process completion times. The schedule
updating is at least as important as generating the original schedule. Many
existing scheduling systems have been discarded because those systems have
failed to seriously address updating.

The main types of events identified are the following: (i) variations in pro-
cess stage duration; (ii) business orders or production orders that may be can-
celled or added; (iii) manual adjustments, as scheduler users must be able to
manually edit the schedule; and (iv) unexpected events, such as breakdowns
in plant resources, incorrect or incomplete order information, lack of materials.
The scheduling system must let managers reschedule after unexpected events to
minimize disruption.

D. Interface We have developed an own interface for our problem, taking into
account specific features of a ceramic tile factory. The new GUI let users inspect

the proposed schedule from different views and edit it as necessary. Figure 6
shows a line oriented view of different programmed orders. The FAST toolkit
architecture makes it easy for developers to add new views to meet the needs of
particular applications.

= Control center

Mew schedule | Show confirmed schedule | Configuration | Database

Orders to program

Grderd Date
Create New Schedule | (5pqooo0757 08002005

OR003-06 06-jul-2006
OR00%0-05 06-jul-2006
ORD05-25 06-ju-2006
23-00t2005
|01-0ct-2005
|06-jul-2006
[0&-ju-2008

£ New schedule programmed

Order ORO0G-25 o5l Confirm
Schedule 7 &5 Reject

Programmed schedule

Time
20-oct, 00:00 20-0ct, 12:00 21-0et, 0000 21-oet, 1200 22-0ct, 00:00

o
051 Propizdades. .
o7 Grabar como. ..
o8/t
o Pre— Order details
h Todos los s Quantity isponibiliyDate | aEndDate
oan -jul-2006 [08-jul-2006 -
Al »
021 — e e — B -ul-2006 |0-jui- 2008
2 1an S - e — o o o 50013 gutomatica b| £ e -jul-2008 06-ul-2006 =
T e jul-2006 06-jul-2006
142 - -jul-2006 [0-jul- 2006 ml
12 -jul-2006 [08-jul-2006
253 -jul-2006 [08-jul-2008
218 - jul-2006 06-jul-2006
233 jul-2006 06-jul-2006
iiﬁ -jul-2006 |06-jul- 2006
-jul-2006 |06-jul-2006
-jul-2006 |08-jul-2006
- jul-2006 06-jul-2006
jul-2006 06-jul-2006
-jul-2006 |06-jul- 2006
-jul-2006 |06-jul-2006
-jul-2006 |08-jul-2006
- jul-2006 06-jul-2006
jul-2006 06-jul-2006 |
- jul- 2006 016-iul- 2005 =

Fig. 6. New Creation Process Interface

4.2 Evaluation and results

In order to evaluate this experimental simulation prototype, different simulation
tests have been executed in which the operating conditions have been analyzed.
These tests give a measure of the system reliability, robustness, flexibility and ef-
ficiency not only under normal conditions, but also under nonstandard operating
circumstances. In this section some of these tests are explained. More specifically,
tests on functionality and efficiency of the system; concurrent programming ca-
pacity; system reaction to unexpected events such as machine failures; and agent
failures are carried out.

The objective of the first test was to check the correct functionality and effi-
ciency of the system, so many trials for measuring the necessary time to program
a new schedule were done. The generated instances were characterized by the
order size (number of works that compose an order). When the size increases,
the system has to manage more information so the whole process consumes

more time. This situation is shown in Figure 7. Although time increases, the
system can manage the orders independently of their size and with a little and
unimportant delay, specially from the point of view of the tile world.

70000 -
60000 4

50000 4
40000 /
30000

20000 -

Time (msec)

10000 -

10 50 100 200 500 1000

Order size

Fig. 7. Time needed for a new schedule creation process, depending on the order size

In the following test, the concurrent programming capacity of the system is
analyzed, as the user is able to launch several orders to be programmed at the
same time. For each new order launched there is an independent process in charge
of it, so all orders are processed concurrently. Figure 8 shows a graphic which
represents the needed time to program one specific order when there are one,
two, four or ten programming processes launched at the same time. As shown,
this time does not increase significantly when the user programmes other orders
concurrently. This is possible thanks to algorithm and process concurrency.

On the other hand, the prototype reacts fast, dynamically and automatically
when an event happens. For example the system detects when a work is delayed.
If one work should be finished accordingly to the confirmed schedule, but has
not finished yet, then the user receives a notification. It is very important to
have a fast reaction to this situation because it means that there are failures
in the confirmed schedule. Figure 9 shows the needed average time to detect
and inform the user about a delayed work. As expected, the graphic shows that
when the number of works delayed at the same time increases, the reaction time
augments.

Another interesting event to consider is a line or machine failure. Just like be-
fore, it is very important to react faster to this kind of events. Thus, if there is any
work programmed in this line or machine, then it should be reprogrammed and

70000

60000 4
50000 -
40000
30000 -

20000 4

Time (msec)

10000 -

——one
----two
---- four
—--ten

10 50 100 200 500 1000

Order size

Fig. 8. Concurrent programming capacity of the system, when several programming

processes are launched concurrently

25000

20000

15000

10000

Time (msec)

5000

Number of works delayed

Fig. 9. Needed time for detection of delayed works

user must also be informed. The Plant Wrapper agent, who has all information
about plant states, detects this failure and sends this information to the Sched-
uler Ezecution Monitor (SEM) agent. The SEM evaluates whether there is any
work that needs to be reprogrammed. If not, the process finishes. Otherwise, the
Manager agent is informed and the confirmed schedule is reprogrammed, taking
into account the failed line or machine. In our test, lots of trails were launched to
determinate how much time each part of the process needed. The results (figures
10 and 11) shown some variability depending on the state of the system and on
which processes were running at that current moment. The way to reduce this
variability is by using different threads, but this solution was not implemented
because the needed time for the production programming process is rather low,
even in the worst case.

In Figure 10 and 11, there are some significant results. These graphics rep-
resent the time elapsed since an error happens until the Plat Wrapper agent
detects it ("PW detects”); then until the SEM agent checks whether the con-
firmed schedule must be reprogrammed (”SEM evaluates”); and finally until the
Manager agent receives notification and launches the reprogrammation process
(”Manager launches reprogrammation”). When the error does not affect the con-
firmed schedule (Figure 10), the process usually takes around 0.02 seconds from
the failure happening until the SEM decision that the error does not affect. But
as shown in figure 10, when the Plant Wrapper or the SEM agents are busy, the
needed time increases up to 0.25 seconds. On the other hand, when the error
affects the confirmed schedule (Figure 11), the process usually takes around 0.32
seconds from the failure happening until the Manager launches the reprogram-
mation. But like before, there are some cases when time increases because agents
are busy (tests 1, 6 and 9 in figure 11).

The created prototype is very flexible and adaptable. It allows adding, mod-
ifying and deleting agents during execution and also changing the scheduling
algorithm or even using several algorithms currently, each of them in one active
Scheduler agent. Once the schedules are programmed, each Scheduler agent pro-
vides the user with its Gantt diagram so then user decides which schedule must
be confirmed and saved in the database. In order to check this system function-
ality and measure if the needed time to create a new schedule increases too much
when the system employs several scheduling algorithms, some trials where done
launching one, two and four active Scheduler agents each time. The results can
be seen in Figure 12. As expected, the prototype is able to work with several
scheduling algorithms at the same time and this does not affects too much the
process time because all algorithms are executed concurrently.

Finally, when an agent fails, the prototype detects it and launches another
agent to replace the failed one. This functionality gives the system great robust-
ness and reliability because not only it setups the agent configuration, but it also
is able to control that all launched processes finish successfully. For example if
the Scheduler agent fails during a new scheduling creation process, then when
new Scheduler agents will be active again, this same process will be automati-
cally launched, allowing the schedule to be created successfully. The time elapsed

25
20 .
7
ﬁ
. »;
° 15 ﬁ
g ’ @ PW detects
° ’ m SEM evaluates
:)
F 101 %
;
v
%
7
5 2
7
7
2

Fig. 10. Needed time for error recovery when error does not affect the calculated
schedule

from an agent failing till it is operative again ranges from 0.10 to 3 seconds. This
variability can be shown in Figure 13, in which some trials displayed. This vari-
ability is due to the exact time in which the agent fails. The system checks that
all agents are alive in a periodic way, so it detects the fail after 2 seconds at the
most.

5 Conclusions

In this paper, we have answered to the current demand for universal and flexible
tools that enable improving the production scheduling complex problem in man-
ufacturing systems, by means of the proposed FAST tool, which is a Flexible
and Adaptive Scheduling Tool based on the multi-agent system paradigm for a
manufacturing environment. It can be considered as a configurable scheduling
tool which supports the creation, modification and supervision of production
programming schedules in a easy and fast way.

We have also applied the FAST framework to an specific application example
in a ceramic tile factory, obtaining a suitable prototype for the production pro-
gramming process of this factory in a satisfactory way. The created prototype
is reliable, robust, flexible and efficient not only under normal conditions, but
also under nonstandard operating circumstances, as it is shown in the evaluation
tests.

70

m PW detects

@ SEM evaluates

Time (msec)

B Manager launches
reprogrammation

Fig. 11. Needed time for error recovery when error affects the calculated schedule

160000

140000 | A

120000 7

100000 / :
/ - -¢- -one algorithm

—e—two algorithms

80000 - /
/ — A— four algorithms
2

60000

Time (msec)

40000 -

20000 -

0 T T
10 50 100 200 500 1000

Order size

Fig. 12. Needed time for creating new schedules when using several scheduling algo-
rithms

| PlantWrapper

W LotPtanner
o SEM
£ Scheduler

Tiempo (msec)

Fig. 13. Time elapsed from agent failure till agent operativeness

As future works, the FAST tool should be extended with new utilities. Cur-
rently, we are adding new pre-built scheduling algorithms into the toolkit. More-
over, we are improving the interface definition stage, providing the user with the
possibility of modifying the proposed schedules on-line.

6 Aknowledgments

This work is partially supported by the GV06/315 project of the Valencian
government and by the Polytechnic University of Valencia under grant PII-UPV
5574.

References

1. J. Agre, G. Elsley, D. McFarlane, J. Cheng, and B. Gunn. Holonic Control of
Cooling Control System. In Proceedings of Rensslaers Manufacturing Conference,
1994.

2. C. Andrés. Production Scheduling in Hybrid Flow Shop with Sequence Dependent
Setup Times. Models, Methods and Algorithms. A Ceramic Tile Enterprise Appli-
cation. PhD thesis, Universidad Politécnica de Valencia, 2001.

3. A. Babayan and D. He. Solving the n-job 3-stage flexible flowshop scheduling prob-
lem using an agent-based approach. International Journal of Production Research,
Taylor & Francis Ltd., 42(4):777-799, 2004.

4. A. Bengoa. An Aproach to Holonic Components in Control of Machine Tools.
Annals of CIRP, 45(1), 1996.

5. G. Biswas, B. Sugato, and A. Saad. Holonic Planning and Scheduling for Assembly
Tasks. TR CIS-95-01, Center for Intelligent Systems, Vanderbilt University, 1995.

6. J. Brown and B. McCarragher. Maintenance resource allocation using decentralised
cooperative control. Technical report, ANU, 1998.

7. S. Bussmann. An Agent-Oriented Architecture for Holonic Manufacturing Control.
Proc. of 1st Int. Workshop on Intelligent Manufacturing Systems, EPFL, pages 1—
12, 1998.

8. S. Deen. A cooperation framework for holonic interactions in manufacturing.
In Proceedings of the Second International Working Conference on Cooperating
Knowledge Based Systems (CKBS’94, 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

. Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE - A FIPA-

compliant Agent Framework. In Proc. of the PAAM’99, pages 97-108, Apr. 1999.
K. Fischer. An Agent-Based Approach to Holonic Manufacturing Systems. in L.
M. Camarinha-Matos, H. Afsarmanesh and v. Marik (Eds.) Intelligent Systems
for Manufacturing. Multi-Agent Systems and Virtual Organisations, pages 3—12,
1998.

M. Fletcher and M. S. Deen. Fault-tolerant holonic manufacturing systems. Con-
currency and Computation: Practice and Ezxperience, 13(1):43-70, 2001.

N. Gayed, D. Jarvis, and J. Jarvis. A Strategy for the Migration of Existing
Manufacturing Systems to Holonic Systems. In Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, pages 319-324, 1998.

L. Gou, T. Hasegawa, P. Luh, S. Tamura, and J. Oblak. Holonic Planning and
Scheduling for a Robotic Assembly Testbed. In Proceedings of the 4th Rensselaer
International Conference on Computer Integrated Manufacturing and Automation
Technology, 1994.

L. Gou, P. Luh, and Y. Kyoya. Holonic Manufacturing Scheduling: architecture,
cooperation, mechanism, and implementation. Computers in Industry, 37:213-231,
1998.

T. Hasegawa, L. Gou, S. Tamura, P. Luh, and J. Oblak. Holonic Planning and
Scheduling Architecture for Manufacturing. In Proceedings of the 2nd International
Working Conference on Cooperating Knowledge-based Systems, 1994.

T. Heikkila, M. Jarviluoma, and J. Hasemann. Holonic Control of a Manufacturing
Robot Cell. Technical report, VI'T Automation, 1995.

T. Heikkila, M. Jarviluoma, and T. Juntunen. Holonic Control for Manufactur-
ing Systems: Design of a Manufacturing Robot Cell. Integrated Computer Aided
Engineering, 4:202-218, 1997.

P. R. HMS. HMS Requirements. HMS Server, http://hms.ifw.uni-hannover.de/,
1994.

JADE. Java Agent DEvelopment Framework. hitp://jade.tilab.com/, 2006.

A. Marcus, T. Kis Vancza, and L. Monostori. A market approach to holonic
manufacturing. Annals of CIRP, 45:433-436, 1996.

F. Maturana and D. Norrie. Distributed decision-making using the contract net
within a mediator architecture. Decision Support Systems 20, pages 53-64, 1997.
D. McFarlane and B. S. Agent-Based Manufacturing. Advances in the Holonic
Approach, chapter Holonic Manufacturing Control: Rationales, Developments and
Open Issues, pages 301-326. Springer-Verlag, 2003.

K. Miyashita. ”camps: A constraint-based architecture for multi-agent planning
and scheduling”. Journal of Intelligent Manufacturing, 9(2):147-154, Apr 1998.
A. Ng, R. Yeung, and E. Cheung. HSCS - the design of a holonic shopfloor control
system. In Proceedings of IEEE Conference on Emerging technologies and Factory
Automation, pages 179-185, 1996.

V. ”Parunak. Workshop report: Implementing manufacturing agents. National
Center for Manufacturing Sciences, 1996.

M. Pechoucek, J. Vokrinek, and P. Becvar. Explantech: Multiagent support
for manufacturing decision making. IEEE Intelligent Systems, pages 1541-1672,
Jan/Feb 2005.

C. Ramos. A holonic approach for task scheduling in manufacturing systems. In
Proceedings of IEEE Conference on Robotics and Automation, pages 2511-2516,
1996.

L. Rannanjarvi and T. Heikkila. Software Development for Holonic Manufacturing
Systems. Computers in Industry, 37(3):233-253, 1998.

29

30.

31.

32.

33.

34.
35.

36.

37.

38.

A. Saad, G. Biswas, K. Kawamura, M. Johnson, and A. Salama. Evaluation of
Contract Net-Based Heterarchical Scheduling for Flexible Manufacturing Systems.
In Proceedings of the 1995 International Joint Conference on Artificial Intelligence
(IJCAI’95), pages 310-321, 1995.

W. Shen and D. Norrie. Agent-Based Systems for Intelligent Manufacturing: A
State-of-the-Art Survey. Knowledge and Information Systems, an Internatinal
Journal, 1(2):129-156, 1999.

N. Sugimura, M. Hiroi, T. Moriwaki, and K. Hozumi. A study on holonic schedul-
ing for manufacturing systems of composite parts. In Proceedings of Japan/USA
Symposium on Flexible Manufacturing, pages 1407-1410, 1996.

P. Tanaya, J. Detand, and J. Kruth. Holonic Machine Controller: A Study and
Implmentation of Holonic Behaviour to Current NC Controller. Computers in
Industry, 33:325-333, 1997.

P. Tanaya, J. Detand, J. Kruth, and P. Valckenaers. Object-Oriented Execution
Model For a Machine Controller Holon. Furopean Journal of Control, 4(4):345-361,
1998.

S. University. Protege ontology editor. http://protege.stanford.edu.

P. Valckenaers, H. Van Brusel, L. Bongaerts, and F. Bonneville. Programming,
Scheduling and Control of Flexible Assembly Systems. Computers in Industry,
26:209-218, 1995.

S. Valero, E. Argente, A. Giret, V. Julian, and V. Botti. Goodness and lacks of
mas methodologies for manufacturing domains. In LNAT 3690. CEEMAS’05, pages
645—-648. Springer, 2005.

H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters. Reference
Architecture for Holonic Manufacturing Systems: PROSA. Computers In Industry,
37:255-274, 1998.

W3C. Owl web ontology language overview. hitp://www.w3.org/ TR /owl-features/,
2004.

