

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/202569

Barella, A.; Valero Cubas, S.; Carrascosa Casamayor, C. (2009). JGOMAS: New Approach
to AI Teaching. IEEE Transactions on Education. 52(2):228-235.
https://doi.org/10.1109/TE.2009.2022216

https://doi.org/10.1109/TE.2009.2022216

Institute of Electrical and Electronics Engineers

1

JGOMAS: A new approach to AI teaching
Antonio Barella, Soledad Valero, and Carlos Carrascosa

Abstract— This paper presents a new environment for teaching
(in a practical way) AI subjects. The main purpose of such
environment is to make more appealing AI techniques to the
students along with facilitating the approach of these students
to toolkits that are currently and widely used in research
and in development. This new environment is composed of a
toolkit for developing and executing agents, called JGOMAS,
and a web-server dedicated to it where students may access
to different documentation and information and interact with
teachers. Lastly, it is presented a real case of application of this
environment to the practical work of an advanced AI subject.

Index Terms— MAS, Agents, Virtual Environments, . . .

I. INTRODUCTION

THE advanced Artificial Intelligence (AI) courses cover

core concepts and techniques needed to develop intelli-

gent systems, such as planing, case base reasoning, decision

theory, machine learning, agents and multi agent systems.

Moreover, not only it is expected than students know and

master basic concepts and techniques, but also they use new

available tools to solve practical problems.

Furthermore, the employed tools must not be difficult to

use, since they can cause rejection in the students, making the

learning of the desired techniques more difficult. Otherwise,

attractive tools are needed in order to motivate students to

work hard in their practical problems, so they can reach the

demanded requirements and provide additional features too.

In this way, a new toolkit to be used for educational pur-

poses on AI subjects is presented in this paper. This toolkit has

two components, the first one is JGOMAS, a Game-Oriented

Multi-Agent System based on JADE [1] . Specifically, JGO-

MAS is an environment to develop and run intelligent agents

over simulated 3D worlds. Therefore, JGOMAS allows to run

agents in different teams, which compete to achieve their own

and team objectives. Those two teams compete in a capture-

the-flag-like game, where one team defends its flag against

the other team, which tries to capture it. The agents can play

different roles: soldier, medic and field operations. Moreover,

agents need to cooperate with their team-mates in order to

achieve their objectives. For example, a medic can deliver

medic packs to a soldier mate with a low level of health who

sent a ”call for medic” request.

The second component of this educational framework is

formed by a Web, where is possible to get last versions and

updates of JGOMAS, documentation, user manuals, usage

examples, news, etc. So, this framework allows students to

carry out their projects from everywhere, and not only in

practical rooms.

Finally, besides JGOMAS was created for educational pur-

poses, it can be used in different scopes, for example as a

testbed for AI techniques: cooperation, coordination, learning,

etc. Another possibility could be the study of the complete

integration between Multi-agent Systems and Virtual Reality.

In the following sections, this new environment for teach-

ing (in a practical way) AI subjects is detailed in its two

components, JGOMAS toolkit and web-server. Lastly, it is

presented a real case of application of this environment to the

practical work of an advanced AI subject. But before these

descriptions, some basic concepts and definitions regarding

multi-agent systems are provided in the next section.

II. MULTI-AGENT SYSTEMS’ CONCEPTS

Traditionally, complex systems are solved by huge mono-

lithic applications, which have the required information for

a valid solution. To handle all this information implies high

computational costs, and therefore, increased time consump-

tion. Because of time constraints, the results obtained could

be a poor solution.

However, if the original problem can be decomposed into

subproblems, then the initial complexity of the problem can be

reduced. This is the basis of the distributed system approach,

which is a powerful technique for solving complex systems.

Artificial intelligence in computer games could be tackled as

a distributed system: nodes dividing and sharing information

to reach a solution. These nodes will have different tasks, and

they will work together according to their partial information,

finally achieving a desired goal. This is the way a multi-

agent system works, as Wooldridge’s definition of agent and

multi-agent system states: “Multi-agent systems are systems

composed of multiple interacting computing elements, known

as agents. Agents are computer systems with two important

capabilities. First, they are at least to some extent capable

of autonomous action - of deciding for themselves what

they need to satisfy their design objectives. Second, they

are capable of interacting with other agents - not simply by

exchanging data, but by engaging in analogues of the kind

of social activity that we all engage in every day of our

lives: cooperation, coordination, negotiation, and the like.” [2].

Each agent can figure out what it needs to do in order to

reach its design objectives. This means that nobody has to tell

the agent explicitly what to do at a given moment. On the

other hand, a MAS is a system that consists of a number of

agents, communicating messages through a computer network.

These agents will cooperate, coordinate, and negotiate with

each other, trying to achieve their own goals and collective

objectives, as a result of emergent behaviour[3].

A MAS platform can be viewed as an abstraction of an

Operative System for agents. This platform provides mecha-

nisms for: executing agents, communication between agents,

controlling the life cycle of each agent, and so on. Agents

and their system would be in an upper layer of abstraction,

2and developers could apply those appropriate technologies for

each problem (for example, a Neural Network, or a Finite

State Machine, etc. . .). The complete system can be viewed

as a multi-layer architecture as shown in Fig. 1.

Fig. 1. Multi-layer architecture to develop a MAS

In the literature we can find several platforms for the

implementation of multi-agent systems [4]. Some of them

follow the standard of the Foundation for Intelligent Physical
Agents1 (FIPA) abstract architecture [5], while others are

based on independent developments. FIPA tries to support

both agent-level and platform-level interoperability through

a comprehensive set of specifications. At the platform level,

FIPA specifies an abstract architecture for agent platform

and services, a message transport service to enable agent

communication over several network environments, and agent

management to control agents’ evolution. At the agent level,

FIPA mainly deals with Agent Communication Language
(ACL), interaction protocols, message content and message

ontology issues.

The FIPA Abstract Architecture [5] (Fig. 2) defines, at an

abstract level, how two agents can locate and communicate

with each other by registering themselves and exchanging

messages. Concretely, FIPA proposes that an agent platform

must contain at least the following mandatory roles:

• Agent Management System (AMS): controls agents ac-

cess and use of the platform. It keeps information of all

the agents within the platform including their identifiers

and transport addresses. It gives a white pages service to

the agents connected to the platform.

• Directory Facilitator (DF): provides yellow page services

to the agent platform. Agents within the platform can

register their services to the directory facilitator and can

1FIPA is an IEEE Computer Society standards organization that promotes
agent-based technology and the interoperability of its standards with other
technologies

Fig. 2. FIPA abstract architecture

��������	 �
������� �
������

�����
����� ��� ��� ���
� �������������
 �! ��� " #
��$

%�&�'�()*+&�, -�.
��-/� &�, -/(�01%�&�'�(23�4�(�-/��.
��-/� &�, -/(�01%�&�'�(�3�4�(�-/��.
��-/� &�, -/(�0

5�*�6

5
(�4�, ���70 8

9�:;<=>�? @ 9�:�<=>�? @ 9�:�<=>�? @

A
B�C D;E�F GHI�F E�C E�J�E�K�L�C M�JNG

Fig. 3. JADE architecture

query it in order to know the services offered by other

agents.

• Agent Communication channel (ACC): is the default

communication method which offers a reliable, orderly

and accurate message transport service. The ACC pro-

vides agent communication inside and outside the plat-

form.

The JADE platform [6][1] is a software development frame-

work which contains a FIPA compliant agent platform devel-

oped in JAVA [7] and a package to develop JAVA agents. The

platform (figure 3) is perceived from outside as a single entity

but it can be divided in different agent containers, each one

executing a Java Virtual Machine and it can be distributed

in different hosts. When the platform is launched the FIPA

AMS, the DF and the ACC are started. Each agent in JADE

is executed within an agent container and it must have a

global unique identifier within the platform. One of the agent

container is called the main container, and it contains the AMS

and the DF.

3

III. RELATED WORK

A. Competitions

1) RoboCup: It is an international research and education

initiative [8][9][10][11][12]. Its goal is to foster artificial intel-

ligence and robotics research by providing a standard problem

where a wide range of technologies can be examined and

integrated. In July 1997, the first official conference and games

were held in Nagoya, Japan. The following annual events

attracted many participants and spectators (Paris, Stockholm,

Melbourne, Seattle,Fukuoka-Busan, Padua, Lisbon, Osaka,

Bremen). Nearly 300 teams from all continents competed in

the Robocup 2007, hosted at the Georgia Institute of Tech-

nology, Atlanta. Approximately 1700 students and faculties

from leading universities, high schools, middle schools and

elementary schools competed in the different events.

RoboCup chose to use soccer game as a primary domain,

aiming at innovations to be applied for socially significant

problems and industries. Moreover, in the last competitions

was introduce another socially significant domain: disaster

rescue in large scale disasters. Both domains are represented

in two different cups: RoboCupSoccer and RoboCupRescue.

1) RoboCupSoccer. The game of soccer was the origi-

nal motivation for RoboCup. Besides being a popular

worldwide sport, therefore an appropriate medium to

attract people to an event, it contains a significant set

of challenges for researchers. In order for a robot team

to actually perform a soccer game, various technologies

must be incorporated including: design principles of

autonomous agents, multi-agent collaboration, strategy

acquisition, real-time reasoning, robotics, and sensor-

fusion. RoboCup is a task for a team of multiple fast-

moving robots under a dynamic environment. RoboCup

also offers a software platform for research on the soft-

ware aspects of RoboCup. RoboCupSoccer is divided

into the following leagues:

• Simulation league. Independently moving software

agents play soccer on a virtual field inside a com-

puter. Matches have 5-minute halves. This is one

of the oldest fleet in RoboCupSoccer. There are

no actual robots in this league but spectators can

watch the action on a large screen, which looks

like a giant computer game. Many computers are

networked together in order for this competition to

take place.

• Small-size robot league (f-180). Small robots of

no more than 18 cm in diameter play soccer with

an orange golf ball in teams of up to 5 robots

on a field with the size of bigger than a ping-

pong table. Matches have 10-minute halves. This

league focuses on the issues of multi-agent coop-

eration with a hybrid centralized/distributed system.

Relevant objects are marked by color and colored

coded markers which are on the top of the robots.

Commands are transmitted to the team robots by

wireless communication.Some robots play with on-

board vision and therefore require no overhead cam-

era. No external intervention of humans is allowed,

with the exception of the insert or removal of robots

in/from the field.

• Middle-size robot league (f-2000). Middle-sized

robots of no more than 50 cm diameter play soccer

in teams of up to 4 robots with an orange soccer

ball on a field the size of 12x8 meters. Matches

are divided in 15-minute halves. All sensors are on-

board. Communication among robots is supported

on wireless communications. No external interven-

tion by humans is allowed, except to insert or

remove robots in/from the field.

• Four-legged robot league. Teams of 4 four-legged

entertainment robots (SONY’s AIBO) with all sen-

sors on-board, play soccer on a 3 x 5 meters field.

Matches have 10-minute halves. Relevant objects

are marked by colors. The robots use wireless net-

working to communicate with each other and with

the game referee. Challenges include vision, self-

localization, planning, and multi-agent coordination.

No external intervention by humans is allowed,

except to insert or remove robots in/from the field.

• Humanoid league. This league was introduced in

2002 and the robots will have their third appearance,

most are constructed by the participating teams.

Some commercially available robots also partici-

pate. Biped autonomous humanoid robots play in

”penalty kick” and ” 2 vs. 2” matches and ”Techni-

cal Challenges”. This league has two subcategories:

Kid-size (<60cm) and Teen-size. The humanoid

soccer robots are fully autonomous. Help from

outside the file is not permitted while the ball is

in play. One particular challenge in the Humanoid

League is maintaining the balance while the robots

are walking and kicking the ball. If the robots go to

the ground, they must get up by themselves again.

2) RoboCupRescue. Disaster rescue is one of the most

serious issues involving very large numbers of hetero-

geneous agents in a hostile environment. The intention

of the RoboCupRescue project is to promote research

and development in this significant domain by involving

multi-agent team work coordination, physical robotic

agents for search and rescue, information infrastructures,

personal digital assistants, standard simulator and deci-

sion support systems, evaluation benchmarks for rescue

strategies and robotic systems that are all integrated into

a comprehensive system in future. RoboCupRescue is

divided into two leagues:

• Simulation League. The main purpose of the

RoboCupRescue Simulation Project is to provide

emergency decision support through the integration

of disaster information, prediction, planning, and

human interface. Heterogeneous intelligent agents

conduct search and rescue activities in this virtual

disaster world. This problem introduces researchers

to advanced and interdisciplinary research themes.

The league is composed of three competitions: the

virtual robot competition, the agent competition, and

4

the infrastructure competition.

In a virtual robot competition run, a team of simu-

lated robots has to explore, map and clear a block-

sized disaster area, featuring both carefully modeled

indoor / outdoor environments. Robots and sensors

used in this competition closely mirror platform and

devices currently used in physical robots.

The Agent competition involves scoring competing

agent coordination algorithms on different maps of

the RobocupRescue simulation platform. The chal-

lenge in this case involves developing coordination

algorithms that will enable teams of Ambulances,

Police forces, and Fire Brigades to save as many

civilians as possible and extinguish fires in a city

where an earthquake has just happened.

The Infrastructure competition involves evaluating

tools and simulators developed for the simulation

platform and for simulating disaster management

problems in general. Here, the intent is to build

up realistic simulators and tools that could be used

to enhance the basic RobocupRescue simulator and

expand upon it.

• Robot League. Robots explore a specially const

ructed disaster site, including mannequins with var-

ious signs of life, such as waving hands, shouting

noises and heat, hidden amongst stairs, platforms

and building rubble. The robots, some under human

control, must find and approach the victims, identify

their signs of life and produce a map of the site

showing where the victims are located. The aim is to

provide human rescuers with enough information to

safely perform a rescue. Each team is scored based

on the quality of its maps, the accuracy of the victim

information and the number of victims found.

2) Agent Reputation and Trust Testbed (ART): It is a multi

agent game designed for trust issues [13] [14] [15]. The

testbed simulates an open multi agent system where ART

appraisal agents communicate with the purpose of increasing

the accuracy of their appraisals.

The testbed operates in two modes: competition and exper-

imentation [13]. In competition mode, the testbed compares

different researchers’ strategies as they act in combination.

Each participant controls a single agent, which works in

competition against every other agent in the system. The com-

petition consist of several game sessions; the winner is selected

by averaging results over all sessions, to even out possibly

unfair game settings. The duration of each session is randomly

determined by the simulation and is unknown to each agent

to prevent agents from exploiting end-game strategies. It is

possible to include ’dummy’ agents in the competition, whose

strategies are unknown to the other competitors, in order to

increase the number of players. Dummy agents compete in the

game throughout the duration of the competition.

In experimentation mode, users my choose to allow agents

(including dummy agents) to enter or leave the game as

desired. The users also has the flexibility of complete control

over all experiment parameters. Result may be compared for

benchmarking purposes, since the testbed provides a well-

established environment for easily repeatable experimentation.
In the ART appraisal domain, agents function as painting

appraisers with varying levels of expertise in different artistic

eras. Clients request appraisals for paintings from different

eras; if an appraising agent does not have the expertise to

complete the appraisal, it can request opinions from other

appraiser agents. Appraisers receive more clients, and thus

more profit, for producing more accurate appraisals.
A successful agent in the ART testbed must take both

integrity and competence into account. Integrity comes from

the knowledge of how well other agents self-report their

capabilities when they have been queried for an opinion.

Competence is important since each agent has its own level

of knowledge for various types ad artwork. Moreover, an

agent in the ART framework is capable of using intuition,

experience and hearsay. Intuition could be used to consider

how agents’ behaviours might change over the course of

the game. Experience and hearsay are the main mechanisms

supported by the testbed’s design.
3) The Trading Agent Competition (TAC): The Trading

Agent Competition (TAC) is an international forum [16]

designed to promote and encourage high quality research

into the trading agent problem. Michael Wellman led the

team that organized the first years competitions, based on the

”travel agent scenario” (called TAC Classic). From TAC 2002,

Swedish Institute of Computer Science (SICS) organized the

competition together with the TAC community. Since 2003 the

competition also has a supply chain scenario, based on a PC

manufacturer scenario, created by Carnegie Mellon University

and SICS (called TAC SCM). Moreover, many universities

are using the TAC infrastructure for education of students in

e-commerce and artificial intelligence.

• TAC Classic. In the TAC shopping game [16][17], each

”agent” (an entrant to the competition) is a travel agent,

with the goal of assembling travel packages (from TAC-

town to Tampa, during a notional 5-day period). Each

agent is acting on behalf of eight clients, who express

their preferences for various aspects of the trip. The

objective of the travel agent is to maximize the total satis-

faction of its clients (the sum of the client utilities). Travel

packages consist of the following: A round-trip flight;

a hotel reservation; and Tickets to some entertainment

events (alligator wrestling, amusement park, museum).

There are obvious interdependencies, as the traveler needs

a hotel for every night between arrival and departure of

the flight, and can attend entertainment events only during

that interval. In addition, the clients have individual

preferences over which days they are in Tampa, the type

of hotel, and which entertainment they want. All three

types of goods (flights, hotels, entertainment) are traded

in separate markets with different rules.

A run of the game is called an instance. Several instances

of the game are played during each round of the competi-

tion in order to evaluate each agent’s average performance

and to smooth the variations in client preferences. The

game occurs during nine minutes.

At the end of the game, the travel agent holds several

5

plane tickets, hotel rooms and event tickets. If it ends

the game holding negative balances of any entertainment

tickets (because it sold tickets it did not have), it is

assessed a penalty of 200 for each ticket owed. The TAC

scorer allocates the agent’s travel goods to its individual

clients in order to construct feasible trips. Value for a

particular allocation is the sum of the individual client

utilities. The agent’s final score is the value of the

allocation of the goods to clients, minus the travel agent’s

expenses, minus a penalty for negative entertainment

balances (if applicable). The scorer attempts to construct

an optimal allocation, and usually succeeds or comes very

close.

• TAC SCM. It was designed to capture many of the

challenges involved in supporting dynamic supply chain

practices, while keeping the rules of the game simple

enough to entice a large number of competitors to submit

entries [18][19]. A TAC SCM game consists of a number

of days or rounds where six personal computer (PC)

assembly agents compete for customer orders and for

procurement of a variety of components. Each day, cus-

tomers issue requests for quotes and select from quotes

submitted by the agents, based on delivery dates and

prices. The agents are limited by the capacity of their

assembly lines and have to procure components from

a set of eight suppliers. Four types of components are

required to build a PC: CPUs, Motherboards, Memory,

and Disk drives. Each component type is available in

multiple versions. Customer demand comes in the form

of requests for quotes for different types of PCs, each

requiring a different combination of components.

A game begins when one or more agents connect to

a game server. The server simulates the suppliers and

customers, and provides banking, production, and ware-

housing services to the individual agents. The game

continues for a fixed number of simulated days. At the

end of a game, the agent with the highest sum of money

in the bank is declared the winner.

The game is representative of a broad range of supply

chain situations. It is challenging in that it requires agents

to concurrently compete in multiple markets (markets for

different components on the supply side and markets for

different products on the customer side) with interde-

pendencies and incomplete information. It allows agents

to specialize in particular types of products, stocking up

components that are in low supply, etc. To succeed, agents

will have to demonstrate their ability to react to variations

in customer demand and availability of supplies, as well

as adapt to the strategies adopted by other competing

agents.

B. Intelligent Virtual Environments (IVEs)

The combination of artificial intelligence techniques and

virtual reality (or virtual environments) has given birth to the

field of intelligent virtual environments (IVEs) [20].

An IVE is a virtual environment simulating a physical

(or real) world, inhabited by autonomous intelligent entities.

These entities have to interact in / with the virtual environment

as if they were real entities in the real world. In addition,

entities and the virtual environment have to be shown to users

in an appropriate way.

1) Commercial Game Engines: Using 3D videogame en-

gines to create intelligent virtual environments has been a

choice used widely, because of the commercial success and the

high level of photorealism that is achieved by current technol-

ogy [21]. The usual approach for applications to commercial

game engines is to integrate an agent as a bot player in the

game. Quake and Unreal Tournament are the most prefered be-

cause of this facility to create and modify bots. These bots can

be implemented using any AI technique; for example, M. van

Lent et al. [22] use SOAR [23][24][25] as an inference engine

and B. Gorman et al. [26], use MATLAB R©[27] to control the

bot. Considering a bot as an agent, agent techniques can also

be applied; for example E. Norling [28] uses JACKTM[29][30]

for a BDI agent bot.

2) Simulators: Other choice is to use simulation pack-

ages. There are some powerful packages for the simulation

of decentralized systems. One of the most popular ones is

Swarm[31][32], but it does not provide a framework for 3D

simulations or visualizations. Another package is Breve[33],

which is an integrated simulation environment for the imple-

mentation of decentralized systems and artificial life simu-

lations in 3D worlds. In Breve, simulations are written in

an interpreted language (“steve”) and, therefore, they are

integrated in this application for execution.

3) From the scratch: A more laborious choice is to create

a framework from the scratch. A wide range of approaches

may be found in literature following this choice. For instance,

DIVA [34] (and its evolution, VITAL [35]) is developed to

use a Prolog-based engine for deliberation. Another approach

is to develop a virtual environment with only one agent

acting as a wizard agent for training and educational purposes

such as STEVE [36]. It can be found some research in the

field of crowd simulations in virtual environments, as for

example [37][38]. Moreover, there are approaches that use AI

to give human-like expressiveness or movement to their virtual

characters [39][40].

C. Discussion

In the above IVEs approaches, artificial intelligence and

graphics use to be embedded. In this way, they are ad-hoc
applications that are not very extensible nor scalable. This

work pretends to establish a framework that integrates a MAS

and a Virtual Environment for developing Intelligent Virtual

Environments, so that a designer will not to be worry about the

low-level management and interaction with the virtual world.

This will allow him/her to focus in the implementation of the

Artificial Intelligence peculiarities of his agents, that is, in

their deliberation process whatever technique he/she will use

for them (neural networks, FSM, rules, etc. . .).

JGOMAS (Game-Oriented Multi-Agent System, based on

JADE) has emerged as a test platform to study a full integra-

tion of multi-agent system and real-time graphic applications.

Therefore, JGOMAS is a multi-agent framework designed to

6have intelligent computer-controlled elements in 3D virtual

environments, such as games, virtual reality systems, etc.

Unlike some packages mentioned above, JGOMAS cannot

be considered as a (3D graphic) simulator where intelligent

elements are integrated into the package for execution. In

JGOMAS the main difference is that there is a module for

artificial intelligence (specifically MAS) and another one for

visualization, and they work independently of each other,

that is, Intelligence and Visualization parts are separated.

Moreover, this AI module is a distributed system by itself,

where each one of the elements of the system (each agent)

has some independence in a fashionable way as a player in a

multi-player game.

From a teaching point of view, it is possible to launch two

different lines of teaching, which are both artificial intelligence
and graphics, in different subjects.

IV. JGOMAS TOOLKIT

As it has been stated before, there are different reasons to

create a new environment for teaching artificial intelligence in

a practical way. One of this reasons is to make the artificial

intelligence techniques more attractive to students, increasing

the interaction between teachers and students. Moreover, it

is intended that students will be able to make or to extend

further their practical work from anywhere, not only from

the educational laboratories. These reasons lead to both the

creation of a new toolkit for students to develop their practical

work, and the launch of a web server dedicated to this toolkit

that allows to spread documentation, new versions, examples

and any general news interesting to the student about it.

A. Game Description: Capture the Flag (CTF)

JGOMAS has a framework allowing to develop and execute

agents over 3D simulated worlds. In fact, these agents will

belong to one of two different teams that are competing in a

“Capture the Flag”-like game. In this kind of games, two teams

(red and blue, allies and axis) must compete to capture the

opponent’s flag. This game modality has become an standard

included in almost all multiplayer games appeared since Quake

[41].

It is very easy and intuitive to apply multi-agent system to

this type of games, because each soldier may be seen as an

agent. Moreover, agents in a team must cooperate among them

to get the team’s objective. In this way, they compete with the

other team.

In fact, it is not odd to find applications of agent technology

to game field, in general (i.e. the board game developed by S.

Offerman et al. [42]) and to the Capture the Flag, in particular.

In this last case, it can be found ad-hoc applications such as

the CTF Project [43], or applications to commercial games

[44] such as the above mentioned Quake.

So, a CTF game is proposed as the kind of social interaction

to simulate, where the agents group in two teams (allies and

axis). On one hand, allies agents must go to axis base, capture

the flag and take it to their base, in which case allied team

win the game. On the other hand, axis agents defend their flag

against the other team and, if the flag is captured, they must

Fig. 4. JGOMAS’ web main page

return it to their base. There is a limit time for allies to bring

the flag to their base. If time expires, axis team win the game.

Of course, it is necessary an additional module which

will display the 3D virtual environment: agents, objects and

scenario.

B. Web

A web for JGOMAS environment was created in order to

provide an accesible way from anywhere, where students were

able to get the last source code version, contact with teacher

or look up reference manuals.

Nowadays, a short description about the JGOMAS toolkit

is accesible from this Web. Moreover, how JGOMAS works

and over which components it is based on are explained.

From the ”DOCUMENTATION” section, users can access

to on-line manuals, as well as it is possible download its

pdf version. From this section, access to all didactic material

is also possible, as the slides used in class, for example.

Similarly, a ”DOWNLOAD” section is available where users

can obtain different versions of the JGOMAS toolkit (such as

linux or windows platforms, etc.), as well as they can read a

short description that explains how to run the environment.

On the other hand, relevant news about the JGOMAS

framework are posted at the ”NEWS” section of the main

web page (Figura 4), so that to advise students about new

versions or changes in exercises requirements is very easy.

Furthermore, students can contact with their teacher and

JGOMAS developers through the Web. In this way, students

are encouraged not only to make questions about their doubts,

but also they can propose improvements to JGOMAS, such as

additional features that make more easy their changes on the

basic agents behaviors provided by JGOMAS.

7

Fig. 5. Application.

C. JGOMAS Framework
Along with its teaching objectives, JGOMAS’ framework

has been developed with the goal of allowing the developer

of a multi-agent system situated in a virtual environment to

abstract himself from the peculiarities of such environments.
Thus, a requirement in the design of JGOMAS is that both

systems, visualization (virtual reality) and intelligence (multi-

agent system), work separately in an independent way, in order

to create a flexible and versatile framework. Thus, there is a

clear separation of the intelligence part (where reasoning is

computed) from the visualization part (where the results of

reasoning are displayed) as proposed by [37]. Figure 5 shows

the abstraction level provided by the framework, allowing

to distribute in an independent way both visualization and

intelligence parts. This distribution facilitates the scalability

of the intelligent virtual environment application.
In this way, the framework permits not only the distributed

execution of all these components, but also facilitates the in-

coporation of intelligence to the system. Next section presents

a detailed description of the framework.

V. DESCRIPTION OF JGOMAS’ FRAMEWORK

JGOMAS’ framework has been developed to work over

an specific multi-agent system platform, JADE, using the

facilities provided by this platform, that, nowadays is the

most used one in the world. The framework allows designers

to incorporate intelligence in agents interacting in a virtual

environment, being able to follow the evolution of such agents

in the virtual environment through a non-determined number

of visualization modules in a distributed fashion. Among all

the possible kind of agents in the framework, there is one

deserving special attention, the Agent Manager, because is

in charge of controlling the simulated environment. The rest

of this section details the framework, beginning with the

description of the architecture, after that, it shows the agent

taxonomy developed, and ending with a detailed view of the

Agent Manager.

A. Architecture
The framework is composed of three subsystems, as shown

in Fig. 6:

• a multi-agent platform,

• a set of agents (conforming a multi-agent system),

• a visualization module,

as shown in Fig. 6.

Fig. 6. JGOMAS’ architecture overview.

1) Multi-Agent Platform: JGOMAS uses a FIPA-compliant

[5] multi-agent platform. It simplifies the implementation of

multi-agent systems through a middle-ware that complies with

the FIPA specifications2. Thus, JGOMAS can take advantage

of all the resources such platforms offer: behaviour mecha-

nisms, message passing, FIPA interaction protocols, etc. . . ,

in compliance with the FIPA specifications (a collection of

standards which are intended to promote the interoperation of

heterogeneous agents and the services that they can represent).

Therefore, an IVE designer has only to implement the

intelligence of his agents, avoiding wasting time in low-level

technical issues as, for example, inter-agent communication.

2) Multi-Agent System: JGOMAS’ multi-agent system can

be viewed as an abstraction upper layer over a multi-agent

platform. ¿From this abstract point of view, there is a classi-

fication of agents in accordance with the related architecture

(Fig. 6). This classification is based on the type of relationship

of an agent and the virtual environment. Two main classes

of agents are defined: a simulation controller and inhabitant
agents (player agents).

Simulation controller is in charge of keeping the virtual

environment’s data, maintaining the consistency at any time.

On the other hand, the other agents are inhabitants agents (or

player agents) simulating humans, animals, etc., situated in

the virtual world. These agents are moving, looking, hearing,

etc. . . in the virtual scenario. Furthermore, they can comunicate

each other in order to achieve their goals. The way an

inhabitant agent achieves a goal is carrying out tasks, as

mentioned above. Thus, an inhabitant agent interacts with

other inhabitant agents and with the scenario. As result, the

2FIPA is an IEEE Computer Society standards organization that promotes
agent-based technology and the interoperability of its standards with other
technologies.

8virtual world can be changed. And the simulation controller
generate events for those inhabitant agents involved in the

changes.

3) Visualization Module: As mentioned above, one of the

main goals is that artificial intelligence and virtual reality

systems have to work independently. In fact, it is possible

to throw the JGOMAS’ multi-agent system even if there are

no graphic viewers connected.

In order to make it easy to IVE desegners, there has been

implemented a basic graphic viewer. Render Engine is the

graphic viewer application developed ad hoc to display the 3D

agents, objects, and the scenario in JGOMAS. According to

the requirements of graphic applications (high computational

cost for short periods), Render Engine has been designed as

an external module (and not as an agent). It has been written

in C++, using the graphic library OpenSceneGraph [45].

The OpenSceneGraph is an open source high performance

3D graphics toolkit, used by application developers in fields

such as visual simulation, games, virtual reality, scientific visu-

alization and modelling. Written entirely in Standard C++ and

OpenGL, it runs on all Windows platforms, OSX, GNU/Linux,

IRIX, Solaris, HP-Ux, AIX and FreeBSD operating systems.

Render Engine is an important part of the framework, but

JGOMAS is not forced to use it, because other graphic engines

(both commercial and open source) could be used, for exam-

ple, to utilize an existing one or to get better image rendering.

This is possible because the visualization module in JGOMAS

framework is independent of the artificial intelligence module

(multi-agent system).

On the other hand, Render Engine covers from stand-alone

users at home to complex virtual reality systems, such as

CAVEsTM . The CAVETM is a projection-based VR system

that provides real-time head-tracked perspective with a large

field of view, interactive control, and stereo display. It use

to be a ”cube” with images projected onto three walls and

the floor.

To avoid a great amount of implementation effort, Render
Engine has been extended to use VRJuggler[46] as middle-

ware to use a complete virtual reality system, as shown in

Fig. 7.

Fig. 7. Integration of Render engine with VRJuggler

B. Agent’s Taxonomy

This section covers a different classification of JGOMAS’

agents. In this case, this classification is based on an specific

implementation, that is, from the point of view of the IVE

designer. Thus, there has been defined an agent’s class inher-

itance hierarchy. At the top of the agent hierarchy, there is

the base class JGomasAgent. It inherits directly from JADE’s

Agent class, and it provides a set of basic features/services

to all JGOMAS agents (e.g. services registry). So, JGOMAS

agents must derive from JGomasAgent class. Moreover, a

JGOMAS agent can be, according to its modifiability, an

internal or external one.

• Internal agents: are staff in the JGOMAS’ MAS subsys-

tem. Their behaviors are predefined, and designer cannot

change them. An agent must specialize in:

– Manager: this is an special agent, and it corresponds

with the simulation controller named in section V-

A.2. Its main goal is to coordinate the current game.

Besides, it must answer to requests of the rest of

agents. Another task it does is to provide an interface

for Render Engine. Thus, any instance of Render

Engine can connect to the current game to display the

3D virtual environment. Due to the Manager Agent
importance, the next section does a more detailed

explanation of this agent.

– Pack: those are medic packs (used to heal agents),

ammo packs (used to give ammunition to the agents)

and the objective pack, that is, the flag to capture.

They are created and destroyed dynamically during

the current game, with the exception of objective
pack (there is only one flag, and it exists during all

the game and can not be destroyed).

• External agents: they are really the players of the current

game (inhabitant agents). They have a set of basic

predefined behaviors. However, user can both modify

those behaviors and even add new ones.

– BasicTroop /Troop: basic classes containing all com-

mon services and structures that agents need to

play a game. These classes are specialized in three

other subclasses (but IVE designer can define new

ones), where each one is performing a role. Each

role has different features, services and behaviors.

Furthermore, an agent can play a unique role during

the current game.

Agents are specialized in:

∗ Soldier: provides a CallForBackup service (agent

goes to help teammates).

∗ Medic: provides a CallForMedic service (agent

goes to give medic packs).

∗ FieldOps: provides a CallForAmmo service (agent

goes to give ammo packs).

Fig. 8 shows the JGOMAS taxonomy tree (based on a

capture-the-flag game), where the bottom level is the most

specialized. Having in mind that the number of agents is

limited, user’s election of roles is a decisive factor to win

the game.

C. Agent Manager

This is an special agent in the JGOMAS’ MAS subsystem.

In fact, there is only one running during the current game. It

9

Fig. 8. JGOMAS agent’s taxonomy. The bottom level is the most specialized.

has to do two very different tasks:

• Interface for Graphic Viewer.

• Game Logic Management.

1) Interface for Graphic Viewer: Agent Manager is in

charge of functioning as a server for any Graphic Viewer client

interested in connecting to the current game. At the beginning

of JGOMAS, Agent Manager executes a thread. This thread

is simply a server for Graphic Viewer clients. First, the server

creates a listening socket in a specific port, and waits for

connection attempts from clients. The client creates a socket

on its side, and attempts to connect with the server. The server

then accepts the connection, and communication can begin.

For each accepted connection, a new thread is executed. So,

we can have several viewers running at the same time (perhaps

in different machines), all connected to the current game.

Moreover, Agent Manager holds the game state: troop
agents, static and dynamic objects and their main attributes

(position, direction, velocity, etc.). So, it sends all this informa-

tion to each graphic viewer client connected, once for frame.

Thus, graphic viewers can render their images continuously,

keeping the desired framerate. Figure 9 shows JGOMAS

architecture, and how agents, JADE platform and graphic

viewers are integrated.

2) Game Logic Management: This subject is really a level

of abstraction over the JGOMAS MAS. Game Logic involves

many aspects, but all oriented to manage the course of the

current game. For example, When does the match start? Which

is the map to play? Where are agents and what are they seeing

at a certain point? and so on. . .

The control of game logic is centralized just in one place:

the Manager agent. It is the agent in charge of some tasks, as:

• Management of the life-cycle of the current game: it is in

charge of synchronization of all agents for the beginning

of the game, and their destruction at the end of the game,

besides other more specific details of the game control

like informing about the match’s map, the objective, etc.

• Coordination and management of services registration:

an agent cannot register a service if Agent Manager
does not allow him to. Moreover, it can manipulate the

service’s name to prevent cheating (agents from one team

subscribing to services of the other team).

• Holding the game state of the current game: Each agent

calculates its new position and action to do. Then,

they send all that information to Agent Manager. So,

it controls all information regarding the current game

state, agents and their main attributes (position, direction,

velocity, etc.).

• Attention of some agent’s requests regarding interactions

with the environment: Manager listen to requests, pro-

cess them, and returns the results to agents requesting

information regarding actions such as look or shot.

• Statistics about agents efficiency: the Agent Manager is

also in charge of calculating a report about the develop-

ment of the current game. The purpose of this report is to

have a quantitative measure to complement the qualitative

data offered by the Graphic Viewer.

VI. DESIGNING AGENTS IN JGOMAS

JGOMAS uses JADE as MAS platform to take advantage of

all resources it offers: behaviour mechanisms, message passing

(where FIPA ACL is the language to represent messages),

naming service and yellow-page service, FIPA interaction

protocols, etc., in compliance with the FIPA specifications.

JGOMAS agents are written in JAVA to make the most

of JADE’s features. Thus, they are FIPA compliant, besides

platform-independent.

10

Fig. 9. JGOMAS architecture and integration of its subsystems

A. Specification

• Tasks, Task List

• Field Of View objects list

• FSM, GoToTarget Cycle

• Using Kernel functions

• Kernel modifications through Entry Points

• Working Cycle of an agent

• Support for Pathfinding

• Using Kernel functions

• Kernel modifications through Entry Points -¿ Search

algorithms and planners

• Decision functions: RNN, Fuzzy Logic, CBR. . .

• API

1) Parameters:

2) Finite State Machine: To obtain a customizable archi-

tecture that may accept user code, agents have to have at least

a generic working mechanism. This mechanism have to be

able to solve automatically different kind of tasks. The chosen

mechanism is implemented as a FSM, formed by three states

(Fig. 10):

a) STANDING: is the initial state. When an agent comes

to this state, it extracts the most priority task from the list of

pending tasks. Next, agent goes to state GOTO TARGET.

b) GOTO TARGET: once an agent knows which one is

the current task, it keeps in this state till it arrives to the place

where it has to carry out the task. Then, agent goes to state

TARGET REACHED.

c) TARGET REACHED: in this state, an agent carries

out the current task. When it has finished it, agent erases

it from the list of pending tasks, and agent goes to state

STANDING, ready to get other task.

Fig. 10. Finite State Machine executed by each agent.

B. Code Modifications

A user may configure JGOMAS MAS to his needs, and

improve the JGOMAS agents intelligence through an API, a

set of basic services, behaviors and methods, that JGOMAS

kernel offers.

User can add new source code to develop his new agents.

This new source code (mods) will be integrated into the

JGOMAS’ kernel at run-time. This allows the user:

• To create new roles (specialized roles) derived from Troop
class, or any of its inherited roles (i. e., Soldier, Medic
and FieldOps). Thus, JGOMAS taxonomy is extended.

• To provide new services, or to modify existing ones.

• To add new behaviors to launch a new strategy to get the

objective.

• To add new features and functionality to take complex

11

Fig. 11. fsm functions

decisions which will influence in both team and individ-

ual emergent behavior. To use the JGOMAS API to do

this, it has to be taken into account the agent working

cycle (implemented as a Finite State Machine –FSM–).

• To improve path generation.

• Etc.

User can create new classes of agents, derived from exist-

ing ones. This way, user can either overload some methods

(predefined in the kernel) and add new ones. It is very

useful to download the file(s) of example of source code.

Concretly, there is a file which is a basic skeleton for a new

class (MyMedic) derived from CMedic class. Some interesting

methods to overload are:

• protected void UpdateTargets(); ⇒ It may be used to

update priority of all ’prepared (to execute)’ (or pending)

tasks.

• protected boolean ShouldUpdateTargets(); ⇒ When an

agent is in the state GOTO TARGET, it can go to the

state STANDING to recalculate the priority of his pending

tasks.

• protected boolean GetAgentToAim(); ⇒ It calculates if

there is an enemy at sight.

• protected void PerformLookAction(); ⇒ Action to per-

form when the agent is looking at, according to the

objects or agents there are in the Field of View (FOV).

• protected boolean checkMedicAction(); ⇒ It decides,

when the agent receives a Call For Medic request, if it

accepts the proposal.

These methods are executed normally in each working cicle

of the agent.

In this way, and as it has been mentioned before, JGOMAS

can be used as a testbed for proofs and validation of AI

algorithms.

JGOMAS is an environment to develop and to run intelli-

gent agents over simulated 3D worlds. Concretely, it can be

used in different scopes, for example:

• Study the complete integration between Multi-agent Sys-

tems and Virtual Reality,

• Educational purposes on AI,

• Testbed for AI techniques: cooperation, coordination,

learning. . .

Specifically, JGOMAS allows to run agents in different

teams, which compete to achieve their own and team ob-

jectives. Those two teams compete in a capture-the-flag-like

game, where one team defend its flag against the other team,

which tries to capture it.

The agents can play different roles: soldier, medic and field

operations. Moreover, agents need to cooperate with their

team-mates in order to achieve their objectives. For example,

a medic can deliver medic packs to a soldier mate with a low

level of health who sent a ”call for medic” request.

VII. USING OF JGOMAS’ FRAMEWORK

Using JGOMAS’ framework means both to extend (enhanc-

ing) agents’ behaviours, mainly in a team-work oriented way,

and to test those behaviours under different conditions and

scenarios. Once the designer has modelled the IVE, user can

launch JGOMAS (all agents) from JADE GUI, one by one.

This can be hard work, and due to Agent Manager needs all

agents be connected to begin the current game, some scripts

are given. In this way, although user executes Render Engine,

it will not display agents if the current game has not begun.

The last version of the JGOMAS framework is available for

download at http://jgomas.gti-ia.dsic.upv.es
It includes the multi-agent platform, Render Engine, maps,

documentation and a sample ready to use. Fig. 13 shows an

execution example of this package, where JADE GUI, text

console, and some instances of the Render Engine can be seen.

Following there is a more detailed explanation of executing

either JGOMAS MAS and Render Engine.

1) Executing a configuration of JGOMAS visualization : In

this section, an example for using JGOMAS is shown, where

it is noticed how the virtual reality system and the multi-agent

system work independently from each other. In this example,

several flexible and versatile configurations has been designed.

These configurations cover from stand-alone users at home to

complex virtual reality systems, as shown in figure ??.

Since JGOMAS is a distributed system, it is not necessary to

use a high-performance computer to support the execution of

several agents. In this example, JGOMAS’ multi-agent system

was executed in a cluster of computers. This way, cheap

computers connected through a high-speed network were used

in order to get the necessary performance.

Once JGOMAS’ multi-agent system is being executed in the

cluster, many visualization modules can be used at the same

time:

• stand-alone system: users can be playing or supervising

the game at anywhere.

• head mounted display system: users are watching the

game in stereoscopic mode.

• PowerwallTM system: a group of users viewing the game

(perhaps in stereoscopic mode) in a grid of displays which

are composing a macro-display (that is, a PowerwallTM).

• CAVETM system: users are each one immersed in a

CAVETM to get an astounding experience in virtual

reality systems.

Figure 15 shows an execution of JGOMAS. A hand made
PowerwallTM with four monitors was composed, and images

12

Fig. 12. A cycle of execution

Fig. 13. Ejemplo de ejecucin de JGOMAS

13

Fig. 14. A JGOMAS scenario with some visualization configurations.

are rendered by two computers forming a cluster. VRJuggler

is used to synchronize the images displayed. At the same time,

the CAVETM system was connected to the current JGOMAS

game. Figure 16 shows a picture of a person using the

CAVETM .

Fig. 15. A practical PowerwallTM done with four monitors and a head
mounted display user.

2) Executing JGOMAS MAS: One of the advantages of

JGOMAS is its flexibility for configuring its start-up. This

is possible because user can choose the number and type of

agents, along with the parameters for each agent.

These configuration parameters expected for the agents

depends on its type:

• The parameters addressed to the Agent Manager are the

following:

1) Number of Troop agents to start the match.

2) Map (scenario) where the match is going to be

played.

3) Graphic viewer refresh frequency (in milliseconds).

Fig. 16. JGOMAS being used in a CAVETM .

4) Match duration (in minutes).

• Troop agents accept just one parameter, the team, that can

be either ALLIED or AXIS.

User can consider necessary to increment the number

of parameters accepted by his agents. For that, he must

create his own agents, as it was explained previously, to

handle these new parameters.

An example of execution of JGOMAS is:

java
-classpath lib\jade.jar;.JGOMASomas.jar;.
jade.Boot -gui
Manager:Classes.CManager(4 map_04 125 10)
A1:Classes.CMedic(ALLIED)
A2:Classes.CMedic(ALLIED)
E1:Classes.CMedic(AXIS)
E2:Classes.CMedic(AXIS)

According to this example, the Agent Manager begins a

match with 4 players, which play in the map map_04 for 10

minutes, at 8 frames per second (125 ms.).

A. User evaluation

Finally, another important subject is the game’s evaluation.

User can evaluate what happened during the game, both in a

quantitative and in a qualitative ways.

On one hand, user can make a qualitative evaluation because

there is a graphical component which allows user to see the

game’s evolution. For example, user can check if an agent

moves correctly with his new path generation algorithm, or if

the strategic distribution of agents in the map is as he designed.

On the other hand, quantitative evaluation refers to statistics

generated at the end of the match. Thus, user can check

agents’ efficiency. For example, the number of medic packs
delivered versus which ones were picked up by team-mates,

or by enemies. This allows user to have a numerical result to

compare it against other matches played.

14

Fig. 17. Scenario with a laberynth for the pathfinding exercise.

VIII. A PRACTICAL EXPERIENCE

This new approach here presented to teaching AI subjects

has been carried out in a subject on the last course of the

AI speciality in the computing engineering degree of the

Politechnical University of Valencia (Spain). The main goal

of such subject is to let students know multi-agent systems.

A. Schedule of the sessions

The laboratory work of this subject consists of one weekly

session of two hours, during 13 weeks. These sessions can be

classified as follows:

1) Introduction to JADE platform: During 2 sessions this

platform is presented, both at organizing level and at API

level (describing the JAVA functions library included to

develop agents working over this platform). For this

reason, examples and exercises, to be solved by the

students during these sessions, are used.

2) Introduction to JGOMAS framework: Following the

previous part, and as it has been developed over JADE,

JGOMAS toolkit is presented during 2 sessions. This

presentation also includes the description of the func-

tions library complementing the JADE one and allowing

to develop JGOMAS agents. Along these sessions, some

examples and exercises are also presented and solved by

the students.

3) Management of an agent: The purpose of the following

2 sessions is to let the student to test JGOMAS API,

beginning to improve the behavior of an agent. In this

way, the following exercise is proposed: to improve the

pathfinding abilities of an agent to make it able to get

the flag and come back to its departure point before past

ten minutes, taking into account that the flag is in the

middle of an stage such as the one in figure 17.

4) Focusing in the “Multi” aspect in Multi-Agent Systems:

In the next two sessions, the communication and coor-

dination of JADE and JGOMAS agents is presented by

means of examples and exercises. It is presented not only

the API functions and implicit communications between

these agents, but also the possibilities of using such

an important mechanism (as for instance, coordination,

emergent behavior, . . .).

5) Developing a competitive JGOMAS team: The purpose

of the next four sessions, is that the students make use

of the JGOMAS functions library to put into practice

the obtained knowledge. So, they must develop a team

of ten agents to be as efficient as possible, having as a

minimum purpose to be better than the teams provided

in the toolkit distribution. That is, when facing the basic

team provided, they must accomplish to capture the flag

and to carry it to their base (when they are attacking),

and to avoid the enemy team to make it so (when they

are defending).

6) Evaluation / Contest: The last session of the subject

is dedicated to evaluate the teams developed by the

students. This evaluation is made at two levels. At one

level, each student developed team is checked against the

basic distributed team in different stages. On the other

level, a contest is made between the students’ teams.

The final qualification obtained by the students depends,

partially, on the contest classification, but always taking

into account that they must win to the basic team to

pass the subject. It has to be underlined that the students

do not have the stages where their teams must compete

before the evaluation session (though they have some

stages to test their teams). Moreover, each team is

checked in the stages as attacker and defender.

The results obtained by using JGOMAS framework in

the laboratory work of this subject must be considered as

satisfactory, having 70% of the students positively completed

the development.

IX. CONCLUSIONS

Se han desarrollado y puesto en marcha una nueva her-

ramienta as como una Web ad-hoc para su uso dentro del

marco de las prcticas docentes de Inteligencia Artificial. En

concreto, la herramienta desarrollada, JGOMAS, es multi-

plataforma y sigue los estndares fijados dentro de los SMAs,

como por ejemplo FIPA. As, esta aplicacin puede tambin ser

usada como simulador para la coordinacin, comunicacin y

algoritmos de aprendizaje dentro del campo de los MAS, o

de la IA en general. Para conseguir esto, JGOMAS permite

al usuario aadir sus propias modificaciones de cdigo. Adems,

JGOMAS puede ser usado para estudiar la integracin de los

MAS y de los sistemas de realidad virtual.

Por otro lado, la puesta en marcha de las nuevas sesiones de

prcticas ha resultado muy satisfactoria, tanto por la acogida de

los alumnos como por los resultados obtenidos en la evaluacin

de las mismas.

As, el atractivo del tema de las prcticas junto con la com-

peticin establecida en la sesin de evaluacin ha motivado a los

alumnos a llevar a la prctica muchas de las tcnicas explicadas

en teora, as como desarrollar estrategias innovadoras para sus

equipos, con el objetivo de obtener el equipo ms ”inteligente”.

En concreto, a esta sesin de evaluacin se presentaron el 70

• Campen: Utilizaban una estrategia similar tanto en de-

fensa como en ataque. sta se basaba en un algoritmo A* y

una buena coordinacin de sus tropas, para ir al encuentro

de las tropas contrarias a fin de eliminarlos.

15

• Subcampen: En defensa, dividan a sus soldados en dos

grupos que hacan guardia alrededor de la bandera en

trayectoria circular y en sentidos contrarios. As minimiz-

aban el tiempo que tardaban en detectar un enemigo. Por

el contrario, en ataque, todos los agentes del equipo son

mdicos pacifistas. Su estrategia bsica era la velocidad (no

perdiendo el tiempo en apuntar ni disparar). Adems, eran

capaces de suministrarse paquetes de salud.

———————————————————————

-

JGOMAS is an environment to develop and to run intelli-

gent agents over simulated 3D worlds. Concretely, it can be

used in different scopes, for example:

* Study the complete integration between Multi-agent Sys-

tems and Virtual Reality * Educational purposes on AI *

Testbed for AI techniques: cooperation, coordination, learning

Specifically, JGOMAS allows to run agents in different

teams, which compete to achieve their own and team ob-

jectives. Those two teams compete in a capture-the-flag-like

game, where one team defend its flag against the other team,

which tries to capture it.

The agents can play different roles: soldier, medic and field

operations. Moreover, agents need to cooperate with their

team-mates in order to achieve their objectives. For example,

a medic can deliver medic packs to a soldier mate with a low

level of health who sent a ”call for medic” request.

ACKNOWLEDGMENT

This work was partially supported by CONSOLIDER-

INGENIO 2010 under grant CSD2007-00022. The finan-

cial support received from the Spanish government and

FEDER funds under TIN2005-03395 and TIN2006-14630-

C03-01 projects are also gratefully acknowledged.

REFERENCES

[1] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa, “JADE -
A FIPA-compliant Agent Framework,” in Proc. of the PAAM’99, Apr.
1999, pp. 97–108.

[2] M. Wooldridge, An introduction to multiagent systems. John Wiley and
Sons, February 2002.

[3] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory
and practice,” The Knowledge Engineering Review, vol. 10, no. 2,
pp. 115–152, 1995. [Online]. Available: citeseer.ist.psu.edu/article/
wooldridge95intelligent.html

[4] E. Argente, A. Giret, S. Valero, V. Julian, and V. Botti, Survey of MAS
Methods and Platforms focusing on organizational concepts. IOS Press,
2004, vol. 113, pp. 309–316.

[5] FIPA, “FIPA abstract architecture.technical report sc00001l,” Foundation
for Intelligent Physical Agents, Tech. Rep., 2002, checked on February
8th, 2007. [Online]. Available: http:///www.fipa.org/

[6] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-agent
systems with jade,” In Intelligent Agents VII. Ed. Castelfranchi, C. and
Lesperance, Y., no. 1571, pp. 89–103, 2001.

[7] I. Sun Microsystems, “Java technology.” checked on February 8th,
2007. [Online]. Available: http://java.sun.com/

[8] “RoboCup,” 2007, checked on July 24, 2007. [Online]. Available:
http://www.robocup.org/

[9] A. Bredenfeld, A. Jacoff, I. Noda, and Y. E. Takahashi, RoboCup 2005:
Robot Soccer World Cup IX, ser. LNCS. LNAI. Springer-Verlang, 2006,
vol. 4020.

[10] M. Asada, P. Stone, H. Kitano, A. Drogoul, D. Duhaut, M. M. Veloso,
H. Asama, and S. Suzuki, “The robocup physical agent challenge: Goals
and protocols for phase 1,” in RoboCup-97: Robot Soccer World Cup I.
London, UK: Springer-Verlag, 1998, pp. 42–61.

[11] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “RoboCup:
The Robot World Cup Initiative,” in AGENTS ’97: First International
Conference on Autonomous Agents. New York, NY, USA: ACM Press,
1997, pp. 340–347.

[12] H. Kitano, Y. Kuniyoshi, I. Noda, M. Asada, H. Matsubara, and E.-
I. Osawa, “Robocup: A challenge AI problem,” AI Magazine, vol. 18,
no. 1, pp. 73–85, Spring 1997.

[13] K. Fullam, T. Klos, G. Muller, J. Sabater, A. Schlosser, Z. Topol, K. S.
Barber, J. Rosenschein, L. Vercouter, and M. Voss, “A specification of
the agent reputation and trust (ART) testbed: Experimentation and com-
petition for trust in agent societies,” in The Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-
2005), Utrecht, July 25-29 2005, pp. 512–518.

[14] K. Fullam, T. Klos, G. Muller, J. Sabater, Z. Topol, K. S. Barber,
J. Rosenschein, and L. Vercouter, “A demonstration of the agent rep-
utation and trust (ART) testbed: Experimentation and competition for
trust in agent societies,” in The Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-2005) Demon-
stration Track, Utrecht, July 25-29 2005, pp. 151–152.

[15] G. Becerra, J. Heard, R. Kremer, and J. Denzinger, “Trust attributes,
methods, and uses,” in The Workshop on Trust in Agent Societies at
The Sixth International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2007), Honolulu, Hawaii, USA, May 15
2007, pp. 1–6.

[16] “TAC:trading agent competition,” 2007, checked on July 25, 2007.
[Online]. Available: http://www.sics.se/tac

[17] M. P. Wellman, A. Greenwald, P. Stone, and P. R. Wurman, “The
2001 trading agent competition,” in Eighteenth national conference on
Artificial intelligence. Menlo Park, CA, USA: American Association
for Artificial Intelligence, 2002, pp. 935–941.

[18] J. Collins, R. Arunachalam, N. Sadeh, J. Eriksson, N. Finne, and S. Jan-
son, “The supply chain management game for the 2007 trading agent
competition,” School of Computer Science,Carnegie Mellon University,
Pittsburgh, Tech. Rep., December 2006.

[19] J. Eriksson, N. Finne, and S. Janson, “Evolution of a supply chain man-
agement game for the trading agent competition,” AI Communications,
vol. 19, no. 1, pp. 1–12, 2006.

[20] M. Luck and R. Aylett, “Applying artificial intelligence to virtual
reality: Intelligent virtual environments,” Applied Artificial Intelligence,
vol. 14, no. 1, pp. 3–32, 2000. [Online]. Available: citeseer.ist.psu.edu/
article/aylett00applying.html

[21] R. Andreoli, R. D. Chiara, U. Erra, and V. Scarano, “Interactive 3d
environments by using videogame engines,” in IV ’05: Proceedings of
the Ninth International Conference on Information Visualisation (IV’05).
Washington, DC, USA: IEEE Computer Society, 2005, pp. 515–520.

[22] J. Laird and J. Duchi, “Creating human-like synthetic characters
with multiple skill levels: A case study using the SOAR quakebot,”
Menlo Park, Calif., 2000, m. Freed, ed: Papers from the AAAI
Fall Symposium,AAAI Press. [Online]. Available: citeseer.ist.psu.edu/
laird00creating.html

[23] “SOAR: a general cognitive architecture for developing systems that
exhibit intelligent behavior.” checked on July 27, 2007. [Online].
Available: http://sitemaker.umich.edu/soar/home

[24] R. Lewis, “Cognitive theory, SOAR,” In International Encylopedia of
the Social and Behavioral Sciences.Ed.:N. J. Smelser and P. B. Baltes.
Amsterdam: Pergamon (Elsevier Science)., 2001.

[25] J. F. Lehmann, J. Laird, and P. Rosenbloom, “A Gentle Introduction
to SOAR, an Architecture for Human Cognition: 2006 update,” 2006.
[Online]. Available: http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/
GentleIntroduction-2006.pdf

[26] B. Gorman, M. Fredriksson, and M. Humphrys, “QASE - An integrated
API for imitation and general AI research in commercial computer
games,” in In Proceedings of 7th International conference on Computer
games: Artificial intelligence, animation, mobile, educational, and seri-
ous games (CGAMES), Angoulme, France., 2005.

[27] “MATLAB R©7.4,” checked on July 27, 2007. [Online]. Available:
http://www.mathworks.com/products/matlab/

[28] E. Norling, “Capturing the quake player: using a BDI agent to model
human behaviour,” in AAMAS ’03: Proceedings of the second interna-
tional joint conference on Autonomous agents and multiagent systems.
New York, NY, USA: ACM Press, 2003, pp. 1080–1081.

[29] “JACK Intelligent AgentsTM,” checked on Juy 27, 2007. [Online].
Available: http://www.agent-software.com/shared/products/index.html

[30] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas, “JACK Summary
of an Agent Infrastructure,” in Proc. Workshop on Infrastructure for
Agents, MAS, and Scalable MAS at the Fifth International Conference
on Autonomous Agents, Montreal, Canada, 2001.

16

[31] N. Minar, R. Burkhart, C. Langton, and M. Askenazi, “The swarm
simulation system, a toolkit for building multi-agent simulations,” 1996.
[Online]. Available: citeseer.ist.psu.edu/minar96swarm.html

[32] “Swarm development group,” 2006, checked on September 21, 2006.
[Online]. Available: http://www.swarm.org/

[33] J. Klein, “BREVE: a 3D Environment for the Simulation of Decen-
tralized Systems and Artificial Life,” in Proceedings of Artificial Life
VIII, the 8th International Conference on the Simulation and Synthesis
of Living Systems. The MIT Press, 2002.

[34] S. Vosinakis, G. Anastassakis, and T. Panayiotopoulos, “DIVA: Dis-
tributed Intelligent Virtual Agents,” in Extended abstract, presented at
the Virtual Agents 99 workshop on Intelligent Virtual Agents, University
of Salford,UK, 1999.

[35] G. Anastassakis, T. Ritchings, and T. Panayiotopoulos, “Multi-agent
systems as intelligent virtual environments,” in Proceedings of Advances
in Artificial Intelligence, Joint German/Austrian Conference on AI - KI,
2001.

[36] J. Rickel and W. Johnson, “Steve: An Animated Pedagogical Agent
for Procedural Training in Virtual Environments,” in Proceedings of
Animated Interface Agents: Making Them Intelligent, 1997, pp. 71–76.

[37] B. Ulicny and D. Thalmann, “Crowd simulation for interactive virtual
environments and VR training systems,” in Computer Animation and
Simulation ’01, 2001, pp. 163–170.

[38] S. R. Musse and D. Thalmann, “Hierarchical model for real time sim-
ulation of virtual human crowds,” IEEE Transactions on Visualization
and Computer Graphics, vol. 7, no. 2, pp. 152–164, 2001.

[39] D. Thalmann and H. Noser, “Towards autonomous, perceptive, and
intelligent virtual actors,” Artificial Intelligence Today. Lecture Notes
in Artificial Intelligence. Springer, no. 1600, pp. 457–472, 1999.

[40] M. Kallmann, J.-S. Monzani, A. Caicedo, and D. Thalmann, “ACE:
A platform for the real time simulation of virtual human agents,” in
EGCAS’00 - 11th Eurographics Workshop on Animation and Simulation,
2000.

[41] “id Software, Inc.” 2006, checked on July 24, 2006. [Online]. Available:
http://www.idsoftware.com/games/quake/quake4/

[42] S. Offermann, J. Ortmann, and C. Reese, “Agent based settler game,”
2005, part of NETDEMO, demonstration at the international conference
on Autonomous Agents and Multi Agent Systems, AAMAS-
2005. [Online]. Available: http://x-opennet.org/netdemo/Demos2005/
aamas2005/ netdemo/ settler.pdf

[43] “EKSL: The Experimental Knowledge Systems Laboratory,” Department
of Computer Science at the University of Massachusetts – Amherst,
checked on July 27, 2007. [Online]. Available: http://www-eksl.cs.
umass.edu/

[44] M. van Lent, J. E. Laird, J. Buckman, J. Hartford, S. Houchard,
K. Steinkraus, and R. Tedrake, “Intelligent agents in computer games,”
in AAAI/IAAI, 1999, pp. 929–930.

[45] “OSG: OpenSceneGraph, an Open Source high performance 3D
Graphics toolkit.” checked on February 8th, 2007. [Online]. Available:
http://www.openscenegraph.org/

[46] “V RJuggler: a platform for virtual reality application development.”
checked on February 8th, 2007. [Online]. Available: http://www.
vrjuggler.org/

Toni Barella Biography text here.

Soledad Valero is originally from Valencia (Spain). She received her BS
and MS degrees in Computing Engineering from the Technical University
of Valencia in 2000 and 2003, respectively. She is a PhD student in the
Computer Science Department of the Technical University of Valencia. Her
research interests are multi-agent systems, e-commerce and soft-computing
techniques.

Carlos Carrascosa was born in Valencia (Spain) and received the MS degree
in Computer Science from the Polytechnic University of Valencia in 1995.
Currently, he is a lecturer and obtained his PhD. at the Computer Science
Department at Polytechnic University of Valencia. His research interests
include multi-agent systems, learning, information retrieval and real-time
systems.

View publication stats

