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Abstract

The idea of following a sequence of steps to achieve a desired result is inherent

in human nature: from the moment we start walking, following a cooking recipe

or learning a new card game. Since ancient times, this scheme has been followed

to organize laws, correct writings, and even assign diagnoses. In mathematics,

this way of thinking is called an algorithm. Formally, an algorithm is a set of

defined and unambiguous instructions, ordered and finite, that allows for solving

a problem. From childhood, we face them when we learn to multiply or divide,

and as we grow, these structures will enable us to solve different increasingly

complex problems: linear systems, differential equations, optimization problems,

etc.

There is a multitude of algorithms that allow us to deal with this type of

problem, such as iterative methods, where we find the famous Newton Method

to find roots; search algorithms to locate an element with specific properties in a

more extensive set; or matrix decompositions, such as the LU decomposition to

solve some linear systems. However, these classical approaches have limitations

when faced with large-dimensional problems, a problem known as the ‘curse of

dimensionality’.

The advancement of technology, the use of social networks and, in general, the

new problems that have appeared with the development of Artificial Intelligence,

have revealed the need to handle large amounts of data, which requires the

design of new mechanisms that allow its manipulation. This fact has aroused

interest in the scientific community in tensor structures since they allow us to

work efficiently with large-dimensional problems. However, most of the classic

methods are not designed to be used together with these operations, so specific

tools are required to allow their treatment, which motivates work like this.

This work is divided as follows: after reviewing some definitions necessary

for its understanding, in Chapter 3, the theory of a new tensor decomposition

for square matrices is developed. Next, Chapter 4 shows an application of

said decomposition to regular graphs and small-world networks. In Chapter

5, an efficient implementation of the algorithm provided by the new matrix

decomposition is proposed, and some order two PDEs are studied as an

application. Finally, Chapters 6 and 7 present some brief conclusions and list

some of the references consulted.
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Resumen

La idea de seguir una secuencia de pasos para lograr un resultado deseado es

inherente a la naturaleza humana: desde que empezamos a andar, siguiendo una

receta de cocina o aprendiendo un nuevo juego de cartas. Desde la antigüedad

se ha seguido este esquema para organizar leyes, corregir escritos, e incluso

asignar diagnósticos. En matemáticas a esta forma de pensar se la denomina

algoritmo. Formalmente, un algoritmo es un conjunto de instrucciones definidas

y no-ambiguas, ordenadas y finitas, que permite solucionar un problema. Desde

pequeños nos enfrentamos a ellos cuando aprendemos a multiplicar o dividir,

y a medida que crecemos, estas estructuras nos permiten resolver diferentes

problemas cada vez más complejos: sistemas lineales, ecuaciones diferenciales,

problemas de optimización, etcétera.

Hay multitud de algoritmos que nos permiten hacer frente a este tipo de

problemas, como métodos iterativos, donde encontramos el famoso Método de

Newton para buscar raíces; algoritmos de búsqueda para localizar un elemento

con ciertas propiedades en un conjunto mayor; o descomposiciones matriciales,

como la descomposición LU para resolver sistemas lineales. Sin embargo,

estos enfoques clásicos presentan limitaciones cuando se enfrentan a problemas

de grandes dimensiones, problema que se conoce como ‘la maldición de la

dimensionalidad’.

El avance de la tecnología, el uso de redes sociales y, en general, los nuevos

problemas que han aparecido con el desarrollo de la Inteligencia Artificial, ha

puesto de manifiesto la necesidad de manejar grandes cantidades de datos, lo

que requiere el diseño de nuevos mecanismos que permitan su manipulación. En

la comunidad científica, este hecho ha despertado el interés por las estructuras

tensoriales, ya que éstas permiten trabajar eficazmente con problemas de

grandes dimensiones. Sin embargo, la mayoría de métodos clásicos no están

pensados para ser empleados junto a estas operaciones, por lo que se requieren

herramientas específicas que permitan su tratamiento, lo que motiva un proyecto

como este.

El presente trabajo se divide de la siguiente manera: tras revisar algunas

definiciones necesarias para su comprensión, en el Capítulo 3, se desarrolla

la teoría de una nueva descomposición tensorial para matrices cuadradas.

A continuación, en el Capítulo 4, se muestra una aplicación de dicha

descomposición a grafos regulares y redes de mundo pequeño. En el Capítulo 5,

se plantea una implementación eficiente del algoritmo que proporciona la nueva

descomposición matricial, y se estudian como aplicación algunas EDP de orden

dos. Por último, en los Capítulos 6 y 7 se exponen unas breves conclusiones y se

enumeran algunas de las referencias consultadas, respectivamente.
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Resum

La idea de seguir una seqüència de passos per a aconseguir un resultat desitjat

és inherent a la naturalesa humana: des que comencem a caminar, seguint

una recepta de cuina o aprenent un nou joc de cartes. Des de l’antiguitat s’ha

seguit aquest esquema per a organitzar lleis, corregir escrits, i fins i tot assignar

diagnòstics. En matemàtiques a aquesta manera de pensar se la denomina

algorisme. Formalment, un algorisme és un conjunt d’instruccions definides i

no-ambigües, ordenades i finites, que permet solucionar un problema. Des de

xicotets ens enfrontem a ells quan aprenem a multiplicar o dividir, i a mesura

que creixem, aquestes estructures ens permeten resoldre diferents problemes

cada vegada més complexos: sistemes lineals, equacions diferencials, problemes

d’optimització, etcètera.

Hi ha multitud d’algorismes que ens permeten fer front a aquesta mena de

problemes, com a mètodes iteratius, on trobem el famós Mètode de Newton

per a buscar arrels; algorismes de cerca per a localitzar un element amb

unes certes propietats en un conjunt major; o descomposicions matricials,

com la descomposició DL. per a resoldre sistemes lineals. No obstant

això, aquests enfocaments clàssics presenten limitacions quan s’enfronten a

problemes de grans dimensions, problema que es coneix com ‘la maledicció de

la dimensionalitat’.

L’avanç de la tecnologia, l’ús de xarxes socials i, en general, els nous problemes

que han aparegut amb el desenvolupament de la Intel·ligència Artificial, ha posat

de manifest la necessitat de manejar grans quantitats de dades, la qual cosa

requereix el disseny de nous mecanismes que permeten la seua manipulació.

En la comunitat científica, aquest fet ha despertat l’interés per les estructures

tensorials, ja que aquestes permeten treballar eficaçment amb problemes de

grans dimensions. No obstant això, la majoria de mètodes clàssics no estan

pensats per a ser emprats al costat d’aquestes operacions, per la qual cosa es

requereixen eines específiques que permeten el seu tractament, la qual cosa

motiva un projecte com aquest.

El present treball es divideix de la següent manera: després de revisar algunes

definicions necessàries per a la seua comprensió, en el Capítol 3, es desenvolupa

la teoria d’una nova descomposició tensorial per a matrius quadrades. A

continuació, en el Capítol 4, es mostra una aplicació d’aquesta descomposició

a grafs regulars i xarxes de món xicotet. En el Capítol 5, es planteja una

implementació eficient de l’algorisme que proporciona la nova descomposició

matricial, i s’estudien com a aplicació algunes EDP d’ordre dos. Finalment, en

els Capítols 6 i 7 s’exposen unes breus conclusions i s’enumeren algunes de les

referències consultades, respectivament.
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1CHAPTER
Introduction and state of art

Rosalind Elsie Franklin (1920 – 1958)

Química y cristalógrafa británica,

pionera en cristalografía de rayos x. Su

imagen de una molécula de ADN resultó

crítica para descifrar su estructura.

The use of algorithms goes back millennia, before the term itself existed. The

Babylonians used algorithms to organise laws; ancient Latin teachers corrected

grammar using algorithms; doctors have relied on algorithms to assign diagnoses; and

countless people from all corners of the globe have tried to predict the future with

algorithms. The idea of following a sequence of steps to achieve a desired outcome

is inherent in human nature. However, the term “algorithm” is derived from the

name of a Persian mathematician named Al-Khwarizmi, who lived in the 9th century.

Al-Khwarizmi wrote a famous book called Algoritmi de numero Indorum [51].

In mathematics, logic, computer science and related disciplines, an algorithm is a

finite, ordered, non-ambiguous, defined set of instructions or rules for solving a

problem, performing a computation, processing data, and carrying out other tasks or

activities. It can be considered as a recipe or a set of instructions that guide the process

of solving a problem: given an initial state and an input, following successive steps

leads to a final state and a solution is obtained [49].
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From an early age, we are in contact with these typically mathematical structures, for

example, when we start to multiply and divide and use the multiplication algorithm,

the division algorithm or Euclid’s algorithm. Also, when we use the Gaussian

elimination method to solve a system of linear equations or to calculate the inverse

of a square matrix. Even in other completely different disciplines, such as in language,

when learning and using the grammatical rules of accentuation; in the chords of the

refrain of a song; in card games, chess, and so forth. When solving more complex

mathematical problems, such as differential equations or optimisation problems,

we have several classical mechanisms at our disposal, such as iterative methods,

among which we find the famous Newton’s Method; correction algorithms; gradient

descent algorithms; or matrix decompositions (such as LU, QR) among many others

[18, 29, 52]. However, these classical approaches have limitations when faced with

high-dimensional problems. As the problem dimension increases, the computational

complexity of these methods increases significantly, leading to an increase in memory

requirements and computational time. This problem is known as the curse of

dimensionality problem [28].

Today, the advance of technology, Artificial Intelligence mechanisms and the rise of

social networks have underlined the need to work with large amounts of data. So

much so that the aforementioned methods are becoming obsolete in this new era,

which is why the study and development of new mechanisms that can face these new

challenges is so necessary. This has led to an interest in structures such as tensors,

which, understood as a multidimensional generalisation of vectors and matrices, have

proven to be a particularly useful tool in this context, allowing the representation and

manipulation of high-dimensional data in a compact and structured way [40].

Tensors can be “measured” in different ways, for example, from the final size

(dimension) of the object they define, or from the number of summands that compose

it. For us, a tensor of order d will be an object defined on RN1×N2×...Nd , and will have

rank k if it can be written as the sum of k tensors of the same order.

Figure 1: Representation of a tensor of order 0, in R; 1, in R3; 2, in R3×4; and 3, in R3×4×3,

respectively.
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For example, a d−dimensional tensor of rank k would be an object of the form

x =
k∑

i=1
xi

1 ⊗xi
2 ⊗·· ·⊗xi

d .

In particular, a tensor of order 0 would be just a number; one of order 1 would be a

vector; and of order 2 would be what we know as matrices [42].

Most existing mechanisms cannot be applied directly to tensor operations, requiring

the design of proprietary tools for their use, which motivates work such as this. The

use of tensor-based algorithms has proven to be highly beneficial in fields such as

medicine, where accurate reconstruction of medical images from incomplete or noisy

data is essential for diagnosing and treating diseases. Similarly, in machine learning,

these algorithms have revolutionised information processing and feature extraction in

massive datasets, improving prediction and classification capabilities.

In addition, tensor-based algorithms have found applications in physics, chemistry

and engineering, where the simulation of complex systems and the solution of

high-order differential equations require efficient and accurate numerical methods.

Tensors provide a suitable structure for representing the properties and relationships

of physical systems, making it possible to tackle previously computationally

intractable problems [27].

Two of the most relevant strategies employed by these algorithms are tensor

decomposition, which allows the representation of high-dimensional tensors in terms

of lower-rank tensors, and low-rank iterative methods, which take advantage of the

inherent structure of tensors to speed up computations.

These techniques are followed by the Tucker Decomposition, which allows a tensor

to be expressed as a linear combination of kernels (a small central tensor) and mode

factors (matrices), where each mode represents a dimension of the original tensor [54];

and by the Canonical Polyadic (CP) Decomposition, where a tensor is written as a sum

of elementary tensors, each possessing relevant characteristics of the original tensor

[8, 24].

Figure 2: Graphic representation of the structure of Tucker Decomposition
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Figure 3: Graphic representation of the structure of CP Decomposition

Among the algorithms that use the above strategies, we will focus on two methods:

the Proper Generalized Decomposition, PGD, and the Greedy Rank One Updated

Algorithm, GROU. The Proper Generalized Decomposition technique approximates a

complex multidimensional function by a linear combination of more straightforward,

separable functions. This technique is based on the decomposition of the problem

in different dimensions, which allows for reducing its complexity. These methods

are mainly used in problems with multiple dependent variables, such as systems of

partial differential equations or integral equations. The central idea of the PGD is to

find a representation of the solution that is a separable function of each independent

variable. To achieve this, optimization and approximation techniques are used to find

the appropriate coefficients in the linear combination of separable functions [13, 43].

On the other hand, the Greedy Rank One Updated Algorithm is a method used to

approximate the tensor decomposition of a high dimensional tensor in terms of rank

one tensors. To do so, it uses the following iterative scheme: at each step, it selects a

direction (or mode) that best approximates the structure of the original tensor. Then,

it calculates the rank one tensor that best represents that direction and adds it to the

current approximation. This process is repeated for each direction until a satisfactory

approximation is obtained. Although the approximation obtained may not be exact,

the algorithm seeks a good representation of the original tensor by focusing on the

most significant directions and discarding the less relevant ones [1, 17].

In addition to studying the algorithms mentioned above, this work proposes a new

tensor-based matrix decomposition algorithm that aims to improve the resolution

of certain high-dimensional linear systems. The idea is to take advantage of the

tensor structure of the matrix decomposition to improve the computational cost of

tensor algorithms that solve these systems. As we will see, this method is particularly

interesting when working with systems that come from the discretization of partial

derivative equations.

The work is distributed as follows: in the Chapter 2, we will review the concepts and

results we have used and need to know for the development of the thesis: elements of

tensor calculus, notions of Lie algebras, etc.
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Then, we will present the main result of the thesis in Chapter 3. This result is part

of article ‘Structure and approximation properties of Laplacian-like matrices’, [7], and

explains and demonstrates how to carry out a matrix decomposition in terms of the

Laplacian matrix that best approximates it.

To study this new proposed decomposition, we have done some work with different

graphs and small-world networks that we will show in Chapter 4. In it, we illustrate

how we can use the Laplacian matrices to approximate the adjacency matrices in

Watts-Strogatz networks. This study is part of the Preprint On the tensor approximation

of Watts-Strogatz networks.

In view of the interesting results that we obtained as we progressed in the analysis

of this structure, we decided to study in depth the algorithm that carried out

this decomposition and, in Chapter 5, we explain how to perform an efficient

implementation of it. This result is reported in the article ‘A pre-processing method

for the implementation of the Greedy-Rank One Algorithm for a class of linear systems’,

[6]. In it, we also study different problems in the form of a linear system, which

come from the discretization of a PDE, as is the case of the Poisson, Helmholtz or

Swift-Hohenberg equations. In these experiments, we can observe how our proposal

improves computationally ‘quite’ much the A\b operation predefined in Matlab.

Finally, and by summary, we find the conclusions in Chapter 6 and the references

consulted throughout the research.

Acknowledgements

María Mora Jiménez acknowledges funding from grant (ACIF/2020/269) funded by the

Generalitat Valenciana and the European Social Found.
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2CHAPTER
Preliminaries and previous concepts

Ida Eva Tacke (1896 – 1978)

Química y Física alemana, fue la

primera científica en mencionar la idea

de la fisión nuclear. Encontró dos

nuevos elementos -renio y masurium-.

To understand the content of the thesis, we will need to know or remember some

concepts from different areas of mathematics, such as Tensor Calculus, Multilinear

Algebra or Graphs.

The main results on which its content is based are discussed in each chapter, so we will

only discuss some definitions and basic properties of concepts that will appear in one

or more chapters, and we consider it essential to remember.

2.1 Notions of Tensor Calculus

Tensor Calculus refers to the operations and algorithms used to operate with tensors.

A tensor is a multi-component algebraic ‘entity’ class that generalizes the concepts of

scalar, vector and matrix in a way that is independent of any chosen coordinate system.

Once a vector basis is chosen, the components of a tensor in a basis will be given by a

multimatrix. The order of a tensor will be the number of indices necessary to specify,
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without ambiguity, a component of a tensor: a scalar will be considered as a tensor of

order 0; a vector, a tensor of order 1; and, given a vector basis, second-order tensors

can be represented by a matrix.

Kronecker’s product

The operation par excellence with which we are going to work is the Kronecker

product, which we will represent by the symbol ⊗. The Kronecker product of two

matrices A ∈RN×M and B ∈RP×Q is defined as

A⊗B =


A1,1B A1,2B . . . A1,M B

A2,1B A2,2B . . . A2,M B
...

...
. . .

...

AN ,1B AN ,2B . . . AN ,M B

 ∈RN P×MQ ,

or, element by element, from the expression

A⊗B(n−1)P+p,(m−1)Q+q = An,mBp,q .

for 1 ≤ n ≤ N , 1 ≤ m ≤ M , 1 ≤ p ≤ P and 1 ≤ q ≤ Q. Note that through this operation,

we can obtain matrices (in general, tensors) of large sizes from much smaller ones.

On the other hand, some important properties of this operation that we are going to

need, are:

1. Associative: A⊗ (B ⊗C ) = (A⊗B)⊗C .

2. Distributive: (A+B)⊗C = (A⊗C )+ (B ⊗C ).

3. AB ⊗C D = (A⊗C )(B ⊗D).

4. The inverse of the product is the product of the inverses, (A⊗B)−1 = A−1 ⊗B−1.

5. The transpose of the product is the product of the transposes, (A⊗B)⊤ = A⊤⊗B⊤.

6. The trace of the product is the product of the traces, tr(A⊗B) = tr(A)tr(B).

Another important concept that we are going to work with is the tensor norm. A norm

∥ · ∥ defined over RN×N , where N = n1 · · ·nd , is called a tensor norm if and only if there

exists a norm ∥ · ∥i over Rni×ni for 1 ≤ i ≤ d , such that for any tensor A = A1 ⊗·· ·⊗ Ad ∈
RN×N , where Ai ∈Rni×ni (1 ≤ i ≤ d), it holds

∥A∥ = ∥A1 ⊗·· ·⊗ Ad∥ =
d∏

i=1
∥Ai∥i .

In particular, the Frobenius norm ∥A∥F =√〈A, A〉RN×N , is a tensor-norm, as we will see

in Chapter 3.
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2.1.1 Algorithms based on tensor decompositions

In this section, we will review the two main methods we have studied: the Greedy Rank

One Algorithm - GROU - and the Family of PGD Methods. We will focus our attention

on the GROU algorithm because it is, in turn, a starting point for PGD methods.

Greedy Rank One Updated Algorithm

Greedy algorithms are search algorithms that, at each step, choose the element that

improves a certain objective function most in the hope of reaching a general optimal

solution. This is the format that the Rank One Greedy algorithm adopts.

As commented in the introduction, the GROU Algorithm is a method used to

approximate the tensor decomposition of a high dimensional tensor in terms of rank

one tensors. If u ∈ RN1...Nd×N1...Nd , the GROU algorithm looks for an approximation of

u of the form

u =
k∑

j=1
x j

1 ⊗·· ·⊗x j
d ,

where xi ∈ RNi×Ni , and k is the number of iterations of the algorithm. Following the

notation in [1], the scheme followed by the algorithm is the following: let y0 = x0 = 0,

for each n ≥ 1 take

rn−1 = u−xn−1

xn = xn−1 +yn where yn ∈ argmin
rank⊗y≤1

∥rn−1 −y∥.

In this way,

u ≈ un =
n∑

j=1
y j .

In the following chapters, we will see how to apply this technique to the resolution of

linear systems.

PGD family

On the other hand, we find the family of Proper Generalized Decomposition

-PGD- methods. Generalized Proper Decomposition is an a priori model reduction

methodology based on the use of separate representations. Initially, it was developed

to solve nonlinear structural problems in space-time, but it soon evolved towards its

application in defined models in spaces with a high number of dimensions, and later,

it was extended to general models in computational mechanics.

The main characteristic of the PGD is that it approximates the exact solution of the

problem by imposing separation of variables. Thus, if u(x),x ∈Rd is the solution to the
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problem, it is approximated according to the PGD as:

u(x) ≈
N∑

i=1
F i

1(x1) ·F i
2(x2) · · · · ·F i

d (xd ),

where d is the number of dimensions of the problem. Unlike other methodologies,

such as POD, the F s
n(xn) functions are a priori unknown.

The strategy for determining the unknown functions F i
j follows a greedy algorithm

so that in each determination of each addend, a local optimum is selected with the

perspective of finding the global optimum. One of the separate functions is obtained

at each algorithm step, which are successively updated to minimize the residue.

2.2 Some Lie Algebra concepts

A Lie Algebra, G , is a vector space over a particular field F (typically the real or complex

numbers), endowed with a binary operation called Lie Bracket, [·, ·] : G ×G ←G , which

satisfies the following properties:

1. is bilinear, that is, [ax +by, z] = a[x, z]+b[y, z] and [z, ax +by] = a[z, x]+b[z, y]

for all a,b ∈ F and all x, y, z ∈G .

2. satisfies the Jacobi identity, that is, [[x, y], z] + [[z, x], y] + [[y, z], x] = 0 for all

x, y, z ∈G .

3. [x, x] = 0 for all x ∈G .

From these properties, we can deduce the antisymmetry of the Lie Bracket, that is,

[x, y] =−[y, x] for all x, y ∈G and, in general, this operation is not associative.

On the other hand, a subalgebra of the Lie algebra G is a linear subspace H of G such

that [x, y] ∈ H for all x, y ∈ H (i.e., [h,h] ⊂ H). The subalgebra is, then, a Lie algebra.

2.3 About Graphs and Small World Networks

Finally, we briefly recall some definitions of the Graphs area.

A graph, or equivalently, a network, is a structure formed by a tuple of the form G =
(V ,E), where V is the set of nodes, V = {v1, . . . , vn}, and E establishes the connections

between the nodes, i.e., is the set of edges. We recall that the adjacency matrix A of G

is defined as Ai j = 1 if (vi , v j ) ∈ E and 0 elsewhere.

The degree of a vertex vi , denoted by δ(vi ), is defined as the number of edges incident

on it, counting the loops twice. We can define the degree matrix D of G as a diagonal

matrix where Di i = δ(vi ) for all 1 ≤ i ≤ n. Then, the Laplacian matrix (of the graph) L

is defined as L =D−A .
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Small World networks

A network is k-regular if δ(vi ) = k for all 1 ≤ i ≤ n. For example, circular graphs are

2-regular, and complete networks of n +1 nodes are n-regular.

A small-world network is a type of graph where most of the nodes are not neighbors of

each other, but a relatively small edge path can connect two randomly chosen nodes.

For example, those attending a wedding form a small world network: many will not

know each other, but all of them will be connected through one of the bride and groom.

On the other hand, Watts and Strogatz introduce randomness into k-regular graphs to

construct networks that preserve a high local clustering coefficient while reducing the

average shortest length path between any pair of nodes to resemble the small world

phenomenon. In Chapter 4, we remember how these networks are built from a regular

graph.
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3CHAPTER
Structure and approximation

properties of Laplacian-like matrices

Jocelyn Bell Burnell (1943 – Act)

Astrofísica norirlandesa, descubrió

la primera radioseñal de un púlsar,
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evidencia de las ondas gravitacionales.

J. A. Conejero, A. Falcó, and M. Mora-Jiménez. Structure and Approximation

Properties of Laplacian-Like Matrices. Results in Mathematics, 78 (184), 2023.

Abstract

Many of today’s problems require techniques that involve the solution of

arbitrarily large systems Ax = b. A popular numerical approach is the so-called

Greedy Rank-One Update Algorithm, based on a particular tensor decomposition.

The numerical experiments support the fact that this algorithm converges

especially fast when the matrix of the linear system is Laplacian-Like. These

matrices that follow the tensor structure of the Laplacian operator are formed by

sums of Kronecker product of matrices following a particular pattern. Moreover,

this set of matrices is not only a linear subspace it is a Lie sub-algebra of a matrix

Lie Algebra.

In this Chapter, we characterize and give the main properties of this particular

class of matrices. Moreover, the above results allow us to propose an algorithm to

explicitly compute the orthogonal projection onto this subspace of a given square

matrix A ∈RN×N .
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3.1 Introduction

The study of linear systems is a problem that dates back to the time of the Babylonians,

who used words like ‘length’ or ‘width’ to designate the unknowns without being

related to measurement problems. The Greeks also solved some systems of equations,

but using geometric methods [12]. Over the years, mechanisms to solve linear systems

continued to be developed until the discovery of iterative methods, the practice of

which began at the end of the 19th century, by the hand of the mathematician

Gauss. The development of computers in the mid-20th century prompted numerous

mathematicians to delve into the study of this problem [16, 17].

Nowadays, linear systems are widely used to approach computational models in

applied sciences, for example, in mechanics, after the discretization of a partial

differential equation. There are, in the literature, numerous mechanisms to deal

with this type of problem, such as matrix decompositions (QR decomposition, LU

decomposition), iterative methods (Newton, quasi-Newton, . . . ), and optimization

algorithms (stochastic gradient descendent, alternative least squares,. . . ), among

others, see for instance [11, 19, 7]. However, most of them lose efficiency as the size

of the matrices or vectors involved increases. This effect is known as the curse of the

dimensionality problem.

To try to solve this drawback, we can use tensor-based algorithms [14], since their use

significantly reduces the number of operations that we must employ. For example, we

can obtain a matrix of size 100×100 (i.e. a total of 10.000 entries), from two matrices of

size 10×10 multiplied, by means the tensor product, 100+100 = 200 entries [8].

Among the algorithms based on tensor products strategies [18], the Proper Generalized

Decomposition (PGD) family, based on the so-called Greedy Rank-One Updated

(GROU) algorithm [1, 6], is one of the most popular techniques. PGD methods can be

interpreted as ‘a priori’ model reduction techniques because they provide a way for the

‘a priori’ construction of optimally reduced bases for the representation of the solution.

In particular, they impose a separation of variables to approximate the exact solution of

a problem without knowing, in principle, the functions involved in this decomposition

[4, 15]. The GROU procedure in the pseudocode is given in the Algorithm 1 (where ⊗
denotes the Kronecker product, that is briefly introduced in Section 3.2).

A good example is provided by the Poisson equation −∆φ = f. Let us consider the

following problem in 3D,
∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
=−f(x, y, z), in Ω= (0,1)3,

φ= 0 in ∂Ω,

(1)
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Algorithm 1 Greedy Rank-One Update

1: procedure GROU(b ∈Rn1···nd , A ∈Rn1···nd×n1···nd ,ε> 0,tol,rank_max)

2: r0 = b

3: x = 0

4: for i = 0,1,2, . . . ,rank_max do

5: y = argminy=y1⊗···⊗yd ∥ri − Ay∥2
2

6: ri+1 = ri − Ay

7: x ← x+y

8: if ∥ri+1∥2 < ε or |∥ri+1∥2 −∥ri∥2| < tol then goto 13

9: end if

10: end for

11: return u and ∥rrank_max∥2.

12: break

13: return u and ∥ri+1∥2

14: end procedure

where f(x, y, z) = 3 · (2π)2 · sin(2πx −π)sin(2πy −π)sin(2πz −π). This problem has a

closed form solution

φ(x, y, z) = sin(2πx −π)sin(2πy −π)sin(2πz −π).

By using the Finite Element Method (see [1] for more details), we can write the Poisson

equation (1) in discrete form as a linear system A ·φi j k =−fi j k , where the indices i , j ,k

correspond to the discretization of x, y and z respectively, and A is matrix having a

particular representation, called Laplacian-like (see Definition 2 below), that allows to

solve efficiently a high dimensional linear system. In Figure 4, we compare the CPU

time employed in solving this discrete Poisson problem using the GROU Algorithm

and the Matlab operator x = A\b, for different numbers of nodes in (0,1)3. So, we will

use this fact to study if, for a given generic square matrix, a characterization can be

stated such that we can decide whether is either Laplacian-like or not. Clearly, under

a positive answer, we expect that the analysis of the associated linear system Ax = b

would be simpler. This kind of linear operator also exists in infinite dimensional vector

spaces to describe evolution equations in tensor Banach spaces [2]. Its main property

is that the associated dynamical system has an invariant manifold, the manifold of

elementary tensors (see [3] for the details about its manifold structure).

Thus, the goal of this chapter is to obtain a complete description of this linear space of

matrices, showing that is, in fact, a Lie subalgebra of RN×N , and provide an algorithm

in order to obtain the best approximation to this linear space, that is, to compute

explicitly is the orthogonal projection on that space.
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Figure 4: CPU time comparative to solve the discrete Poisson equation. For this numerical

test, we have used a computer with the following characteristics: 11th Gen Intel(R) Core(TM)

i7-11370H @ 3.30GHz, RAM 16,0 GB, 64 bit operating system; and a Matlab version R2021b [13].

The Chapter is organized as follows: in Section 3.2, we introduce the linear subspace

of Laplacian-like matrices and prove that it is also a matrix Lie sub-algebra associated

to a particular Lie group. Then, in Section 3.3, we prove that any matrix is uniquely

decomposed as the sum of a Laplacian matrix and a matrix which is the subspace

generated by the identity matrix, and we show that any Laplacian matrix is a direct

sum of some particular orthogonal subspaces. Section 3.4 is devoted, with the help

of the results of the previous section, to propose an algorithm to explicitly compute

the orthogonal projection onto the subspace of Laplacian-like matrices. To illustrate

this result, we also give two different numerical examples: the first one on the

adjacency matrix of a simple graph; and the second on the numerical solution of the

Poisson equation (1) by using a Finite Difference Scheme. Finally, in Section 3.5 some

conclusions and final remarks are given.

3.2 The algebraic structure of Laplacian-Like matrices

First of all, we introduce some definitions, that will be used along this work.

Definition 1. Let A ∈ RM×N . Then, the Fröbenius norm (or the Hilbert–Schmidt norm)

is defined as

∥A∥F =
√√√√ M∑

i=1

N∑
j=1

|ai j |2 =
√

tr
(

A⊤A
)
.

The Fröbenius norm is the norm induced by the trace therefore, when N = M , we can

work with the scalar product given by 〈A,B〉 = tr
(

A⊤B
)
. Let us observe that, in RN×N ,

1. 〈A,B〉RN×N = tr
(

A⊤B
)
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2. 〈A, idN 〉RN×N = tr(A) = tr
(

A⊤)
3. 〈idN , idN 〉RN×N = ∥idN∥2

F = N .

Given a linear subspace U ⊂RN×N we will denote:

(a) the orthogonal complement of U in RN×N by

U⊥ = {
V ∈RN×N : 〈U ,V 〉RN×N = 0 for all U ∈U

}
,

and,

(b) the orthogonal projection of RN×N on U as

PU (V ) := arg min
U∈U

∥U −V ∥F ,

and hence

PU⊥ = idN −PU .

Before defining a Laplacian-like matrix, we recall that the Kronecker product of two

matrices A ∈RN1×M1 , B ∈RN2×M2 is defined by

A⊗B =


A1,1B A1,2B . . . A1,M1 B

A2,1B A2,2B . . . A2,M1 B
...

...
. . .

...

AN1,1B AN1,2B . . . AN1,M1 B

 ∈RN1N2×M1M2 .

Some of the well-known properties of the Kronecker product are:

1. A⊗ (B ⊗C ) = (A⊗B)⊗C .

2. (A+B)⊗C = (A⊗C )+ (B ⊗C ).

3. AB ⊗C D = (A⊗C )(B ⊗D).

4. (A⊗B)−1 = A−1 ⊗B−1.

5. (A⊗B)⊤ = A⊤⊗B⊤.

6. tr(A⊗B) = tr(A)tr(B).

From the example given in the introduction, we observe that there is a particular type

of matrices to solve high-dimensional linear systems for which the GROU algorithm

works particularly well: very fast convergence and also a very good approximation of

the solution. These are the so-called Laplacian-Like matrices that we define below.
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Definition 2. Given a matrix A ∈ RN×N , where N = n1 · · ·nd , we say that A is a

Laplacian-like matrix if there exist matrices Ai ∈Rni×ni for 1 ≤ i ≤ d be such that

A =
d∑

i=1
Ai ⊗ id[ni ]

.=
d∑

i=1
idn1 ⊗·· ·⊗ idni−1 ⊗ Ai ⊗ idni+1 ⊗·· ·⊗ idnd , (2)

where idn j is the identity matrix of size n j ×n j .

Observe that for 1 < i < d ,

idn1 ⊗·· ·⊗ idni−1 = idn1···ni−1 and idni+1 ⊗·· ·⊗ idnd = idni+1···nd ,

hence

Ai ⊗ id[ni ] = idn1···ni−1 ⊗ Ai ⊗ idni+1···nd .

Moreover,

A1 ⊗ id[n1] = A1 ⊗ idn2···nd and Ad ⊗ id[nd ] = idn1···nd−1 ⊗ Ad .

It is not difficult to see that the set of Laplacian-like matrices is a linear subspace

of RN×N . From now on, we will denote by L
(
RN×N

)
the subspace of Laplacian-like

matrices in RN×N for a fixed decomposition of N = n1 · · ·nd .

These matrices can be easily related to the classical Laplacian operator [9, 10] by

writing:
∂2

∂x2
i

= ∂0

∂x0
1

⊗·· ·⊗ ∂0

∂x0
i−1

⊗ ∂2

∂x2
i

⊗ ∂0

∂x0
i+1

⊗·· ·⊗ ∂0

∂x0
d

and where ∂0

∂x0
j

is the identity operator for functions in the variable x j for j ̸= i .

As the next numerical example shows, matrices written as in (2) provides very good

performance of the GROU algorithm. In Figure 5 we give a comparison of the speed

of convergence to solve a linear system Ax = b, where for each fixed size, we randomly

generated two full-rank matrices: one given in the classical form and a Laplacian-like

matrix. Both systems were solved following Algorithm 1.

The above results, together with the previous Poisson example given in the

introduction, motivate the interest to know for a given matrix A ∈ RN×N how far it is

from the linear subspace of Laplacian-like matrices. More precisely, we are interested

in decomposing any matrix A as a sum of two orthogonal matrices L and L⊥, where L

is in L (R) and L⊥ in L (R)⊥. Clearly, if we obtain that L⊥ = 0, that is, A ∈L (R), then we

can solve any associated linear system by means of the GROU algorithm.

Recall that the set of matrices RN×N is a Lie Algebra that appears as the tangent space

at the identity matrix of the linear general group GL(RN ), a Lie group composed by the

non-singular matrices of RN×N (see [5]). Furthermore, the exponential map

exp :RN×N −→ GL(RN ), A 7→ exp(A) =
∞∑

n=0

An

n!
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Figure 5: CPU time comparative to solve an Ax = b problem. This graph has been generated

by using the following data in Algorithm 1: tol= 2.22e −6; ε= 1.0e −06; rank_max= 3000; (an

iter-max = 15 was used to perform an ALS strategy); and the matrices have been randomly

generated for each different size, in Laplacian and classical form. The characteristics of the

computer used here are the same as in the case of Figure 1.

is well-defined, however it is not surjective because det(exp(A)) = etr(A) > 0. Any linear

subspace S ⊂ RN×N is a Lie-subalgebra if for all A,B ∈S its Lie crochet is also in S,

that is, [A,B ] = AB −B A ∈S.

The linear space L (RN×N ) is more than a linear subspace of RN×N , it is also a Lie

sub-algebra of RN×N as the next result shows.

Proposition 1. Assume RN×N , where N = n1 · · ·nd . Then the following statements hold.

(a) The linear subspace L (RN×N ) is a Lie subalgebra of the matrix Lie algebra RN×N .

(b) The matrix group

L(RN×N ) =
{

d⊗
i=1

Ai : Ai ∈ GL(Rni ) for 1 ≤ i ≤ d

}

is a Lie subgroup of GL
(
RN

)
.

(c) The exponential map exp : L (RN×N ) −→ L(RN×N ) is well defined and it is given

by

exp

(
d∑

i=1
Ai ⊗ idn[i ]

)
=

d⊗
i=1

exp(Ai ).

Proof. (a) To prove the first statement, take A,B ∈L (RN×N ). Then there exist matrices

Ai ,Bi ∈Rni×ni for 1 ≤ i ≤ d be such that

A =
d∑

i=1
Ai ⊗ id[ni ] and B =

d∑
j=1

B j ⊗ id[n j ].
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Observe, that for i < j

(Ai ⊗ id[ni ])(B j ⊗ id[n j ]) and (B j ⊗ id[n j ])(Ai ⊗ id[ni ])

both products are equal to

idn1···ni−1 ⊗ Ai ⊗ idni+1···n j−1 ⊗B j ⊗ idn j+1···nd .

A similar expression is obtained for i > j . Thus,[
Ai ⊗ id[ni ],B j ⊗ id[n j ]

]
= 0

for all i ̸= j .

On the other hand, for i = j we have

(Ai ⊗ id[ni ])(Bi ⊗ id[ni ]) = (Ai Bi ⊗ id[ni ])

and

(Bi ⊗ id[ni ])(Ai ⊗ id[ni ]) = (Bi Ai ⊗ id[ni ]).

Thus, [
Ai ⊗ id[ni ],Bi ⊗ id[ni ]

]= (Ai Bi −Bi Ai )⊗ id[ni ].

that is, [
Ai ⊗ id[ni ],Bi ⊗ id[ni ]

]= [Ai ,Bi ]⊗ id[ni ].

Here [Ai ,Bi ] is the Lie crochet in Rni×ni .

In consequence, from all said above, we conclude

[A,B ] =
d∑

i=1

d∑
j=1

[
Ai ⊗ id[ni ],B j ⊗ id[n j ]

]
=

d∑
i=1

[Ai ,Bi ]⊗ id[ni ] ∈L
(
RN×N )

.

This proves that L (RN×N ) is a Lie sub-algebra of RN×N .

(b) It is not difficult to see that L(RN×N ) is a subgroup of GL(RN ). From Theorem 19.18

in [5], to prove that L(RN×N ) is a Lie subgroup of GL(RN ) we only need to show that

L(RN×N ) is a closed set in GL(RN ). This follows from the fact that the map

Φ : GL(Rn1 )×·· ·×GL(Rnd ) −→ GL(RN ) (A1, · · · , Ad ) 7→
d⊗

i=1
Ai

is continuous. Assume that there exists a sequence, {An}n∈N ⊂ L(RN×N ) convergent

to A ∈ GL(Rn). Then the sequence {An}n∈N is bounded. Since there exists a sequence

{(A(n)
1 , . . . , A(n)

d )}n∈N ⊂ GL(Rn1 )× ·· · ×GL(Rnd ) such that An = ⊗d
j=1 A(n)

j , the sequence

{(A(n)
1 , . . . , A(n)

d )}n∈N is also bounded. Thus, there exists a convergent sub-sequence, also

denoted by {(A(n)
1 , . . . , A(n)

d )}n∈N, to (A1, . . . , Ad ) ∈ GL(Rn1 )×·· ·×GL(Rnd ). The continuity
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of Φ, implies that A = ⊗d
i=1 Ai . Thus L(RN×N ) is closed in GL(RN ), and hence a Lie

subgroup.

(c) From Lemma 4.169(b)[8], the following equality

exp

(
d∑

i=1
idn1 ⊗·· ·⊗ idni−1 ⊗ Ai ⊗ idni+1 ⊗·· ·⊗ idnd

)
=

d⊗
i=1

exp(Ai )

holds. Thus, the exponential map is well defined. This ends the proof of the

proposition.

We conclude this section describing in a more detail the structure of matrices A ∈RN×N

for which there exists Ai ∈Rni×ni for 1 ≤ i ≤ d such that

A =
d∑

i=1
idn1···ni−1 ⊗ Ai ⊗ idni+1···nd .

For dealing easily with Laplacian-like matrices, we introduce the following notation.

For each 1 < i ≤ d consider the integer number n1n2 · · ·ni−1. Then, we will denote by
⋆ ⋆ · · · ⋆

⋆ ⋆ · · · ⋆
...

...
. . .

...

⋆ ⋆ · · · ⋆


n1n2···ni−1×n1n2···ni−1

a block square matrix composed by n1n2 · · ·ni−1 ×n1n2 · · ·ni−1-blocks.

Since Ai ⊗ idni+1···nd =
(Ai )1,1idni+1···nd (Ai )1,2idni+1···nd . . . (Ai )1,ni idni+1···nd

(Ai )2,1idni+1···nd (Ai )2,2idni+1···nd . . . (Ai )2,ni idni+1···nd

...
...

. . .
...

(Ai )ni ,1idni+1···nd (Ai )ni ,2idni+1···nd . . . (Ai )ni ,ni idni+1···nd

 ,

then idn1···ni−1 ⊗ Ai ⊗ idni+1···nd =
Ai ⊗ idni+1···nd Oi ⊗ idni+1···nd · · · Oi ⊗ idni+1···nd

Oi ⊗ idni+1···nd Ai ⊗ idni+1···nd · · · Oi ⊗ idni+1···nd

...
...

. . .
...

Oi ⊗ idni+1···nd Oi ⊗ idni+1···nd · · · Ai ⊗ idni+1···nd


n1n2···ni−1×n1n2···ni−1

,

where Oi denotes the zero matrix in Rni×ni for 1 ≤ i ≤ d . To conclude, we have the

following cases

A1 ⊗ idn2···nd =


(A1)1,1idn2···nd (A1)1,2idn2···nd . . . (A1)1,n1 idn2···nd

(A1)2,1idn2···nd (A1)2,2idn2···nd . . . (A1)2,n1 idn2···nd

...
...

. . .
...

(A1)n1,1idn2···nd (A1)n1,2idn2···nd . . . (A1)n1,n1 idn2···nd


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and

idn1···nd−1 ⊗ Ad =


Ad Od · · · Od

Od Ad · · · Od
...

...
. . .

...

Od Od · · · Ad


n1n2···nd−1×n1n2···nd−1

.

We wish to point out that the above operations are widely used in quantum computing.

3.3 A decomposition of the linear space of Laplacian-like matrices

We start by introducing some definitions and preliminary results needed to give an

interesting decomposition of the linear space of Laplacian-like matrices. The next

lemma lets us show how is the decomposition ofRN×N as a direct sum of span{idN } and

its orthogonal space span{idN }⊥, with respect the inner product 〈A,B〉RN×N = tr(AT B).

From now one, we will denote by

hn := span{idn}⊥ = {A ∈Rn×n : tr(A) = 0},

the linear subspace of null trace matrices in Rn×n .

Lemma 1. Consider (Rn×n ,∥ ·∥F ) as a Hilbert space. Then there exists a decomposition

Rn×n = span{idn}⊕hn ,

Moreover, the orthogonal projection from Rn×n on span{idn} is given by

Pspan{idn }(A) = tr(A)

n
idn ,

and hence for each A ∈Rn×n we have the following decomposition,

A = tr(A)

n
idn +

(
A− tr(A)

n
idn

)
,

where
(

A− tr(A)
N idN

)
∈ hn .

Proof. The lemma follows from the fact that

Pspan{idn }(A) = 〈idn , A〉Rn×n

∥idN∥2
F

idn = tr(A)

n
idn ,

is the orthogonal projection onto span{idn}.

Now, we consider the matrix space RN×N where N = n1 · · ·nd , and hence RN×N =⊗d
i=1R

ni×ni can be considered as a tensor space. A norm ∥ · ∥ defined over RN×N is

called a tensor norm if and only if there exists a norm ∥ · ∥i over Rni×ni for 1 ≤ i ≤ d ,

such that for any tensor A = A1⊗·· ·⊗ Ad ∈RN×N , where Ai ∈Rni×ni (1 ≤ i ≤ d), it holds

∥A∥ = ∥A1 ⊗·· ·⊗ Ad∥ =
d∏

i=1
∥Ai∥i .
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We remark that for tensors A = A1 ⊗·· ·⊗ Ad and B = B1 ⊗·· ·⊗Bd where Ai ,Bi ∈Rni×ni ,

we have

〈A,B〉RN×N = 〈A1 ⊗·· ·⊗ Ad ,B1 ⊗·· ·⊗Bd 〉RN×N

= tr((A1 ⊗·· ·⊗ Ad )T (B1 ⊗·· ·⊗Bd ))

= tr((AT
1 ⊗·· ·⊗ AT

d )(B1 ⊗·· ·⊗Bd ))

= tr(AT
1 B1 ⊗·· ·⊗ AT

d Bd )

=
d∏

i=1
tr(A⊤

i Bi ) =
d∏

i=1
〈Ai ,Bi 〉Rni ×ni ,

and hence ∥A∥F = √〈A, A〉RN×N , is a tensor-norm. In particular, the inner product

〈·, ·〉RN×N satisfies

〈id[ni ] ⊗ Ai , id[ni ] ⊗Bi 〉RN×N = tr(A⊤
i Bi )

d∏
j=1
j ̸=i

n j , (3)

The next result gives a first characterization of the linear space L
(
RN×N

)
.

Theorem 1. Let RN×N , where N = n1 · · ·nd . Then

L
(
RN×N )= span{idN }⊕∆, (4)

where ∆= hN ∩L (RN×N ). Furthermore, L (RN×N )⊥ is a subspace of hN .

Proof. Assume that a given matrix A ∈ RN×N can be written as in (2) and denote each

component in the sum representation of A, by Li = id[ni ] ⊗ Ai , where Ai ∈ Rni×ni for

1 ≤ i ≤ d . Then Li ∈ span{id[ni ]}⊗Rni×ni for 1 ≤ i ≤ d , and in consequence,

d∑
i=1

span{id[ni ]}⊗Rni×ni =L
(
RN×N )

.

Thus, span{idN } ⊂L
(
RN×N

)
, and, by Lemma 1, we have the following decomposition

L
(
RN×N )=∆⊕ span{idN }. (5)

where ∆ = hN ∩L (RN×N ). The last statement is consequence of Lemma 1. This ends

the theorem.

Now, given any square matrix in RN×N , we would like to project it onto L (RN×N ) to

obtain its Laplacian approximation. To compute this approximation explicitly, the

following result, which is a consequence of the above theorem, will be useful.

Corollary 1. Assume RN×N , with N = n1 · · ·nd ∈N. Then

PL (RN×N ) = Pspan{idN } +P∆,

that is, for all A ∈RN×N it holds

PL (RN×N )(A) = tr(A)

N
idN +P∆(A).
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Next, we need to characterize ∆ in order to explicitly construct the orthogonal

projection onto L (RN×N ). From the proof of the Theorem 1 we see that the linear

subspaces given by

hN ∩ (span{id[ni ]}⊗Rni×ni ),

for 1 ≤ i ≤ d , are of interest to characterize ∆ as the next result shows.

Theorem 2. Let RN×N with N = n1 · · ·nd ∈N, and let Hi be the orthogonal complement

of span{idN } in the linear subspace Rni×ni ⊗ span{id[ni ]} for 1 ≤ i ≤ d. Then,

∆=
d⊕

i=1
Hi . (6)

Furthermore, a matrix A belongs to ∆ if and only if it has the form

A =
d∑

i=1
Ai ⊗ id[ni ], with tr(Ai ) = 0, i = 1, . . . ,d .

Proof. First, we take into account that Rni×ni ⊗ span{id[ni ]} a linear subspace of

L (RN×N ) linearly isomorphic to the matrix space Rni×ni . Thus, motivated by Lemma 1

applied on Rni×ni , we write

Rni×ni ⊗ span{id[ni ]} = (span{idni }⊕hni )⊗ span{id[ni ]}

= (span{idni }⊗ span{id[ni ]})⊕ (hni ⊗ span{id[ni ]}).

Now, we claim that hni ⊗ span{id[ni ]} it is the orthogonal complement of the linear

subspace generated by the identity matrix idN = idni ⊗ id[ni ] in the linear subspace

Rni×ni ⊗ id[ni ]. To prove the claim, observe that for Ai ⊗ id[ni ] ∈ hni ⊗ span{id[ni ]} (1 ≤
i ≤ d), by using (3), it holds

〈Ai ⊗ id[ni ], idN 〉RN×N = 〈Ai ⊗ id[ni ], id[ni ] ⊗ idni 〉RN×N = tr(Ai )
d∏

j=1
j ̸=i

n j = 0,

because Ai ∈ hni and hence tr(Ai ) = 0, for 1 ≤ i ≤ d . Thus, the claim follows and hence

Hi = hni ⊗ span{id[ni ]}

= {Ai ⊗ id[ni ] ∈Rni×ni ⊗ span{id[ni ]} : tr(Ai ) = 0}

= {
Ai ⊗ id[ni ] ∈Rni×ni ⊗ span{id[ni ]} : 〈Ai ⊗ id[ni ], idN 〉RN×N = 0

}
.

To prove (6), we first consider 1 ≤ i < j ≤ d , and take Ak ⊗ id[nk ] ∈Hk for k = i , j . Then

the inner product satisfies

〈Ai ⊗ id[ni ], A j ⊗ id[n j ]〉RN×N = tr
(
(Ai ⊗ id[ni ])

T (A j ⊗ id[n j ])
)

= tr
(
(AT

i ⊗ id[nk ])(A j ⊗ id[n j ])
)

= tr
(
idn1···ni−1 ⊗ AT

i ⊗ idni+1···n j−1 ⊗ A j ⊗ idn j+1···nd

)
=

d∏
ℓ=1
ℓ̸=i , j

〈idℓ, idℓ〉Rnℓ×nℓ tr(Ai )tr(A j ) = 0,
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because tr(Ai ) = tr(A j ) = 0. The same equality holds for j < i . Thus, we conclude that

Hi is orthogonal to H j for all i ̸= j . So, the subspace

∆′ =
d⊕

i=1
Hi ,

is well defined and it is a subspace of L (RN×N ).

To conclude the proof (6), we will show that ∆′ = ∆. Since, for each 1 ≤ i ≤ d , hi is

orthogonal to span{idN } we have

span{idN }⊕∆′ ⊂L (RN×N ).

To obtain the equality, take A ∈L (RN×N ). Then there exists Ai ∈Rni×ni for 1 ≤ i ≤ d be

such that

A =
d∑

i=1
Ai ⊗ id[ni ].

From Lemma 1 we can write

Ai = tr(Ai )

ni
idni +

(
Ai − tr(Ai )

ni
idni

)
for each 1 ≤ i ≤ d . Then,

A =
d∑

i=1

(
tr(Ai )

ni
idni +

(
Ai − tr(Ai )

ni
idni

))
⊗ id[ni ]

=
d∑

i=1

tr(Ai )

ni
idni ⊗ id[ni ] +

d∑
i=1

(
Ai − tr(Ai )

ni
idni

)
⊗ id[ni ]

=
d∑

i=1

tr(Ai )

ni
(idni ⊗ id[ni ])+

d∑
i=1

(
Ai − tr(Ai )

ni
idni

)
⊗ id[ni ]

=
(

d∑
i=1

tr(Ai )

ni

)
idN +

d∑
i=1

(
Ai − tr(Ai )

ni
idni

)
⊗ id[ni ].

Observe that
(∑d

i=1
tr(Ai )

ni

)
idN ∈ span{idN } and

d∑
i=1

(
Ai − tr(Ai )

ni
idni

)
⊗ id[ni ] ∈∆′.

Thus, L (RN×N ) ⊂ span{idN }⊕∆′. In consequence ∆′ =∆, and this proves the theorem.

A direct consequence of the above theorem is the next corollary.

Corollary 2. Assume RN×N , with N = n1 · · ·nd ∈N. Then

PL (RN×N ) = Pspan{idN } +
d∑

i=1
Phi ,
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that is, for all A ∈RN×N it holds

PL (RN×N )(A) = tr(A)

N
idN +

d∑
i=1

Ai ⊗ id[ni ],

where Ai ∈Rni×ni satisfies tr(Ai ) = 0 for 1 ≤ i ≤ d .

3.4 A Numerical Strategy to perform a Laplacian-like decomposition

Now, in this section we will study some numerical strategies in order to compute,

for a given matrix A ∈ RN×N , with the help of Proposition 1 and Theorem 2, its

best Laplacian-like approximation.Then, we will present two numerical examples to

give consistency to the results obtained. In the first example, we will work with the

adjacency matrix of a simple graph of 6 nodes; with it, we intend to show, step by step,

the procedure to follow to calculate the Laplacian decomposition of a square matrix.

The second example will complete the study of the discrete Poisson equation described

in Section 3.1; with this example, we will illustrate the goodness of the Laplacian

decomposition to solve PDEs in conjunction with the GROU Algorithm. We start with

the following Greedy Algorithm.

Theorem 3. Let A be a matrix in RN×N , with N = n1 · · ·nd , such that tr(A) = 0. Consider

the following iterative procedure:

1. Take X (0)
k = 0 for 1 ≤ k ≤ d .

2. For each ℓ≥ 1 compute for 1 ≤ i ≤ d the matrix U (ℓ)
i as

U (ℓ)
i = arg min

Ui∈hi

∥∥∥∥∥A−
i−1∑
k=1

X (ℓ)
k ⊗ id[nk ] −ξ(Ui )⊗ id[ni ] −

d∑
k=i+1

X (ℓ−1)
k ⊗ id[nk ]

∥∥∥∥∥ ,

where

ξ(Ui ) = X (ℓ−1)
i +Ui ,

and put X (ℓ)
i = X (ℓ−1)

i +U (ℓ)
i .

Then

lim
ℓ→∞

d∑
k=1

X (ℓ)
k ⊗ id[nk ] = P∆(A).

Proof. Recall that P∆(A) solves the problem

min
A∗∈∆

∥∥A− A∗∥∥ .

To simplify notation put P (ℓ)
∆ (A) =∑d

k=1 X (ℓ)
k ⊗ id[nk ] for ℓ≥ 0. By construction we have

that

∥A−P (1)
∆ (A)∥ ≥ ∥A−P (2)

∆ (A)∥ ≥ ·· · ≥ ∥A−P (ℓ)
∆ (A)∥ ≥ ·· · ≥ 0,
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holds. Since the sequence {P (ℓ)
∆ (A)}ℓ∈N is bounded, there is a convergent subsequence

also denoted by {P (ℓ)
∆ (A)}ℓ∈N, so that

L A = lim
ℓ→∞

P (ℓ)
∆ (A) ∈∆.

If L A = P∆(A), the theorem holds. Otherwise, assume that L A ̸= P∆(A), then it is clear

that

∥A−P∆(A)∥ ≤ ∥A−L A∥.

Suppose that ∥A − P∆(A)∥ < ∥A − L A∥ and let λ ∈ (0,1). Now, consider the linear

combination λL A + (1−λ)P∆(A). Since L A,P∆(A) ∈∆, they can be written as

L A =
d∑

i=1
Ai ⊗ id[ni ], and P∆(A) =

d∑
i=1

A∗
i ⊗ id[ni ],

so λL A + (1−λ)P∆(A) =∑d
i=1 id[ni ] ⊗

(
λAi + (1−λ)A∗

i

) ∈∆. Hence,

∥A−P∆(A)∥ < ∥A− (λL A + (1−λ)P∆(A))∥ < ∥A−L A∥.

P∆(A)L AP (2)
∆ (A)P (1)

∆ (A) P (3)
∆ (A)

A

Figure 6: Situation described in reasoning by Reductio ad absurdum.

That is, we have found d matrices Zi =λAi + (1−λ)A∗
i , i = 1, . . . ,d , such that

∥A−L A∥ =
∥∥∥∥∥A−

d∑
i=1

Ai ⊗ id[ni ]

∥∥∥∥∥>
∥∥∥∥∥A−

d∑
i=1

Zi ⊗ id[ni ]

∥∥∥∥∥ ,

which is a contradiction with the definition of L A.

The previous result allows us to describe the procedure to obtain the Laplacian

approximation of a square matrix, in the form of an algorithm. We can visualize the

complete algorithm in the form of pseudocode in Algorithm 2.
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Algorithm 2 Laplacian Decomposition Algorithm

1: procedure LAP(A∗,iter_max,tol)

2: A = A∗− (tr(A)/N )idN , iter= 1, Lap= 0

3: while iter< iter_max do

4: A ← A−Lap
5: for k = 1,2, . . . ,d do

6: Pk (A) = idn1 ⊗·· ·⊗ idnk−1 ⊗Xk ⊗ idnk+1 ⊗·· ·⊗ idnd

7: Xk ← minXk ∥A−∑k
i=1 Pi (A)∥

8: Lap= Lap+Pk (A)

9: end for

10: if ∥A−Lap∥ < tol then goto 14

11: end if

12: iter= iter+1

13: end while

14: return Lap
15: end procedure

3.4.1 Numerical Examples

Example 1: The adjacency matrix of a simple graph

First, let us show an example in which the projection P∆(A) coincides with A and how

the tensor representations is provided by the aforementioned proposed algorithm. Let

us consider the simple graph G(V ,E), with V = {1,2, . . . ,6} the set of nodes and E =
{(1,2), (1,4), (2,3), (2,5), (3,6), (4,5), (5,6)} the set of edges. Then, the adjacency matrix

of G is

A =



0 1 0 1 0 0

1 0 1 0 1 0

0 1 0 0 0 1

1 0 0 0 1 0

0 1 0 1 0 1

0 0 1 0 1 0


.

We want to find a Laplacian decomposition of the matrix A ∈ R6×6. Since tr(A) = 0,

we can do this by following the iterative scheme given by Theorem 3. So, we look for

X1 ∈R2×2, X2 ∈R3×3 matrices such that

P∆(A) = X1 ⊗ idn2 + idn1 ⊗X2,

where n1 = 2,n2 = 3. We proceed according to the algorithm:

1. Computing X1 by

min
X1

∥A−X1 ⊗ idn2∥,
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we obtain

X1 =
(

0 1

1 0

)
.

2. Computing X2 by
min

X2
∥A−X1 ⊗ idn2 − idn1 ⊗X2∥,

we obtain

X2 =

0 1 0

1 0 1

0 1 0

 .

Since the residual value is ∥A−P∆(A)∥ = 0, the matrix A ∈∆. Thus, we can write it as

A = P∆(A) =
(

0 1

1 0

)
⊗ idn2 + idn1 ⊗

0 1 0

1 0 1

0 1 0

 .

Example 2: The Poisson’s equation

Now, let us consider the Poisson’s equation (1) with homogeneous boundary condition

given in Section 3.1. For each u ∈ {x, y, z} we fix h = 1
n , where n ∈ N, and take uℓ =

(ℓ−1)h for 1 ≤ ℓ≤ n. Next, we consider a derivative approximation scheme given by

∂2ψ

∂u2
≈ ψ(uℓ+1)−2ψ(uℓ)+ψ(uℓ−1)

h2
,

in (1) for u ∈ {x, y, z}. It allows to obtain a linear system written as

Aφ(xi , y j , zk ) = f(xi , y j , zk ) (7)

where the indices 1 ≤ i , j ,k ≤ n correspond to the discretization of x, y and z

respectively, and A ∈ GL
(
Rn3

)
is the matrix given by

A =



T −idn2

−idn2 T −idn2

. . . . . . . . .

−idn2 T −idn2

−idn2 T

 , (8)

where T ∈Rn2×n2
is the matrix

T =



D −idn

−idn D −idn

. . . . . . . . .

−idn D −idn

−idn D

 with D =



6 −1 0 . . . 0

−1 6 −1 . . . 0
...

. . . . . . . . .
...

0 . . . −1 6 −1

0 . . . 0 −1 6

 ∈Rn×n .
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We can visualize a representation of the sparsity of the matrix A with the spy command

from Matlab (see Figure 7). Since tr(A) = 6n3 ̸= 0, instead of looking for the Laplacian

approximation of A, we will look for Â = (
A−6idn3

)
, which has null trace. Proceeding

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Figure 7: Matlab spy(A) representation of A given in (8) for n = 4.

according Algorithm 2 for sizes n1 = n2 = n3 = n, we obtain the decomposition

Â = X ⊗ idn ⊗ idn + idn ⊗X ⊗ idn + idn ⊗ idn ⊗X ,

where

X =



0 −1 0 . . . 0

−1 0 −1 . . . 0
...

. . . . . . . . .
...

0 . . . −1 0 −1

0 . . . 0 −1 0

 ∈Rn×n ,

and the residual of the approximation of Â is ∥Â − P∆(Â)∥ = 0. Thus, following

Corollary 2, we can write the original matrix A as

A = 6idn3 +X ⊗ idn ⊗ idn + idn ⊗X ⊗ idn + idn ⊗ idn ⊗X . (9)

Note that the first term is 6 · idn3 = 6 · idn ⊗ idn ⊗ idn , and hence A can be written as

A = Y ⊗ idn ⊗ idn + idn ⊗Y ⊗ idn + idn ⊗ idn ⊗Y ,

where

Y = X +2idn =



2 −1 0 . . . 0

−1 2 −1 . . . 0
...

. . . . . . . . .
...

0 . . . −1 2 −1

0 . . . 0 −1 2

 .
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Next, we study the CPU-time used to solve the linear system (7) by using (a) the Matlab

command A\b, (b) the GROU Algorithm 1 with A in the compact form (8), and (c)

the GROU Algorithm with A in Laplacian-Like form (9), previously obtained from the

Laplacian Decomposition Algorithm 2.

We have used in the numerical experiments the following parameters values. For

the GROU Algorithm 1: tol = 2.2204e − 16; ε = 2.2204e − 16; rank_max = 15; (an

iter-max= 5 was used to perform an ALS strategy); and the number of nodes in (0,1)3

(that is, the number of rows or columns of the matrix A) increase from 103 to 353.

For the Laplacian Decomposition Algorithm we fixed iter_max = 4 and a tolerance

tol= 10−5. The characteristics of the computer are the same as we give in Section 3.1.
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Figure 8: CPU Time, in seconds, employed to solve (7) by using the Matlab command

A\b, the GROU Algorithm 1, and the GROU Algorithm 1 with A written in Laplacian

form, obtained from the Laplacian decomposition Algorithm 2. All algorithms were

performed under the Matlab standard environment for basic matrix calculations.

In the first experiment (see Figure 8) the algorithms were implemented by means

the Matlab standard environment to perform basic matrix calculations whereas we

have done a second experiment to increase the size of the high dimensional matrices

(see Figure 9). To this end, the algorithms were implemented under the Matlab

environment for sparse matrices, which require less CPU memory. In this second

experience we consider matrices with a number of rows (or columns) in a range from

103 to 1003.

In both figures we observe how, for high-dimensional matrices, the GROU Algorithm 1

improves the CPU time of Matlab’s command A\b. But certainly the Laplacian

Decomposition Algorithm 2 combined with the GROU Algorithm 1 significantly

reduces the CPU time of the two previous methods.
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Figure 9: CPU Time, in second, employed to solve (7) by using the Matlab command

A\b, the GROU Algorithm 1, and the GROU Algorithm 1 with A written in Laplacian

form, obtained from the Laplacian decomposition Algorithm 2. All algorithms were

performed under the Matlab environment for matrices in sparse form.

3.5 Conclusions

We have presented a result to approximate a generic square matrix by its Laplacian

form, and thus decompose it as the sum of two linearly independent matrices. This

decomposition is motivated by the fact that tensor algorithms are more efficient when

working with Laplacian matrices. We have also described the procedure to perform

this approximation in the form of an algorithm and illustrated how it works on some

basic examples.

With the proposed algorithm, we may provide an alternative way to solve linear

systems, especially interesting if we combine algorithms 1 and 2, as shown in the

second example presented above. Due to its structure, this matrix decomposition can

be interesting for studying various types of matrices, such as sparse matrices, matrices

resulting from the discretization of a PDE, adjacency matrices of simple graphs, and

others. We will explore the computational benefits of this approach in future works.
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4CHAPTER
On the tensor approximation of

Watts–Strogatz networks

Henrietta Swan Leavitt (1868 – 1921)

Astrónoma estadounidense, cambió

la manera de observar el universo

gracias a su descubrimiento sobre la

luminosidad de las estrellas.

J. A. Conejero, A. Falcó, and M. Mora-Jiménez. On the tensor approximation of

Watts-Strogatz networks. Preprint 2023.

Abstract

Small-world networks are characterized by the existence, on average, of

shortest paths between any arbitrary pair of nodes with only a few edges. In order

to preserve the local clustering while permitting the existence of the small-world

phenomenon, Watts and Strogatz introduced their celebrated network model

(Nature, 1998) exemplifying what they observed in different types of networks,

such as the neural network of the C. elegans, the power grid network, or the

collaboration network in cinema.

As the number of data increases, the networks and matrices that model it also do

so, which makes it increasingly expensive to manipulate them. Recent work has

shown the efficiency of tensor-based structures when performing, for example,

matrix products, reducing the number of operations performed.

In the present work, we want to approximate the representative matrices of the

Watts–Strogatz networks using tensor methods and compare the accuracy and

the computational cost involved in operating with the original matrices and the

matrices written in the approximate tensor form.

41



4.1 Introduction

Nowadays, networks are widely used to study and models different situations in real

life, so they are a tool that gains importance in manipulating large data sets. For

example, they have been used to analyze connections in a social network [10, 23, 15],

the spreading of information in a network [25] to determine optimal transport routes

[31, 18], and even to analyze medical images [5] or discover new drugs from chemical

data [2, 19].

As the size of the matrices or vectors involved in these problems increases, most of

the mechanisms we use to solve them (matrix decompositions, iterative methods,

optimization algorithms, etc.) lose efficiency. This effect is known as the curse of

the dimensionality problem. In the current situation, where massive data analysis

is increasingly present, we need to search for and implement techniques that allow

us to manipulate them. This is where tensor structures come into play since their

use reduces and speeds up the number of operations to be carried out, as it has

been recently seen [9]. Other works that illustrate the goodness of these structures

in working with high-dimensional problems are [13, 14, 26].

One of the most intriguing properties in networks is the small world phenomenon,

firstly conjectured by Milgram [21]. A small-world network is a type of graph where

most of the nodes are not neighbors of each other, but a relatively small edge path

can connect two randomly chosen nodes [4, 29]. In this work, we analyze the tensor

decompositions of the Laplacian matrices of small-world networks in the sense of

Watts and Strogatz, and compare the results obtained with the original Laplacian

matrices to determine if this approach is helpful to study these networks.

The Laplacian matrix of a network is obtained as the difference between the degree and

the adjacency matrix of the network. These matrices are commonly used in spectral

graph theory to study the properties of the graph, in relation to its characteristic

polynomial, and for representing diffusion processes on networks. They are also used

to study some particular diffusion problems, as seen in [3]. Watts–Strogatz networks

are constructed from a given k-regular graph, where some edges are rewired to connect

a different pair of nodes with a certain probability p. For low values of p, the Laplacian

matrices of these networks have a structure close to a k +1 diagonal matrix.

Motivated by the good properties of tensor products [12, 28], we can look for a tensor

decomposition of a given Laplacian matrix L in the form of

L ≈ A1 ⊗ idn2 ⊗·· ·⊗ idnd + idn1 ⊗ A2 ⊗·· ·⊗ idnd +·· ·+ idn1 ⊗ idn2 ⊗·· ·⊗ Ad , (10)

where Ai ∈ Rni×ni , with N = n1 . . .nd . As shown in [6], we can define an algorithm

that provides the best tensor approximation in form (10) of any square matrix. In
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particular, for the Laplacian matrices of graphs with N nodes, this decomposition is

an interesting approximation of L , when calculating their eigenvalues or eigenvectors

from algorithms that use tensors, and that, therefore, are more efficient in calculation

times. So, we want to study the algorithm’s performance in [6] over Laplacian matrices

of Watts–Strogatz networks. In particular, we want to study how close the obtained

tensor decomposition is to the Laplacian matrices of the k-regular network used for

generating the Watts–Strogatz network. In order to measure how close are the initial

and the tensor decompose networks, we compare the distribution of eigenvalues and

eigenvectors of their corresponding Laplacian matrices [17].

Laplacian eigenvalues and eigenvectors are relevant to multi-aspects of complex

network structures, like spanning trees [7], community structure [24] or algebraic

connectivity [27]. Moreover, represent some significant physical or chemical

properties of networks, and help to understand the relations between their topology

and the dynamics. For example, in the framework of generalized Gaussian structures,

the dynamics of polymer networks are fully described through the Laplacian

eigenvectors, and eigenvalues [16, 22].

This Chapter is divided as follows: In Section 4.2, we briefly review the construction

of Watts–Strogatz networks from k-regular networks. Then, in Section 4.3, we recall

some concepts about tensors and tensor decompositions, and we will describe

the methodology used for obtaining tensor decompositions in order to obtain

approximations of the Laplacian matrices of Watts–Strogatz networks generated from

circular 2-regular and 4-regular networks. Finally, we show our results and discussed

them in Sections 4.4 and 4.5, respectively.

4.2 Regular networks and the Watts–Strogatz networks

Let us consider a non-directed simple connected network G = (V ,E), where V is the set

of nodes, V = {v1, . . . , vn}, and E is the set of edges. We recall that the adjacency matrix

A of G is defined as Ai j = 1 if (vi , v j ) ∈ E and 0 elsewhere. Since the network is simple,

all elements in the diagonal satisfy Ai i = 0, and since the network is non-directed Ai j =
A j i for all 1 ≤ i , j ≤ n.

The degree of a vertex vi , denoted by δ(vi ), is defined as the number of edges incident

on it, counting the loops twice. We can define the degree matrix D of G as a diagonal

matrix where Di i = δ(vi ) for all 1 ≤ i ≤ n. Then, the Laplacian matrix L is defined as

L = D −A . Since A is symmetric and D is diagonal, we have that L is symmetric,

too. Laplacian matrices of simple networks satisfy that the sum of all the elements in a

row (or column) is equal to 0. Therefore, λ= 0 is always an eigenvalue (with associated

eigenvector u⊤ = (1, . . . ,1)), of the Laplacian matrix. On the other hand, for every node

vi ∈ V , we can define the state on this node at instant t as ui (t ). So, we can express
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the diffusion between adjacent nodes as the Abstract Cauchy Problem on ℓ2 defined on

(11). 
u̇i (t ) =D

∑
(i , j )∈E

(
u j (t )−ui (t )

)
, i = 1, . . . ,n

ui (0) = u0(i ), u0(i ) ∈R
(11)

where D is the diffusion coefficient. If u = (ui (t ))n
i=1 ∈ ℓ2, where n is the number of

nodes, this diffusion equation can be stated as u(t )/d t = −DL u(t ), in terms of the

Laplacian matrix of the network.

In the sequel, we deal with circular networks, in which we represent the nodes

presented over a circumference and link them with their neighbors. We recall that

a network is k-regular if δ(vi ) = k for all 1 ≤ i ≤ n. So as to, a circular network C2n

is a 2-regular network with n vertices, n ≥ 3. Up to isomorphism, there is a unique

representation of C2n , with the following Laplacian matrix:

L =



2 −1 0 . . . 0 −1

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

. . . . . . . . . . . .
...

0 0 . . . −1 2 −1

−1 0 . . . 0 −1 2


. (12)

We can also consider 4-regular circular networks, denoted by C4n , with n nodes, with

n ≥ 5. Here, a node is connected to the next two nodes on the right and the next two

on the left until both cycles are completed (doubly circular graphs), see Figure 10.

Figure 10: Examples of 4-regular graphs: C4,5,C4,6,C4,7, and C4,12.

The Laplacian matrix of 4-regular circular network has 4 in all the elements in the main

diagonal, and −1 in the two diagonals above and below the main one, as we can see

below
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L =



4 −1 −1 0 . . . −1 −1

−1 4 −1 −1 . . . 0 −1

−1 −1 4 −1 . . . 0 0

0 −1 −1 4 . . . 0 0
...

. . . . . . . . . . . . . . .
...

0 0 . . . −1 4 −1 −1

−1 0 . . . −1 −1 4 −1

−1 −1 . . . 0 −1 −1 4


. (13)

Watts and Strogatz introduce randomness into k-regular graphs to construct networks

that preserve a high local clustering coefficient while reducing the average shortest

length path between any pair of nodes to resemble the small world phenomenon. They

set an algorithm in order to construct these networks. First, we start with a circular

2k-regular network of n nodes, denoted by C2k,n , where each node is connected with

its closest 2k neighbor nodes. Then, we set a probability p, and for every existing edge,

we decide whether to rewire a different pair of nodes, with probability p, or to leave it

as it is.

The case p = 0 return the original 2k-regular network C2k,n . As we increase the value of

p, we introduce randomness in the connectivity while maintaining the average degree

equal to 2k. In the case of p = 1, the generated network is completely random. We can

appreciate how the network changes while increasing the value of p in Figure 11.

Figure 11: Watts–Strogatz networks constructed from a circular C4,n network for

different values of p: p = 0 (left), 0 < p < 1 (center), and p = 1 (right) [30].
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4.3 The best tensor based decomposition

First of all, let’s remember that the Kronecker product of two matrices A ∈ RN1×M1 , B ∈
RN2×M2 is defined by

A⊗B =


A1,1B A1,2B . . . A1,M1 B

A2,1B A2,2B . . . A2,M1 B
...

...
. . .

...

AN1,1B AN1,2B . . . AN1,M1 B

 ∈RN1N2×M1M2 .

And, also, some of the well-known properties of the Kronecker product are:

1. A⊗ (B ⊗C ) = (A⊗B)⊗C .

2. (A+B)⊗C = (A⊗C )+ (B ⊗C ).

3. AB ⊗C D = (A⊗C )(B ⊗D).

4. (A⊗B)−1 = A−1 ⊗B−1.

5. (A⊗B)⊤ = A⊤⊗B⊤.

6. tr(A⊗B) = tr(A) · tr(B).

One of the most popular techniques among the algorithms based on tensor products

strategies [28], is the Proper Generalized Decomposition (PGD) family, based on the

so-called Greedy Rank-One Updated (GROU) algorithm [1, 11]. In particular, they

impose a separation of variables to approximate the exact solution of a problem

without knowing, in principle, the functions involved in this decomposition [8].

There is a particular type of matrices to solve high-dimensional linear systems for

which the GROU algorithm works particularly well, those that are written in the form

A =
d∑

i=1
Ai ⊗ id[ni ]

.=
d∑

i=1
idn1 ⊗·· ·⊗ idni−1 ⊗ Ai ⊗ idni+1 ⊗·· ·⊗ idnd , (14)

where A ∈ RN×N , with N = n1 . . .nd , Ai ∈ Rni×ni for 1 ≤ i ≤ d , and idn j is the identity

matrix of size n j × n j . These matrices are called Laplacian-like matrices, since they

can be easily related to the classical Laplacian operator [13, 14]. However, to avoid

falling into a nomenclature ambiguity, we will refer to this structure as the tensor

decomposition (of rank d) of a matrix.

So, we are interested in trying to achieve a structure similar to (14), to study the

matrices of large-dimensional graphs. To do this, we will use the following theorem

(Theorem 7 in [6]), which describes the Greedy Algorithm that calculates the best

tensor decomposition (of rank d) of a given square matrix A.
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Theorem 4. Let A be a matrix in RN×N , with N = n1 · · ·nd , such that tr (A) = 0, and let

∆= {A ∈RN×N : A =
d∑

i=1
Ai ⊗ id[ni ], with tr(Ai ) = 0, i = 1, . . . ,d}.

If we consider the following iterative procedure:

1. Take X (0)
k = 0 for 1 ≤ k ≤ d .

2. For each ℓ≥ 1 compute for 1 ≤ i ≤ d the matrix U (ℓ)
i as

U (ℓ)
i = arg min

Ui∈Rni ×ni

tr(Ui )=0

∥∥∥∥∥A−
i−1∑
k=1

X (ℓ)
k ⊗ id[nk ] −ξ(Ui )⊗ id[ni ] −

d∑
k=i+1

X (ℓ−1)
k ⊗ id[nk ]

∥∥∥∥∥ ,

where

ξ(Ui ) = X (ℓ−1)
i +Ui ,

and put X (ℓ)
i = X (ℓ−1)

i +U (ℓ)
i ,

then

lim
ℓ→∞

d∑
k=1

X (ℓ)
k ⊗ id[nk ] = P∆(A),

where P∆(A) solves the problem

min
A∗∈∆

∥∥A− A∗∥∥ .

The algorithm described in the previous theorem can be written in the form of the

pseudocode 3.

4.3.1 Tensor decomposition of Watts-Strogatz networks

We study the tensor decomposition of Watts–Strogatz networks for low values of p.

The Laplacian matrices of these networks will be pretty similar close to the Laplacian

matrix of the associated circular k-regular network, with most of their non-null

elements grouped in the main diagonals of the matrix.

We will consider the families of 2-regular and 4-regular networks, and we will modify

them to get Watts–Strogatz networks for small probability values p, ranging between

0.05 and 0.2. Then, we will compute the Laplacian tensor-based approximation,

with canonical rank d , as given in (10). With these numerical experiments, we

want to determine whether, given a Watts–Strogatz network, its Laplacian matrix

decomposition, written in the form (10), is a good approximation of the Laplacian

matrix of the network and, if writing the matrix in tensor form, this speeds up

the computations involving it, for example, in the computation of eigenvalues and

eigenvectors.

For this purpose, we have analyzed networks of different sizes, from 100 to 2000 nodes

per graph. For each network, we have conducted the following study, which consists
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of two parts.

First part: Analysis of the k-regular network

1. We start with a 2 (or 4) regular circular network G and we obtain its Laplacian

matrix L .

2. We compute the tensor-based approximation of L , and we denote it by L⊗.

This approximation is obtained using the algorithm described in [6], which is

summarized in the pseudocode of Algorithm 3, using a maximum of 50 iterations

and a tolerance of 2.22e−4.

3. To determine how good such an approximation is, the resulting residual will be

computed as res= norm(L −L⊗)/norm(L ).

4. Lastly, we study the relationship between eigenvalues and eigenvectors of L and

L⊗, and compare the time to obtain them in each case using the command eigs.

To measure the relative distance between the eigenvalues obtained, we will use

the indicator distλ = norm(λ−λ⊗)/norm(λ); and we will measure the fetch time

of λ and λ⊗, with the tic-toc instruction implemented in Matlab.

It is worth mentioning that each network has a different decomposition depending on

the prime factor decomposition of the network size N . Thus, if N = n1 · · ·nd , we will

look for matrices Ai ∈Rni×ni . We will call the vector [n1, . . . ,nd ] as the vector of sizes.

For the sake of completeness, we present the pseudocode of the algorithm used for this

decomposition, which has been described in [6].
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Algorithm 3 Laplacian decomposition Algorithm

1: procedure LAP(A∗,iter_max,tol)

2: A = A∗− (tr(A)/N )idN , iter= 1, Lap= 0

3: while iter< iter_max do

4: A ← A−Lap
5: for k = 1,2, . . . ,d do

6: Pk (A) = idn1 ⊗·· ·⊗ idnk−1 ⊗Xk ⊗ idnk+1 ⊗·· ·⊗ idnd

7: Xk ← minXk ∥A−∑k
i=1 Pi (A)∥

8: Lap= Lap+Pk (A)

9: end for

10: if ∥A−Lap∥ < tol then goto 14

11: end if

12: iter= iter+1

13: end while

14: return Lap
15: end procedure

In this first part, there is no randomness introduced, so the tensor approximation L⊗
of L , for a concrete graph G is always the same.

Second part: Analysis of the Watts–Strogatz networks

1. We take the 2 (or 4) regular circular networks considered in the first part.

2. For each one of these networks, name it G , we convert it into different

Watts–Strogatz networks G ′
pi

, using four different probabilities: p1 = 0.05, p2 =
0.1, p3 = 0.15, and p4 = 0.2.

3. Once fixed pi and for every edge e ∈ E , we generate a random re number from

a uniform distribution on (0,1). This number re will be used for deciding if we

rewire the nodes connected by e or not, using the following rule.

• If re < pi , then the edge e is rewired, connecting a new pair of nodes chosen

randomly among all of them that were not already connected.

• If pi ≤ re , the edge is maintained as it is.

4. We repeat the process described in the first part for each network G ′
pi

. We

first obtain the associated Laplacian matrices L ′
pi

, and then we compute the

respective approximate Laplacians L ′⊗,pi
.
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5. Finally, we obtain the eigenvalues and eigenvectors of matrices L ′
pi

and L ′⊗,pi
,

and we measure the difference between the eigenvectors and eigenvalues, as

described at the end of the first part.

To make a more robust and consistent analysis in this second part, in order to avoid

randomness effects, we repeat 1000 times this scheme. The charts and results in

Section 4.4 will show the averaged values obtained from the 1000 repetitions.

4.4 Results analysis

We will now show and comment on the results of the experiment described in

Section 4.3.1. The experiments were carried out on a computer with the following

characteristics: 11th Gen Intel(R) Core(TM) i7-11370H @ 3.30GHz, RAM 16,0 GB, 64

bit operating system; and a Matlab version R2021b [20].

First, we compare the Laplacian matrices of the 2 and 4-regular graphs and their

tensor approximations. In Figure 12, we compare the computation time taken to

compute the eigenvalues and eigenvectors in the starting L Laplacian matrices and

their approximate L⊗ matrices in tensor form. As the number of nodes increases,

the computation time for the original matrices increases much faster than the times

required by the tensor-based approximate matrices.
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Figure 12: Eigenvalue calculation time

We also compare the eigenvalues of each of the matrices L and L⊗, measuring the

norm of their difference. In Figure 13, we see that the results oscillate between the

values 0.03 and 0.12. So that, the eigenvalues of the L⊗ approximate pretty well

the eigenvalues of the original matrix L . We observe that the distance between the
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eigenvalues of the Laplacian matrix and its approximation depends on the network

size but not on being a 2-regular or a 4-regular network.

Also noteworthy that there are cases where the approximations are much better than in

the rest. This occurs for 700, 1100, 1300, 1700, and 1900 nodes, where prime numbers

7,11,13,17, and 19 are involved in the factorization of the network size, which yields

vectors of sizes of shorter lengths. For example, if we look at N = 1700, the vector

of sizes obtained from the factorization of N will be factor(N ) = [2,2,5,5,17]; which

is shorter than the vector associated to N = 1800, factor(N ) = [2,2,2,3,3,5,5]. This

fact illustrates the importance of the number (and which) prime factors appear in the

decomposition of the network size into prime factors.
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Figure 13: Distance (norm) between eigenvalues

In the second part, we study the approximations obtained of the Watts–Strogatz

Laplacian matrices. In this case, we group the figures into two different groups: in

Figures 14 and 15, we show the computation times of eigenvalues and eigenvectors

of the original Laplacian matrices and those written in tensor form for the different

probabilities p1, . . . , p4.
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Figure 14: Mean time spent computing eigenvectors in Watts–Strogatz networks from

2-RG
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Figure 15: Mean time spent computing eigenvectors in Watts–Strogatz networks from

4-RG

Again, we see that we need less time to calculate eigenvalues and eigenvectors of the

tensor approximate matrices than for the original Laplacian ones. Besides, the time

increases as long as the network size does.

Finally, in Figures 16 and 17, we measure the difference between the eigenvalues

of the original Laplacian matrices and those from the tensor-based approximations.

The norms of the difference take small values, less than 0.26 for Watts–Strogatz

networks obtained from 2-regular networks, and less than 0.19 for those obtained from
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4-regular networks. As the probability increases, we obtain worse approximations,

since networks become more random and less regular, which results in a structure that

is harder to approximate in tensor form.
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Figure 16: Difference (in norm) between the eigenvalues obtained in Watts–Strogatz

networks from 2-regular graphs.
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Figure 17: Difference (in norm) between the eigenvalues obtained in Watts–Strogatz

networks from 4-regular graphs.

Nevertheless, we remark on the importance of the vectors of sizes and which prime

numbers are involved in the factorization, as the spikes in the graph appeared similarly

for each network size.

4.5 Conclusions

In this work, we have used tensor decompositions of the form (10) to approximate

Laplacian matrices of 2 and 4-regular networks, and of some Watts–Strogatz networks
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obtained from these regular networks.

By introducing the randomness in Watts–Strogatz networks, we lose the regularity in

the structure of the Laplacian matrices, which is reflected in the approximations that

we obtained: as the randomness increases, the matrices in tensor form approximate

worse the original Laplacian matrices, although we still obtain interesting results.

Based on the results obtained, we can affirm that this technique allows us to work with

tensor approximations of the different networks, by reducing the costs of time spent in

computations, as is the case for computing eigenvectors and eigenvalues.

It may be interesting to carry out similar experiments, using regular networks of higher

degree (6,8, . . .), to see if the ‘repetition of patterns’ is still maintained in the resulting

graphs. It is also interesting to ask what would happen if we modified the vector of

sizes, that is, the number of matrices that we use in each decomposition and what

would be the optimal size of the matrices in that case. For example, if we only use

two matrices, better results are obtained if the matrices have similar sizes, or if, on

the contrary, they have the smallest and largest possible size, respectively? Therefore,

there are still interesting studies to be carried out to estimate the goodness of the use

of tensor decompositions.
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Abstract

Algorithms that use tensors are increasingly important due to the goodness of

this operation when performing calculations with large amounts of data. Among

them, we find the algorithms that search for the solution of a linear system in

separated form, where the Greedy Rank-One Update method stands out, the

starting point of the famous Proper Generalized Decomposition family.

When the matrices of these systems have the particular structure of a

Laplacian-type matrix, the convergence of the previous methods is faster and

more accurate. The Laplacian Decomposition Algorithm calculates the Laplacian

matrix that best approximates a given square matrix. When the residue of this

approximation is small, we will be able to solve the linear system associated with

a Laplacian-type matrix and thus obtain an approximation of the solution of the

original system, with a lower computational cost.

In this chapter we prove that the discretization of a general PDE of the second

order can be written as a linear system with a Laplacian-type matrix.
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5.1 Introduction

Working with large amounts of data is one of the main challenges we face today. With

the rise of social networks and rapid technological advances, we must develop tools

that allow us to work with so much information. At this point the use of tensor products

comes into play, since their use reduces and speeds up the number of operations

to be carried out. Proof of this is the recent article [6], where tensor products are

used to speed up the calculation of matrix products. Other articles that exemplify

the goodness of this operation are [9], where the solution of 2,3-dimensional optimal

control problems with spectral fractional Laplacian type operators is studied, and

[12], where high-order problems are studied using proper generalized decomposition

methods.

When we try to solve a linear system of the form Ax = b, in addition to the classical

methods, there are methods based on tensors that can be more efficient [11], since the

classical methods face the problem of the curse of dimensionality, which makes them

lose effectiveness as the size of the problem increases. The tensor methods look for the

solution in separated form, that is, as the tensor combination

x =
∞∑

j=1
x j

1 ⊗·· ·⊗x j
d ,

where x j
i ∈ RNi and d is the dimension of the problem. The main family of methods

that solves this problem is PGD [5], and it is based on the GROU algorithm [1, 7].

This algorithm calculates the solution of the linear system Ax = b in separated form

and, for this, in each iteration, it updates the approximation of the solution with the

term resulting from minimizing the remaining residue. Furthermore, there are certain

square matrices for which the GROU algorithm improves their convergence, matrices

of the form

A =
d∑

i=1
idN1 ⊗·· ·⊗ idNi−1 ⊗ Ai ⊗ idNi+1 ⊗·· ·⊗ idNd .

These matrices are called Laplacian-like matrices, because of their relationship with

the Laplace operator.

However, it is not easy to obtain the matrix of problem A with that structure. To do

this, we can use the Laplacian Decomposition Algorithm described in [2], which, given

the value of d , calculates the best Laplacian approximation of the matrix A and returns

it, L A, and its residue, RA. Thus, we can rewrite the linear system as (L A +RA)x = b,

and when the value of the remainder is small, we can approximate the solution of the

system x∗ by the solution of the Laplacian system xL .

This fact is specially interesting in the case of Partial Differential Equation. We study

the Laplacian decomposition of the matrix that comes from the discretization of a
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general PDE of the second order of the form

αuxx +βuy y +γux +δuy +µu = f.

Besides, to compare different methods to solve these equations, we consider some

particular cases: the Helmholtz equation, which solve the eigenvalue problem for

the Laplace operator; and the famous Poisson Equation. Furthermore, to illustrate

that it is not necessary to be limited to the second order, we consider the 4-order

Swift-Hohenberg equation
∂u

∂t
= ε−

(
1+ ∂2

∂x2

)2

u.

This equation is noted for its pattern-forming behaviour, and it was derived from the

equations for thermal convection [13].

In this article, we review the Laplacian Decomposition Algorithm and show how it

behaves in combination with the GROU Algorithm, Section 5.3. To do this, we begin by

recalling some tensor concepts in Section 5.2. Finally, we show the numerical examples

commented below in Section 5.5.

5.2 Preliminary definitions and results

First at all we introduce some notation that we use along the paper. We denote by

RN×M , the set of N ×M-matrices and by AT the transpose of a given matrix A. As usual

we use

〈x,y〉 = xT y = yT x

to denote the Euclidean inner product in RN , and its corresponding 2-norm, by ∥x∥2 =
〈x,x〉1/2. Let idN be the N×N -identity matrix and when the dimension is clear from the

context, we simply denote it by I . Given a sequence {u j }∞j=0 ⊂ RN , we say that a vector

u ∈RN can be written as

u =
∞∑

j=0
u j

if and only if

lim
n→∞

n∑
j=0

u j = u

in the ∥ ·∥2-topology.

The Kronecker product of two matrices A ∈RN1×M1 , B ∈RN2×M2 is defined by

A⊗B =


A1,1B A1,2B . . . A1,M1 B

A2,1B A2,2B . . . A2,M1 B
...

...
. . .

...

AN1,1B AN1,2B . . . AN1,M1 B

 ∈RN1N2×M1M2 .
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We can see some of the well-known properties of the Kronecker product in [1].

As we already said, we are interested solve a high-dimensional linear system Ax = b

obtained from a discretization of a Partial Differential Equation. We are interested

to solve it by using a tensor-based algorithm, so, we are going to look for an

approximation of the solution in separated form. To see this, we assume that the

coeffcient matrix A is a (N1 · · ·Nd )×(N1 · · ·Nd )-dimensional invertible matrix, for some

N1, · · · , Nd ∈N. Next, we look for an approximation (of rank n) of A−1b of the form

A−1b ≈
n∑

j=1
x j

1 ⊗·· ·⊗x j
d . (15)

To do this, given x ∈ RN1···Nd we say that x ∈ R1 = R1(N1, N2, . . . , Nd ) if x = x1 ⊗
x2 ⊗ ·· · ⊗ xd , where xi ∈ RNi , for i = 1, . . . ,d . For n ≥ 2 we define inductively Rn =
Rn(N1, N2, . . . , Nd ) =Rn−1 +R1, that is,

Rn =
{

x : x =
k∑

i=1
x(i ), x(i ) ∈R1 for 1 ≤ i ≤ k ≤ n

}
.

Note that Rn ⊂Rn+1 for all n ≥ 1.

To perform (15), what we will do is minimizing the difference∥∥∥∥∥b− A

(
n∑

j=1
x j

d ⊗·· ·⊗x j
d

)∥∥∥∥∥
2

,

that is, solve the problem

argmin
u∈Rn

∥b− Au∥2. (16)

Here ∥ ·∥2 is the 2-norm, or the Frobenius norm, defined by

∥A∥2 =
√√√√ m∑

i=1

n∑
j=1

|ai , j |2 =
√

tr(A⊤A), for A ∈Rm×n .

Unfortunately, from Proposition 4.1 (a) of [3], we have that the set Rn is not necessarily

(or even usually) closed for each n ≥ 2. In consequence, no best rank-n approximation

exists, that is, (16) has no solution. However, from Proposition 4.2 of [3] it follows that

R1 is a closed set in any norm-topology. This fact allows us to introduce the following

algorithm.

5.2.1 Greedy Rank-One Update Algorithm

The Greedy Rank-One Update (GROU, in short) Algorithm is an iterative method to

solve linear systems of the form Ax = b by using only rank-one updates. Thus, given
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A ∈ GL(RN×N ) with N = N1 · · ·Nd , and b ∈ R we can obtain an approximation of the

form

A−1b ≈ un =
n∑

j=1
x j

1 ⊗·· ·⊗x j
d

for some n ≥ 1 and x j
i ∈ RNi , for i = 1,2, . . . ,d and j = 1,2, . . . ,n [1]. We proceed with

the following iterative procedure (see Algorithm 4 below): let u0 = y0 = 0, and for each

n ≥ 1 take

rn−1 = b− Aun−1, (17)

un = un−1 +yn where yn ∈ argmin
u∈R1

∥rn−1 − Au∥2. (18)

Since un ≈ A−1b, we can define the rank⊗ for A−1b obtained by the GROU Algorithm as

rank⊗(A−1b) =
{

∞ if { j ≥ 1 : y j = 0} =;,

min{ j ≥ 1 : y j = 0}−1 otherwise.

The next result, presented at [1], give us the convergence of the sequence {un}n≥0 to

the solution A−1b of the linear system.

Theorem 5. Let b ∈ RN1···Nd and A ∈ RN1···Nd×N1···Nd be an invertible matrix. Then, by

using the iterative scheme (17)-(18), we obtain that the sequence {∥rn∥2}rank⊗(A−1b)
n=0 , is

strictly decreasing and

A−1b = lim
n→∞un =

rank⊗(A−1b)∑
j=0

y j . (19)

Note that the updates in the previous scheme works under the assumption that in the

line 5 of Algorithm 4 we have a way to obtain

y ∈ argmin
x∈R1

∥ri − Ax∥2
2. (20)

(equation (18)). To compute y, we can use an Alternating Least Squares (ALS, in short)

approach, (see [1, 4]).

The idea below the ALS strategy to solve (20) is the following: for each 1 ≤ k ≤ d we

proceed as follows. Assume that the values x1, . . . ,xk−1,xk+1, . . . ,xd are given. Then, we

look for the unknown xk , satisfying,

xk ∈ argmin
zk∈RNk×Nk

∥b− A(x1 ⊗·· ·⊗xk−1 ⊗zk ⊗xk+1 ⊗·· ·⊗xd )∥2,

where we can write

A(x1 ⊗·· ·⊗xk−1 ⊗zk ⊗xk+1 ⊗·· ·⊗xd ) = A(x1 ⊗·· ·⊗xk−1 ⊗ idNk ⊗xk+1 ⊗·· ·⊗xd )zk .

61



Algorithm 4 Greedy Rank-One Update Algorithm

1: procedure GROU(f, A,ε,tol,rank_max)

2: r0 = f

3: u = 0

4: for i = 0,1,2, . . . ,rank_max do

5: y = procedure (minx∈R1 ∥ri − Ax∥2
2)

6: ri+1 = ri − Ay

7: u ← u+y

8: if ∥ri+1∥2 < ε or |∥ri+1∥2 −∥ri∥2| < tol then goto 13

9: end if

10: end for

11: return u and ∥rrank_max∥2.

12: break

13: return u and ∥ri+1∥2

14: end procedure

In consequence, by using a Least Squares approach [4], we can obtain xk by solving the

following Nk ×Nk -dimensional linear system:

Zk zk = bk (21)

where

Zk := (xT
1 ⊗·· ·⊗xT

k−1 ⊗ idNk ⊗xT
k+1 ⊗·· ·⊗xT

d )AT A(x1 ⊗·· ·⊗xk−1 ⊗ idk ⊗xk+1 ⊗·· ·⊗xd )

and

bk := (xT
1 ⊗·· ·⊗xT

k−1 ⊗ idNk ⊗xT
k+1 ⊗·· ·⊗xT

d )AT b.

Here idNk denotes the identity matrix of size Nk ×Nk . Clearly,

∥b−A(x1⊗·· ·⊗xk−1⊗zk ⊗xk+1⊗·· ·⊗xd )∥2 ≤ ∥b−A(x1⊗·· ·⊗xk−1⊗xk ⊗xk+1⊗·· ·⊗xd )∥2

holds for all zk ∈ RNk×Nk . However, it is well-known (see Section 4 in [4]) that the

performance of the ALS strategy can be improved (see Algorithm 5 below) when the

shape of the matrix AT A ∈RN×N , with N = N1 . . . Nd , can be written in the form

AT A =
r∑

i=1

d⊗
j=1

A(i )
j (22)

where
⊗d

j=1 A(i )
j = A(i )

1 ⊗ ·· · ⊗ A(i )
d , here A(i )

j ∈ RN j×N j for 1 ≤ j ≤ d and 1 ≤ i ≤ r. In

particular, when the matrix A is given by

A =
d∑

i=1
Ai ⊗ id[Ni ]

.=
d∑

i=1
idN1 ⊗·· ·⊗ idNi−1 ⊗ Ai ⊗ idNi+1 ⊗·· ·⊗ idNd , (23)
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where Ai ∈ RNi×Ni for 1 ≤ i ≤ d , and idN j is the identity matrix of size N j × N j , then

the matrix AT A can be easily written in the form (22). These matrices has been

introduced in [2] as Laplacian-like matrices, since they can be easily related to the

classical Laplacian operator [8, 9]. The next section will be devoted to the study of

this class of matrices.

Algorithm 5 An Alternated Least Squares Algorithm for matrices in the form (22) [4,

Algorithm 2]

1: Given AT A =∑r
i=1

⊗d
j=1 A(i )

j ∈RN×N and b ∈RN .

2: Initialize x(0)
i ∈RNi for i = 1,2. . . ,d .

3: Introduce ε> 0 and itermax, iter = 1.

4: while distance > ε and iter < itermax do

5: for k = 1,2, . . . ,d do

6: x(1)
k = x(0)

k

7: for i = 1,2, . . . ,r do

8: α(i )
k =

(∏k−1
j=1 (x(0)

j )T A(i )
j x(0)

j

)(∏d
j=k+1(x(1)

j )T A(i )
j x(1)

j

)
9: end for

10: x(0)
k solves

(∑r
i=1α

(i )
k A(i )

k

)
xk = (x(0)

1 ⊗·· ·⊗x(0)
k−1 ⊗ idNk ⊗x(0)

k ⊗·· ·⊗x(0)
d )T b

11: end for

12: iter = iter + 1.

13: distance = max1≤i≤d ∥x(0)
i −x(1)

i ∥2.

14: end while

5.3 On the best Laplacian matrix approximation

As we said in the Introduction, the Proper Orthogonal Decomposition, is a popular

numerical strategy in the engineering to solve high-dimensional problems. It is

based on the GROU algorithm (17)–(18) and it can be considered as a tensor-based

decomposition algorithm.

There is a particular type of matrices to solve high-dimensional linear systems for

which these methods work particularly well, those that satisfy the property (22). To

this end we introduce the following definition.

Definition 3. Given a matrix A ∈ RN×N , where N = N1 · · ·Nd , we say that A is a

Laplacian-like matrix if there exist matrices Ai ∈RNi×Ni for 1 ≤ i ≤ d be such that

A =
d∑

i=1
Ai ⊗ id[Ni ]

.=
d∑

i=1
idN1 ⊗·· ·⊗ idNi−1 ⊗ Ai ⊗ idNi+1 ⊗·· ·⊗ idNd , (24)

where idN j is the identity matrix of size N j ×N j .
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It is not difficult to see that the set of Laplacian-like matrices is a linear subspace RN×N

of matrices satisfying the property (22). From now on, we will denote by L
(
RN×N

)
the subspace of Laplacian-like matrices in RN×N for a fixed decomposition of N =
N1 · · ·Nd .

Now, given a matrix A ∈RN×N , our goal is to solve the following optimization problem:

min
L∈L (RN×N )

∥A−L∥2. (25)

Clearly, if we denote by ΠL (RN×N ) the orthogonal projection onto the linear subspace

L
(
RN×N

)
then L A :=ΠL (RN×N )(A) is the solution of (25). Observe that ∥A−L A∥2 = 0, if

and only if A ∈L
(
RN×N

)
.

Since, we are interested in trying to achieve a structure similar to (24), to study

the matrices of large-dimensional problems. We search an algorithm that allows to

construct, for a given matrix A, its Laplacian-like best approximation L A.

To do this, we will use the following theorem which describes a particular

decomposition of the space of matrices RN×N . Observe that the linear subspace

span{idN } in RN×N has as orthogonal space the null trace matrices:

span{idn}⊥ = {A ∈Rn×n : tr(A) = 0},

with respect the inner product 〈A,B〉RN×N = tr(AT B).

Theorem 6. Consider
(
RN×N ,∥ ·∥2

)
as a Hilbert space where N = N1 · · ·Nd . Then there

exists a decomposition

RN×N = span{idN }⊕hN =L
(
RN×N )⊕L

(
RN×N )⊥

,

where hN = span{idN }⊥ is the orthogonal complement of the linear subspace generated

by the identity matrix. Moreover,

L
(
RN×N )= span{idN }⊕∆, (26)

where ∆= hN ∩L (RN×N ). Furthermore, L (RN×N )⊥ is a subspace of hN and

∆=
d⊕

i=1
span{idN1 }⊗·· ·⊗ span{idNi−1 }⊗ span{idNi }⊥⊗ span{idNi+1 }⊗·· ·⊗ span{idNd }.

Proof. It follows from Lemma 3.1, Theorem 3.1 and Theorem 3,2 in [2].

The above theorem allows us to compute the projection of matrix A onto L (RN×N ) as

follows. Denote byΠi the orthogonal projection of RN×N onto the linear subspace

span{idN1 }⊗·· ·⊗ span{idNi−1 }⊗ span{idNi }⊥⊗ span{idNi+1 }⊗·· ·⊗ span{idNd }
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for 1 ≤ i ≤ d . Thus,
∑k

i=1Πi is the orthogonal projection of RN×N onto the linear

subspace ∆. In consequence, by using (26), we have

tr(A)

N
idN +

d∑
i=1

Πi (A) = argmin
L∈L (RN×N )

∥A−L∥2. (27)

If we analyze a little more (27), we observe that the second term on the left, is of the

form
d∑

i=1
Πi (A) =

d∑
i=1

idN1 ⊗·· ·⊗ idNi−1 ⊗Xi ⊗ idNi+1 ⊗·· ·⊗ idNd ,

and it has only (N 2
1 + ·· · + N 2

d −d)-degrees of freedom (recall that dimspan{idNi }⊥ =
N 2

i −1). In addition, due to the tensor structure of the products, the unknowns xl of Xk

are distributed in the form of a block, so that we can calculate which will be the entries

of the matrix A that we can approximate. Therefore, to obtain the value of the different

xl we only need to calculate which is the value that best approximates the entries (i , j )

of the original matrix that are in the same position as xl .

In our next result, we will see how to carry out this procedure. To do this, we make the

following observation. Given a matrix A = (ai , j ) ∈ RK L×K L for some integers K ,L > 1,

we can write A as a matrix block

A =


A(K ,L)

1,1 A(K ,L)
1,2 · · · A(K ,L)

1,L

A(K ,L)
2,1 A(K ,L)

2,2 · · · A(K ,L)
2,L

...
...

. . .
...

A(K ,L)
L,1 A(K ,L)

L,2 · · · A(K ,L)
L,L

 (28)

where the block A(K ,L)
i , j ∈RK×K for 1 ≤ i , j ≤ L is given by

A(K ,L)
i , j =


a(i−1)K+1,( j−1)K+1 · · · a(i−1)K+1, j K

...
. . .

...

ai K ,( j−1)K+1 · · · ai K , j K

 .

Moreover,

∥A∥2
RK L×K L

=
K L∑
i=1

K L∑
j=1

a2
i , j =

L∑
r=1

L∑
s=1

∥A(K ,L)
r,s ∥2

RK×K
.

Observe that K and L can easily interchanged. To simplify notation, from now one

given N = N1N2 · · ·Nd we denote by N[k] = N1 · · ·Nk−1Nk+1 · · ·Nd for each 1 ≤ k ≤ d .

Theorem 7. Let A ∈ RN×N with N = N1 · · ·Nd . For each fixed 1 ≤ k ≤ d consider the

linear function Pk :RNk×Nk −→RN×N given by

Pk (Xk ) := idN1 ⊗·· ·⊗ idNk−1 ⊗Xk ⊗ idNk+1 ⊗·· ·⊗ idNd .
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Then, the solution of the minimization problem

min
Xk∈RNk×Nk

∥A−Pk (Xk )∥2 (29)

is given by

(Xk )i , j =



1

N[1]

N[1]∑
n=1

a(i−1)N[1]+n,( j−1)N[1]+n if k = 1,

1

N[k]

Nk+1···Nd∑
m=1

(
N1···Nk−1∑

n=1
A(Nk ···Nd ,N1···Nk−1)

n,n

)
(i−1)Nk+1···Nd+m,( j−1)Nk+1···Nd+m

if 1 < k < d ,

1

N[d ]

(
N[d ]∑
n=1

A
(Nd ,N[d ])
n,n

)
i , j

if k = d .

Proof. First, let us observe that idN1⊗·· ·⊗idNk = idN1···Nk , so, we can find three different

situations in the calculation of the projections:

1. P1(A) = X1 ⊗ idN[1] ; in this case,

P1(X1) =


(X1)1,1idN[1] (X1)1,2idN[1] . . . (X1)1,N1 idN[1]

(X1)2,1idN[1] (X1)2,2idN[1] . . . (X1)2,N1 idN[1]

...
...

. . .
...

(X1)N1,1idN[1] (X1)N1,2idN[1] . . . (X1)N1,N1 idN[1]

 ∈RN[1]N1×N[1]N1 .

2. Pd (Xd ) = idN[d ] ⊗Xd ; in this case,

Pd (Xd ) =


Xd Od · · · Od

Od Xd · · · Od
...

...
. . .

...

Od Od · · · Xd

 ∈RNd N[d ]×Nd N[d ] ,

where Od denotes the zero matrix in RNd×Nd .

3. Pi (Xi ) = idN1···Ni−1 ⊗ Xi ⊗ idNi+1···Nd , for i = 2, . . . ,d −1; in this case for a fixed 2 ≤
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i ≤ d −1, we write Nℓ = N1 · · ·Ni−1, and Nr = Ni+1 · · ·Nd . Thus,

Pi (Xi ) = idNℓ
⊗Xi ⊗ idNr

= idNℓ
⊗


(Xi )1,1idNr (Xi )1,2idNr . . . (Xi )1,N1 idNr

(Xi )2,1idNr (Xi )2,2idNr . . . (Xi )2,N1 idNr

...
...

. . .
...

(Xi )N1,1idNr (Xi )N1,2idNr . . . (Xi )N1,N1 idNr



=


Xi ⊗ idNr Oi ⊗ idNr · · · Oi ⊗ idNr

Oi ⊗ idNr Xi ⊗ idNr · · · Oi ⊗ idNr

...
...

. . .
...

Oi ⊗ idNr Oi ⊗ idNr · · · Xi ⊗ idNr

 ∈R(Ni Nr )Nℓ×(Ni Nr )Nℓ

In either case, a difference of the form

min
Xk∈RNk×Nk

∥A−Pk (A)∥2

must be minimized. To this end, we will consider on each case A as a block matrix

A ∈RK L×K L in the form (28).

Case 1: For P1(X1) we take K = N[1], L = N1, and hence

A−P1(X1) =


A(K ,L)

1,1 − (X1)1,1idN[1] A(K ,L)
1,2 − (X1)1,2idN[1] . . . A(K ,L)

1,N1
− (X1)1,N1 idN[1]

A(K ,L)
2,1 − (X1)2,1idN[1] A(K ,L)

2,2 − (X1)2,2idN[1] . . . A(K ,L)
2,N1

− (X1)2,N1 idN[1]

...
...

. . .
...

A(K ,L)
N1,1 − (X1)N1,1idN[1] A(K ,L)

N1,2 − (X1)N1,2idN[1] . . . A(K ,L)
N1,N1

− (X1)N1,N1 idN[1]

 .

In this situation we have

∥A−P1(X1)∥2
RN×N

=
N1∑

i=1

N1∑
j=1

∥A(K ,L)
i , j − (X1)i , j idN[1]∥2

R
N[1]×N[1]

,

hence we wish for each 1 ≤ i , j ≤ N1 to find

(X1)i , j = x ∈ argmin
x∈R

∥A(K ,L)
i , j −x idN[1]∥2

R
N[1]×N[1]

= argmin
x∈R

N[1]∑
n=1

(a(i−1)N[1]+n,( j−1)N[1]+n −x)2.

Thus, it is not difficult to see that

(X1)i , j = 1

N[1]

N[1]∑
n=1

a(i−1)N[1]+n,( j−1)N[1]+n ,

for 1 ≤ i , j ≤ N1.

Case 2: For Pd (Xd ) we take K = Nd , L = N[d ], and hence

A−Pd (Xd ) =


A(K ,L)

1,1 −Xd A(K ,L)
1,2 −Od · · · A(K ,L)

1,N[d ]
−Od

A(K ,L)
2,1 −Od A(K ,L)

2,2 −Xd · · · A(K ,L)
2,N[d ]

−Od

...
...

. . .
...

A(K ,L)
N[d ],1

−Od A(K ,L)
N[d ],2

−Od · · · A(K ,L)
N[d ],N[d ]

−Xd


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Now, we have

∥A−Pd (Xd )∥2
RN×N

=
N[d ]∑
i=1

∥A(K ,L)
i ,i −Xd∥2

R
Nd×Nd

+
N[d ]∑

i=1, j=1,i ̸= j
∥A(K ,L)

i ,i ∥2

R
Nd×Nd

.

Thus, Xd ∈RNd×Nd minimizes ∥A−Pd (Xd )∥2
RN×N

if and only if

Xd ∈ arg min
X∈RNd×Nd

N[d ]∑
i=1

∥A(K ,L)
i ,i −X ∥2

R
Nd×Nd

.

In consequence,

Xd = 1

N[d ]

N[d ]∑
i=1

A(K ,L)
i ,i .

Case 3: For Pi (Xi ) we take K = Ni Nr , L = Nℓ and hence

A−Pi (Xi ) =


A(K ,L)

1,1 −Xi ⊗ idNr A(K ,L)
1,2 −Oi ⊗ idNr · · · A(K ,L)

1,Nℓ
−Oi ⊗ idNr

A(K ,L)
2,1 −Oi ⊗ idNr A(K ,L)

2,2 −Xi ⊗ idNr · · · A(K ,L)
1,Nℓ

−Oi ⊗ idNr

...
...

. . .
...

A(K ,L)
Nℓ,1 −Oi ⊗ idNr A(K ,L)

Nℓ,2 −Oi ⊗ idNr · · · A(K ,L)
Nℓ,Nℓ

−Xi ⊗ idNr


In this case

∥A−Pi (Xi )∥2
RN×N

=
Nℓ∑

n=1
∥A(K ,L)

n,n −Xi ⊗ idNr ∥2

RNi Nr ×Ni Nr
+

Nℓ∑
n=1, j=1,n ̸= j

∥A(K ,L)
n, j ∥2

RNi Nr ×Ni Nr
,

so we need to solve the following problem:

min
X∈RNi ×Ni

Nℓ∑
n=1

∥A(K ,L)
n,n −X ⊗ idNr ∥2

RNi Nr ×Ni Nr
. (30)

Since X ⊗ idNr ∈RNi×Ni ⊗ span{idNr } we can write (30) as

min
Z∈RNi ×Ni ⊗span{idNr }

Nℓ∑
n=1

∥A(K ,L)
n,n −Z∥2

RNi Nr ×Ni Nr
. (31)

Observe that

A∗ = (a∗
u,v ) = 1

Nℓ

Nℓ∑
n=1

A(K ,L)
n,n = arg min

U∈RNi Nr ×Ni Nr

Nℓ∑
n=1

∥A(K ,L)
n,n −U∥2

RNi Nr ×Ni Nr
.

To simplify notation, we write U := RNi×Ni ⊗ span{idNr }. Then we have the following

orthogonal decomposition RNi Nr ×Ni Nr = U ⊕ U⊥. Denote by ΠU the orthogonal

projection onto the linear subspace U . Then for each Z ∈U we have

∥A(K ,L)
n,n −Z∥2 = ∥(id−ΠU )(A(K ,L)

n,n )+ΠU (A(K ,L)
n,n )−Z∥2

= ∥(id−ΠU )(A(K ,L)
n,n )∥2 +∥ΠU (A(K ,L)

n,n )−Z∥2,
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because (id−ΠU )(A(K ,L)
n,n ) ∈ U⊥ and ΠU (A(K ,L)

n,n )− Z ∈ U . In consequence, solve (31) is

equivalent to solve the following optimization problem

min
Z∈U

Nℓ∑
n=1

∥ΠU (A(K ,L)
n,n )−Z∥2

RNi Nr ×Ni Nr
. (32)

Thus,

Z∗ = 1

Nℓ

Nℓ∑
n=1

ΠU (A(K ,L)
n,n ) = argmin

Z∈U

Nℓ∑
n=1

∥ΠU (A(K ,L)
n,n )−Z∥2

RNi Nr ×Ni Nr
,

that is, Z∗ =ΠU (A∗) and hence

Z∗ = argmin
Z∈U

∥A∗−Z∥2 = Xi ⊗ idNr = arg min
X∈RNi ×Ni

∥A∗−X ⊗ idNr ∥2

RNi Nr ×Ni Nr
.

Proceeding in a similar way as in Case 1, we obtain

(Xi )u,v = 1

Nr

Nr∑
m=1

a∗
(u−1)Nr +m,(v−1)Nr +m

= 1

Nr

1

Nl

Nr∑
m=1

(
Nl∑

n=1
A(K ,L)

n,n

)
(u−1)Nr +m,(v−1)Nr +m

,

for 1 ≤ u, v ≤ Ni . This concludes the proof of the theorem.

To conclude we obtain the following useful corollary.

Corollary 3. Let A ∈ RN×N with N = N1 · · ·Nd . For each fixed 1 ≤ k ≤ d consider the

linear function Pk :RNk×Nk −→RN×N given by

Pk (Xk ) := idN1 ⊗·· ·⊗ idNk−1 ⊗Xk ⊗ idNk+1 ⊗·· ·⊗ idNd .

For each 1 ≤ k ≤ d , let Xk ∈ RNk×Nk be the solution of the optimization problem (29).

Then

L A = tr(A)

N
idN +

d∑
k=1

Pk

(
Xk −

tr(Xk )

Nk
idNk

)
= argmin

L∈L (RN×N )
∥A−L∥2. (33)

Proof. Observe that for 1 ≤ k ≤ d , the matrix Xk satisfies

Pk (Xk ) = argmin
Z∈h(k)

∥A−Z∥2,

where

h(k) := span{idN1 }⊗·· ·⊗ span{idNk−1 }⊗RNk×Nk ⊗ span{idNk+1 }⊗·· ·⊗ span{idNd }.

is a linear subspace of RN×N linearly isomorphic to RNk×NK . Since RNk×Nk =
span{idNk }⊕ span{idNk }⊥, then

Xk = tr(Xk )

Nk
idNk +

(
Xk −

tr(Xk )

Nk
idNk

)
,
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and hence

Pk (Xk ) = Pk

(
tr(Xk )

Nk
idNk

)
+Pk

(
Xk −

tr(Xk )

Nk
idNk

)
= tr(Xk )

Nk
idN +Pk

(
Xk −

tr(Xk )

Nk
idNk

)
.

We can conclude, that Πk (A) = Pk

(
Xk − tr(Xk )

Nk
idNk

)
, recall that Πk is the orthogonal

projection of RN×N onto the linear subspace

span{idN1 }⊗·· ·⊗ span{idNk−1 }⊗ span{idNk }⊥⊗ span{idNk+1 }⊗·· ·⊗ span{idNd }.

From (27) the corollary is proved.

5.4 The best Laplacian approximation for the discretization of a

second order PDEs without mixing derivatives

In this section we consider the general equation of a generic second order PDE without

mixing derivatives with homogeneous boundary conditions. More precisely, let

αuxx +βuy y +γux +δuy +µu = f, for (x, y) ∈ (0,1)× (0,1) (34)

u(x,0) = u(x,1) = u(0, y) = u(1, y) = 0, for all 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. (35)

We discretize (34) by the help of the following derivative approximations

ux(x, y) ≈ u(xi+1, y j )−u(xi−1, y j )

2h
, uy (x, y) ≈ u(xi , y j+1)−u(xi , y j−1)

2k
,

and

uxx(x, y) ≈ u(xi+1, y j )−2u(xi , y j )+u(xi−1, y j )

h2
,

uy y (x, y) ≈ u(xi , y j+1)−2u(xi , y j )+u(xi , y j−1)

k2
,

for i = 1, . . . , N , j = 1, . . . , M . From (35) we have u(x, y0) = u(x, yM+1) = u(x0, y) =
u(xN+1, y) = 0 for all 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

Next, in order to obtain a linear system we put uℓ := u(xi , y j ) and fℓ := f(xi , y j ) where

ℓ := (i − 1)M + j for 1 ≤ i ≤ N and 1 ≤ j ≤ M . In this way, the represented mesh is

traversed as shown in Figure 18, and the elements U = (uℓ)M N
ℓ=1 and F = {fℓ}M N

ℓ=1 are

column vectors. It allows us to represent (34)-(35) as the linear system AF =U , where

A is the M N ×M N -block matrix

A =



T D1

D2 T D1

. . . . . . . . .

D2 T D1

D2 T

 , (36)
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for T ∈RM×M given by

T =


0 2βh2 +δh2k 0 . . . 0

2βh2 −δh2k 0 2βh2 +δh2k . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 2βh2 −δh2k 0

+(2µh2k2−4αk2−4βh2)idM

and D1,D2 ∈RM×M are the diagonal matrices

D1 = (2αk2 +γhk2)idM , D2 = (2αk2 −γhk2)idM .

(i , j )

(1,1)

(N , M)

Figure 18: Starting at (1,1) to (1, M); (2,1), . . . , (2, M); and ending at (N ,1), . . . , (N , M).

In this case, tr(A) = N M(2µh2k2 −4αk2 −4βh2), so instead of looking for L A as in (33)

we will look for L Â where

Â =
(

A− tr(A)

N M
idN M

)
,

has null trace. Proceeding according Theorem 7 for sizes N1 = N and N2 = M , we

obtain the following decomposition:

X1 =



0 2αk2 +γhk2 0 . . . 0

2αk2 −γhk2 0 2αk2 +γhk2 . . . 0
...

. . . . . . . . .
...

0 . . . 2αk2 −γhk2 0 2αk2 +γhk2

0 . . . 0 2αk2 −γhk2 0

 ∈RN×N ,

and

X2 =



0 2βh2 +δh2k 0 . . . 0

2βh2 −δh2k 0 2βh2 +δh2k . . . 0
...

. . . . . . . . .
...

0 . . . 2βh2 −δh2k 0 2βh2 +δh2k

0 . . . 0 2βh2 −δh2k 0

 ∈RM×M .
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We remark that tr(X1) = tr(X2) = 0. Moreover, the residual of the approximation L Â of

Â is ∥Â−L Â∥ = 0. In consequence, we can write the original matrix A as

A = tr(A)

N M
idN M +X1 ⊗ idM + idN ⊗X2.

Recall that the first term is

tr(A)

N M
idN M = (

2µh2k2 −4αk2 −4βh2) · idN M = (
2µh2k2 −4αk2 −4βh2) · idN ⊗ idM ,

and hence A can be written as

A = Z1 ⊗ idM + idN ⊗Z2,

where Z1 is the N ×N -matrix

µh2k2 −2αk2 −2βh2 2αk2 +γhk2 0 . . . 0

2αk2 −γhk2 µh2k2 −2αk2 −2βh2 2αk2 +γhk2 . . . 0
...

. . .
. . .

. . .
...

0 . . . 2αk2 −γhk2 µh2k2 −2αk2 −2βh2 2αk2 +γhk2

0 . . . 0 2αk2 −γhk2 µh2k2 −2αk2 −2βh2

 ,

and Z2 the M ×M-matrix

µh2k2 −2αk2 −2βh2 2βh2 +δh2k 0 . . . 0

2βh2 −δh2k µh2k2 −2αk2 −2βh2 2βh2 +δh2k . . . 0
...

. . .
. . .

. . .
...

0 . . . 2βh2 −δh2k µh2k2 −2αk2 −2βh2 2βh2 +δh2k

0 . . . 0 2βh2 −δh2k µh2k2 −2αk2 −2βh2

 .

Now, we can use this representation of A to implement the GROU Algorithm 4 together

the ALS strategy given by Algorithm 5 to solve linear system

AU = (Z1 ⊗ idM + idN ⊗Z2)U = F.

This study can be extended to high-dimensional equations, as occurs in [2] with the

three-dimensional Poisson equation.

5.5 Numerical examples

Next, we are going to consider some particular equations to analyze their numerical

behavior. In all cases, the characteristics of the computer used are: 11th Gen Intel(R)

Core(TM) i7-11370H @ 3.30GHz, RAM 16 GB, 64 bit operating system; and a Matlab

version R2021b [10].
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5.5.1 The Helmholtz equation

Let us consider the particular case of the second order PDE, α=β= 1, µ= c2 and f = 0,

that is

uxx +uy y + c2u = 0.

This is the 2D-Helmholtz equation. To obtain the linear system associated to the

discrete problem, we need some boundary conditions, for example{
u(x,0) = sin(ωx)+cos(ωx) for 0 ≤ x ≤ L

u(0, y) = sin(ωy)+cos(ωy) for 0 ≤ y ≤ T

and {
u(x,T ) = sin(ω(x +T ))+cos(ω(x +T )) for 0 ≤ x ≤ L

u(L, y) = sin
(
ω(y +L)

)+cos
(
ω(y +L)

)
for 0 ≤ y ≤ T.

This IVP has a closed solution for ω= cp
2

,

u(x, y) = sin
(
ω(x + y)

)+cos
(
ω(x + y)

)
.

From the above operations, and taking h = k for simplicity, we can write the matrix of

the discrete linear system associated to the equation of Helmholtz as

A =


2c2h4 −8h2 2h2 0 . . . 0

2h2 2c2h4 −8h2 2h2 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 2h2 2c2h4 −8h2

⊗ idM + idN ⊗


0 2h2 0 . . . 0

2h2 0 2h2 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 2h2 0


or, equivalently,

A =


c2h4 −4h2 2h2 0 . . . 0

2h2 c2h4 −4h2 2h2 . . . 0
...

. . . . . . . . .
...

0 . . . 0 2h2 c2h4 −4h2

⊗ idM

+ idN ⊗


c2h4 −4h2 2h2 0 . . . 0

2h2 c2h4 −4h2 2h2 . . . 0
...

. . . . . . . . .
...

0 . . . 0 2h2 c2h4 −4h2

 .

If we solve this linear system Aul = f̂l for the case c =p
2, L = T = 1 and with N = M , we

obtain the temporary results shown in Figure 19. To carry out this experiment, we have

used the following parameters values: for the GROU Algorithm 4: tol = 2.2204e −16;

ε = 2.2204e − 16; rank_max = 10; (an iter-max = 5 and ε = 2.2204e − 16 was used to
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Figure 19: CPU Time, in second, employed to solve the discrete Helmholtz IPV by using

the Matlab command A\b, the GROU Algorithm 4, and the GROU Algorithm 4 with A

written as L A, obtained from Corollary 26.

perform Algorithm 5); and the number of nodes in (0,1)2 (that is, the number of rows

or columns of the matrix A) increase from 102 to 2002.

To measure the goodness of the approximations obtained, we have calculated the

normalized errors, that is, the value of the difference, in absolute value, of the results

obtained and the real solution, between the length of the solution, i.e.

ε= |exact solution−approximate solution|
N 2

.

for the different approximations obtained. The value of these errors is of the order of

10−4, and can be seen in Figure 20.
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Figure 20: Normalized error between the solution of the discrete Helmholtz IPV and the

solutions obtained by using the Matlab command A\b, the GROU Algorithm 4, and the

GROU Algorithm 4 with A written as L A, obtained from Corollary 26.
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5.5.2 The Swift-Hohenberg equation

Now, let we consider the PDE of order 4

∂u

∂t
= ε−

(
1+ ∂2

∂x2

)2

u (37)

with the boundary conditions{
u(x,0) = sin(kx)

u(x,T ) = sin(kx)eT ,
for 0 ≤ x ≤ L, (38)

and

u(0, t ) = u(L, t ) = 0, for 0 ≤ t ≤ T. (39)

For k =
√

1+p
ε−1, L = 2π/k, the IVP (37)-(39) has as a solution

u(x, t ) = sin(kx)e t .

If we discretize the (37)-(39) problem as in the previous example with the same step

size in both variables, h, we obtain a linear system of the form Aul = f̂l , where A, in

Laplacian-Like form, is the matrix

A =

(12−8h2 + (2−2ε)h4)idN +


0 4h2 −8 2 0 . . . 0

4h2 −8 0 4h2 −8 2 . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 2 4h2 −8 0



⊗ idM

+idN ⊗


0 h3 0 . . . 0

−h3 0 h3 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 −h3 0

 ,

and l = (i −1)M + j is the order established for the indices, with 1 ≤ i ≤ N , 1 ≤ j ≤ M .

To perform a numerical experiment, we set ε= 2, L = T = 2π, and the same number of

points in the two variables. At this point, we can solve the linear system associated to

the Swift-Hohenberg discrete problem with our tools: the Matlab command A\b, the

GROU Algorithm 4, and the GROU Algorithm 4 together the ALS Algorithm 5 with A

write in Laplacian-like form. In this case we have used the following parameters values

in the algorithms: tol = 2.2204e −16; ε = 2.2204e −16; rank_max = 10 for the GROU

Algorithm 4, with iter-max = 5 for the ALS step; and the number of nodes in (0,2π)2

increase from 102 to 2002. Figure 21 shows the results obtained.
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Figure 21: CPU Time, in second, employed to solve the discrete Swift-Hohenberg IPV

by using the Matlab command A\b, the GROU Algorithm 4, and the GROU Algorithm 4

with A written in Laplacian form.

Again, we calculated the normalized errors to estimate the goodness of the

approximations, Figure 22.
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Figure 22: Normalized error between the solution of the discrete Swift-Hohenberg IPV

and the solutions obtained by using the Matlab command A\b, the GROU Algorithm 4,

and the GROU Algorithm 4 with A written in Laplacian form.

5.6 Conclusions

In this work, we have studied the Laplacian Decomposition Algorithm which, given any

square matrix, calculates its best Laplacian approximation. Furthermore, in Theorem

7, we have shown how it is implemented optimally.

For us, the greatest interest in this algorithm lies in the computational improvement of

combining it with the Greedy Rank-One Updated Algorithm 4 to solve linear systems
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from the discretization of a Partial Derivative Equation. Said improvement can be seen

in the different numerical examples shown, where we have compared this procedure

with the standard resolution of Matlab by means of the instruction A\b.

This proposal proposes a new way of dealing with certain large-scale problems, where

classical methods prove to be more inefficient.
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The development of this doctoral thesis arose as a response to the need to work with

problems where large amounts of data appear. In particular, a change of focus was

pursued when working with large-dimensional linear systems: abandoning classical

tools and opting for an approach where tensor techniques are used. As we have

already commented, these techniques are more effective and efficient when we face

large-dimensional problems, and they are ’the remedy’ to solve the dimensionality

curse problem suffered by classical mechanisms. A simple example is the one recently

shown by the magazine Nature (2022) in [14], where a new way to perform matrix

products using the Kronecker product is explained, speeding up current calculation

times.

Following this idea, we have deepened the study of methods and algorithms that

use tensors to solve optimization problems, such as the famous Greedy Rank-One

Updated Algorithm and the family of PGD methods. The analysis of these tools has
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led us to develop a new matrix decomposition algorithm, which takes advantage of the

structure of certain square matrices and approximates them to their Laplacian form. In

Chapter 3, we have presented and demonstrated the result that explains this procedure

and the algorithm that describes the steps necessary to carry it out.

The most surprising result is found in the application of this algorithm together with

the GROU algorithm when solving certain Partial Derivative Equations. In particular,

in Chapter 5, we have studied the Laplacian structure of the matrices that come from

the discretization of a second-order PDE, and we have shown how the convergence to

the solution is faster when we solve these linear systems by the aforementioned tensor

techniques, surpassing Matlab’s own operator, A\b.

However, we have also studied other possible applications, such as in the field of

graphs (chapter 4). In this case, we have studied the similarity between the adjacency

matrices of regular graphs or Watts–Strogatz networks and their corresponding

approximations in Laplacian form.

This new approach opens up a wide range of possibilities for dealing with problems

that have been challenging up to now.
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