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 Abstract— Digital mammographic image processing often 
requires a previous application of filters to reduce the noise 
level of the image while preserving important details. This may 
improve the quality of digital mammographic images and 
contribute to an accurate diagnosis.  In the literature, one can 
find a large amount of denoising techniques available for 
different kinds of images.  We have adapted some of the 
existing denoising algorithms to mammographic images. In this 
work, we compare the effect of different denoising filters acting 
on digitized mammograms. The considered filters are: a local 
Wiener filter, a wavelet filter, a filter based on independent 
component analysis, and finally, a filter based on the diffusion 
equation. The noise reduction is measured by the mean 
squared error.      

 
Keywords— Digital mammography, denoising, independent 
component analysis, wavelet shrinkage. 
 

I.  INTRODUCTION 
 

The most effective technique for detecting breast occult 
tumours is the mammography. The low contrast of the small 
tumours to the background, which is sometimes close to the 
noise, makes that small breast cancer lesions can hardly be 
seen in the mammography [1]. In this sense, an image 
preprocessing to reduce the noise level of the image 
preserving the mammography structures is an important 
item to improve the detection of mammographic features.  

Classically, denoising methods have been based on 
apply linear filters as the Wiener filter to the image, 
however linear methods tend to blur the edge structure of 
the image. Several denoising methods based on nonlinear 
filters have been introduced to avoid this problem [2,3,4].   

In this work, a comparative study of several denoising 
techniques for mammographic images is presented. The 
filters considered are: 1) a local Wiener filter, 2) a filter 
based on the denoising method of Donoho [2] based on the 
minimax thresholding strategy, roughly speaking, based on a 
soft thresholding of the wavelet transformed coefficients of 
the image, and, 3) a filter based on the independent 
component analysis of the image [4,5,6].  
 

II. DENOISING METHODS 
 

A. Adaptative Wiener filter 
 

The classical denoising filter is the Wiener filter, 
defined as the linear filter that minimizes the mean squared 
error (MSE). 

The first denoising method used in this work consists in 
applying a Wiener filter to an image adaptively, tailoring 

itself to the local image variance. Where the variance is 
large, the Wiener filter performs little smoothing. Where the 
variance is small, the Wiener filter performs more 
smoothing. 

This approach often produces better results than linear 
filtering. The adaptive filter is more selective than a 
comparable linear filter, preserving edges and other high 
frequency parts of an image.  
 
B. Wavelet shrinkage  
 
 Another denoising method is the so-called wavelet 
shrinkage, originally proposed by Donoho [2]. This method 
is based on the wavelet decomposition of the image, which 
is the two dimensional version of the wavelet decomposition 
of a signal. 
 Wavelet decomposition of a signal is a representation of 
the signal onto a basis of wavelet functions (see e.g. [7] for a 
review). Wavelets are families of basis functions, each 
family generated by scaling and translating a basic function 
called mother wavelet. An essential property of the wavelets 
is that they are well localized in time (or in the case of 
image, in space) and in frequency.  
 Typically, the (discrete) wavelet transform of a signal f 
is another signal of the same length, which consists in two 
subsignals of half its length: 

f → (a1|d1)                                     (1) 
 The subsignal a1 is a smoothed version of the original 
signal, often called approximation subsignal, and the 
subsignal d1 contains high frequency information and it is 
often called subsignal of the details. 
 The key point of the wavelet denoising method is that in 
the wavelet domain the noise is spread fairly uniformly 
among all coefficients, whereas the signal is quite sparse, 
being concentrated into a small number of coefficients [2]. 
This is the practical motivation for thresholding of the detail 
coefficients proposed by Donoho. The threshold value T 
proposed by Donoho based on minimax principles, is given 
by [2]: 

T
n

nlog2σ
=                                    (2) 

where n is the length of the data and σ the standard deviation 
of the noise. 
 The last step of the wavelet shrinkage denoising 
algorithm consists in taking the inverse wavelet transform to 
obtain the denoised signal (or denoised image, in the 2-
dimensional case).    
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C. ICA-based denoising method 
 

Independent component analysis (ICA) is a method to 
represent a set of multidimensional data vectors in a basis 
where the components are as independent as possible [8,9]. 
Often this means that one must find a transformation that 
provides a vector whose components are sparse. This means 
that the probability of a component to be significantly 
different to zero is very low. For practical purposes, a 
random variable is called sparse when it has a supergaussian 
probability distribution, so it has a probability density 
function sharper than the gaussian density function. 

ICA denoising methods rely on the fact that the 
transformed components have sparse (supergaussian) 
distributions, so that the denoising techniques attempt to 
reduce gaussian noise by shrinkage (soft thresholding) of 
these sparse components. The choice of a shrinkage function 
depends on the statistical distribution of each sparse 
component [5].  It has been shown [10] that the statistical 
distributions of the independent components of 
mammographic images are appropriated to apply the 
shrinkage algorithm introduced in [4,5].  

In ICA an observed random vector is expressed as a 
linear transformation of another variables that are 
nongaussian and statistically independent. Denote by x the 
ndimensional data vector, in our case the vector contains 
the pixel gray levels of an image window. The basic ICA 
model may be expressed as (see e.g. [8] for a comprehensive 
treatment): 

x= As (3) 

where x=[x1,...,xn]T  is the vector of observed data, 
s=[s1,...,sm]T is the vector of independent components, called 
source signals, and A is a constant full rank nxm matrix, 
named the mixing matrix. Independent components and 
mixing matrix are determined by requiring that the 
coefficients si, are mutually independent or as independent 
as possible.  

The independent components are estimated by 
determining an mxn separating matrix W, so that the 
components si of the linear transformed vector s have 
maximally non-gaussian distributions and are mutually 
uncorrelated, 

s= Wx (4) 

The separating matrix W is determined using an 
algorithm that optimizes iteratively statistical independence 
of the components of s. The algorithm performing ICA that 
we have used is the Hyvärinens FastIca algorithm [11]. 

In order to apply the ICA algorithm, the original data x 
must be pre-processed. First, data are centered, i.e, we 
subtract the data mean. The second step, called whitening, is 
to remove the second order statistical dependence in the 
data. Whitened data have unit variance and are uncorrelated. 
Whitening can be done using standard PCA, which 
simultaneously may be used to reduce the data dimension. 

The m-dimensional whitened vector is obtained by the linear 
transformation 

y= Vx (5) 

where the mxn whitening matrix is of the form V=D-1/2ET.  
Using the eigenvalue decomposition of the covariance 
matrix of x, the diagonal matrix D contains the m greatest 
eigenvalues of the covariance matrix and the columns of the 
orthogonal matrix E contain the corresponding eigenvectors.  
After whitening, we seek an orthogonal matrix B which 
maximizes some given measure of supergaussianity of the 
components of the vector s=By, this may be done by using 
the FastICA algorithm [11]. The separating equation is then  

s= By = BVx= BD-1/2ETx=Wx. (6) 

If the ICA model holds, the independent components 
are sparse which means that each component has a 
supergaussian distribution. This is fundamental to apply the 
approach of [4,5,6] to eliminate the gaussian noise from a 
nongaussian random variable.  

Denote by x the noisy observed random variable, the 
model for x can be expressed:  

x=s+n (7) 

where s is a non-gaussian random variable corrupted by an 
additive gaussian noise n∼N(0,σ2). The method introduced 
in [4,5] to denoise the observed data x proposes an estimates 
of s given by  

ŝ=g(x) (8) 

where g is a function  depending on the probability density 
distribution of s. The function g is a shrinkage function that 
can be considered a soft thresholding operator applied to the 
values of x. 

The density distributions for natural images have been 
parametrized in [5,6]. Parametrizations depend on two 
parameters and they model different degrees of non-
gaussianity. 
  The method of denoising a random vector consists in 
applying the method described above for a scalar variable to 
each component separately. In general, there is no guarantee 
that the vector components are sparse. To solve this 
problem, the vector is linearly transformed in such a way 
that the resulting components are as nongaussian as 
possible. Therefore, the denoising method for a vector 
variable consists in applying on the ICA independent 
components a component-wise denoising using the 
appropriate shrinkage function g for each component.  
 It is possible applying the ICA denoising method [4,5] to 
mammographic images [10]. The density functions analysis 
of the independent components of mammographic images 
show that these distributions are suitable to apply the ICA 
denoising method. 
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III.  METHODOLOGY 
 

Mammographic images considered in this work for 
denoising experiments were chosen from    the MIAS 
MiniMammographic Database, provided by the 
Mammographic Image Analysis Society. The mammograms 
were digitised at 200 micron pixel edge, resulting images 
with 1024x1024 pixel resolution.  

      
Fig. 1. Some typical mammographic images from MIAS database. 

 The algorithms of the denoising methods have been 
implemented by using MatLab 6.5 . 
 The adaptive Wiener filter is a local low pass filter that 
is processed adaptively in a local neighbourhood of 3x3 
pixels blocks of the image, estimating the local image mean 
and standard deviation of each of them. 
 For the wavelet shrinkage we have chosen the coiflet 6 
family at level four because of its efficient energy 
compactness preserving the essential information of the 
image. 

For the ICA method, the training images to estimate the 
ICA transform are selected from the same MIAS 
MiniMammographic Database. The criterion for image 
selection was that the training set must be representative of 
the mammographic images. 
  Each image of the training data set was linearly 
normalized, so that pixels had zero mean and unit variance. 
The data vectors x are obtained from 20000 image patches 
of size 16x16 that were taken at random from the training 
images, so these subimages were vectorized into 256-
dimensional vectors which were used as the mixed data of 
the ICA model. The dimension reduction is performing in 
such a way that the retained variance is the 98% of the 
initial variance of the data.  

In order to estimate the sparseness of the independent 
components, we sample 40000 image patches at random 
locations from the same dataset that was used for estimation 
of the transform. Then we transform these samples using the 
estimated ICA transform and we calculate the kurtosis for 
each one of the components. The normalized kurtosis values 
encountered for every transformed component are greater 
than zero, this means that ICA transform find sparse 
representations of the original vectors. As a result, the 
statistics of the independent components of mammographic 
images are suitable for the ICA-based denoising procedure.  
For a mammographic image of the database, we apply the 
denoising algorithm taking a sliding window approach of 
the image [5,6], so we apply the algorithm to all vectors 

obtained from every possible 16x16 window of the image. 
Then, each 256-dimensional vector is pre-processed by 
whitening and their dimension is reduced, resulting vectors 
are transformed into the sparse basis and the estimated 
nonlinearity shrinkage functions are applied to every 
component of each vector. After that, we invert the 
transformation to obtain estimates of the denoised vectors. 
Finally, it is necessary the reconstruction of the denoised 
image from the denoised vectors. Since we consider the 
sliding window approach, then each pixel has 256 different 
suggested values and we compute the final result as the 
mean of these values. This is a type of local filtering, 
considering all possible 16x16 neighbourhoods around each 
pixel.  
 
 

IV.  RESULTS 
 
 In order to perform the denoising experiments some 
images were selected from the MIAS database. Original 
images from the database were corrupted by adding a 
Gaussian noise. Experiments were performed using noise of 
standard deviation of 0.3 and 0.5 times the standard 
deviation of the original image. These noisy images were 
subsequently denoised using the adaptative Wiener filter, 
the Donoho wavelet shrinkage and the ICA filter.  
 The comparison among the different denoising results 
was quantitative measured by using the squared root of the 
mean squared error (RMSE) between the denoised image 
and the original noise free image (Fig.1). The RMSE is 
calculated by: 

mn

))y,x(I)y,x(I(
RMSE

2

⋅

−
=

∧

∑                        (9) 

where I(x,y) and Î(x,y) are the pixel values of the original 
free noise and denoised images respectively, and the size of 
the image is given by n·m. 
 Table 1 shows the results for the RMSE obtained for 
two different images randomly selected from the database 
by using the different denoising methods. One of the images 
is given in Fig. 2 

TABLE I 
RMSE FOR THE THREE DENOISING METHODS  
Images Noisy Wiener Wavelet ICA 

Image1+noise 0.3σ 9.0771 3.5699 3.2201 3.7119 
Image1+noise0.5 σ 15.054 5.9297 3.6083 4.0411 
Image2+noise 0.3σ 4.9476 2.4494 3.3928 3.7727 
Image-+noise 0.5σ 8.2874 3.3876 3.7462 4.2796 

 
 For visual evaluation of denoising methods, in Fig. 2 are 
shown Image 1, a noisy version of it and the resulting 
denoised images obtained applying the three considered 
methods.  
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                                 (a)                                            (b) 

 
                (c)                                    (d)                                    (e) 
Fig. 2. Denoising process. (a) Original Image 1 of the database. (b) Noisy 
image, noise level added 0.5 (c) Image obtained applying Wiener filter (d) 
Image obtained applying wavelet filter (d) Image obtained applying ICA 
filter. 
 

V.  DISCUSSION 
 

We have used the mean squared error to quantify the 
succes of the three denoising methods considered above 
when they are applied to mammographic images. The MSE 
is a standard measure to evaluate a signal denoising 
technique, however, for image denoising, this measure it is 
not always related with the denoising visual results. Since 
the goal of the mammographic images processing is the 
improvement of the early breast cancer detection being the 
image denoising a first step of this program, then, the 
assessment of denoising methods would be done in the 
context of the use of these mammographic images.    

As a result, the denoising methods compared here are 
suitable for application to mamographic images. The 
denoising results for the three cases are comparable from the 
MSE and visual point of view. 
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