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Abstract 
In this article, we adopt the paradigm of scheduling under explorable 
uncertainty to explore test-taking strategies to solve standardized tests in terms 
of maximizing the correct questions answered. From this approach, a test taker 
considers a number of questions and has the possibility to read in order to 
obtain the difficulty of the question. Later, he/she has the option, for example, 
to answer the question or to skip the one that seemed difficult and read the next 
question in the test. Specifically, we state the problem definition by considering 
two test-taking strategies, formulate and implement a mathematical model, and 
generate computational experiments in order to determine the dominance of 
one strategy over another. The results show that the dominance depends 
directly on the design of the test and the maximum time to perform it, so 
knowing these parameters allow us to provide algorithmic insights to address 
this problem. 
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1. Introduction 

In the education setting, there are different types of standardized tests. These consider a wide 
range of knowledge from the foreign language proficiency tests (e.g., Test of English as a 
Foreign Language (TOEFL), Test of English for International Communication (TOEIC), 
among others) to the mandatory admission test such as the Graduate Management Admission 
Test (GMAT) in the United States of America or the Prueba de Acceso a la Educación 
Superior (PAES) in Chile (DEMRE, 2023), whose results define the position in the admission 
ranking of the university degree to be studied. In general, the students prepare to take these 
standardized tests over many months, attending some specialized courses where several test-
taking strategy recommendations are provided to achieve the best possible result. In 
particular, a test-taking strategy from a scheduling point of view distinguishes a series of 
decisions to be made by the test-taker in sequence when faced with the questions in an 
assessment. For instance, the test-taker would read and answer all the questions in order of 
appearance or only answer the questions if he/she is sure of the correct answer. Considering 
that assessments typically have a limited time frame for completion, the choice of test-taking 
strategy can significantly impact the test results. Rapidly skipping challenging questions may 
allow test-takers to attempt more questions and answer the easier ones first. Still, it may also 
require them to revisit the skipped questions later, thus increasing the overall test completion 
time. Therefore, there exists a threshold where it may be more advantageous to respond 
immediately, regardless of the difficulty of the questions, rather than postponing difficult 
questions and answering easier ones first. 

In literature, several studies have been carried out in different areas. In psychology, most of 
the strategies have been studied before taking the test in order to reduce the anxiety of the 
students (Theobald, Breitwieser, & Brod, 2022), and it has been found that the application of 
these, in conjunction with the application of other strategies has a direct correlation with 
student achievement in college (Viet, 2022). From a practical perspective, classic books such 
as "Test-Taking Strategies" (Kesselman-Turkel & Peterson, 1981) expose in a practical way 
several strategies for different types of tests, such as strategies for multiple-choice tests, true-
false tests, matching tests, vocabulary tests, number tests, etc. However, the choice of these 
strategies is vaguely explained. Finally, from an algorithmic point of view, the decision of 
which question to answer first can be studied as a problem of allocating limited resources to 
tasks over time such as (Wang & Zhang, 2006), which presents an iterative mathematical 
model applied to a general case as well as a theoretical framework using nonlinear 
optimization, considering a probabilistic perspective previously known by the test-taker. 

In this paper, we adopt the paradigm of scheduling under explorable uncertainty (Retsef, 
Magnanti , & Shaposhnik, 2018) (Dürr, Erlebach, Megow, & Meißner, 2020) (Dufossé, Dürr, 
Nadal, Trystram, & Vásquez, 2022)  to explore test strategies to solve standardized tests and 
to analyze under what circumstances the application of these strategies will generate an 
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optimal result. From this approach, a test-taker considers a number of questions (set of 
parameters) and has the possibility to read (to make a query) in order to obtain the difficulty 
of the question. Later, he/she has the option, for instance, to answer the question or to skip 
the one that seemed difficult and read the next question in the test. Clearly, a compromise 
has to be found between the number of questions to be skipped and the test result obtained. 
Formally, we state the problem definition by considering two test strategies, formulate and 
implement a mathematical optimization model and generate computational experiments in 
order to determine dominance properties of the strategies to obtain the best test result. 

2. Problem definition and formulations 

2.1. Problem description 

Consider a test with N questions, of which M£ N are easy questions, and N-M are hard 
questions. P is defined as the set of questions {1, … ,𝑁} where each question	𝑖 ∈ 𝑃 has a 
reading time 𝑟! and an answer time 𝑝!. Each question appears in the test follows a particular 
sequence S, e.g., 𝑆 ≔ {h, h, e, h, e, e, … , h}, where h denote the hard questions and e the easy 
questions. These questions are differentiated by their resolution time, where the time to 
answer a hard question 𝑝" will be longer than the time to answer an easy question 𝑝#. 
Additionally, there is a deadline 𝑑 to finish the test. We assume that the test-taker will know 
the number of total questions (N) and the easy questions (M) in the test. 

We consider two test strategies for answering the test, which are described below: 

• Read and answer (RA) strategy: This test-taking strategy consists of reading and 
answering the question immediately, regardless of the difficulty of the question. 

• Read, skip, and answer (RSA) strategy: This test-taking strategy consists of reading 
in an exploratory way and analyzing the difficulty of the question. If the question is 
easy, it is answered immediately, but if it is hard, then it is skipped and answered 
once all the easy questions have been answered. Skip one question 𝑖 ∈ {1,… ,𝑁} has 
an associated time cost ℓ! which will consist of re-reading the hard question before 
answering it. 

This problem aims to study the best strategy to answer as many questions as possible into the 
deadline 𝑑. The choice of a strategy when facing a test can drastically affect the result. This 
result depends on several factors; the test design is the most important to consider (such as 
sequence, read, response, and re-read times), and the second factor is the deadline to perform 
it. 
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2.2. Dominance 

We define the dominance of strategy A over strategy B, when under certain conditions, 
strategy A implies a better result than strategy B in terms of test results, i.e., more questions 
are correctly answered. To illustrate the situation, we consider a reading time (𝑟! = 𝑟 = 1) 
and a re-reading time (𝑙! = 𝑙 = 1) to be equivalent to one time slot, the response times for 
the hard question (𝑝")	and the easy question (𝑝#) equals to 7 and 2 time slots, respectively; 
and the test sequence given by S={h,e}. Figure 1 shows that in the case of a deadline 𝑑	of 
four slots of time. On the one hand, if the RA strategy is used, no question will be answered 
because it will answer the hard question in the first instance, whose resolution time is longer 
than the deadline. On the other hand, if the RSA strategy is used, one question can be 
answered because the first question must have been skipped, and the easy question will have 
been read and answered. In this case, the RSA strategy dominates RA strategy. In a similar 
way, Figure 2 shows the case of a deadline 𝑑	of ten slots, where the RA strategy will dominate 
with two questions answered over the RSA strategy, which will have only managed to answer 
a single question. 

  
Figure 1. Example of dominance RSA over RA. Figure 2. Example of dominance  RA over RSA. 

2.3. Mathematical formulation 

The problem can be formulated as integer linear programming. We adopt a upper bound on 
the time to perform the test given by 𝐾 = ∑ 𝑟! + 𝑝! + 𝑙!

|%|
!&' . Consequeltly, we discretize the 

time into K unit time slots. We then define three sets of binary decisión variables: 𝑋!,) which 
is equal to 1 if the reading of question 𝑖 starts at time 𝑡 and 0 otherwise; 𝑌!,) which is equal to 
1 if the answering of question 𝑖 starts at time	𝑡 and 0 otherwise; and 𝑍!,) which is equal to 1 
if the re-reading of question 𝑖 starts at time 𝑡 and 0 otherwise. The problem can be set as 
follows: 

[𝑀𝑎𝑥]		' ' 𝑌!,#

$%&'!()

#*)

|𝒫|

!*)

 (1) 𝑋!,# = 0, ∀𝑖 ∈ 𝒫, ∀𝑡 ∈ [𝐾 − 𝑟! + 1, 𝐾] (2) 

𝑌!,# = 0, ∀𝑖 ∈ 𝒫, ∀𝑡 ∈ [𝐾 − 𝑝! + 1, 𝐾] (3) 𝑍!,# = 0, ∀𝑖 ∈ 𝒫, ∀𝑡 ∈ [𝐾 − ℓ! + 1, 𝐾] (4) 
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'𝑋!,#

-

#*)

≤ 1, ∀𝑖 ∈ 𝒫 (5) '𝑌!,#

-

#*)

≤ 1, ∀𝑖 ∈ 𝒫 (6) 

'𝑍!,#

-

#*)

≤ 1, ∀𝑖 ∈ 𝒫 (7) 𝑋!,# = 1, 𝑖 = 1, 𝑡 = 1 (8) 

'; ' 𝑌!,# +
.&)

#*/01{.&'!,3}

' 𝑋!,#

.&)

#*/01{.&5!,3}

|𝒫|

!*)

+ ' 𝑍!,#

.&)

#*/01{.&ℓ!,3}

< ≤ 1, 𝐾 = 1 
(9) 

'; ' 𝑌!,# +
.&)

#*/01{.&'!,3}

' 𝑋!,#

.&)

#*/01{.&5!,3}

|𝒫|

!*)

+ ' 𝑍!,#

.&)

#*/01{.&ℓ!,3}

<

≥		'; ' 𝑌!,# +
.&)

#*/01{.&'!,3}

' 𝑋!,#

.&)

#*/01{.&5!,3}

|𝒫|

!*)

+ ' 𝑍!,#

.&)

#*/01{.&ℓ!,3}

< , ∀	𝑘 ∈ 𝐾 

(10) 

𝑋!(),# ≤'X7,8

9

8*)

, ∀	i	 ∈ 	𝒫 − 1, ∀	t	 ∈ 	K (11) 𝑍!,# ≤'𝑋!,.

#

.*)

, ∀	𝑖	 ∈ 	𝒫, ∀	𝑡	 ∈ 	K (12) 

𝑍!,# ≤ Y7,9(ℓ" , ∀	𝑖 ∈ 𝒫,
∀	𝑡 ∈ K − ℓ7 (13) 1 − 𝑋!,# ≥'𝑌!,.

#

.*)

, ∀	𝑖	 ∈ 	𝒫, ∀	𝑡	 ∈ 	K (14) 

1 − 𝑋!,# ≥'𝑋!(),.

#

.*)

, ∀	𝑖	 ∈ 	𝒫 − 1, ∀	𝑡	

∈ 	K 
(15) 'D(𝑡 + 𝑟!) ⋅ 𝑋!,#H	

-

#*)

≤ 	𝑑, ∀	𝑖	 ∈ 	𝒫 (16) 

'D(𝑡 + 𝑝!) ⋅ 𝑌!,#H	
-

#*)

≤ 	𝑑, ∀	𝑖	 ∈ 	𝒫 (16) 'D(𝑡 + ℓ!) ⋅ 𝑍!,#H	
-

#*)

≤ 	𝑑, ∀	𝑖	 ∈ 	𝒫 (18) 

'𝑡
-

#*)

⋅ 𝑌!,# −'D(𝑡 + 𝑟!) ⋅ 𝑋!,#H	
-

#*)

≤ 1 + M ⋅ K'Z7,9

:

9*)

M , ∀	𝑖	 ∈ 	𝒫 (19) 

2.4. Implementation and computational experiments 

The mathematical formulation described above was implemented computationally using 
Python 3.9.16. The Pyomo package was used for implementation and the Gurobi solver 10.0 
was used for solving. For the computational experiments were performed on a 3-question 
test. To perform the analysis, the parameters were set to 𝑟! = ℓ!= 1. For each test, a grid of 
values for the response times of each question will be made. This grid will have a lower limit 
of 1 time slot and an upper limit of 6 time slots. The value of the response time for difficult 
questions will be a function of the value of the response time for easy questions. e.g. If the 
answer time for the easy question is 1, the answer time for the difficult questions will be 2, 
3, 4, 5 and 6 time slots. In turn, the deadline will be varied, for each of the cases described 
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above, the deadline will be decreasing. In addition, the value 𝑑 will be generated as an upper 
bound, this will have a value of 24 time slots, this will be calculated by using the following 
expression: 𝑑 = ∑ 𝑟! + 𝑝! + 𝑙!*

!&'  where all the questions will be difficult. Therefore the 
number of instances to solve will be of 2* ∙ 5 ∙ 4 ∙ 3 ∙ 2 = 	960. 

3. Results 

In the generation of instances for their respective analysis, all possible test sequences were 
considered, that is, 2*	possible combinations. These combinations are: {{h,h,e}; {e,e,e}; 
{h,e,e}; {h,h,e}; {e,e,h}; {e,h,h}; {e,h,e}; {h,e,h}}. Since it is assumed that the test-taker 
will know the number of questions and the sequence of the test, 5 instances will be discarded, 
since the RA strategy will dominate over RSA strategy regardless of the deadline. For 
example, if the test sequence is {e,e,e} there will be no difficult question to skip so the RSA 
strategy will not exist. On the other hand, if the sequence is {h,h,h} the use of the RSA 
strategy would not be logical, since knowing the sequence of the test, the use of this strategy 
would generate the additional cost of re-reading. 

3.1. Sequential analysis {h,e,h} 

It was found that the use of the strategies studied is indifferent if the deadline is less than 
𝒎𝒊𝒏{𝒓 + 𝒑𝒉, 𝟐𝒓 + 𝒑𝒆} since the time to solve the test will not be enough to answer the first 
question, so the use of one or the other strategy will lead to the same result, not answering 
any question. On the other hand, we suppose the use of one strategy is indifferent to the other 
when the time is more than enough to perform the test in its entirety so that if the deadline is 
greater than 𝟒𝒓 + 𝒑𝒆 + 𝟐𝒑𝒉 no strategy will dominate over the other. Note that when facing 
the sequence {h,e}, one strategy will dominate over the other,  according to the values of 𝑝" 
and 𝑝# ,	  if the test deadline is between the values 𝒎𝒊𝒏{𝒓 + 𝒑𝒉, 𝟐𝒓 + 𝒑𝒆} and 𝒎𝒂𝒙{𝒓 +
𝒑𝒉, 𝟐𝒓 + 𝒑𝒆}. Thus, if 𝒑𝒉 > 𝒓 + 𝒑𝒆 the RSA strategy will dominate over RA strategy, 
otherwise, if 𝒑𝒉 < 𝒓 + 𝒑𝒆 the RA strategy will dominate over RSA strategy. Finally, if the 
test-taker is facing the last question of the test, and his deadline is between the values 𝟑 +
𝒑𝒆 + 𝟐𝒑𝒉	and 𝟒 + 𝒑𝒆 + 𝟐𝒑𝒉, the dominant strategy will be the RA strategy. 

3.2. Sequential analysis {e,h,e} 

The result was that the use of the strategies studied is indifferent if the deadline is less than 
𝒎𝒊𝒏{𝟐𝒓 + 𝒑𝒆 + 𝒑𝒉, 𝟑𝒓 + 𝟐𝒑𝒆} since the test resolution time will be sufficient to answer the 
first question, that is, the easy question (facing an easy question does not require the use of a 
strategy) but it will not be sufficient to answer the next question. On the other hand, the use 
of one strategy will be indifferent to the other is when the time is more than enough to perform 
the test in its entirety, so if the deadline is greater than 𝟒𝒓 + 𝟐𝒑𝒆 + 𝒑𝒉 no strategy will 
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dominate over the other. If the test deadline is between the values 𝒎𝒊𝒏	{𝟐𝒓 + 𝒑𝒆 + 𝒑𝒉, 𝟑𝒓 +
𝟐𝒑𝒆} and 𝒎𝒂𝒙	{𝟐𝒓 + 𝒑𝒆 + 𝒑𝒉, 𝟑𝒓 + 𝟐𝒑𝒆} one strategy will dominate over the other 
according to the values of 𝒑𝒉 and 𝒑𝒆. If  𝒑𝒉 > 𝒓 + 𝒑𝒆 the RSA strategy will dominate over 
RA strategy, on the other hand if 𝒑𝒉 < 𝒓 + 𝒑𝒆 the RA strategy will dominate over RSA 
strategy. Finally, if the test-taker is facing the last question of the test, and its deadline is 
between the values 𝟑 + 𝟐𝒑𝒆 + 𝒑𝒉	and 𝟒 + 𝟐𝒑𝒆 + 𝒑𝒉 the dominant strategy will be the RA 
strategy. 

3.3. Sequential analysis {h,e,e} 

The result was that the use of the strategies studied is indifferent if the deadline is less than 
𝒎𝒊𝒏{𝒓 + 𝒑𝒉, 𝟐𝒓 + 𝒑𝒆} since the test resolution time will not be enough to answer the first 
question, so that the use of one or the other strategy will lead to the same result, not answering 
any question. In addtion, the use of one strategy will be indifferent to the other is when the 
time is more than enough to perform the test in its entirety, so if the deadline is greater than 
𝟒𝒓 + 𝟐𝒑𝒆 + 𝒑𝒉 no strategy will dominate over the other. If the test deadline is between the 
values 𝒎𝒊𝒏{𝒓 + 𝒑𝒉, 𝟐𝒓 + 𝒑𝒆} and 𝒎𝒂𝒙{𝒓 + 𝒑𝒉, 𝟐𝒓 + 𝒑𝒆} one strategy will dominate over 
the other according to the values of 𝒑𝒉 and 𝒑𝒆. If 𝒑𝒉 > 𝒓 + 𝒑𝒆 the RSA strategy will 
dominate over RA strategy, on the other hand if 𝒑𝒉 < 𝒓 + 𝒑𝒆 the RA strategy will dominate 
over RSA strategy. Finally, if the test taker is facing the last question of the test, and its 
deadline is between the values 𝟑 + 𝟐𝒑𝒆 + 𝒑𝒉	and 𝟒 + 𝟐𝒑𝒆 + 𝒑𝒉 the dominant strategy will 
be the RA strategy. Note that in the tests performed similarities were found in the analysis, 
these similarities were found when the sequence (S) of the test is {h,e}. Figure 3 shows a 
graphical summary of what was described above. 

bub  

Figure 3. Summary table of dominance. 
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4. Conclusion and future works 
Previous research has focused on practical use with the objective of finding strategies to 
perform different types of tests, while in the area of psychology, various strategies have been 
investigated with the objective of reducing stress and anxiety when facing a test. However, 
these studies have not been approached from the algorithms, mathematics, and optimization 
viewpoints. This study generated a mathematical scheduling model that generated a 
standardized test with the objective of applying the strategies found in the literature in order 
to find dominance properties. By performing several instances of a standardized three-
question test, it was concluded that one strategy would dominate over the other depending 
on the parameters and design of the test. In particular, we observe that the use of one strategy 
over the other will be indifferent if the maximum time to perform the test is not enough to 
answer the first question or if the maximum time is more than enough to answer the whole 
test. Finally, we show that the RA strategy will always dominate over the RSA strategy when 
the last question of the test is asked. Studying these dominance properties can provide a guide 
for test-takers to tackle standardized tests and obtain an expected result.  For future works, 
we leave open the problem with a sequence and number of unknown questions by the test-
taker, or where each question could have weights or a probability of error, increasing the 
difficulty of the problem to be studied. 
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