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SUMMARY

Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In 
this context, partial least-squares (PLS) regression, if wisely used, can become a strategic tool for process 
improvement and optimization. In this paper we illustrate the versatility of this technique through several 
real case studies that basically differ in the structure of the X matrix (process variables) and Y matrix 
(response parameters). By using the PLS approach, the results show that it is possible to build predictive 
models (soft sensors) for monitoring the performance of a wastewater treatment plant, to help in the 
diagnosis of a complex batch polymerization process, to develop an automatic classifier based on image 
data, or to assist in the empirical model building of a continuous polymerization process. 

KEY WORDS: classification; fault diagnosis; monitoring; multivariate image analysis; PLS time series; soft 
sensor

1. INTRODUCTION

Massive amounts of data are routinely collected from processes in modern highly automated
industries. Extracting useful information from these data is essential for making sound decisions
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for process improvement and optimization. Nowadays this is a strategic issue for industrial success
in the tremendous competitive global market.

Partial-least squares (PLS) regression [1] is a versatile tool with many desirable properties (i)
it is able to cope with highly collinear and low rank data, which is not the case of multiple linear
regression [2]; PLS allows analysing data with more variables than observations; (ii) PLS provides
models with high stability of predictions because the risk of overfitting is minimized; (iii) PLS
is very efficient in handling missing data and therefore it provides inferential models extremely
robust to sensor failure and (iv) with the aid of careful data analysis and easy-to-use charts, PLS
is able to detect outliers, which improves the quality of the fitted models and reduces the risk of
extrapolation when new observations are projected over the model. All this can be obtained with
low computational requirements.

As commented by Martens and Naes [3], PLS is a term for multivariate modelling methods
derived from Herman Wold’s basic concepts of iterative fitting of bilinear models in several blocks
of variables. These concepts arose around 1975 as a practical solution to specific data-analytic
problems in econometrics and social sciences. The most common implementation in econometrics
has been one-factor path modelling of multiblock relationships [4].

PLS is a projection method that models the relationship between a response matrix Y and a
predictor matrix X. Both matrices are decomposed into smaller ones as follows:

X=
A∑

a=1
tapTa +E=TPT+E

Y=
A∑

a=1
uacTa +F=UCT+F

where T and U are the score matrices, P and C are the loading matrices, and E and F are the
residual matrices for X and Y, respectively, for a model with A latent variables determined by
cross-validation. The x-scores ta are linear combinations of the X matrix (in the first PLS latent
variable) or X-residual matrix (Xa) (in the ath latent variable)

ta =Xa−1wa, Xa =Xa−1−tapTa

wa being the weight vector for the ath latent variable.
This is performed in a way to maximize the covariance between T and U, both related by the

inner relationship

U=TB+H

where B is a diagonal matrix and H is a residual matrix. This allows PLS to be expressed as a
predictive model

Y=TBCT+F∗ =XW(PTW)
−1

BCT+F∗

where F* is a residual matrix.
PLS models can be fitted using all the responses simultaneously, as shown before (PLS2), or

by building one model for each single response (PLS1). In the PLS1 model, the latent subspace is
found by maximizing the covariance between the x-scores ta and one response y (column vector
of the response matrix Y). In general, the more correlated the response variables are, the better
the performance of PLS2 with respect to PLS1 in terms of predictive accuracy and interpretation.



Different algorithms have been proposed for PLS models. The key idea behind them is to
replace the maximum likelihood principles (statistically well sounded but suffering from lack of
applicability in data-rich environments due to ill-conditioning or singularity problems) by sequential
algorithmic approaches, based on a series of local least-squares fits. For a more detailed explanation
of the different algorithms used and the mathematical and statistical structures of PLS, see, for
example, [3, 5, 6].

PLS can be considered as a prediction/regression method useful for near collinear data. There
exist a large number of regression methods that have been proposed in the literature for the same
purpose. Some of them treat each response separately (e.g. principal component regression or ridge
regression), while others combine multiple responses by taking advantage of the structure of matrix
Y (e.g. reduced rank regression or shrunken canonical correlation models, C&W-GCV). Several
authors have performed comparative studies between all of these competitors via simulation studies
using prediction errors as performance index [7, 8]. The main findings from these simulation studies
are (i) they often give fairly similar results and (ii) the results are extremely dependent on the
simulations done and, thus, they may not be representative for real data encountered in particular
fields. In the discussion of [8], some authors have criticized these simulation studies because they
do not consider other criteria for evaluating the success of a model, such as parsimony, bias,
interpretability and diagnosis for outliers, and other data inhomogeneities.

Nevertheless, apart from predictive ability, one of the most appreciated properties of PLS models
from a practitioner’s point of view is model reduction. This PLS property has changed the statistical
paradigm of variable selection to the practitioner paradigm of variable compression. This ability
to discover latent structures seems to function fairly well in practice (especially in data-rich
environments) because this uncovers hidden information and improves model understanding.

PLS was further developed in the field of chemometrics, mainly dealing with problems in
handling spectroscopic data. These techniques produce hundreds of variables (the light absorbance
at different wavelengths) for a set of calibration samples. In this context, PLS provides good
predictive models by finding those latent variables that present a good correlation with the response
variables and at the same time explain a fair amount of the spectral variance. However, the
results are poor if the X matrix is characterized by dominant latent components that explain a
high proportion of the data variance, but are orthogonal to the response variables. Attempting to
overcome this limitation, different methods of orthogonal signal correction have been proposed [9].
In the context of multivariate statistical process control, the X matrix often presents a multiblock
structure (e.g. a block of variables measuring temperature, another block for pressure, a few
variables providing information about initial conditions, etc.). In these situations, the traditional
PLS method is sometimes unable to produce good predictive models, and different multiblock
algorithms have been developed [10].

Most successful PLS applications have been reported in chemistry and related disciplines.
But this tool is now expanding to many other areas such as business, finance and marketing.
A handbook of PLS recently published [11] illustrates the application of this tool in studies of
business performance, brand preference, employee behaviour, customer satisfaction and loyalty.
Other PLS applications to improve business strategy can be found in [12–17].

When analysing the large number of variables collected nowadays from modern industrial
processes, it is usual to find that these variables have different numerical ranges. The numerical
range of a given variable influences its variance (i.e. a large numerical range implies a large
variance) and PLS is variance dependent. Therefore, scaling the raw data is usually required to
make it more suitable for the analysis. Note that the pre-processing can make the difference between
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a useful model and no model at all [18]. In the applications that will be presented throughout
this paper, the raw data were mean centred and scaled to unit variance. In this manner, different
measurement units of the collected variables can be handled, thus, giving equal importance a priori
to each variable.

By properly arranging the predictor and the response data structure, PLS becomes a strategic
tool able to adapt to very different scenarios. This is illustrated through several real industrial case
studies in the following sections.

2. PLS: SOFT SENSOR

Nowadays, a large number of process variables can be collected at modern wastewater treatment
plants (WWTPs). On the one hand, these variables can be measured online by means of inex-
pensive, robust and low-maintenance sensors, but they do not directly provide information on
process performance. On the other hand, the process output quality variables that clearly reflect
the WWTP performance are usually measured less frequently in a quality control laboratory. There
are special probes that allow an online measurement of some key quality variables, but they are not
usually employed in small WWTPs because they involve high investments and require important
maintenance costs.

Analysing samples in a quality control laboratory has several drawbacks: the analyses are
expensive, slow and do not allow an early detection of problems that might appear in the process.
Thus, there is a strong interest in taking advantage of the information contained in the process
variables to build empirical predictive models (soft sensors) for monitoring the performance of
a WWTP. In this manner, chemical analyses could be replaced or at least reduced. This is an
appealing use of PLS, which has been successfully applied in many different contexts [19–25].
This wide variety of examples shows that considerable effort has been placed on applying this
multivariate versatile tool for making the most of the operational data available.

In this case study, data from a sequencing batch reactor (SBR) operated for enhanced biological
phosphorus removal (EBPR) from wastewater have been analysed to develop a PLS soft sensor.
It is a batch process that consists of three main stages per cycle taking place in the same reactor.
During the first stage, which lasts 1.5 h, the reactor is kept in anaerobic conditions and phosphorus
is released by polyphosphate-accumulating organisms (PAOs). Afterwards, the reactor is aerated
for 3 h allowing PAOs to uptake phosphorus and store it intracellularly as polyphosphate. As the
phosphate uptake is higher than the release, a net phosphate uptake is achieved. Finally, the acti-
vated sludge is settled for 1.5 h, thus, producing a clarified effluent of treated wastewater. In the
SBR, five process variables are registered online by means of inexpensive sensors: electric conduc-
tivity (Cond), redox potential (ORP), dissolved oxygen concentration (DO), pH and temperature
(Temp). The SBR was operated under constant conditions until steady state was reached. Then it
was extensively sampled to characterize the EBPR performance. For this purpose, samples were
withdrawn at regular time intervals (every 15min) and analysed in the quality control labora-
tory for several pollutants. In this particular investigation, the trajectories (i.e. time evolution) of
phosphorus, potassium and magnesium were used as response variables.

Data from the batch process were arranged in two three-way matrices: X (20 batches×5 process
variables×340 time points) and Y (20 batches×3 quality responses×18 time points). These
matrices were unfolded batchwise, resulting in a two-way matrix X (20×1700) and a two-way
matrix Y (20×54) that were analysed applying standard bilinear PLS.
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The available data set consisted of 20 batches: 15 were used for model fitting and the remaining
for validation. Based on a preliminary study, it was decided to transform the original variables
using the difference (�) between each variable value and its value at the beginning of the batch.

A PLS-2 model was built using the transformed trajectories of all variables (process and quality).
Analysing the weights of the PLS model, it was found that the trajectories with more predictive
contribution were �pH and �Cond. Moreover, the weights of the three quality trajectories were
similar, thus, indicating a highly positive correlation among them. This result matches the hypothesis
of electroneutrality postulated by Comeau et al. [26]: in the EBPR process, both potassium and
magnesium are released and taken up simultaneously with phosphorus and act as counter ions to
maintain electroneutrality inside the bacterial cell.

In order to obtain a more parsimonious inferential model, a new PLS-2 model was formulated
using only �pH and �Cond as explicative trajectories. The good performance of the fitted PLS
model to predict the trajectory of the phosphorus concentration is shown in Figure 1. Similar
results were obtained for potassium and magnesium (not shown).

It should be noted that the developed predictive models take into consideration the auto- and
cross-correlation of the explicative variables (i.e. incorporate process dynamics) during the entire
batch because of the unfolding method used [27].

Despite the good prediction ability of the model, it could be argued that an important drawback is
that it requires the entire trajectories of the explicative variables to be known, that is, the predictions
are done when the batch has been completed. However, this inconvenience can be overcome and,
therefore, the model applied online, by estimating the future observations via the PLS model (i.e.
by using missing data imputation methods) as shown in [20]. As pointed out by these authors,
the stability property of the estimated scores becomes especially important when developing a
predictive model, because if these estimations are smooth and nearly constant even at the beginning
of the batch, relatively accurate predictions for the response variable will be obtained from the
beginning of the batch. As an example, Figure 2 displays the predicted values from the model at
different time points of a validation batch together with the experimental values. The scores were
estimated using the trimmed score regression method proposed by Arteaga and Ferrer [28].
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Figure 1. Observed versus predicted phosphorus concentration by the PLS model.
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Figure 2. Experimental and online predicted values of transformed trajectory of phosphorus concentration
(�P) in a validation batch. At each time point, the future unknown part of the batch was estimated using

missing data imputation methods [28].

These results successfully illustrate that it is possible to build an efficient soft sensor for
monitoring the performance of the SBR. As only data from the inexpensive and low-maintenance
sensors installed in the SBR are used as input, the soft sensor can be considered as a cost-effective
tool. Moreover, monitoring the residuals of this model can be useful in detecting outliers and
assessing whether the model needs to be updated. These issues are of special relevance in the area
of PLS research and practice as highlighted in different contributions [29–32].

3. BLOCKWISE PLS: BATCH PROCESS DIAGNOSIS

Batch chemical processes are difficult to control. Quality parameters are determined by analytical
methods once the process finishes, and some of them are often out of quality specification limits.
As a consequence, the product has to undergo further processing or standardization steps to achieve
a proper commercial quality, or maybe has to be sold under a lower-quality category, resulting
in a considerable economic impact. To avoid these problems, a common approach is to reduce
as much as possible the deviations of process variables from the target trajectories. However, in
industrial conditions this is complicated and not always effective, as quite often process engineers
do not know which are the key critical points of the process that require a more accurate control
to reduce the variability of quality parameters around the nominal value to avoid batches out of
specifications.

Data from a petrochemical batch polymerization process have been analysed to diagnose the
causes of variability of one of the final quality parameters: the hydroxyl index (IOH), also referred
to in the literature as hydroxyl number. This process takes place in four batch stages and there
are 52 electronic sensors that record online different kinds of information such as temperature,
pressure, flow, pH, etc. These data are used online for the engineering process control and are
routinely stored in databases (one datum recorded every minute from each sensor). Once the batch
finishes, the hydroxyl index of the polymer (polypropylene oxide) is determined in the laboratory,
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and the problem is that about 15% of the batches produced are out of quality specifications. To
provide a solution, data from 69 historical batches have been analysed in order to identify the
critical points of the process.

In industrial conditions, most stages have a different duration from batch to batch, which results
in serious problems for most statistical data analysis methods. To overcome this limitation, different
alignment techniques can be used to synchronize the trajectories. In this case, we applied the
indicator variable approach [33]. With this methodology, data are arranged in a three-way structure:
batches×process variables×time. This matrix has been unfolded according to the methodology
proposed by Nomikos and MacGregor [34], obtaining a large matrix with 69 batches and 9100
variables. This matrix is structured in 52 blocks, each containing the data registered by one sensor
along the development of the batch. For each batch, the evolution versus time of one process
variable is often called a trajectory. Data have been mean centred to get rid of the main non-
linearities as well as scaled to unit variance to give the same a priori weight to all variables. The
target is to identify those variables that in a certain part of the process are correlated with the
hydroxyl index. Considering it as the response variable, a PLS-1 regression has been applied to this
matrix, resulting in a model with one relevant component with a goodness of prediction by cross-
validation Q2=0.33. This value is obviously not high enough to allow a reasonable prediction
of the hydroxyl index for a new batch. In fact, working with observational data (no experimental
design has been run) it is usual to obtain predictive models with low goodness of prediction Q2.
Nevertheless, this value is significantly greater than zero according to cross-validation, suggesting
that those variables with highest contribution in the first component might lead to the identification
of critical points of the process.

If a PLS-1 regression is conducted with centred variables and scaled to unit variance, the weights
of the first latent vector are proportional to the linear correlation coefficient between the process
variables and the quality parameter [35]. Hence, high loadings in absolute value correspond to
process variables that in certain time points are significantly correlated with the hydroxyl index.
However, the diagnosis becomes difficult from the analysis of the weight plot (Figure 3), as the
weights are scattered and there are no outstanding trajectories especially with high values.
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Figure 3. Weight plot of the first PLS component fitted with all process trajectories. Positive weights
correspond to positive correlation with the hydroxyl index (response variable).
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As the diagnosis is not clear using the standard methodology of batch processes [36, 37] other
alternatives were tried. Blockwise PLS is a new approach for process diagnosis, following the idea
proposed in a previous paper [35]. Aguado et al. [38] successfully applied this methodology for
process understanding of a wastewater batch reactor. Starting from the unfolded matrix, a PLS
regression is conducted for every block of variables and, for the first component, the associated
latent variable and its Q2 are calculated. This procedure produces a new matrix of 52 latent
variables that contains the main information in order to predict the IOH. A further analysis of
this matrix can be carried out to identify stages more correlated with the final quality parameters,
outliers, shifts in the process, etc. However, in this case just the analysis of the 52 Q2 values
highlights the key information.

If the 52 values of Q2 are charted on a normal probability plot, a linear trend is observed
(Figure 4), but the highest seven values are slightly separated from the straight line, highlighting
those trajectories most important from a statistical point of view. This result simplifies the diagnosis.
The software SIMCA-P used for the analysis considers as threshold of significance for Q2 a value
of about 0.1, but in this case there are 15 values higher than 0.1 that follow the straight line in the
normal probability plot and do not seem to provide relevant information. The pressure during the
second stage (2PR), the temperature during the first stage (1Ta), the derivative trajectory of this
temperature (1Tad) and the derivative trajectory of pressure (1PRd) are the latent variables with
highest Q2 values.

Regarding the latent variable of pressure (2PR), the highest weights correspond to the beginning
of the second stage. During a period of about 20min, the pressure of the batches with highest
hydroxyl index (out of specifications) describes a trajectory that tends to be lower than the mean
trajectory. The opposite occurs for batches with lowest IOH. Thus, during the beginning of the
second stage, the pressure has a negative correlation with IOH. The pressure just at the third minute
of this stage is significantly correlated with the hydroxyl index (Figure 5), and similar results are
obtained considering other time points. Actually, if a further PLS is conducted with the trajectory
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Figure 4. Normal probability plot of 52 Q2 values. Each one corresponds to the first component of a PLS
model fitted with the block of recorded variables from one of the 52 sensors installed in the process, and
considering y= IOH. Variable codes are shown for the highest Q2 values that depart from the straight line.
The first number corresponds to the stage. 1Tad, 1PRd, 1LEVd are derivative trajectories. The vertical
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of temperature during this period, it results in Q2=0.6 and hence this multivariate model could be
used for online monitoring. Furthermore, these results reveal information regarding the diagnosis:
as the correlation appears from the first minutes of the second stage, it seems that the first stage
is critical.

With respect to the temperature during the first stage, the highest weights of this latent variable
(1Ta) correspond to the final period of the addition of polyalcohol and during the addition of alkaline
solution. Actually, if the original trajectories are checked out, during these periods the batches
with highest IOH show a trajectory of temperature lower than average. Hence, the temperature in
this stage is correlated with IOH, as it is the pressure in the second stage.

It is important to point out that caution has to be taken when interpreting these correlations.
Only if correlation is due to a cause–effect relationship, we can consider those variables as critical
points or key process variables whose variability should be reduced to produce a reduction in the
variability of the IOH.

In this case, further studies conducted have pointed out that the flowmeter that controls the
addition of polyalcohol in the first stage seems to be the critical point, and the hypothesis is that
an excessive variability of the mass of polyalcohol used as a reagent seems to be the main cause
of variability of IOH. Hence, the advice is to improve the control of this flowmeter in order to
achieve a more accurate measure of the mass really added to the tank. From a statistical point
of view, the only way to identify a causal correlation and verify this hypothesis is conducting a
design of experiments (DOE). Blockwise PLS can be an efficient methodology to select the likely
key process variables to run a DOE out of the large amount of original process variables.

4. PLS-DISCRIMINANT ANALYSIS: AUTOMATIC CLASSIFIER BASED
ON IMAGE DATA

The classification of parts or objects according to shape, colour or size is common in indus-
trial environments. In the case of agricultural products such as fruits, there is a strong interest
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in developing automatic systems to classify fruit pieces based on the presence of defects (i.e.
phytopathologies and physiopathies that may affect the fruit).

Our example is related to the classification of orange fruit into quality categories based on the
separation of sound pieces from those affected by different defects. In the citric industry, there exist
some machines that classify oranges basically in terms of colour and size. These machines do not
achieve very good results when trying to discriminate between phytopathologies and physiopathies,
probably because colour-based inspection machines try to discriminate between different problems
dealing just with the spectral values of the pixels, but not with the spatial structure of the orange
peel. Despite the big efforts made to improve the machine classification results during the last years,
still an important percentage of the fruit introduced in the agricultural cooperatives is inspected and
classified by the human eye, mainly when there is a need to distinguish between some diseases.
However, human inspection is not feasible due to its low productivity and lack of reliability for
the classification.

Traditional image analysis classification techniques are based on the extraction of colour or
texture statistics from the images, turning them into just one vector of characteristics that is used
to compare new images with those used to build the models [39]. This is equivalent to consider
the image as a sample from which some variables are measured. The introduction of PLS in
the multivariate image analysis (MIA) field started with the works of Prof. Esbensen [40, 41].
Outstanding recognition deserves the work of Prof. MacGregor [42, 43]. Eriksson et al. [44] have
also applied a discriminant version of PLS in a recent work.

Here we propose to integrate both spectral and textural information into the same data structure
related to different types of orange images available (sound or affected by different diseases),
and to analyse it using PLS-discriminant analysis (PLS-DA), in a similar manner as proposed by
Prats-Montalbán and Ferrer [45]. We will consider the image as a sample of pixels instead of a
statistics vector worked out from the image to characterize it. Hence, we will be able to deal in a
better way with the variability present in the pixels. This is achieved by the application of the MIA
strategy [46] on RGB images coming from orange fruits, incorporating for each colour channel the
spatial information (texture) following the methodology proposed by Bharati and MacGregor [47].

This is a four-step procedure: first of all, the spatial information is extracted through spatially
shifting, for each colour channel, the RGB image in adjacent directions, and then stacking the
shifted images on top of each other to form a four-way pixel array, as displayed in Figure 6(a). The
amount of neighbouring pixel intensities to save depends on the texture to analyse. In this manner,
we obtain a four-way data structure, with the first two dimensions (n1×n2) linked to the pixels that
spatially form the image, the third linked to the J pixels constituting the neighbouring window,
and the fourth related to the K =3 colour channels (RGB) of the images. Once the shifting process
has been applied on each of the R, G and B colour channels, in order to analyse the pixels it is
necessary to unfold the image according to the MIA strategy, i.e. locating the pixels in the sample
mode by means of stacking each column of the images one below the other, until one vector is
obtained for each of the J shifted images analysed, for the three R, G and B channels. In this
manner, pixels become the samples in the three-way internal structure displayed in Figure 6(b).
However, in order to apply a PLS model, we have to carry out a second unfolding of this three-way
data structure, as displayed in Figure 6(c), obtaining a two-way data structure with the first mode
linked to the n1×n2 pixels constituting the samples, and with the second mode integrating both
the spatial and colour channels (variables).

As we are going to apply a PLS-DA approach, it is necessary to repeat this procedure for each
one of the images belonging to different types of oranges. Once all the two-way data matrices are

A
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Figure 6. Scheme of the data structure building procedure for the spectro-textural multivariate image: n1
and n2 define the spatial dimensions of the image, which after first unfolding turn into the I sample
dimension; K =3 (R, G and B spectral channels); and J is the number of neighbouring pixels saved to
include the spatial information (texture). (a) Four-way dimensional data structure; (b) three-way internal
data structure; (c) two-way data structure; and (d) stacking process for a three-class PLS-DA model and

creation of the dummy variables.

obtained for each of the orange images to analyse, by stacking them on top of each other, the final
two-way data matrix X is created. The final step is to create as many dummy variables as classes
of oranges that are to be fitted by the PLS-DA model. This step is accomplished by creating a Y
matrix that contains as many columns as different classes of oranges. For each of these columns,
the value 1 is assigned to the pixels belonging to the class linked to that column, and 0 for the
rest, as shown in Figure 6(d). Usually, one training image per defect is enough for calibrating the
classification model.

Once the data structures have been created, it is possible to build a PLS model. The number of
relevant components should be determined by means of a cross-validation procedure. Finally, new
RGB orange images can be classified by projecting them onto the fitted PLS-DA model, working
out the percentage of pixels over the residual sum of squares (RSS) limit for the fitted model. If
this percentage of pixels of the new projected image is higher than the percentage of pixels over
the RSS limit for the training image data set, then the image is classified as not belonging to any
of the modelled classes. On the contrary, if this percentage is lower than the RSS limit, then the
new image is classified as belonging to the class showing an average predicted value for the pixels
closest to ‘1’.

The application of this procedure for the classification of three types of diseases on a validation
image data set with 67 oranges with several types of diseases gave a 78% success rate in the
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classification. As these results were not completely satisfactory, it was decided to project only the
images corresponding to oranges of the same classes as the ones used to build the models. In this
manner, it is not necessary to establish a maximum percentage of pixels over the limit for the RSS
statistic. When considering this alternative, the PLS-DA approach reached up to a 93% success
rate in the classification, which is a very good result, always taking into account the limitations
of this alternative.

5. PLS-TIME SERIES: MODEL BUILDING

The objective of this case study is to present the capabilities of PLS time series (PLS-TS) method-
ology [18] for the estimate of a transfer function (TF) model of an industrial polymerization process
between two input variables (X ): reactor temperature (T ) and ethylene flow (E); and two output
variables (Y ): a quality property of the polymer, Melt Index (MI), and a measure of the process
throughput (APRE). The model can be used for designing predictive controllers. Real data from
three manufacturing periods provided by a petrochemical company have been investigated.

As the two output variables were slightly correlated, we proceeded to build a TF model for each
output variable separately. From the different TF models that can be used to represent the process,
the finite impulse response (FIR) model was chosen. This is a simple but non-parsimonious TF
model, where each output variable at time t , Y j,t ( j =1,2), is expressed as a linear combination
of values at time t and past values of the input variables Xi,t−k (i=1,2, k=0, . . . , L):

Y j,t =
2∑

i=1
(�i0Xi,t +�i1Xi,t−1+�i2Xi,t−2+·· ·+�i L Xi,t−Li )+� j,t

where Li is the number of lags for input variable Xi related to the inertial properties of the system;
the residual part, � j,t , is assumed to be white noise; and Y j,t and Xi,t−k measure the deviations from
steady state. Other TF models such as, e.g. autoregressive with exogenous variables (ARX) models,
which incorporate past measured outputs Y j,t−k as inputs, can also be fitted by PLS-TS [18, 48].

The phases of model building by using PLS-TS methodology are:

• Initial exploratory analysis of data: Study of the nature of the series and their dynamics (auto-
and cross-correlation functions); determination of number of differences to obtain stationary
series and number of lags to consider in the formulation of the model; process fault detection
(residual and score plots from preliminary PLS models).

• Pre-treatment of data: The original matrix of input variables X is expanded with new lagged
variables for every input according to Figure 7. The number of lags to take into account
depends on the results of the initial exploratory analysis about the dynamic behaviour of the
series. Variables are centred and scaled to unit variance.

• TF model identification: A PLS-TS model is estimated separately for every output variable
and expressed as a FIR model by using the regression PLS coefficients plots. As every
variable is scaled by its standard deviation, the coefficients � will approximately determine
the importance of the variables in the model. To find a parsimonious model, we proceed to
select the most influential lags by picking up the variables with greatest value of � that, at
the same time, are consistent in the three manufacturing periods under study. Figure 8 shows
the PLS regression coefficients plot for the differenced model for predicting MI.
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Figure 7. Overview of the lagging process to create the expanded X matrix. Dropping rows from the top
and bottom is carried out to regularize the data structure.
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Figure 8. PLS coefficient plot of reactor temperature and ethylene flow (differenced
data) as a function of lag number.

• In this case the first two lags for both input variables (DIFETILDC1, DIFETILDC2 and
DIFTEMPDC1, DIFTEMPDC2) were included in the model for MI. Following a similar
procedure (not shown), the first two lags for reactor temperature and only the first lag for
ethylene flow were considered for the APRE model (differenced data).

• If the model contains a high number of highly correlated input variables, a more parsimonious
model can be obtained by pruning the original one. The weight plot of the PLS-TS model
will help to identify the variables that provide redundant information. Owing to the small
number of input variables in our study, pruning was not considered.

• Final model estimation: In this case, the estimated model was

∇MIt = �1∇Tt−1+�2∇Tt−2+�3∇Et−1+�4∇Et−2+a1t

∇APREt = �1∇Tt−1+�2∇Tt−2+�3∇Et−1+a2t

where ∇ is the differential operator (∇Xt = Xt −Xt−1).
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Figure 9. (a) PLS coefficient plot for ∇MI model and (b) cross-correlation functions between ∇MI and
∇E , and between ∇MI and ∇T . Campaign 5.

Figure 10. FIR model (up) versus BJ model (down). Noise � j,t is partially
modelled in Box–Jenkins methodology.

From this case study, we concluded that:

• PLS-TS can be successfully applied to estimate process dynamics using a variety of TF
models (FIR, ARX, etc.). The results were consistent with those obtained from using the
statistically well-sounded Box–Jenkins (BJ) methodology [49, 50].

• PLS-TS method provides a pack of very useful graphic tools for the descriptive study of the
data, allowing an easy identification of abnormal periods in the data set. The regression PLS



coefficients plot helps to identify the TF model. This plot is similar to the cross-correlation
function when the input variables are not correlated. For instance, Figure 9 shows how the
PLS coefficient plot for ∇MI model is similar to the cross-correlation functions between
∇MI and ∇E, as well as between ∇MI and ∇T in campaign 5.

• Comparing the BJ methodology to FIR and ARX models fitted by PLS-TS, the former
leads to more parsimonious models because noise � j,t can also be modelled (see Figure 10).
Nonetheless, PLS-TS may serve as an exploratory tool complementary to the BJ methodology.

• PLS-TS turns out to be a good choice for TF model building in the case of complex multi-
input multi-output systems, with inputs and outputs highly correlated, where BJ methodology
becomes practically unfeasible.

6. CONCLUSIONS

Specialized tools for specific problems are easily available in the literature of statistical data
analysis. Nevertheless, very few techniques are versatile enough to be applied in a very wide range
of problems (e.g. discrimination, classification, process modelling, process diagnosis and fault
detection) dealing with so many different data structure scenarios (e.g. collinearity, rank deficiency,
missing data, etc.), which are typical in complex modern processes.

This is the great virtue of PLS models: the same tool can be used in very different contexts
by properly arranging the data structure. This makes PLS an easily transferable tool: a key prop-
erty to be successfully applied for problem solving in highly competitive and time-demanding
environments.

Although the examples illustrated here come from chemometrics environments, where PLS has
been widely used in the last years, there is a tremendous potential impact of PLS in other areas
such as marketing, business strategy and the application of statistics in business analysis.
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