

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Instituto Universitario Mixto de Biología Molecular y Celular de Plantas

Estudio de mecanismos implicados en la longevidad de semillas obtenidas en diferentes condiciones ambientales

Trabajo Fin de Máster

Máster Universitario en Biotecnología Molecular y Celular de Plantas

AUTOR/A: Mestre Pluvinet, Paula

Tutor/a: Gadea Vacas, José

Director/a Experimental: NIÑOLES RODENES, REGINA

CURSO ACADÉMICO: 2023/2024

Estudio de mecanismos implicados en la longevidad de semillas obtenidas en diferentes condiciones ambientales

Trabajo Fin de Máster Realizado por: Paula Mestre Pluvinet Dirigido por: José Gadea y Regina Niñoles

AGRADECIMIENTOS

En primer lugar, me gustaría agradecer a todo mi laboratorio por brindarme la oportunidad de realizar mi TFM con ellos y por inspirarme a ser una mejor científica. A mi tutora, Regina Niñoles, le agradezco ser un referente tanto personal como profesional, por su apoyo constante y por tenderme la mano siempre que la he necesitado. A mi tutor, Pepe Gadea, le agradezco compartir sus conocimientos y darme la oportunidad de aprender de él, así como por la paciencia que siempre ha tenido conmigo para enseñarme todo lo aprendido este curso.

A mis compañeros de laboratorio: Sepideh, por enseñarme todo lo que sabe y ayudarme a integrarme desde el primer día; a Jose, por hacer que el laboratorio fuera como estar en casa, por su buen humor diario y por ser un magnífico compañero; a Susana, que, a pesar de llegar como un terremoto y poner el laboratorio patas arriba, ha sido uno de mis grandes descubrimientos este año; y a Euge, que, aún llegando al final de este curso cuando yo estaba en mis peores momentos, ha sabido sacarme una sonrisa en todo momento.

Por último, quiero agradecer a mis amigos, a mi familia, especialmente a mi madre y a mi padre, por el cariño y el ánimo que me han dado en estos últimos años, y que sin ellos no estaría hoy donde estoy. No puedo olvidar mencionar a Dani, mi gran apoyo tanto dentro del laboratorio como en el caos de piso en el que vivimos; sin ti, estos años no habrían sido los mismos.

RESUMEN

Las semillas constituyen el principal modo de propagación de las plantas y representan, por sí mismas, una fuente esencial de alimento. Por lo tanto, el estudio de factores que determinen su calidad no solo es importante para el mantenimiento de la biodiversidad, sino también de interés agronómico. Por ejemplo, las semillas van perdiendo gradualmente viabilidad durante el almacenamiento, y las empresas productoras de semillas demandan mecanismos para retrasar ese "envejecimiento", que depende tanto de factores genéticos como ambientales. De hecho, se conoce que las condiciones de crecimiento de la planta madre influyen en el comportamiento posterior de su descendencia, por ejemplo, mediante mecanismos epigenéticos. Por lo tanto, es muy relevante esclarecer cómo factores ambientales como la luz o la temperatura de crecimiento del parental pueden llegar a condicionar la calidad de sus semillas.

En este trabajo, se emplea un abordaje transcriptómico, seguido de estrategias moleculares y bioquímicas, para determinar a través de qué procesos influye el entorno en que crece la planta madre sobre la calidad de sus semillas. Concretamente, se estudia porqué las semillas de la accesión Bor-4 obtenidas en condiciones de alta temperatura e intensidad lumínica son más longevas que las obtenidas en condiciones normales. Los resultados del trabajo muestran que estas semillas tienen activada la expresión de genes de respuesta a estrés oxidativo y genes del metabolismo energético y síntesis de ATP. Sin embargo, el contenido en ATP de las semillas obtenidas en estas condiciones es menor que las obtenidas en condiciones normales. Asimismo, se muestra que el factor de transcripción ABI5 podría desempeñar un papel fundamental en la regulación génica en respuesta a la temperatura en semillas cultivadas bajo una alta temperatura e intensidad lumínica. semillas. Por último, el trabajo confirma la importancia de las RFOs durante el envejecimiento.

Por tanto, la respuesta de las semillas de Bor-4 a cambios en el entorno refleja la complejidad de los mecanismos subyacentes, pero permite señalar áreas clave para futuras investigaciones dirigidas a obtener semillas más vigorosas y capaces de mantener su viabilidad durante períodos más prolongados.

ABSTRACT

Seeds serve as the primary means of plant propagation and are also a crucial source of food. Therefore, understanding the factors that determine seed quality is not only vital for biodiversity preservation but also holds agronomic significance. For instance, seeds gradually lose viability during storage, prompting seed companies to seek mechanisms to delay this "aging," influenced by both genetic and environmental factors. It is well-established that the growing conditions of the mother plant impact the subsequent behavior of its offspring, mediated by epigenetic mechanisms. Consequently, investigating how environmental factors such as light and growth temperature of the parental plant can affect seed quality is of paramount importance.

This study employs a transcriptomic approach, complemented by molecular and biochemical strategies, to elucidate the processes through which the environment surrounding the mother plant influences seed quality. Specifically, our focus is on understanding why seeds from the Bor-4 accession, obtained under high-temperature and high-light conditions, exhibit greater longevity than those under normal conditions. The results reveal that these seeds activate the expression of genes related to oxidative stress response, energy metabolism, and ATP synthesis. Despite this, the ATP content in seeds obtained under these conditions is lower than that in seeds obtained under normal conditions. Additionally, the study suggests that the transcription factor ABI5 may play a pivotal role in gene regulation in response to temperature in seeds grown under high temperature and light intensity. Finally, the research underscores the significance of RFOs (raffinose family oligosaccharides) during the aging process.

In summary, the response of Bor-4 seeds to environmental changes underscores the complexity of the underlying mechanisms but identifies key areas for future research. This research aims to develop more robust seeds capable of maintaining viability over extended periods.

OBJETIVOS DE DESARROLLO SOSTENIBLES

Este TFM se ajusta de manera precisa al ODS 13: Acción por el clima, que implica la adopción de medidas urgentes para hacer frente al cambio climático y sus consecuencias.

Dada la relevancia de las semillas en la alimentación humana, este planteamiento también concuerda con el ODS 2: Hambre cero. Por último, alargar la vida útil de las semillas aporta al mantenimiento de la biodiversidad, alineándose así con el ODS 15: Vida de ecosistemas.

Objetivos de Desarrollo Sostenibles	Alto	Medio	Bajo	No procede
ODS 1. Fin de la pobreza.				√
ODS 2. Hambre cero.		√		
ODS 3. Salud y bienestar.				✓
ODS 4. Educación de calidad.				√
ODS 5. Igualdad de género.				√
ODS 6. Agua limpia y saneamiento.				√
ODS 7. Energía asequible y no contaminante.				✓
ODS 8. Trabajo decente y crecimiento económico				✓
ODS 9. Industria, innovación e infraestructuras.				✓
ODS 10. Reducción de las desigualdades.				✓
ODS 11. Ciudades y comunidades sostenibles.				√
ODS 12. Producción y consumo responsables.				✓
ODS 13. Acción por el clima.	√			
ODS 14. Vida submarina.				✓
ODS 15. Vida de ecosistemas terrestres.		✓		
ODS 16. Paz, justicia e instituciones sólidas.				√
ODS 17. Alianzas para lograr objetivos.				√

ÍNDICE

1.	INTRO	DDUCCIÓN	1
1.1.	Imp	ortancia de las semillas	1
1.2.	Des	sarrollo y germinación de las semillas	1
1.3.	Lon	gevidad de las semillas	3
1.3	3.1.	Aspectos moleculares	4
1.3	3.2.	Variabilidad genética	5
1.4.	Car	nbio climático, importancia en los recursos vegetales	7
1.5.	Efe	cto del cambio climático sobre la longevidad de la semilla	7
1.8	5.1.	Efecto de la temperatura sobre la longevidad	8
1.8	5.2.	Efecto de la luz sobre la longevidad	g
1.6.	Ant	ecedentes	9
2.	OBJE	TIVOS	11
3.	MATE	RIALES Y MÉTODOS	12
3.1.	Mat	erial vegetal y condiciones de crecimiento	12
3.2.	Mai	nejo de Arabidopsis	12
3.2	2.1.	Esterilización de semillas	12
3.2	2.2.	Cultivo in vitro en medio sólido	13
3.3.	Aná	ilisis bioinformático de datos de RNAseq	13
3.4.	Ext	racción de RNA y qRT-PCR	14
3.4	4.1.	Extracción de RNA	14
3.4	4.2.	Obtención de cDNA por retro transcripción del RNA	15
3.4	4.3.	Estudio de expresión por qRT-PCR	15
3.5.	Ens	sayo de envejecimiento acelerado (Controlled Deterioration Treatm	ent, CDT)
3.6.	lmb	ibición de semillas de Arabidopsis	17
3.7.	Cua	antificación de ATP en semillas	18
3.7	7.1.	Medida del contenido en ATP	18
3.8.	Med	dida de metabolitos primarios	18
3.9.	Obs	servación de las mitocondrias de las semillas mediante TEM	19
4.	RESU	LTADOS	20
4.1.	Ant	ecedentes	20
4.2.	Aná	ilisis transcriptómico	21
4.2	2.1.	Análisis de componentes principales (PCA)	21
4.2	2.2.	Diagramas de Venn	22
4.2	2.3.	Factores de transcripción	23

4	.2.4.	Categorías funcionales	24
4.3		-PCR de genes relacionados con estrés oxidativo y metabolismo	26
4	.3.1.	qRT-PCR de genes que codifican para ATPsintasas	27
	.3.2. ransporte	qRT-PCR de genes que codifican para proteínas involucradas en el electrónico	28
4	.3.3.	qRT-PCR de genes de respuesta a estrés oxidativo	29
4.4	. Cua	ntificación de ATP en semillas de la accesión Bor-4	30
4.5	. Meta	abolitos relacionados con metabolismo energético	34
4.6	. TEM	de semillas de la accesión Bor-4	35
5.	DISCU	SIÓN	38
6.	CONC	LUSIONES	42
7.	BIBLIC	GRAFÍA	43
AN	EXO I		48
		de los 100 primeros genes con mayor expresión en semillas obtenidas en es de alta intensidad lumínica y a 27°C	
		de los 100 primeros genes con menor expresión en semillas obtenidas en es de alta intensidad lumínica y a 27°C	
AN	EXO II		53
		de los 100 primeros genes con mayor expresión en semillas obtenidas en es de lata intensidad lumínica y a 22°C	
		de los 100 primeros genes con menor expresión en semillas obtenidas en es de lata intensidad lumínica y a 22°C	
AN	EXO III		58
		de los 100 primeros genes con mayor expresión en semillas obtenidas a	
		de los 100 primeros genes con menor expresión en semillas obtenidas a	
AN	EXO IV		64
		de los 100 primeros genes con mayor expresión en semillas obtenidas a	
	xtracto (de los 100 primeros genes con menor expresión en semillas obtenidas a	

ÍNDICE DE FIGURAS

Figura 1. Germinación de semillas de Arabidopsis3
Figura 2. Gráfica que presenta la germinación de las semillas de accesiones cultivadas
bajo distintas condiciones ambientales
Figura 3.Gráfico de puntuación resultante del PCA de los datos analizados
previamente obtenidos de diferentes condiciones
Figura 4. Diagrama de Venn de genes up regulated al aumentar la temperatura de 22
a 27°C, en condiciones de baja luz (LL_22_27) o alta luz (HL_22_27)22
Figura 5. Diagrama de Venn de genes down regulated al aumentar la temperatura de
22 a 27°C, en condiciones de baja luz (LL_22_27) o alta luz (HL_22_27)23
Figura 6. Categorías funcionales sobrerrepresentadas en los genes down regulated en
la condición HL_22_2725
Figura 7. Categorías funcionales sobre-representadas obtenidas a partir de los genes
up regulated de la condición HL_22_2726
Figura 8. Resultados expresión de los distintos genes obtenidos por qRT-PCR de la
subunidad ATP sintasa
Figura 9. Resultados expresión de los genes responsables del transporte electrónico
obtenidos por qRT-PCR de la subunidad ATP sintasa
Figura 10. Resultados expresión de los genes relacionados con la respuesta a estrés
oxidativo obtenidos por qRT-PCR30
Figura 11. Grafica donde se muestra la curva estándar que se usó para determinar las
concentraciones de las muestras
Figura 12. Resultados de la cuantificación de ATP de las semillas Bor-4 crecidas a
22°C y a 27°C, secas y embebidas 15 horas; no envejecidas (línea continua) y
envejecidas (CDT, línea discontinua) 8 días
Figura 13. Se muestra el porcentaje de plántulas con cotiledones abiertos y verdes de
las semillas una vez envejecidas durante 8 días
Figura 14. Velocidad de germinación de las semillas crecidas a 22°C y a 27°C en dos
medios diferentes, un medio sólido con sacarosa y uno sin sacarosa
Figura 15. Resultados de la cuantificación de ATP de las semillas Tou-A1-67 crecidas
a 22°C y a 27°C, secas y embebidas 15 horas; no envejecidas (línea continua) y
envejecidas (CDT, línea discontinua) 8 días
Figura 16. Resultados del análisis de metabolitos de las semillas de Bor-4 obtenidas a
22°C y a 27°C, embebidas o secas, envejecidas o no
Figura 17. Resultados del análisis de metabolitos de las semillas de Bor-4 obtenidas a
22°C y a 27°C, embebidas o secas, envejecidas o no

Figura 18. Resultados del análisis de metabolitos de las semillas de Bor-4 obtenidas a
22°C y a 27°C, embebidas o secas, envejecidas o no
Figura 19. Imagen donde se observan las mitocondrias de las semillas crecidas a 22°
embebidas durante 15 horas. (A) imagen de la célula general. (B) imagen ampliada. 3
Figura 20. Imagen donde se observan las mitocondrias de las semillas crecidas a 22°
secas3
Figura 21. Imagen donde se observan las mitocondrias de las semillas crecidas a 22º
embebidas. (A) imagen de la célula general. (B) imagen ampliada

ÍNDICE DE TABLAS

Tabla 1. Datos aproximados de la variabilidad conservando las semillas en	
condiciones ambientales no óptimas, de diferentes variedades de semillas	
(Toni Jardón, 2017).	3
Tabla 2. Se muestran las diferentes condiciones en las que crecieron las	
semillas y la nomenclatura de cada una	12
Tabla 3. Lista de primers utilizados para el análisis de expresión cuantitativo	
(qRT-PCR)	16
Tabla 4. Resultados del análisis del TF2Network para los genes up regulated	24
Tabla 5. Resultados del análisis del TF2Network para los genes down	
regulated	24
Tabla 6. ATPsintasas que se encontraban inducidas en Bor-4	27
Tabla 7. Tabla con los genes que se veían involucrados en la codificación de	
proteínas para el transporte electrónico	28
Tabla 8. Genes que se veían involucrados en la respuesta a estrés oxidativo.	29

1. INTRODUCCIÓN

1.1. Importancia de las semillas

Las semillas ejercen un papel vital como el principal medio de dispersión en las plantas espermatofitas, facilitando su repartimiento a distancias considerables mediante agentes ambientales como el agua, el viento y la ayuda de seres vivos (Peris et al., 2010). Esta adaptación ha sido muy importante para la humanidad, ya que el uso y consumo de semillas han llegado a constituir uno de los fundamentos esenciales de la civilización, sobre todo una vez empezó el proceso de la domesticación de plantas cultivadas que fue hace miles de años. Algunos ejemplos de semillas más consumidas en el mundo son el maíz, el trigo o el arroz; que según la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), el consumo medio por persona de los últimos años es de unos 85 kg/persona en Asia y de unos 6 kg/persona en Europa; y unos 64,7 kg/persona de trigo a nivel mundial.

Tras recibir unos estímulos necesarios, la semilla inicia el proceso de germinación gracias a los nutrientes presentes en su estructura. Estos nutrientes se movilizan durante el desarrollo post-embrionario para impulsar el crecimiento de la plántula hasta que esta pueda llevar a cabo la fotosíntesis eficientemente. La capacidad de germinación de una semilla depende en gran medida de la protección facilitada al embrión, esta puede ser dada por su estructura física, la composición nutritiva, el contenido antioxidante y la genética de la semilla (Rajjou et al., 2008). Cabe decir que obtener semillas con una alta capacidad germinativa, capaces de resistir el envejecimiento in situ o ex situ, implicando así una larga longevidad (el tiempo que pueden mantenerse viables en unas determinadas condiciones de temperatura y contenido de humedad) y con un alto vigor, capacidad para germinar y emerger vigorosamente de una semilla, es esencial desde el punto de vista agronómico y alimentario.

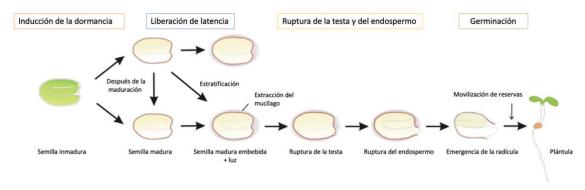
En el contexto del cambio climático, el estado genético de las plantas puede cambiar bajo la presión de selección, lo que lleva a la pérdida de comunidades de plantas o conjuntos de especies. La conservación de semillas in situ y ex situ parece ser una estrategia muy importante para mantener la diversidad de las plantas.

En un estado sin humedad, es decir, seco, la actividad metabólica de las semillas se reduce significativamente hasta alcanzar un nivel muy bajo (estado latente), mientras que la capacidad de germinación se conserva durante mucho tiempo (Buitink et al., 2008). Por lo tanto, comprender los rasgos complejos que regulan la longevidad de las semillas es importante en contextos ecológicos, agrícolas y económicos.

1.2. Desarrollo y germinación de las semillas

Las angiospermas, comúnmente conocidas como plantas con flores, se someten a un proceso de fertilización para formar semillas a partir del ovulo. Este complejo proceso implica la activación y coordinación de varias vías de desarrollo que conducen a la formación del embrión, el endospermo y la cubierta de la semilla. El embrión

desencadena el desarrollo de una nueva planta, mientras que el endospermo actúa como fuente primaria de nutrientes durante la germinación, estableciendo las bases para el crecimiento inicial. La cubierta de la semilla, que está compuesta por varias capas de células especializadas derivadas de la madre, desempeña un papel importante en la conexión del embrión con el entorno externo durante la embriogénesis, la fase de latencia y la germinación.


La diferenciación de la cubierta de la semilla con respecto a los tegumentos del óvulo implica notables cambios celulares, acabando en la apoptosis de las células de la testa. A pesar de la apoptosis, estas células brindan protección, promueven la latencia y la germinación, y facilitan la dispersión de las semillas. Además, en algunas especies, como los tricomas epidérmicos de la cubierta de la semilla del algodón, utilizadas en la producción textil, estas células especializadas son un recurso comercial valioso (Haughn y Chaudhury., 2005).

En el caso específico de *Arabidopsis thaliana*, *Arabidopsis*, el desarrollo de las semillas se divide en tres etapas importantes: después de la doble fertilización, se activa la morfogénesis temprana en el saco embrionario. El embrión pasa por una división celular para dar cabida a las estructuras principales de la planta, mientras que el endospermo pasa por dos etapas de desarrollo, que culminan en la reabsorción durante la fase de maduración. En la segunda etapa, las células embrionarias experimentan expansión y diferenciación celular, lo que coincide con la acumulación de productos de almacenamiento interno, como la síntesis de nitrógeno (proteínas) y la formación de compuestos de almacenamiento de carbono (lípidos) (Baud et al., 2002). Finalmente, durante el proceso de maduración de las semillas después de la etapa morfogénica, el contenido de humedad disminuye gradualmente hasta que estas se vuelven resistentes a la desecación, y entran finalmente en un estado latente. Durante la desecación, el citoplasma de las células de la semilla cambia de una consistencia líquida a una consistencia vítrea, lo cual es esencial para la tolerancia a la desecación (Buitink y Leprince, 2008).

La germinación de la semilla comienza cuando las condiciones se tornan favorables, empezando con la imbibición y terminando con la emergencia de la radícula. El éxito de la germinación no solo es crucial para el establecimiento de las plántulas, sino también para el rendimiento de los cultivos. La germinación se define como una serie de eventos morfogenéticos y metabólicos que tienen como resultado la transformación del embrión en una nueva planta.

En primer lugar, tiene lugar la imbibición, un proceso físico y muy necesario para la hidratación de enzimas que llevarán a cabo la reactivación metabólica. Uno de los primeros cambios es un aumento de la actividad respiratoria mediante vías como la glucólisis, el ciclo de Krebs y el ciclo de las pentosas fosfato. Este proceso se lleva a cabo para obtener ATP y poder reductor necesario para la emergencia de la plántula y su posterior crecimiento, y el metabolismo durante la futura germinación. La actividad respiratoria de la semilla se desarrolla principalmente en condiciones anaeróbicas durante los primeros momentos de la imbibición, evolucionando hacia un entorno aeróbico a medida que la radícula o el eje embrionario atraviesan los tejidos circundantes y la cubierta seminal.

Durante todo el proceso de germinación de *Arabidopsis*, se diferenciarán 4 estadios principales: la ruptura de la testa tras la imbibición, proceso en el cual se puede observar cómo emerge el endospermo; seguidamente, habrá la emergencia de la radícula del embrión; la tercera fase constará de la aparición de los pelos radiculares; y, por último, la proliferación y el establecimiento de los cotiledones (Matilla A., 2008).

Figura 1. Germinación de semillas de Arabidopsis. Una semilla madura de Arabidopsis puede ser latente o no latente. Una semilla latente no germinará cuando esté expuesta a las condiciones ambientales adecuadas (luz y agua). La latencia de la semilla puede romperse mediante el almacenamiento en seco o la imbibición en frío (estratificación) (Bentsink et al., 2008).

1.3. Longevidad de las semillas

La longevidad de las semillas se define como el intervalo de tiempo en el que estas mantienen su viabilidad, constituyendo un atributo fundamental para la ecología, la agronomía y la economía. Se destacan duraciones muy largas en la viabilidad de semillas, como es el caso del nenúfar sagrado, que alcanza casi 1300 años almacenado en condiciones óptimas enterrado. Otro ejemplo es la palmera de Israel (*Phoenix dactylifera*), que se ha conseguido volver a germinar después de permanecer enterradas las semillas unos 2000 años (Sallon et al., 2008).

En cambio, otras especies, como la cebolla o el calabacín, tienen una vida útil relativamente breve (Tabla 1).

Tabla 1. Datos aproximados de la variabilidad conservando las semillas en condiciones ambientales no óptimas, de diferentes variedades de semillas (Toni Jardón, 2017).

Especie, nombre científico	Nombre común	Años de viabilidad
Solanum lycopersicum	Tomate	5
Daucus carota	Zanahoria	3
Solanum melongena	Berenjena	5
Allium cepa	Cebolla	2
Allium sativum	Ajo	2
Cucurbita pepo	Calabacín	3
Lactuca sativa	Lechuga	5
Capsicum annuum	Pimiento	4
Cucucmis melo	Melón	5
Pisum sativum	Guisante	3

En relación con *Arabidopsis*, se ha demostrado una variabilidad importante en la durabilidad de las semillas dentro de esta especie vegetal (Renard et al., 2021). Este fenómeno sugiere que la longevidad de las semillas no siempre se muestra como una fuerza selectiva predominante y que puede existir una compensación dependiendo de la especie vegetal y de las condiciones ambientales (Sano et al., 2016).

A lo largo del almacenamiento, la durabilidad de las semillas depende sobre todo del contenido de humedad, la humedad relativa, la presión de oxígeno y la temperatura de almacenamiento (Groot et al., 2012). En condiciones de almacenamiento en seco, la viabilidad de las semillas experimenta una bajada gradual debido a diversos procesos de envejecimiento y/o episodios de deterioro. Los síntomas iniciales incluyen una demora en la germinación de las semillas y un establecimiento deficiente de las plántulas, con la pérdida total de viabilidad mostrada por la incapacidad para germinar, lo que comúnmente resulta en una disminución del rendimiento de los cultivos (Ghassemi-Golezani et al., 2010).

La evaluación de la longevidad de las semillas durante el envejecimiento natural en condiciones de sequedad y temperaturas moderadas requiere un considerable período de tiempo. Por ende, en numerosas investigaciones, las semillas se someten a condiciones de alta humedad relativa y elevada temperatura para acelerar el proceso de deterioro. Este procedimiento, conocido como tratamiento de deterioro controlado o envejecimiento acelerado, simula los eventos moleculares y bioquímicos que acontecen durante el envejecimiento natural de las semillas en un tiempo de ensayo mucho menor, facilitando la investigación en este campo (Sano et al., 2016).

Como se ha explicado previamente, es conocido que la longevidad de las semillas se reduce rápidamente durante el almacenamiento en condiciones de alta humedad relativa y temperatura elevada. La oxidación de moléculas celulares, como lípidos, membranas celulares, ADN, ARN y proteínas (Rajjou et al., 2008), provocada por especies reactivas del oxígeno (ROS), también impacta en la longevidad de las semillas. La luz ultravioleta, que puede dañar el ADN, también se ha considerado perjudicial para las semillas. Dado que la actividad metabólica es mínima en las semillas maduras, es esencial que estén equipadas con mecanismos protectores durante su desarrollo para contrarrestar el estrés oxidativo y prolongar su longevidad. No obstante, incluso con estos mecanismos de protección, las semillas maduras secas acumulan gradualmente daños celulares durante el envejecimiento. Una vez que las semillas absorben agua, el citoplasma de las células se transforma de un estado vítreo a uno líquido y se activa el metabolismo. En estas condiciones, las semillas pueden reparar los daños y mejorar su vigor (Sano et al., 2016).

1.3.1. Aspectos moleculares

La supervivencia en ambientes secos necesita de mecanismos celulares altamente eficientes para una protección adecuada. Un elemento crítico para mantener las células activas en condiciones de escasez de agua es reducir su actividad metabólica a un estado de reposo. Una táctica comúnmente utilizada para frenar el metabolismo celular trata en restringir la movilidad molecular mediante la acumulación de azúcares solubles no reductores, transformando de este modo el citoplasma en un estado vítreo. La

combinación de temperaturas bajas y contenido reducido de humedad facilita la formación de esta estructura vítrea intracelular (Rajjou et al., 2008).

La relación entre la viscosidad celular y la movilidad molecular dentro del citoplasma ha mostrado una conexión significativa con la longevidad de las semillas en diversas condiciones de temperatura y niveles de humedad. La formación de un estado vitreo en las semillas se ve favorecida por la sustitución del agua por oligosacáridos, sobre todo, sacarosa y oligosacáridos de la familia de la rafinosa (RFO), que modifican las matrices cristalinas normales. Estos RFO y la sacarosa también pueden actuar como fuentes de energía durante la germinación; de hecho, se ha informado que los RFO se descomponen rápidamente durante la imbibición de la semilla (Salvi et al., 2022).

El estado vítreo previene eventos perjudiciales, como las reacciones de Maillard, que son un conjunto de reacciones químicas que se producen entre compuestos nitrogenados y los azúcares reductores que se dan al haber un aumento de la temperatura. Se ha sugerido que los RFO protegen las células vegetales contra el daño oxidativo. La estabilidad del citoplasma vítreo se logra mediante una combinación de azúcares y proteínas abundantes al final de la embriogénesis (LEA), que son altamente hidrofílicas. Estas proteínas, comúnmente asociadas con la desecación y la tolerancia al estrés abiótico, sufren un plegamiento inducido por la desecación, sugiriendo que podrían desempeñar funciones diversas bajo diferentes estados (Hunault y Jaspard, 2010). Además, las proteínas de choque térmico (HSP) desempeñan un papel crucial en la longevidad de las semillas. En investigaciones futuras, diversos HSP y otros genes potenciales se están explorando como candidatos para la mejora genética de la vida útil de las semillas de cereales (Salvi et al., 2022).

Varios factores asociados con los cambios redox se han propuesto como indicadores de la viabilidad de las semillas. Aunque se han identificado varias proteínas que actúan como antioxidantes o en la señalización relacionada con el estrés oxidativo, como tiorredoxinas, peroxiredoxinas y glutaredoxinas, en las semillas, aún no se ha descrito completamente su papel en la longevidad de las semillas. La cantidad de sistemas no enzimáticos de eliminación de especies reactivas del oxígeno (ROS) se controla durante el desarrollo y la maduración de las semillas y puede verse afectada por el entorno de crecimiento de la planta madre. Estos mecanismos pasivos incluyen proteínas de almacenamiento de semillas y antioxidantes de bajo peso molecular, como tocoferoles, ascorbato y glutatión. El envejecimiento de las semillas se correlaciona con una disminución del potencial antioxidante celular (Bailly 2004; Kumar et al., 2015).

1.3.2. Variabilidad genética

En relación con la variabilidad genética en *Arabidopsis*, se hizo un estudio exhaustivo de la longevidad posterior al envejecimiento natural usando una línea recombinante (RIL), y el mapeo de loci de caracteres cuantitativos (QTL) reveló la existencia de un QTL principal. A partir de este punto, se identificaron dos genes candidatos en la ubicación del QTL principal: galactinol sintasa y rafinosa sintasa. Años después, se demostró que el contenido de galactinol estaba altamente correlacionado con la longevidad de las semillas en *Arabidopsis*, estableciendo el galactinol como un

biomarcador adecuado para predecir la longevidad de estas (de Souza Vidigal et al., 2016).

En un estudio realizado por Miura et al. (2002), se emplearon 98 líneas de retrocruce endogámicas (BILs) originadas de un cruce entre una variedad japónica (Nipponbare) y una variedad índica (Kasalath) con el objetivo de identificar loci de rasgos cuantitativos (QTLs) que regulan la longevidad de las semillas en arroz (*Oryza sativa* L.). Fueron identificados tres QTLs putativos para la longevidad de las semillas (qLG-2, qLG-4 y qLG-9) en los cromosomas 2, 4 y 9, respectivamente. El QTL de mayor impacto, qLG-9, explicó el 59.5% de la variación fenotípica total en las BILs, mientras que los otros dos, qLG-2 y qLG-4, contribuyeron con el 13.4% y el 11.6% respectivamente.

En un segundo estudio conducido por Nagel et al. (2015) sobre cebada (*Hordeum vulgare*), se emplearon enfoques genéticos y bioquímicos para obtener una visión completa de los factores que afectan la conservación y el envejecimiento de las semillas. Se utilizaron semillas de una colección de germoplasma que comprendía 175 genotipos de cebada de cuatro continentes. El mapeo de asociación a nivel genómico reveló 107 asociaciones entre marcadores y rasgos, indicando efectos genotípicos en el envejecimiento de las semillas. Se observó que tanto factores abióticos como bióticos afectaron la longevidad de las semillas.

Al abordar aspectos de estrés abiótico, incluido el estrés oxidativo, se analizaron dos grupos importantes de antioxidantes. Contrariamente, no se encontró correlación entre el deterioro de las semillas y los tocoferoles solubles en lípidos, ni con los contenidos de aceite, almidón y proteínas. En cambio, los tioles solubles en agua, como el glutatión, se convirtieron en disulfuros, indicando un cambio significativo hacia condiciones intracelulares más oxidantes en las semillas sometidas a almacenamiento en seco a largo plazo a dos temperaturas o a dos tratamientos de envejecimiento artificial.

En otro estudio llevado a cabo por Agacka-Mołdoch et al. (2016), se examinó la variabilidad en la longevidad de las semillas de trigo mediante la comparación de regiones genómicas identificadas mediante mapeo biparental. Estas regiones albergaban determinantes de pérdida de viabilidad en granos sometidos a envejecimiento artificial o almacenamiento a largo plazo. Se encontró que solo un locus era compartido, pero incluso en este caso, la ascendencia parental del alelo positivo difería.

Por último, en un reciente estudio sobre la longevidad de las semillas realizado por Renard et al. (2020), se llevó a cabo un análisis genómico utilizando conjuntos de datos públicos de polimorfismos de nucleótido único (SNP). Durante este análisis, se identificaron diversas regiones genómicas asociadas con las variaciones en la longevidad de las semillas. Al realizar genética inversa en 20 genes candidatos en el ecotipo Columbia, se descubrieron siete genes (PSAD1, SSLEA, SSTPR, DHAR1, CYP86A8, MYB47 y SPCH) que promueven la longevidad de las semillas, mientras que cinco genes (RBOHD, RBOHE, RBOHF, KNAT7 y SEP3) mostraron tener un impacto negativo en este aspecto. Se destaca la importancia del estrés oxidativo en el envejecimiento de las semillas a través de la participación de las NADPH oxidasas

(RBOHs), el dehidroascorbato reductasa (DHAR1) y la subunidad I del fotosistema (PSAD1).

Esto evidencia que hay una clara componente genética en este rasgo.

1.4. Cambio climático, importancia en los recursos vegetales

El análisis de las consecuencias futuras del cambio climático ha sido objeto de extensas discusiones, sobre todo en los sectores más susceptibles, que abarcan todas las facetas de la seguridad alimentaria, desde la disponibilidad de alimentos (producción y comercio) hasta el acceso a ellos, la estabilidad en el suministro y su adecuado aprovechamiento. Este fenómeno, marcado por el aumento de las emisiones de gases de efecto invernadero, cambios en la temperatura promedio, incremento en la frecuencia de eventos climáticos extremos, lluvias intensas y periodos de sequía, tiene consecuencias críticas para la sostenibilidad de los recursos vegetales (Singh et al., 2015).

Es esencial comprender algunos términos clave para evaluar plenamente la magnitud del impacto. Por ejemplo, el calentamiento global, con el cual se prevén aumentos de temperatura que pueden variar entre 1,4 y 5,8°C para el año 2100 (Houghton et al., 2001), se espera que tenga consecuencias significativas en la agricultura. Esto se traduce en un escenario en el cual los eventos climáticos extremos, como sequías e inundaciones más frecuentes, pueden comprometer la producción de cultivos esenciales.

Las regiones actualmente más afectadas por la inseguridad alimentaria, ya de por sí vulnerables, son las más propensas a sufrir los efectos del cambio climático. Este fenómeno tiene el potencial de afectar todas las facetas de la producción agrícola, la cual está especialmente vinculada a la disponibilidad puntual de semillas de alta calidad en cantidades adecuadas y a precios asequibles para las comunidades agrícolas.

Adicionalmente, surge el desafío de alimentar a una población mundial en constante crecimiento, con un aumento de 160 personas por minuto. Para cumplir con la demanda alimentaria planeada para 2050, que se espera que supere los 9000 millones de habitantes en comparación con los 7000 millones actuales, será inevitable tener que mejorar significativamente la productividad de los cultivos y la producción global de alimentos, considerando el vertiginoso cambio climático (Singh et al., 2015).

1.5. Efecto del cambio climático sobre la longevidad de la semilla

La longevidad de las semillas se ve afectada por diversas condiciones ambientales, como la luz, la temperatura, la sequía y la salinidad, siendo la temperatura y la disponibilidad de agua los factores más influyentes.

Se han observado notables cambios en la longevidad de las semillas en relación con el clima y las condiciones específicas a las que se ha adaptado la especie. Estas condiciones pueden percibirse como restricciones por parte de la semilla o la planta

madre, limitando o ralentizando los procesos de desarrollo que conducen a la adquisición de la longevidad (Zinsmeister et al., 2020).

Diversas investigaciones indican que las semillas de especies provenientes de entornos cálidos y secos tienden a tener una vida más prolongada en comparación con aquellas que se encuentran en condiciones frescas y húmedas, independientemente del parentesco filogenético. Este hallazgo sugiere que las especies han desarrollado adaptaciones para climas secos, lo que se refleja en la longevidad de sus semillas (Probert et al., 2009).

Acorde con estos resultados, se han identificado variaciones en la longevidad de las semillas de *Arabidopsis* almacenadas en condiciones de envejecimiento húmedo (85% de humedad relativa, 35°C). Este fenómeno se observó mediante el uso de líneas isogénicas, que son el resultado de adaptaciones a las condiciones ambientales locales (He et al., 2014).

Para comprender la influencia de las condiciones ambientales selectivas en la longevidad de las semillas, se llevó a cabo un estudio en el que se emplearon 12 mutantes de *Arabidopsis* (He et al., 2014) con variaciones en diversas características de las semillas. Se comprobó que la temperatura desempeña un papel predominante en la longevidad de las semillas después de tratamientos de CDT, mientras que la luz afectó principalmente a los rasgos de la planta. Además, los genotipos individuales respondieron de manera diferente a varias condiciones ambientales. Por ejemplo, la baja temperatura incrementó la longevidad y redujo la latencia en dos mutantes. En cambio, la baja intensidad de luz aumentó la latencia y disminuyó la longevidad, en dos mutantes, evidenciando que diferentes vías moleculares están implicadas en la longevidad y la latencia (Arif et al., 2022).

En general, estos estudios proponen que la longevidad puede interpretarse como una adaptación a largo plazo a entornos áridos y secos. Esta adaptación ejerce una presión selectiva en cascada sobre las generaciones futuras, destacando la importancia de la relación entre las condiciones ambientales y la durabilidad de las semillas.

1.5.1. Efecto de la temperatura sobre la longevidad

La influencia de la temperatura en la longevidad de las semillas puede variar, ya sea afectando positiva o negativamente, dependiendo de la especie y de factores genéticos específicos.

En el caso de especies como *Arabidopsis*, se ha observado que temperaturas cálidas durante el desarrollo de las semillas tienden a aumentar su longevidad durante el almacenamiento en seco. Por el contrario, bajas temperaturas durante el desarrollo de la semilla han sido asociadas con una reducción en su longevidad (He et al., 2014). Un estudio llevado a cabo por MacGregor et al (MacGregor et al., 2015) demostró que las temperaturas frías impactan en la composición de fenilpropanoides y en la permeabilidad de la cubierta de la semilla en *Arabidopsis*, un tejido materno donde mutantes defectuosos mostraron una disminución en la longevidad (Debeaujon et al., 2000; Niñoles et al., 2023).

Un cambio de temperatura puede provocar modificaciones en la longevidad de las semillas. Este proceso no se comprende completamente, pero es probable que implique diferentes mecanismos provenientes de la planta madre y del cigoto (MacGregor et al., 2015). Se sabe que el gen DELAY OF GERMINATION 1 (DOG1) es un gen que tiene una función de sensor de temperatura, modulando la latencia de las semillas. En un estudio llevado a cabo por Dekkers et al., afirman que DOG1 también afecta a la longevidad, ya que influye en la expresión del gen ABSCISIC ACID INSENSITIVE 5 (ABI5), un regulador de un subconjunto de genes abundantes en embriogénesis tardía durante etapas de desarrollo (Dekkers et al., 2016).

1.5.2. Efecto de la luz sobre la longevidad

Durante la fase final de la maduración de las semillas, que coincide con la adquisición de la longevidad, los cloroplastos experimentan un desmantelamiento, y las moléculas de clorofila se degradan mediante mecanismos distintos a los observados en las hojas senescentes (Li et al., 2017). En este periodo, la exposición a la luz puede resultar perjudicial para los embriones clorofílicos. En especies donde persisten restos de clorofila en el momento de la cosecha o debido a defectos genéticos en la degradación de las clorofilas, se ha observado una disminución en la vida útil de las semillas tanto en condiciones de almacenamiento húmedo (Li et al., 2017) como en seco (Zinsmeister et al., 2016).

En el caso específico de *Arabidopsis*, se ha señalado que la intensidad lumínica, y no el fotoperiodo, ejerce un efecto positivo en la longevidad de las semillas. Se ha sugerido que este fenómeno podría regular la acumulación de RFO (He et al., 2016), indicando que las semillas en desarrollo pueden integrar la señal luminosa para modular su longevidad. Sin embargo, aún queda por dilucidar los mecanismos específicos mediante los cuales este proceso tiene lugar.

En general, no se tienen conocimientos sobre que procesos y mecanismos moleculares disparados por estímulos como la luz o la temperatura están provocando diferencias de longevidad en semillas crecidas en diferentes condiciones ambientales.

1.6. Antecedentes

En nuestro laboratorio estábamos interesados en entender las influencias complejas de los factores ambientales y genéticos en la longevidad de las semillas de *Arabidopsis*, por lo que se inició una línea para poder realizar un estudio.

Resultados preliminares indican que un aumento general de la temperatura a 27°C, junto con una mayor radiación, tiende a favorecer la longevidad de las semillas. Sin embargo, esta respuesta varía entre distintas accesiones de la planta, lo que sugiere adaptaciones específicas a diferentes condiciones ambientales.

Se observa una correlación negativa entre la longevidad y la dormancia, especialmente en las plantas cultivadas a 22°C con una intensidad lumínica alta. Esto resalta la alta complejidad de las respuestas de adaptabilidad de las semillas a las diferentes

condiciones del ambiente. A pesar del aumento de la permeabilidad en las semillas a 27°C, estas muestran una longevidad extendida, indicando posibles mecanismos internos en el embrión que contrarrestan los efectores del aumento en la permeabilidad (Gil Villar., 2022).

Por lo que, en el trabajo previo se consiguió una visión detallada de los factores ambientales, temperatura y luz, que influyen en la longevidad de las semillas en *Arabidopsis*. La combinación de ambos factores, los ambientales y los genéticos, reveló la complejidad de adaptarse de estas semillas, ofreciendo diferentes perspectivas para comprender la respuesta de las plantas a diferentes entornos.

2. OBJETIVOS

El presente Trabajo de Fin de Grado tiene como objetivo general estudiar los mecanismos moleculares por los cuales semillas obtenidas en condiciones de alta temperatura y alta intensidad lumínica tienen mayor longevidad.

Para alcanzar dicho objetivo general, en este trabajo se plantean los siguientes objetivos específicos.

- 1. Determinar la influencia de las condiciones de crecimiento de la planta madre (luz y temperatura) sobre el transcriptoma de las semillas hijas.
- 2. Establecer los principales factores de transcripción que regulan la respuesta transcripcional, producida en semillas obtenidas en condiciones de alta temperatura y alta intensidad lumínica.
- 3. Determinar los principales procesos inducidos a nivel transcripcional en semillas obtenidas con alta temperatura e intensidad lumínica y estudiar su posible implicación en el incremento de la longevidad de las semillas.

3. MATERIALES Y MÉTODOS

3.1. Material vegetal y condiciones de crecimiento

Para el trabajo que se presenta, se utilizaron semillas de *Arabidopsis thaliana* (Arabidopsis) concretamente de la accesión Borky (Bor-4, República Checa).

Estas semillas de Bor-4 fueron obtenidas a partir de plantas crecidas en diferentes condiciones de luz (HL, 300 μ M/m²s LL, 85 μ M/m²s) y temperatura (22°C y 27°C), ver tabla 2. Una vez el ciclo vital fue completado se secaron las plantas en la cámara de cultivo durante una semana. Una vez la planta estaba totalmente seca se recolectaron las semillas en eppendorf de 1,5 ml y se almacenaron en cajas de cartón a 4°C en oscuridad para minimizar el deterioro de estas.

Estas semillas fueron obtenidas previamente a mi incorporación al grupo.

Tabla 2. Se muestran las diferentes condiciones en las que crecieron las semillas y la nomenclatura de cada una.

Semillas	Descripción
Bor22HL	Semillas obtenidas a partir de plantas crecidas a unas condiciones de luz de 300 µM/m²s y una temperatura de 22°C
Bor22LL	Semillas obtenidas a partir de plantas crecidas a unas condiciones de luz de 58 µM/m²s y una temperatura de 22°C
Bor27HL	Semillas obtenidas a partir de plantas crecidas a unas condiciones de luz de 58 µM/m²s y una temperatura de 27°C
Bor27LL	Semillas obtenidas a partir de plantas crecidas a unas condiciones de luz de 300 µM/m²s y una temperatura de 27°C

3.2. Manejo de Arabidopsis

3.2.1. Esterilización de semillas

La esterilización de las semillas se realizó con una inmersión en un tubo Eppendorf en una solución de etanol 70% (v/v) y detergente *Triton* X-100 al 0,1% (v/v) durante 10 minutos en agitación. Posteriormente en cabinas de flujo laminar se procedía a eliminar la solución de etanol y hacer 3 lavados con agua estéril.

Finalmente se guardaron los eppendorfs con 0,5 ml de H₂O a 4°C y en oscuridad durante 2-3 días.

3.2.2. Cultivo in vitro en medio sólido

Para el cultivo in vitro en medio sólido se usaron placas Petri de 9cm de diámetro, dónde en cada una se le añadían 25 ml de medio MS (sales MS Duchefa Biochemie[®] al 0'4% p/v, sacarosa 1% p/v, agar bacteriológico Pronidasa[®] 0'9 % p/v) con un pH de 5,7 previamente corregido con MES (ácido 2-N-morfolino etanosulfónico).

Una vez la siembra fue realizada, en las cabinas de flujo laminar, se cerraba la placa con cinta Micropore y se mantenían las placas en una cámara de cultivo a 24°C con un fotoperíodo de día largo (16h/luz/día; intensidad lumínica 100µE·m-²s-¹).

3.3. Análisis bioinformático de datos de RNAseq

Previamente a la realización de este trabajo, de los RNAs extraídos de semillas de Bor-4 crecidas a diferentes temperaturas e intensidades lumínicas (22°C, 27°C, *Low Light* (LL) y *High Light* (HL)) se realizó un RNAseq.

El análisis de expresión diferencial de los datos lo realizó el servicio de bioinformática del Instituto de Biología Molecular y Celular de Plantas (IBMCP). Los genes se separaron en dos categorías:

- Up- regulated 2 fold, con un LogFoldChange superior a 1
- Down-regulated 2 fold, con un LogFoldChange inferior a -1

En los cuatro casos se estableció que su p-valor ajustado (padj) debía ser menor a 0,05. Una vez obtenidas las diferentes categorías, se llevó a cabo un modelo predictivo a través de un Análisis de Componentes Principales (PCA) en el cual se diferencian las 4 condiciones: HL, LL, 22 and 27.

Una vez se tuvieron los genes diferencialmente expresados para cada condición ambiental, se hicieron diagramas de Venn con la web Interactivenn http://www.interactivenn.net.

Una vez obtenidos los datos generados a partir del RNAseq se analizaron mediante el software *Panther*[®] https://www.pantherdb.org para poder determinar las diferentes categorías funcionales enriquecidas en las listas de genes diferencialmente expresados, con un valor de PD (interacción Proteína/DNA) igual a 0.

Además, se hizo uso del software SRPlot

http://www.bioinformatics.com.cn/plot basic gopathway enrichment bubbleplot 081
en para facilitar la visualización de estas funciones. También se hizo uso del software
TF2Network http://bioinformatics.psb.ugent.be/webtools/TF2Network/ para poder identificar los posibles factores de transcripción que regulan los genes diferencialmente expresados, considerando únicamente aquellos con datos de interacción proteína/DNA (PD) mayor que cero.

3.4. Extracción de RNA y gRT-PCR

3.4.1. Extracción de RNA

Para poder extraer RNA a partir de semillas de Arabidopsis de las siguientes accesiones (Bor-4 22°C, Bor-4 27°C, Col-0 22°C, Col-0 27°C, Tou-A1-63 22°C, Tou-A1-63 27°C, Par-4 22°C y Par-4 27°C) se pesaron 25 mg de cada una en diferentes eppendorfs. Estos se introdujeron en nitrógeno líquido junto con 16 bolitas de cristal (*beads*) y 300 µl de tampón de extracción (LiCl 0,4M, Tris 0,2M pH8, EDTA 25mM y SDS 1%). El material vegetal se trituró en el homogeneizador con tandas de 30 segundos, alternando con nitrógeno líquido, hasta que se viera el material triturado (unas 5 veces).

A continuación, se añadieron 250 µl más del tampón de extracción y 550 µl de cloroformo, se mezcló con el vortex y se mantuvo en hielo. A continuación, se centrifugó a 11.000 rpm durante 3 minutos a 4°C y se transfirió el sobrenadante a un nuevo eppendorf de 1,5 ml. Se añadieron 700 µl de fenol cloroformo isoamílico (PCI) para RNA y se agitó en vortex. Se centrifugó de nuevo a 11.000 rpm durante 3 minutos a 4°C y se transfirió el sobrenadante a un nuevo eppendorf de 1,5 ml al que se le añadió 1/3 del volumen de LiCl 8M. Se dejó precipitar overnight a 4°C.

A la mañana siguiente se centrifugó durante 30 minutos a 4°C a 13.000 rpm, se eliminó el sobrenadante y se disolvió el pellet en 500 μ l de H₂O. Se añadieron 7 μ l de acetato sódico 3M (pH 5,2) y 250 μ l etanol absoluto frío a cada tubo y se mezclaron agitándolo. Seguidamente se centrifugó de nuevo 10 minutos a 4°C para precipitar carbohidratos y posteriormente transferir el sobrenadante a un nuevo eppendorf. A este, se añadió 43 μ l de acetato sódico 3M (pH 5,2) y 750 μ l de etanol absoluto frío y se mezcló bien. Se dejaron a -20°C durante al menos 2 horas u overnight.

Pasado el tiempo, se centrifugó durante 20 minutos a 4°C, eliminando el sobrenadante y se añadieron 400 μ l de etanol 70% y se mezclaron con la pipeta. Se centrifugó de nuevo 5 minutos a 4°C y mediante aspiración se secaron los restos de etanol de la muestra sin dejar que esta se llegara a secar. Finalmente, se resuspendió en 20-30 μ l de H_2O .

Hasta aquí la extracción de RNA, pero para eliminar el posible gDNA que haya permanecido en la muestra se utilizó el Kit E.Z.N.A de extracción de RNA. En primer lugar, se llevó el volumen de la muestra hasta 100 μl con H₂O. A continuación, se añadieron 600 μl de una mezcla con: 300 μl de tampón RB con tiocianato de guanidina y 300 μl de etanol absoluto. Seguidamente se pasó todo el volumen a una columna con su correspondiente tubo de recolección y se centrifugó 45 segundos a 12.000 rpm. Se eliminó el eluido del tubo y se añadió a la columna 250 μl del tampón lavado *RNA Wash Buffer I*, se centrifugó 1 minuto a 12.000 rpm y se eliminó el eluido. Se añadieron 75 μl de DNAasa diluida (73,5 μl Tampón de digestión + 1,5 de DNAasa) y se mantuvo 30 minutos a temperatura ambiente. Una vez pasado el tiempo, se añadieron 250 μl del tampón lavado *RNA Wash Buffer I* y se mantuvo 2 minutos, seguidamente se volvió a centrifugar 30 segundos a 12.000 rpm y se eliminó el eluido. A continuación, se añadieron 600 μl de tampón de lavado *RNA Wash Buffer II* y se centrifugó 30 segundos

a 12.000 rpm y se eliminó el eluido. Se añadieron otros 600 μ l de tampón de lavado *RNA Wash Buffer II* y se volvió a centrifugar 2 minutos a 12.000 rpm y a eliminar el eluido. Se volvió a centrifugar la columna vacía 2 minutos para secarla y posteriormente se pasó la columna a un eppendorf nuevo de 1,5 ml. Finalmente se añadieron 30-50 μ l de H₂O y se centrifugó 1 minuto a 12.000 rpm. Se guardó la muestra en el congelador a -80°C.

Para finalizar se midió la concentración de RNA en el Nanodrop.

3.4.2. Obtención de cDNA por retro transcripción del RNA

Para la obtención del cDNA se siguió el protocolo de *Syntesis Kit* con dsDNase de la casa comercial *ThermoFisher*. Para ello se partió de 1μg de RNA en 15 μl de H₂O. Se preparó un mix que contenía para cada muestra 4μl de buffer 5x, 1μl de enzima *maxima First Strand cDNA*. Esto se mezcló con cada una de las muestras y se puso en el termociclador con las condiciones siguientes:

- Etapa 1: 25°C 10 minutos

Etapa 2: 50°C 30 minutos

- Etapa 3: 85°C 5 minutos

- Etapa final: guardar a 4°C

Volumen final de la reacción 20 µl.

Una vez terminada la reacción, las muestras se almacenaron a -20°C.

3.4.3. Estudio de expresión por qRT-PCR

Para determinar la expresión de los genes seleccionados previamente se utilizó qRT-PCR, llamada PCR cuantitativa a tiempo real usando los primers mostrados en la Tabla 3.

Tabla 3. Lista de primers utilizados para el análisis de expresión cuantitativo (qRT-PCR)

Nombre	Secuencia	Tm	Longitud	Firma
M1080 RT FP	AAAATCAATAGGTGCCGGAGCTGC	60	24	IDT
M1080 RT FP	CGGTTAGAGCAAAGCCCAAAATGG	58,9	24	IDT
AT2G07698 RT-FP	CCTCGAAGAAGAAGAGCTGCGG	59,8	23	IDT
AT2G07698 RT-RP	ACCACCAAAGACAACAATCCCGAC	59,6	24	IDT
M00640 RT-FP	GGATCAGCTTGCGAATTTGTGGC	59,4	23	IDT
M00640 RT-RP	GCAAATTGCTTCCCCACTAAGGTG	58,7	24	IDT
AT3G52300 RT-FP	GCTCCAGACCAAATTTAGTCAGGAACC	59,3	27	IDT
AT3G52300 RT-RP	CTGTTCTGCTTCTTTCAGTTCCACCAAC	59,8	28	IDT
MG00510 RT-FP	GGTGTAATGTTAAGAGGTCCAGGGG	58,8	25	IDT
MG00510 RT-FP	CACAATGATCCGAAGACTTTGTCGC	58,3	25	IDT
AT2G07687 RT-FP	TTCTTCTTTGGCACCTGCGGTAG	59,5	23	IDT
AT2G07687 RT-RP	CCCCGCGAGTATAGCATGATGAG	59,2	23	IDT
MG01360 RT-FP	TTGGTTCTTCGGTCATCCAGAGG	58,7	23	IDT
MG01360 RT-RP	TGATCATGGTAGCTGCGGTGAAG	59,2	23	IDT
AT2G07727 RT-FP	GGTGTAGCCGCAATAGCACCAG	60,5	22	IDT
AT2G07727 RT-RP	GAATGGGCGTTATGGCAAAGAACAAG	58,9	26	IDT
AT1G11840 RT-FP	TCAAATTCTATGAAAAGGCCCTCGGG	59	26	IDT
AT1G11840 RT-RP	CAATCTGTGCATATGCATTGCCCTTTG	59,1	27	IDT
AT1G08110 RT-FP	GTGTGCTGGGGATGTCATTGC	59,1	21	IDT
AT1G08110 RT-RP	GTCAATTCAATTGTTGCCGGTTGACC	59,2	26	IDT
AT1G08110 RT-FP	TGTACTTCCTGGGCTACGAGGATAC	59,3	25	IDT
AT1G08110 RT-FP	CGGTAACCCCAATGTGCCC	59	19	IDT
AT1G20620 RT FP	CTCACCATCGGAGAAAGAGGTCC	58,9	23	IDT
AT1G20620 RT RP	ACACCAGGGGCTCTGAGAAAATC	59,1	23	IDT
AT1G19570 RT-FP	GATCATCTCGGCGACTGTCCG	59,8	21	IDT
AT1G19570 RT-RP	GACTAATGTCCAAGAACCACTGGGG	59,2	25	IDT

Para la realización de la qRT-PCR se usó la pirotaq HOT FIREPol® de la casa comercial Solis Biodyne. Con él se prepararon los 9μ l del mix compuestos por: 2μ l de priotaq, $0,4\mu$ l de primer F, $0,4\mu$ l de primer R y $6,2\mu$ l de H₂O. A este mix se le añadió 1μ l de la muestra de cDNA.

Como gen constitutivo se usó el At5641010 (*DNA directed RNA polymerase subunit*). Escogimos este constitutivo ya que tenía valores de expresión muy similares en las distintas condiciones analizadas en el RNAseq.

La reacción se llevó a cabo en el equipo QuantStudium-3 de la casa comercial TERMOFISHER, mediante el siguiente programa:

- Hold
 - o 50 °C durante 2 minutos
 - o 95 °C durante 10 minutos
- PCR (40 veces)
 - o 95 °C durante 15 segundos
 - o 57 °C durante 30 segundos
 - o 72 °C durante 20 segundos
- Curva de melting
 - o 95 °C durante 15 segundos
 - 60 °C durante 1 minuto
 - o 95 °C durante 15 segundos

Volumen final de reacción 10 µl.

3.5. Ensayo de envejecimiento acelerado (*Controlled Deterioration Treatment*, CDT)

Para poder simular el envejecimiento acelerado de las semillas en un ambiente controlado se usó el método CDT, para poder evaluar la longevidad de estas. Con esta técnica se consiguió que las semillas de cada accesión tuvieran una germinación igual al cincuenta por ciento (P50).

Primero de todo se tomaron alícuotas de semillas en microtubos Eppendof de 0,5 ml. Las semillas se mantuvieron dentro de un recipiente hermético junto con una solución salina saturada de cloruro sódico (NaCl 50 g/100ml) preparada en un vaso de precipitados. Esto genera en el recipiente una humedad relativa del 75%; y el recipiente se mantiene en la estufa a una temperatura de 37°C durante un máximo de 28 días. Pasado el tiempo de tratamiento, se realizó una siembra en medio sólido y se contabilizó el número se semillas capaces de germinar y establecer cotiledones. Con los datos obtenidos se calcularon las medias, desviaciones y errores.

3.6. Imbibición de semillas de Arabidopsis

El proceso para embeber las semillas empieza por pesar la cantidad que se necesite de ellas, en este caso 10 mg por réplica. Se emplearon semillas de la accesión BorHL obtenidas a 22°C y a 27°C y se realizaron 3 réplicas biológicas.

Para embeber las semillas de la accesión Bor-4, en cabina se colocan en una placa Petri 3 papeles de filtro previamente esterilizados y se humedecen añadiéndoles 3 ml de H_2O estéril. A continuación, se añaden las semillas repartidas por la placa para que todas estén en contacto con el papel húmedo y se cierra la placa con Micropore y se mantienen en la cámara de cultivo *in vitro* a $24^{\circ}C$ durante 2 o 15 horas, en función del ensayo.

3.7. Cuantificación de ATP en semillas

La cuantificación de ATP se realizó únicamente en semillas de la accesión BorHL22 y BorHL27, empleando 4 tipos de semillas: semillas secas (envejecidas o no) y embebidas 15 horas (envejecidas o no). Para cada tipo, se realizaron 3 réplicas biológicas con 10 mg de semillas cada una.

3.7.1. Medida del contenido en ATP

Se realizó la extracción siguiendo el protocolo de Yang et al., 2002. Para preparar el extracto, se pesaron las semillas de manera que hubiera 10 mg (semilla seca) en cada tubo Eppendorf. En cada tubo Eppendorf se añadieron 14 bolitas de cristal y se mantuvieron en nitrógeno líquido. A continuación, las semillas fueron trituradas en el homogeneizador mediante 2 pulsos de 45 segundos, y se agregaron 500 μ l de H_2O a cada tubo Eppendorf. Posteriormente, se volvieron a triturar con 3 pulsos adicionales de 45 segundos. Los tubos se conservaron en hielo. Luego, se hirvieron los tubos Eppendorf durante 8 minutos en el termobloque, y al finalizar, se dejaron reposar durante 2 minutos a temperatura ambiente. A continuación, se centrifugó a 12.000 rpm durante 10 minutos a $4^{\circ}C$.

Para la determinación de la cantidad de ATP que había en cada tipo de semillas, se usó el ATP Determination Kit (A22066) de la casa Molecular Probes ™.

En primer lugar, se preparó el mix con: 75 μ l/ml de 20X *Reaction Buffer* (E), 15 μ l/ml Ditiotreitol (DTT), 75 μ l/ml de D-luciferina, 0,4 μ l/ml de luciferasa y 895 μ l/ml de H₂O. Y para el control negativo se preparó otro mix con las mismas cantidades, pero sin la luciferasa. Una vez preparado todo se añadieron 90 μ l del mix a cada pocillo de una placa multipocillo de 96 (Cellstar, greiner bio-one) y 10 μ l del extracto de semillas.

En cada ensayo se obtuvo una curva estándar empleando las siguientes cantidades de ATP (picomoles): 0, 0'5, 1, 1'5, 2, 5 y 10.

Una vez todos los pocillos llenos, se llevó la placa a la cámara de 28°C durante 15 minutos. Pasado el tiempo se cuantificó el ATP en el luminómetro TECAN.

3.8. Medida de metabolitos primarios

El análisis de metabolitos primarios se realizó en semillas de la accesión BorHL (22 y 27°C), empleando los siguientes tipos de semillas: semillas secas (envejecidas o no) y semillas embebidas 2 horas (envejecidas o no). El tiempo de envejecimiento acelerado, en este caso, fue de 21 días. Para cada tipo, se realizaron 3 réplicas biológicas con 10 mg de semillas cada una.

El extracto se preparó añadiendo 14 bolitas de cristal a cada réplica y 150 µl de metanol (sólo necesario en las semillas secas). Una vez listo, se metieron en nitrógeno líquido y se trituraron en el homogeneizador.

A continuación, las muestras se mandaron a analizar al Servicio de Metabolómica del Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC).

Los metabolitos que se analizaron fueron los siguientes: Glicerol, glicina, prolina, ácido fumárico, ácido málico, ácido glutámico, fenilalanina, glucosa, ácido cítrico y rafinosa. El análisis de metabolitos se llevó a cabo mediante derivatización seguida de cromatografía de gases-espectrometría de masas, usando un método modificado del descrito por Roessner et al. (2000).

Para la extracción se homogeneizaron las muestras en nitrógeno líquido y se añadieron 1400 μ l de metanol 100%, para detener la actividad enzimática, junto con 60 μ l de patrón interno (Ribitol a 0,2 mg/ml en H₂O). Se incubó 15 minutos a 70°C y seguidamente se centrifugó 10 minutos a 14.000 rpms. Se transfirió el sobrenadante a un nuevo tubo, en el que se le agregaron 750 μ l de Cloroformo (CHCl3) y 1500 μ l de H₂O. Se agitó y se centrifugó 15 minutos a 14.000 rpms. De la mezcla resultante se transfirieron 150 μ l del sobrenadante y se dejaron secar en vacío en un speed-vac durante 3 horas.

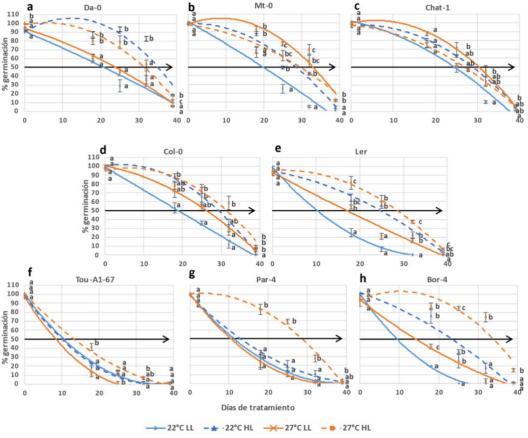
Para derivatizar, se resuspendieron los residuos secos en 40 μ l de 20 mg/ml de hidrocloruro de methoxyamina en piridina y se incubó durante 2 horas a 37°C. A continuación, se le adicionó 70 μ l de MSTFA-Mix (1mL de N-Metil-N-(trimetilsilil) trifluoroacetamida + 2 μ l de FAM-Mix), se incubó durante 30 minutos a 37°C y se transfirió a un vial de medición.

Finalmente, para el análisis de cromatografía de gases y espectrometría de masas se inyectaron, en modo Split 1:10, 2 µl de cada muestra en un cromatógrafo de gases 6890N (Agilent Technologies Inc. Santa Clara, CA) acoplado a un espectrómetro de masas Pegasus 4D TOF (Leco, St. Joseph, MI). La cromatografía de gases se realizó empleando una columna BPX35 (30 m x 0,32 mm x 0,25 µm) (SGE Analytical Science Pty Ltd., Australia) con helio como gas portador a flujo constante de 2 ml/minuto, y el liner se ajustó a una temperatura de 230°C. El programa del horno se ajustó a 85°C durante 2 minutos y una rampa de 8°C/minuto hasta los 230°C.

Los cromatogramas y los espectros de masas se analizaron empleando el software Chromatof (LECO, St. Joseph, MI) y los compuestos de interés se identificaron mediante comparación con espectros de patrones pinchados previamente.

3.9. Observación de las mitocondrias de las semillas mediante TEM

Las mitocondrias de las semillas de BorHL obtenidas a 22°C secas (envejecidas o no) y embebidas 15 horas (envejecidas o no) se observaron en el TEM (*Transmission electron microscopy*) de la Universidad de Valencia. El tiempo de envejecimiento acelerado, en este caso, fue de 16 días.


4. RESULTADOS

4.1. Antecedentes

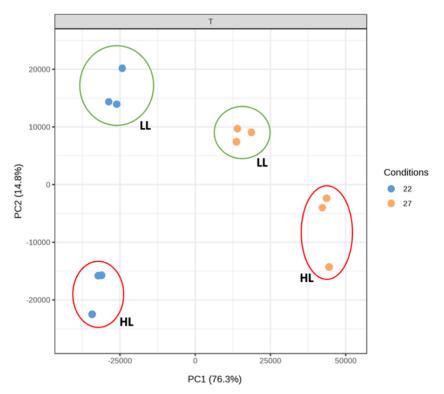
Como se ha comentado al final de la introducción, antes de este TFM, en el mismo laboratorio se demostró que diversos factores ambientales, como la luz o la temperatura, pueden condicionar la calidad de las semillas, incluyendo su longevidad.

En el trabajo previo, se analizaron semillas de diferentes accesiones de Arabidopsis, Darmstadt (Da-0, Alemania), Martuba (Mt-0, Libia), Chateaudun (Chat-1, Francia), Toulon sur Arroux (Tou-A1-67), Partisanskij (Par-4, Rusia), Borky (Bor-4, República Checa), Columbia (Col-0, USA) y Landsberg erecta (Ler, Alemania) crecidas en diversas condiciones de temperatura y luz, obteniendo resultados de longevidad, de sus semillas hijas, muy diversos dependiendo de la accesión seleccionada (Figura 2).

En este trabajo de fin de máster, nos enfocamos en la accesión Bor-4, ya que, a pesar de ser una accesión con semillas con baja longevidad, se observa un aumento notable cuando hay un incremento de temperatura y/o luz. Por lo tanto, se podría afirmar que esta accesión se caracteriza por una notable plasticidad para mejorar su longevidad tanto con un aumento de temperatura como de luz.

Figura 2. Gráfica que presenta la germinación de las semillas de accesiones cultivadas bajo distintas condiciones ambientales de luz, de 300 μM/m2s (HL) y 58 μM/m2s (LL); y una temperatura de 22°C o 27°C, después de someterse al proceso de envejecimiento acelerado (CDT) durante 18, 25, 32 y 39 días. Las letras encima de los marcadores explican las diferencias estadísticas entre los valores obtenidos a las distintas temperaturas, y diferentes intensidades lumínicas, para un mismo día de evaluación, calculados mediante una prueba Anova unifactorial seguido de un análisis de Tukey.

Como se ha indicado en materiales y métodos, se extrajo RNA de semillas de Bor-4 obtenidas a partir de plantas crecidas a diferentes temperaturas e intensidades lumínicas (22°C, 27°C, Low Light (LL) y High Light (HL)) y se realizó un RNAseq.


4.2. Análisis transcriptómico

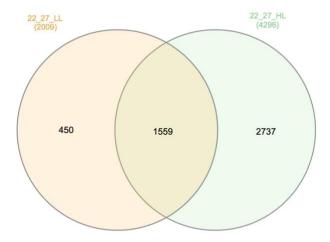
De todos los genes obtenidos tras el análisis bioinformático de los resultados del RNAseq, se seleccionaron aquellos que mostraban una expresión diferencial. Para ello, se determinó qué genes presentaban un valor de p ajustado (*padj*) inferior a 0,05 (considerados como genes significativos) y además tenían cambios más pronunciados en su nivel de expresión (2 *fold*, con un *LogFoldChange* superior a 1 para los *upregulated* e inferior a -1 para los *down-regulated*).

Los primeros 100 genes de cada una de las comparaciones posibles (22_LL_HL, 27_LL_HL, LL_22_27 y HL_22_27) se muestran en el Anexo I.

4.2.1. Análisis de componentes principales (PCA)

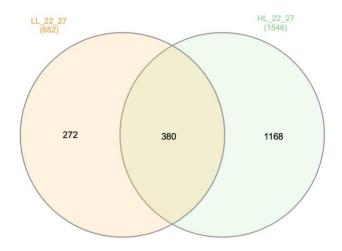
Una vez obtenidas las diferentes listas, lo primero que se hizo fue un PCA con los datos obtenidos. Los resultados de este PCA (Figura 3) muestran que la temperatura (y no la luz) genera los principales cambios a nivel transcriptómico.

Figura 3. Gráfico de puntuación resultante del PCA de los datos analizados previamente obtenidos de diferentes condiciones: (22) semillas obtenidas de plantas crecidas a 22°C, (27) semillas obtenidas de plantas crecidas a 27°C, (HL) semillas obtenidas de plantas crecidas en condiciones de alta luz y (LL) semillas obtenidas de plantas crecidas en condiciones de baja luz.


Se observa claramente que se distinguen muy bien los 4 grupos relativos a las 4 condiciones de crecimiento, y en cada caso sus tres réplicas son similares.

Por otro lado, gran parte de la variabilidad de las muestras (76,3%) se debe al componente principal 1, que hace referencia a la temperatura. El componente principal 2, que hace referencia a la luz solo explica el 14% de la variabilidad. Por eso, a partir de ahora se decide seguir estudiando el efecto de la temperatura de aquí en adelante.

4.2.2. Diagramas de Venn


Centrándonos ya en el efecto de la temperatura, nos planteamos la pregunta de si son los mismos genes los que experimentaban cambios al aumentar la temperatura (de 22°C a 27°C) en condiciones de baja luz (LL) y alta luz (HL).

Para responder a esta cuestión, creamos dos diagramas de Venn con los genes diferencialmente expresados al variar la temperatura de 22 a 27°C. Uno de ellos para los genes *up-regulated*, (Figura 4) y otro para los *down-regulated* (Figura 5), en ambos casos tanto en condiciones de baja luz (LL) como alta luz (HL).

Figura 4. Diagrama de Venn de genes *up regulated* al aumentar la temperatura de 22 a 27°C, en condiciones de baja luz (LL_22_27) o alta luz (HL_22_27).

En el diagrama de Venn, se puede observar que el 77% de los genes inducidos por el aumento de temperatura en condiciones de baja luz (LL) son compartidos con los genes inducidos en condiciones de alta luz (HL). Por otro lado, solo el 36% de los genes inducidos al aumentar la temperatura en HL se inducen también con LL.

Figura 5. Diagrama de Venn de genes *down regulated* al aumentar la temperatura de 22 a 27°C, en condiciones de baja luz (LL_22_27) o alta luz (HL_22_27).

En este diagrama donde se analizan los genes *down regulated* se puede ver que de los genes reprimidos por un incremento de temperatura en condiciones LL, el 58% también están reprimidos en condiciones HL. Sin embargo, de los genes que disminuyen su expresión al aumentar la temperatura en condiciones HL sólo un 24% se comparte con LL.

Dado que el número total de genes diferencialmente expresados al aumentar la temperatura es mayor en condiciones HL que LL, y considerando que gran parte de los genes que varían en condiciones LL también lo hacen en HL (especialmente los inducidos), decidimos proseguir el análisis únicamente con los genes diferencialmente expresados en la categoría HL_22-27.

4.2.3. Factores de transcripción

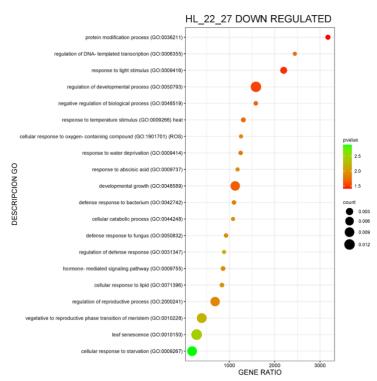
Para llevar a cabo *in sílico* la búsqueda de los factores de transcripción, candidatos para la regulación de los genes diferencialmente expresados en la condición HL_22_27, se utilizó el software TF2Network. Este ensayo también se llevó a cabo separando los genes que estaban *up regulated* y los *down regulated*.

En el caso de los genes *up regulated*, el único resultado obtenido fue el factor de transcripción ABI5, que codifica un miembro de la familia de factores de transcripción de cremallera de leucina básica. Aunque también se identificaron otros factores, estos no se ajustaban a nuestro criterio de selección, ya que el valor de PD (interacción Proteína/DNA) era igual a 0 (Tabla 4).

Tabla 4. Resultados del análisis del TF2Network para los genes *up regulated*. Se muestra el factor de transcripción ABI5, ya que es el único con PD (interacción Proteína/DNA) superior a 0.

Regulator	Symbol	PD	q-value
AT2G36270	ABI5	14%	2,72E-02

En cambio, en el caso de los genes *down regulated*, hay dos factores de transcripción que también están relacionados con el ácido abscísico: el ABF3 y el ABI5; el primero codifica una proteína de unión a elementos que responden al ABA y el segundo codifica un miembro de la familia de factores de transcripción de cremallera de leucina básica. También está presente la Pistillata (PI), que es un gen homeótico floral que codifica un factor de transcripción de dominio MADS; el AtPIF4, un gen implicado en la respuesta a luz roja y respuesta al estímulo de la temperatura; el PAP3 que es un factor de transcripción que interactúa con los fotorreceptores phyA y phyB y, por último, el BES1 que codifica una proteína de señalización de brasinoesteroides (BR) (Tabla 5).


Tabla 5. Resultados del análisis del TF2Network para los genes *down regulated*. Únicamente se muestran aquellos con PD (interacción Proteína/DNA) superior a 0.

Regulator	Symbol	PD	q-value
AT4G34000	ABF3	42%	2,04E-07
AT2G36270	ABI5	22%	4,37E-02
AT5G20240	PI	21%	4,50E-09
AT2G43010	AtPIF4	12%	3,99E-07
AT1G09530	PAP3	4%	2,36E-04
AT1G19350	BES1	2%	1,91E-08

4.2.4. Categorías funcionales

Los genes diferencialmente expresados en la categoría HL_22_27, se introdujeron en el software Panther para visualizar las distintas categorías funcionales (procesos biológicos) que se encontraban sobre-representadas en las listas de genes *up-regulated* o *down-regulated*. Además, utilizamos el software SRPlot para facilitar la visualización de estos procesos.

En el caso de los genes down-regulated, tras realizar el análisis con TAIR, se encontraron categorías relacionadas con el estrés biótico como: regulación de la respuesta defensiva, respuesta defensiva frente a hongos o defensa defensiva frente a bacterias. También aparecieron sobre-representadas varias categorías relacionadas con el estrés abiótico como respuesta a estímulo lumínico, respuesta a estímulo de temperatura, respuesta a ausencia de agua o al ácido abscísico. Finalmente, alguna categoría relacionada con el desarrollo de la planta como regulación de un proceso de desarrollo, senescencia de las hojas o transición de meristemo vegetativo a reproductivo (Figura 6).

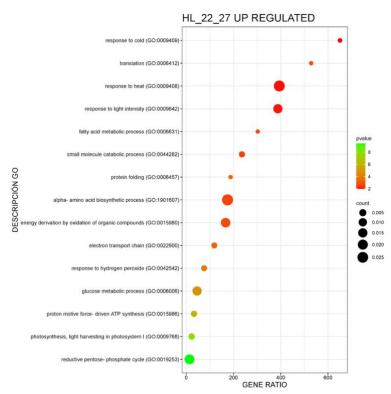


Figura 6. Categorías funcionales sobrerrepresentadas en los genes *down regulated* en la condición HL_22_27. *Gene ratio*: Proporción de genes regulados al alza en una categoría dada dividida por el número total de genes en esta categoría. *Counts*, número de genes regulados al alza en una categoría dada. -log P (valor de P en escala logarítmica después de la corrección de la tasa de descubrimiento falso).

Al analizar los genes *up-regulated* de nuevo se encontraron categorías relacionadas con el estrés abiótico, como respuesta a frio, respuesta a calor, respuesta a intensidad lumínica o respuesta a peróxido de hidrógeno. También aparecían algunos procesos metabólicos como la síntesis de ácidos grasos, metabolismo de la glucosa o el ciclo de la pentosa fosfato (Figura 7).

Finalmente, lo que más llamó la atención fue la activación de muchos genes relacionados con la producción de ATP (Figura 7), como, por ejemplo:

- Síntesis de ATP impulsada por la fuerza motriz de protones.
- Cadena de transporte de electrones.
- Derivación de energía por oxidación de compuestos orgánicos (respiración oxidativa).

Figura 7. Categorías funcionales sobre-representadas obtenidas a partir de los genes *up regulated* de la condición HL_22_27. *Gene ratio*: Proporción de genes regulados al alza en una categoría dada dividida por el número total de genes en esta categoría. *Counts*, número de genes regulados al alza en una categoría dada. -log P (valor de P en escala logarítmica después de la corrección de la tasa de descubrimiento falso).

4.3. qRT-PCR de genes relacionados con estrés oxidativo y metabolismo energético

Como se ha indicado en el apartado anterior, entre las categorías funcionales sobrerepresentadas en los genes inducidos por un incremento en la temperatura, encontramos la respuesta a estrés oxidativo (peróxido de hidrógeno) y los procesos de síntesis de ATP. Para determinar si la inducción de los genes incluidos en estas categorías ocurría únicamente en la accesión Bor-4 o era una respuesta compartida con otras accesiones, se llevaron a cabo qRT-PCRs de alguno de estos genes en diferentes accesiones.

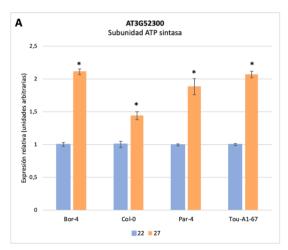
Concretamente se utilizaron semillas de 4 accesiones diferentes: Borky (Bor-4, República Checa), Toulon sur Arroux (Tou-A1-67), Partisanskij (Par-4, Rusia) y Columbia (Col-0, EE. UU.). Cada una de ellas fue cultivada a dos temperaturas diferentes, 22 °C y 27 °C en condiciones de alta intensidad lumínica (HL).

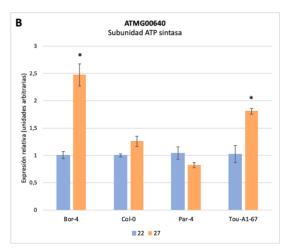
Tou-A1-67, Bor-4 y Par-4, a pesar de ser todas ellas accesiones con semillas poco longevas, responden de forma diferente al incremento de la temperatura durante el crecimiento de la planta. Tou-A1-67, no muestra una respuesta mejorada al envejecimiento acelerado de semillas al pasar de 22HL a 27HL. En cambio, en el caso de las accesiones Par-4 y Bor-4, al pasar de 22HL a 27HL se observa una mejora notable de la germinación tras el envejecimiento acelerado (Ver Figura 1, apartado 1. Antecedentes). Por lo tanto, empleando estas accesiones (y Col-0 como control), es

posible comparar cómo cambiaban los procesos estudiados en una accesión no afectada por las condiciones ambientales con otras que sí se veían afectadas.

4.3.1. qRT-PCR de genes que codifican para ATPsintasas

De todas las ATPsintasas que se encontraban inducidas en Bor seleccionamos tres genes (Tabla 6) y se analizaron la expresión de estos genes en las otras tres accesiones.


Tabla 6. ATPsintasas que se encontraban inducidas en Bor-4. Marcados en negrita los genes que se han usado para la realización de las qRT-PCR.


Locus	Log2FoldChange	Padj	Descripción
AT2G07671	-4,716	1,19E-05	ATP synthase subunit C family protein
ATMG00640	-2,495	1,56E-150	hydrogen ion transporting ATP synthases, rotational mechanism
AT1G51650	-0,383	0,008889	ATP synthase epsilon chain, mitochondrial
AT3G52300	-0,687	2,89E-11	ATP synthase D chain, mitochondrial
ATMG01190	-2,137	1,10E-09	ATP synthase subunit 1
AT5G08670	-0,615	1,05E-11	ATP synthase alpha/beta family protein

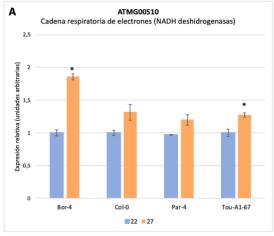
En el caso de Bor-4 se ve un aumento significativo en las semillas cultivadas a 27°C en comparación con las semillas cultivadas a 22°C en los 3 genes que codifican para las ATPsintasas (Figura 8; A, B), coincidiendo con lo observado en el RNAseq. Fijándonos en Col-0, para el gen ATMG00640 (Figura 8. B) no hay ninguna diferencia significativa y por último el gen AT3G52300 (Figura 8. A) se ve una inducción significativa al pasar de 22°C a 27°C.

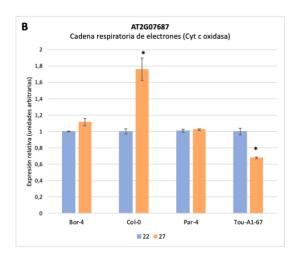
En cambio, la accesión Par-4 no se ve ninguna diferencia significativa en el gen ATMG00640 (Figura 8. B), pero si en el gen AT3G52300 (Figura 8. A) que se observa una inducción significativa.

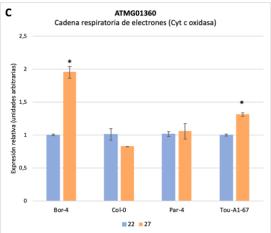
Por último, la accesión Tou-A1-67 se comporta diferente, en este caso sí que hay un aumento significativo en los dos genes, ATMG00640 (Figura 8. B) y AT3G52300 (Figura 8. C).

Figura 8. Resultados expresión de los distintos genes obtenidos por qRT-PCR de la subunidad ATP sintasa. Los asteriscos (*) indican diferencias significativas entre semillas obtenidas a 22°C y a 27°C para un pvalue menor que 0,05.

4.3.2. qRT-PCR de genes que codifican para proteínas involucradas en el transporte electrónico


En el caso de las proteínas involucradas en el transporte electrónico que se encontraban inducidas en Bor-4, se seleccionaron cuatro genes codificadores (Tabla 7).

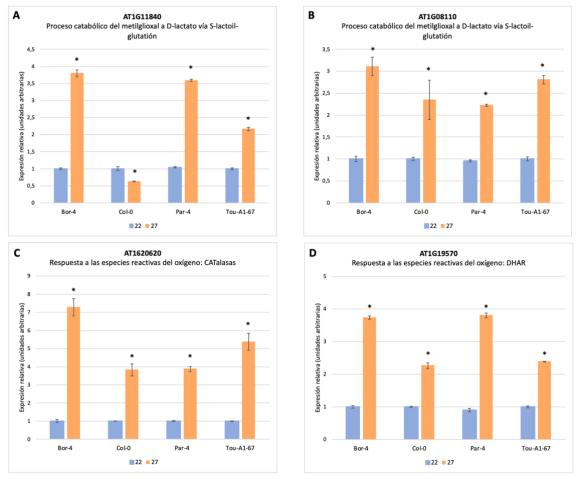

Tabla 7. Tabla con los genes que se veían involucrados en la codificación de proteínas para el transporte electrónico. Marcados en negrita los genes que se han usado para la realización de las qRT-PCR.


Locus	Log2FoldChange	Padj	Descripción
NADH de	hydrogenases		
AT4G34700	0,528	0,026226	LYR family of Fe/S cluster biogenesis protein
AT1G79010	-0,200	0,028009	Alpha-helical ferredoxin
ATMG00510	-2,640	1,02E-64	NADH dehydrogenase subunit 7
AT4G02580	-0,358	0,005578	NADH-ubiquinone oxidoreductase 24 kDa subunit
AT5G18800	-0,604	0,001558	Cox19-like CHCH family protein
Cyt	c oxidase		
AT2G07687	-2,244	8,02E-14	Cytochrome c oxidase, subunit III
AT4G37830	-0,346	0,001775	cytochrome c oxidase-related
ATMG00730	-2,176	0,041304	cytochrome c oxidase subunit 3
AT2G07687	-2,244	8,02E-14	Cytochrome c oxidase, subunit III
ATMG01360	-1,771	7,05E-165	cytochrome oxidase

Tras analizar el comportamiento de Bor-4 en lo que respecta a las proteínas codificadoras para el transporte electrónico, se puede observar que en el caso del gen ATMG00510 (Figura 9. A) hay un aumento significativo en las semillas cultivadas a 27°C, al igual que en el gen ATMG01360 (Figura 9. C). En cambio, en el caso del gen AT2G07687 (Figura 9. B) no se ve ni un aumento ni una disminución significativa, cosa que no encaja con lo observado en el RNAseq.

En el caso de las otras accesiones, al fijarnos en la accesión Col-0 podemos observar que no se ve ninguna significancia para los genes ATMG00510 (Figura 9. A) y ATMG01360 (Figura 9. C), en cambio se puede observar una inducción significativa en el gen AT2G07687 (Figura 9. B). En el caso de Par-4 no se observa ninguna significancia en ninguno de los tres genes (Figura 9. A, B, C). En cambio, para Tou-A1-67 se ve que los genes ATMG00510 (Figura 9. A) y ATMG01360 (Figura 9. C) están inducidos significativamente a 27°C y en el gen AT2G07687 (Figura 9. B) se ve una reducción significativa.

Figura 9. Resultados expresión de los genes responsables del transporte electrónico obtenidos por qRT-PCR de la subunidad ATP sintasa. Los asteriscos (*) indican diferencias significativas entre semillas obtenidas a 22°C y a 27°C para un pvalue menor que 0,05.


4.3.3. qRT-PCR de genes de respuesta a estrés oxidativo

De los genes que están involucrados en la respuesta a estrés oxidativo que se encontraban inducidos en Bor se seleccionaron cuatro genes (Tabla 8) y se analizó la expresión de estos genes en las otras tres accesiones.

Tabla 8. Genes que se veían involucrados en la respuesta a estrés oxidativo. Marcados en negrita los genes que se han usado para la realización de las qRT-PCR.

Locus Proceso catabó	Log2FoldChange lico del metilglioxal t	Padj o D-lactate	Descripción via S-lactoyl-glutathione		
AT1G11840	-0,535	2,25E-21	glyoxalase I homolog		
AT1G08110	-0,467	0,008845	lactoylglutathione lyase/ glyoxalase I family protein		
AT1G67280	-0,443	0,004868	Glyoxalase/Bleomycin resistance		
AT2G31350	-0,809	1,64E-46	glyoxalase 2-5		
Respuesta a especies reactivas de oxígeno: CATalasas					
AT1G20620	-0,840	5,45E-55	catalase 3		
AT4G35090	-0,298	0,027402	catalase 2		
Respuesta a especies reactivas de oxígeno: DHAR					
AT1G19570	-0,273	0,000146	dehydroascorbate reductase		

En cuanto a la respuesta al estrés oxidativo (Figura 10, A, B, C, D), se puede observar una tendencia general a un aumento significativo de la expresión de todos los genes estudiados en todas las accesiones, exceptuando Col-0, que en el gen AT1G11840 (Figura 10, A) se observa una reducción significativa.

Figura 10. Resultados expresión de los genes relacionados con la respuesta a estrés oxidativo obtenidos por qRT-PCR. Los asteriscos (*) indican diferencias significativas entre semillas obtenidas a 22°C y a 27°C para un pvalue menor que 0,05.

4.4. Cuantificación de ATP en semillas de la accesión Bor-4

Tras verificar por qRT-PCR que varios genes involucrados en la cadena de transporte electrónica o en la síntesis de ATP, efectivamente se encontraban más expresados en semillas de la accesión Bor-4 obtenidas de plantas crecidas a 27°C, quisimos comprobar si ese cambio a nivel transcripcional se traducía en un incremento de los niveles de ATP. Para llevar a cabo la cuantificación de ATP en semillas de Bor-4, se realizó en primer lugar una curva estándar (Figura 11).

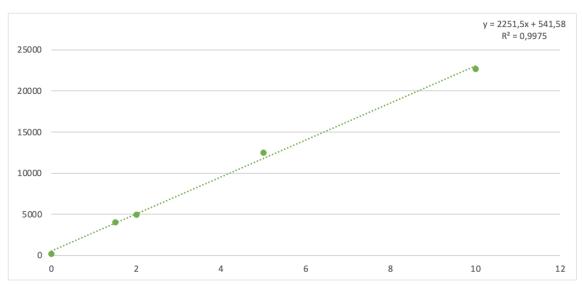
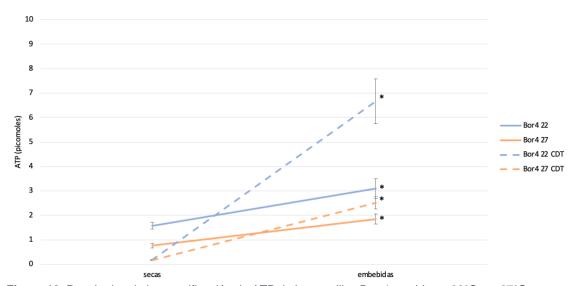



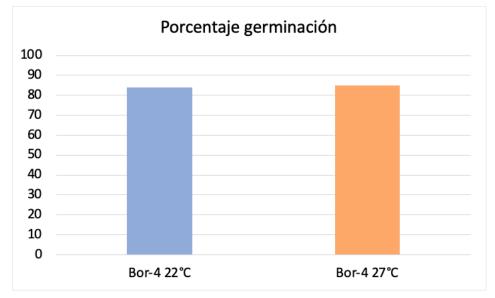
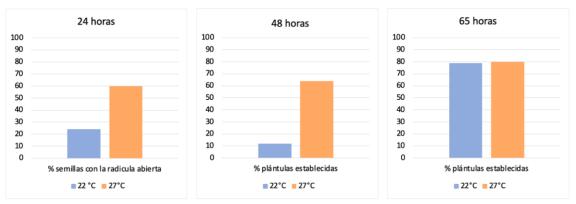
Figura 11. Grafica donde se muestra la curva estándar que se usó para determinar las concentraciones de las muestras.

En esta cuantificación, se utilizaron semillas de la accesión Bor-4 obtenidas de plantas crecidas a 22°C y a 27°C, siempre en condiciones de alta intensidad lumínica (HL). En este experimento, un lote de semillas se envejeció durante 8 días, y tanto las envejecidas como las no envejecidas se separaron en embebidas durante 15 horas y no embebidas. La mayor generación de ATP se produce cuando las semillas se embeben, ya que en este momento comienza a activarse todo su metabolismo. Por esta razón, se realiza el estudio en ambos estados: semilla seca y semilla embebida.

La gráfica (Figura 12) muestra, en primer lugar, que todas las semillas aumentan su contenido en ATP tras la imbibición. Sin embargo, este aumento es mayor en las semillas envejecidas, que en las semillas no envejecidas. Asimismo, en semillas envejecidas este incremento es especialmente importante en las semillas obtenidas a 22°C en comparación con las que se obtuvieron a 27°C. Por lo tanto, a pesar de que la expresión de los genes relacionados con el metabolismo energético es mayor en semillas secas obtenidas a 27°C que en las obtenidas a 22°C, esto no se traduce en un mayor contenido en ATP.

Figura 12. Resultados de la cuantificación de ATP de las semillas Bor-4 crecidas a 22°C y a 27°C, secas y embebidas 15 horas; no envejecidas (línea continua) y envejecidas (CDT, línea discontinua) 8 días. CDT: *controlled deterioration treatment.* El asterisco (*) indica diferencias significativas entre semillas secas y embebidas, para un pvalue menor que 0,05.

Dado que las semillas secas obtenidas a 27°C tienen un menor contenido en ATP que las obtenidas a 22°C, se quiso comprobar si su capacidad germinativa era menor. Es necesario mencionar, que, debido a la baja cantidad de semillas disponibles, para estos ensayos se realizó únicamente una réplica biológica. Sin embargo, consideramos que los resultados son bastante concluyentes. Se puede observar (Figura 13) que las semillas siguen germinando igual (80% plántulas establecidas tras 8 días) en ambas condiciones, tanto crecidas a 22°C como a 27°C, aunque las semillas crecidas a 27°C disponen de menos ATP. Sorprendentemente, se puede observar también que la velocidad de germinación es mayor a 27°C que a 22°C a pesar de tener menos ATP (Figura 14 Por lo tanto, en el caso de Bor-4, la reducción del contenido en ATP no se traduce en un menor vigor o capacidad germinativa.

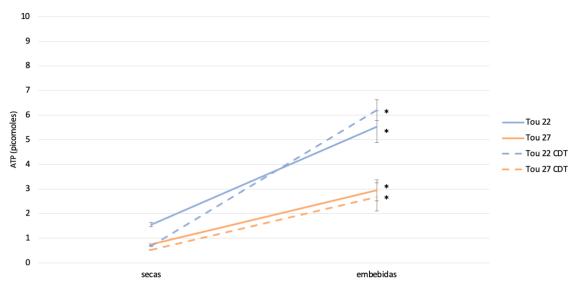
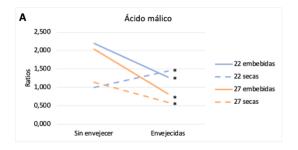
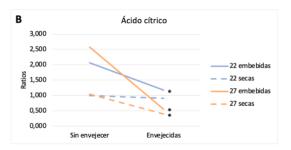

Figura 13. Se muestra el porcentaje de plántulas establecidas, con cotiledones abiertos y verdes, de las semillas crecidas en MS una vez envejecidas durante 8 días.

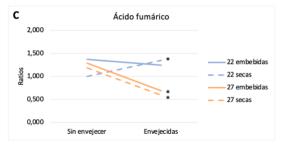
Figura 14. Velocidad de germinación de las semillas crecidas a 22°C y a 27°C en un medio sin sacarosa. Plántulas establecidas: plántulas con cotiledones abiertos y verdes

También quiso realizarse el ensayo de cuantificación de ATP en la accesión Tou-A1-67 (Figura 15) ya que esta accesión tenía un comportamiento diferente al de Bor-4 en condiciones de alta intensidad lumínica (HL). Es decir, las semillas obtenidas a 27°C HL tenían una longevidad muy parecida a las obtenidas a 22°C HL (Figura 2, apartado 1. Antecedentes). Sin embargo, las dos ATPsintasas y dos de los genes de la cadena de transporte electrónico se encontraban más expresados en semillas obtenidas a 27°C (aunque estos últimos en menor medida que Bor-4) (Figura 8, 9).

Una vez medido el ATP de esta accesión se puede observar que hay diferencias significativas al pasar de semillas secas a embebidas en las 4 condiciones que se estudian, crecidas a 22°C, a 27°C, con envejecimiento acelerado o sin ser envejecidas. En este caso, el incremento es similar en semillas envejecidas y sin envejecer a 27°C, aunque en el caso de semillas obtenidas a 22°C el incremento vuelve a ser mayor en las semillas envejecidas. Cabe destacar que, en general, se observa de nuevo que las semillas obtenidas a 22°C tienen un mayor contenido en ATP que las obtenidas a 27°C, de forma similar a lo observado para Bor-4.

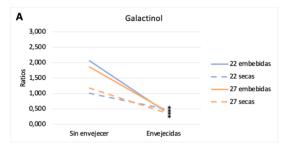



Figura 15. Resultados de la cuantificación de ATP de las semillas Tou-A1-67 crecidas a 22°C y a 27°C, secas y embebidas 15 horas; no envejecidas (línea continua) y envejecidas (CDT, línea discontinua) 8 días. CDT: *controlled deterioration treatment*. El asterisco (*) indica diferencias significativas entre semillas secas y embebidas, para un pvalue menor que 0,05.


4.5. Metabolitos relacionados con metabolismo energético

Para llevar a cabo el análisis de los metabolitos en el servicio de metabolómica, se seleccionaron ciertos metabolitos que estuvieran relacionados con el metabolismo energético de las semillas, asimismo, se midió el contenido de metabolitos previamente relacionados con la longevidad de semillas como los azúcares rafinosa y galactinol y los aminoácidos glicina y glutamina, componentes del glutatión. Todos ellos se midieron en semillas secas y embebidas (2 horas), envejecidas o sin envejecer.

Empezando a analizar los ácidos del ciclo de Krebs, se puede observar que todos ellos (Figura 16) disminuyen con el envejecimiento de las semillas. Esta tendencia se observa en semillas embebidas (en mayor medida en las obtenidas a 27°C) y en semillas secas, únicamente en las obtenidas a 27°C. En el caso de las semillas secas obtenidas a 22, el contenido en ácidos del ciclo de Krebs aumenta o se mantiene estable con el envejecimiento. En el caso concreto del ácido fumárico, no se ve ninguna disminución significativa en las semillas embebidas crecidas a 22°C.



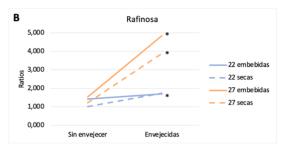
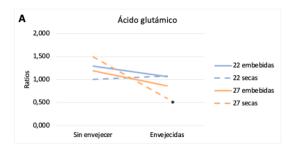


Figura 16. Resultados del análisis de metabolitos de las semillas de Bor-4 obtenidas a 22°C y a 27°C, embebidas o secas, envejecidas o no. Los valores mostrados son relativos a la condición 22°C, semillas secas, sin envejecer, al que se le asigna el valor de 1. El asterisco (*) indica diferencias significativas entre semillas sin envejecer y envejecidas, para un pvalue menor que 0,05.


Si nos fijamos en la rafinosa, esta aumenta al pasar a envejecidas en casi todas las condiciones, tanto a 22°C secas como a 27°C secas o embebidas. No se ve ninguna diferencia significativa al pasar a envejecidas en las semillas crecidas a 22°C embebidas. Sin embargo, el aumento es mucho más evidente en las semillas obtenidas a 27°C, por lo que el contenido final en rafinosa tras el envejecimiento es mucho mayor en estas semillas. Con relación al galactinol, este se comporta de manera contraria, este se ve disminuido al pasar de semillas no envejecidas a envejecidas en todas las condiciones. Sin embargo, el descenso es mayor en semillas embebidas por lo que inicialmente poseen mayor cantidad de galactinol que las secas, pero se igualan a ellas tras el envejecimiento (Figura 17).

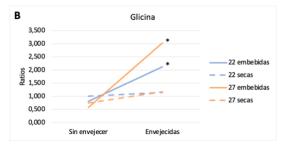


Figura 17. Resultados del análisis de metabolitos de las semillas de Bor-4 obtenidas a 22°C y a 27°C, embebidas o secas, envejecidas o no. Los valores mostrados son relativos a la condición 22°C, semillas secas, sin envejecer, al que se le asigna el valor de 1. El asterisco (*) indica diferencias significativas entre semillas sin envejecer y envejecidas, para un pvalue menor que 0,05.

Fijándonos en el ácido glutámico podemos observar una clara diminución al pasar de semillas sin envejecer a envejecidas en las semillas secas obtenidas a 27°C. En cambio, la glicina se ve aumentada en todos los casos al pasar de semillas sin envejecer a envejecidas, especialmente en las semillas embebidas y en mayor medida en las obtenidas a 27°C (Figura 18).

Figura 18. Resultados del análisis de metabolitos de las semillas de Bor-4 obtenidas a 22°C y a 27°C, embebidas o secas, envejecidas o no. Los valores mostrados son relativos a la condición 22°C, semillas secas, sin envejecer, al que se le asigna el valor de 1. El asterisco (*) indica diferencias significativas entre semillas sin envejecer y envejecidas, para un pvalue menor que 0,05.

4.6. TEM de semillas de la accesión Bor-4

Una vez comprobado que el contenido en ATP en las semillas de Bor-4 obtenidas a 27°C era menor que las obtenidas a 22°C, se quisieron observar las mitocondrias de estas semillas en ambas condiciones, esperando encontrar mitocondrias de algún modo dañadas en las semillas obtenidas a 27°C. Para ello, se empleó el microscopio TEM y se observaron, inicialmente semillas obtenidas a 22°C.

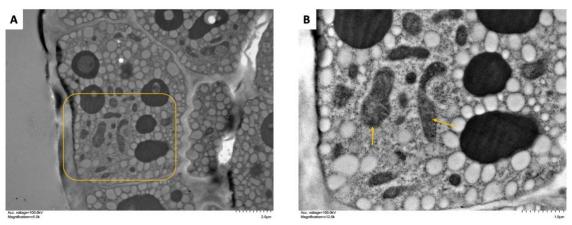


Figura 19. Imagen donde se observan las mitocondrias de las semillas crecidas a 22°C embebidas durante 15 horas. (A) imagen de la célula general. (B) imagen ampliada.

En la Figura 19B puede observarse que no se consiguieron imágenes muy nítidas de las mitocondrias con el método de preparación de muestra estándar, por lo que no se pudo observar ni comparar mitocondrias de semillas crecidas a diferentes condiciones. Se optó por volver a analizar las mitocondrias empleando un método de preparación de muestras específico para mitocondrias. En las Figuras 20 y 19B se muestran las mitocondrias de semillas obtenidas a 22°C, secas y embebidas, respectivamente.

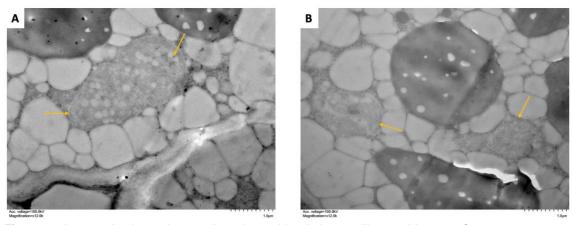
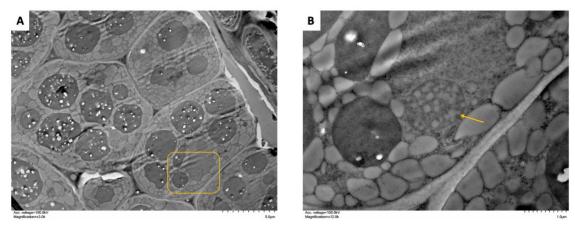



Figura 20. Imagen donde se observan las mitocondrias de las semillas crecidas a 22°C secas.

Una vez modificado el método, se puede observar que las mitocondrias de semillas secas (Figura 20) están ocupando el espacio que hay intracelular, sin ninguna forma. Son mitocondrias que están deshidratadas o incluso promitocondrias, ya que no están formadas del todo (Figura 20, A). En cambio, en las mitocondrias de las semillas crecidas a 22°C embebidas posteriormente durante 15 horas se pueden observar mejor las crestas y todas ya tienen una forma más delimitada (Figura 21).

Figura 21. Imagen donde se observan las mitocondrias de las semillas crecidas a 22°C embebidas. (A) imagen de la célula general. (B) imagen ampliada.

No podemos mostrar los resultados de las semillas obtenidas a 27°C, porque se rompieron durante su procesado, por lo que es necesario volver a enviar muestras a procesar, lo que no ha sido posible por falta de tiempo. Por lo tanto, una vez establecido el método de preparación de las muestras, se tendría que repetir el ensayo con las semillas crecidas a 27°C tanto secas como embebidas para poder comparar los resultados con los obtenidos a 22°C.

5. DISCUSIÓN

La longevidad de las semillas no se limita únicamente a su material genético, sino que también está vinculada a factores ambientales, tal como ha sido publicado en varios estudios recientes en varias especias. En Arabidopsis, entre los factores que afectan a este rasgo se incluyen elementos externos como la temperatura (MacGregor et al., 2015), la intensidad y calidad de la luz (Li et al., 2017), el estrés hídrico y la disponibilidad de nutrientes (Madoni et al., 2011), todos los cuales pueden ejercer influencia en la longevidad de las semillas. Sin embargo, en ningún anterior se había analizado el efecto combinado de dos parámetros ambientales y su repercusión en los componentes almacenados en las semillas, que condicionan altamente su potencial germinativo y su viabilidad. Es importante destacar que el aumento de la temperatura de 22°C a 27°C utilizado en este experimento no genera estrés por calor, sino que activa respuestas morfogénicas (Casal et al., 2019). Lo mismo ocurre con el efecto de la luz, cuya aplicación en experimentos anteriores es considerada una situación fisiológica y no de estrés. Gerganova et al. 2016 y Zhou et al. 2020 estudiaron el efecto sobre Arabidopsis aplicando unas condiciones de estrés durante 6 días y estudiando su capacidad de recuperación tras 24 horas de la aplicación del estrés. Las condiciones usadas fueron: CT (23°C y 50 µmol/m² s), HT (42°C y 50 µmol/m² s), HL (23°C y 600 µmol/m² s) y en HT+HL (42°C y 600 µmol/m² s). Los resultados tanto de Gerganova et al. 2016 como de Zhou et al. 2020 se obtuvo que el principal factor que afecta al Fotosistema II (PSII) son las altas temperaturas y el valor de Fv/Fm (eficiencia cuántica máxima de los procesos fotoguímicos del PSII) en condiciones de estrés lumínico apenas se vio afectado.

De modo similar, en este estudio observamos que los cambios transcriptómicos ocurridos durante el desarrollo de la semilla, que condiciona el tipo de mRNAs almacenados en las mismas cuando están secas, son provocados mayormente por el cambio de temperatura, y solo de modo minoritario se observan cambios dependientes únicamente de intensidad lumínica. Los cambios observados al aumentar la temperatura y la luz incluyen posiblemente la activación del potencial de las células vegetales, que desarrollan programas de respuestas a temperatura y luz, y que finalmente repercutirán en semillas de más alta longevidad. La luz potencia el cambio transcriptómico en estas circunstancias, los cambios transcriptómicos son más significativos, lo que se refleja en un mayor número de genes diferencialmente expresados en condiciones de alta intensidad de luz. Con esto, iniciamos el estudio de los genes diferencialmente expresados y las categorías funcionales asociadas en condiciones aditivas de alta temperatura y alta luminosidad, condiciones que generaron semillas más longevas.

El estudio dirigido a identificar qué factores de transcripción estarían regulando los genes diferencialmente expresados inducidos en HL_27 frente a HL_22 revelo al factor ABI5 como un factor regulando multitud de estos genes. ABI5 (ABA Insensitive 5) es un factor de transcripción básico de cierre de leucina que desempeña un papel clave en la regulación del desarrollo de la semilla, así como en la germinación y el crecimiento temprano de plántulas en presencia de ácido abscísico (ABA) y tensiones abióticas (Skubacz et al., 2016). También se observa que procesos relacionados con el ácido abscísico están incluidos entre las respuestas de las semillas crecidas en condiciones de alta temperatura y luminosidad. Dado que el ABA es una hormona clave en el

desarrollo de la semilla, con el factor ABI3 como uno de los reguladores máster de este proceso (Verma et al., 2022), será interesante en el futuro estudiar la conexión entre la percepción de dichas condiciones ambientales por los tejidos de la planta y la actuación de esta hormona. Se conoce también que el ácido abscísico se ve involucrado en la longevidad de las semillas, ya que hay estudios donde muestran una longevidad reducida con mutantes dog1, indicando que DOG1 aparte de tener otras funciones más allá de la latencia durante la maduración de las semillas, afecta a múltiples aspectos de la maduración de las semillas, en parte interfiriendo con componentes de la señalización de ABA (Dekkers et al., 2016).

Otro factor de transcripción que reveló este trabajo a ser un posible candidato para la regulación de los genes diferencialmente expresados en la condición de alta luz y temperatura es PIF4, un factor conocido claramente implicado en la respuesta a luz y temperatura. En estudios realizados por Huang et al., 2015 demuestran que LEAFY COTYLEDON1 (LEC1) interactúa con PIF4 para regular interdependientemente genes relacionados con la elongación del hipocótilo mediante la unión directa al elemento G-box en la oscuridad (Huang et al., 2015). LEC1 es otro de los factores de transcripción másteres del desarrollo de la semilla. Esto podría sugerir que los cambios sufridos por las semillas tras la detección de estas condiciones altas de temperatura y luz son transducidos a través de la vía de señalización dependiente de LEC1 en la semilla ligada a la interacción con PIF4.

Una de las categorías encontradas entre los genes diferencialmente expresados es la respuesta a estrés oxidativo. Sin embargo, esta respuesta a estrés oxidativo en Bor-4 no parece ser la fuerza motriz por la cual esta accesión es más resistente en las condiciones estudiadas, ya que en Tou-A1-67, una accesión que no mejora con un aumento de temperatura y de luz, también tiene sobreexpresados muchos de estos genes en dichas condiciones. Parece por tanto que la respuesta a estrés oxidativo es una inducción general en ambas accesiones, y que las semillas de Bor-4 deben tener algo adicional que le proporciona una mayor longevidad (Ver Resultados 1. Antecedentes).

Otra categoría funcional que llamó nuestra atención fue la que implica genes relacionados con la producción de ATP, que estaban más expresados en semillas desarrolladas a 27°C y alta luminosidad. En una primera hipótesis, esto podría indicar que estas semillas tendrían un mayor potencial para generar ATP durante la germinación, lo que les proporcionaría mayor vigor y capacidad para resistir el envejecimiento. Curiosamente, este aumento a nivel transcripcional no se traducía en una mayor cantidad de los niveles de ATP generados tras la imbibición en estas semillas, sino lo contrario: las semillas desarrolladas a 27°C tenían menor capacidad de generar ATP. Este resultado es esperable y sugiere que las condiciones de alta temperatura y luminosidad han generado semillas con menos mitocondrias, o bien con mitocondrias más dañadas, y por tanto capaces de generar menos ATP durante la germinación. Los resultados del RNAseq y de las posteriores qRT-PCR, seguramente están aquí revelando un efecto de compensación en células que tienen sus mitocondrias más dañadas.

Así pues, y según estos datos, la hipótesis para explicar por qué las semillas de plantas crecidas a 27°C y alta luz tienen mayor longevidad sería que esas mitocondrias más dañadas son por tanto menos capaces de activarse y por tanto con menos potencial de generar especies de oxígeno reactivo (ROS) (Farooq et al., 2021), que claramente están consideradas como el principal motor del deterioro de las semillas durante el envejecimiento (Sano et al, 2016). El procedimiento de envejecimiento natural, así como el envejecimiento artificial en el laboratorio implica el sometimiento de las semillas secas a procesos de hidratación parcial (humedad al 75% en el CDT, por ejemplo). Esto reactivaría las mitocondrias, generando energía, pero también ROS, que serían mayores en semillas con mitocondrias más funcionales.

Es conocido que la generación de ROS es un proceso natural que ocurre en la cadena respiratoria mitocondrial, pero que en condiciones de altas temperaturas, radiación o estreses bióticos puede aumentar su concentración de manera significativa. Este aumento puede superar la capacidad de los sistemas antioxidantes para neutralizar las ROS, llevando a un desequilibrio en el sistema (Tiwari et al., 2002).

Dicho de otro modo, durante el proceso de CDT, las mitocondrias están en proceso de recuperación al hidratarse, pero las semillas cultivadas a 22°C se recuperan mejor del proceso de desecación en comparación con aquellas a 27°C. Este hecho sugiere que la temperatura elevada durante el crecimiento afecta negativamente a las mitocondrias, resultando en una recuperación menos eficiente, además que bajan las reservas de nucleótidos funcionales en el proceso de germinación (Grass, L., 1994). En cambio, a 22°C, la producción de ATP aumenta, pero conlleva a una mayor generación de especies reactivas de oxígeno (ROS), lo que resulta en daño a la semilla y una disminución en su calidad. Es interesante destacar que la incapacidad de generar tanto ATP en las semillas de plantas crecidas a 27°C no imposibilita a estas semillas a germinar adecuadamente.

Apoyando estos resultados, los resultados de un estudio de Grass., 1994 indicaron que los embriones de trigo expuestos a condiciones de baja temperatura (20/15°C) experimentaron una rápida acumulación de trifosfato de adenosina (ATP) y niveles de energía superiores, así como tasas de consumo de oxígeno más elevadas en comparación con los embriones sujetos a temperaturas altas (36/29°C). Los embriones expuestos a temperaturas intermedias (28/21°C) mostraron valores intermedios. De manera simultánea a estos cambios metabólicos durante el inicio de la germinación, los resultados de la observación mediante microscopía electrónica evidenciaron notables diferencias en la estructura mitocondrial. En el régimen de baja temperatura, las mitocondrias presentaron un desarrollo adecuado con membranas y crestas visibles, mientras que las del régimen de alta temperatura mostraron signos de degeneración. Estos descubrimientos ofrecen pruebas claras de cómo las condiciones térmicas de los progenitores influyen en el metabolismo de las semillas durante las fases iniciales de la germinación (Grass., 1994).

En otros estudios se han observado las mitocondrias de las semillas secas, siendo estas con una forma esférica con estructuras internas indiferenciadas, y concretamente las crecidas a una temperatura de 22°C eran más grandes, con una membrana externa intacta y una matriz homogénea y más densa que las crecidas a 27°C. Además, en las semillas secas podrían haber promitocondrias, mitocondrias que no terminan de estar

formadas del todo. En cambio, las mitocondrias de las semillas hidratadas eran expandidas, con una membrana bicapa y con crestas internas. Las semillas embebidas crecidas a 27°C tenían una estructura interna poco desarrollada y con unas crestas menos visibles que las de 22°C, donde sí que se observan muy bien (Grass, L., 1994; Wang et al., 2015). Estos son los resultados que esperaríamos encontrar en nuestras muestras que están en este momento siendo analizadas por microscopía electrónica y que desafortunadamente no han podido presentarse en este documento.

A pesar de lo interesante de este fenómeno, en el caso de la accesión Tou-A1-67, se observa un proceso similar al de Bor-4, lo que sugiere que, de nuevo, que este tampoco parece ser un proceso que distinga a Bor-4 y que explique porque esta accesión presenta semillas de mayor longevidad si las plantas han sido crecidas a 27°C, y Tou-A1-67 no.

En la búsqueda de mejorar la vigorosidad y longevidad de las semillas, se ha destacado el papel crucial de los carbohidratos y azúcares, especialmente los oligosacáridos pertenecientes a la familia de la rafinosa (RFOs). Estos componentes han emergido como factores prometedores en los últimos años para potenciar las propiedades de las semillas. Los RFOs desempeñan diversas funciones en las plantas, abarcando desde la tolerancia al estrés abiótico y biótico hasta la regulación de procesos como la germinación, la desecación, la vigorosidad y la longevidad de las semillas (Salvi et al., 2022). Además, la asociación entre la variación en el contenido de azúcares solubles, especialmente los RFOs, y la vigorosidad de las semillas se ha observado en varias especies, incluyendo Arabidopsis. Es importante destacar que la cantidad y el tipo de RFOs presentes durante la maduración de la semilla varían entre especies, siendo ejemplos el maíz o Arabidopsis que acumulan más rafinosa en comparación con otros RFOs. Además, se ha evidenciado que los niveles de galactinol y mioinositol son notablemente elevados en semillas de diversas especies (Gangola et al., 2016).

En este trabajo, se ha observado que, tras el proceso de envejecimiento, aumentan los RFOs, específicamente la rafinosa. Sin embargo, este aumento se ha registrado tanto en semillas cultivadas a 22°C como a 27°C. Esto sugiere que posiblemente no estén desempeñando nuevamente un papel significativo en la mayor longevidad de las semillas cultivadas a 27°C.

Por lo tanto, se seguirán investigando las razones que podrían estar influyendo en la mayor longevidad de las semillas de Bor-4 a 27°C. Algunos posibles candidatos adicionales sugieren una mayor presencia de factores de choque térmico (HSF). Sin embargo, para identificar estos procesos específicos en Bor-4, se está considerando llevar a cabo un estudio transcriptómico paralelo en Tou-A1-67.

6. CONCLUSIONES

La temperatura a la cual se han desarrollado las semillas provoca los principales cambios a nivel transcriptómico en las mismas. Estos cambios son mucho mayores si las plantas han sido crecidas en condiciones de alta luminosidad, provocando un efecto aditivo en la respuesta.

El factor de transcripción ABI5 podría desempeñar un papel fundamental en la regulación génica en respuesta a la temperatura en semillas cultivadas bajo una alta temperatura e intensidad lumínica. Nuestros resultados sugieren que las semillas reconocen estímulos y podrían canalizarlos a través de la vía de señalización del ácido abscísico, una hormona esencial para el desarrollo y maduración de las semillas.

La resistencia al estrés oxidativo es un proceso importante que se refuerza en semillas crecidas a alta temperatura e intensidad lumínica. Este proceso parece no ser el determinante de la alta longevidad de semilla adquirida por la accesión Bor4 cuando se crece en estas condiciones ambientales

El crecimiento de plantas a alta temperatura e intensidad lumínica posiblemente genera semillas con mitocondrias menos capaces de generar ATP durante la germinación, lo que podría evitar la generación de ROS durante los procesos de envejecimiento, sin menoscabar su capacidad germinativa. Este resultado está reforzado por la disminución de ácidos del ciclo de Krebs en semillas de plantas crecidas en estas condiciones. De nuevo, esta respuesta no parece ser efectiva en la accesión Tou-4, cuyas semillas, a pesar de tener menor potencial de generación de ATP, y por tanto previsiblemente de generar menos ROS, no consiguen tener más longevidad en estas condiciones.

En el análisis de metabolitos, se observó un claro aumento de los RFOs en casi todas las condiciones a las que fueron sometidas las semillas. Esto se debe a que, al pasar por un proceso de CDT, las semillas se humidificaron, incrementando su estado vítreo y favoreciendo la sustitución del agua por oligosacáridos. Estos últimos actúan finalmente como fuentes de energía durante la germinación.

En resumen, este trabajo revela una conexión dinámica entre la regulación génica, la expresión de genes, los niveles de ATP y la composición metabólica de las semillas. La respuesta de Bor-4 a la temperatura y al envejecimiento destaca la complejidad de los mecanismos subyacentes, señalando áreas clave para futuras investigaciones sobre la fisiología y adaptación de las semillas.

7. BIBLIOGRAFÍA

Agacka-Mołdoch, M., Arif, M. A. R., Lohwasser, U., Doroszewska, T., Qualset, C. O., & Börner, A. (2016). The inheritance of wheat grain longevity: a comparison between induced and natural ageing. Journal of applied genetics, 57, 477-481.

Arif, M. A. R., Afzal, I., & Börner, A. (2022). Genetic Aspects and Molecular Causes of Seed Longevity in Plants—A Review. Plants 2022, 11, 598. The Transition from Seed to Seedling, 25.

Bailly, C. (2004). Active oxygen species and antioxidants in seed biology. Seed science research, 14(2), 93-107.

Baud, S., Boutin, J. P., Miquel, M., Lepiniec, L., & Rochat, C. (2002). An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiology and Biochemistry, 40(2), 151-160.

Bentsink, L., & Koornneef, M. (2008). Seed dormancy and germination. The Arabidopsis Book/American Society of Plant Biologists, 6.

Casal, J. J., & Balasubramanian, S. (2019). Thermomorphogenesis. *Annual review of plant biology*, 70, 321-346.

Chang, G., Wang, C., Kong, X., Chen, Q., Yang, Y., & Hu, X. (2018). AFP2 as the novel regulator breaks high-temperature-induced seeds secondary dormancy through ABI5 and SOM in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 501(1), 232-238.

Clerkx, E. J., El-Lithy, M. E., Vierling, E., Ruys, G. J., Blankestijn-De Vries, H., Groot, S. P., ... & Koornneef, M. (2004). Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. *Plant physiology*, *135*(1), 432-443.

de Souza Vidigal, D.; Willems, L.; van Arkel, J.; Dekkers, B.J.; Hilhorst, H.W.; Bentsink (2016) L. Galactinol as marker for seed longevity. Plant Sci.,246, 112–118 Debeaujon, I.; Léon-Kloosterziel, K. M. & Koornneef, M. (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology, 122(2), 403–413.

Dekkers, B. J., He, H., Hanson, J., Willems, L. A., Jamar, D. C., Cueff, G., Rajjou, L., Hilhorst, H. W. M., Bentsink, L. (2016). The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI 5) expression and genetically interacts with ABI 3 during Arabidopsis seed development. Plant J. 85, 451-465

Farooq, M. A., Zhang, X., Zafar, M. M., Ma, W., & Zhao, J. (2021). Roles of reactive oxygen species and mitochondria in seed germination. *Frontiers in plant science*, *12*, 781734.

Gangola, M. P., Jaiswal, S., Kannan, U., Gaur, P. M., Båga, M., & Chibbar, R. N. (2016). Galactinol synthase enzyme activity influences raffinose family oligosaccharides (RFO) accumulation in developing chickpea (Cicer arietinum L.) seeds. *Phytochemistry*, 125, 88-98.

Gerganova, M., Popova, A. V., Stanoeva, D., & Velitchkova, M. (2016). Tomato plants acclimate better to elevated temperature and high light than to treatment with each factor separately. *Plant Physiology and Biochemistry*, *104*, 234-241.

Ghassemi-Golezani, K., Khomari, S., Dalil, B., Hosseinzadeh-Mahootchy, A.and Chadordooz-Jeddi A. (2010) Effects of seed aging on field perform-ance of winter oilseed rape. J. Food. Agric. Environ. 8: 175–178.

Gil Villar, D. (2023). Estudio para la caracterización de los componentes ambientales y genéticos implicados en la longevidad de semillas. (Tesis de master, Universitat Politècnica de València).

Grass, L. (1994). Effect of heat stress during seed development and maturation on wheat (Triticum durum) seed quality. Iowa State University.

Groot, S., Surki, A.A., Vos, R. and Kodde, J. (2012) Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions. Ann. Bot. 110: 1149–1159.

Haughn, G., & Chaudhury, A. (2005). Genetic analysis of seed coat development in Arabidopsis. Trends in plant science, 10(10), 472-477.

He, H., de Souza Vidigal, D., Snoek, L. B., Schnabel, S., Nijveen, H., Hilhorst, H., Bentsink, L. (2014). Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis. J. Exp. Bot. 65, 6603-6615.

He, H., Willems, L. A., Batushansky, A., Fait, A., Hanson, J., Nijveen, H., Hilhorst, H. W. M., Bentsink, L. (2016). Effects of parental temperature and nitrate on seed performance are reflected by partly overlapping genetic and metabolic pathways. Plant Cell Physiol. 57, 473-487.

Huang, M., Hu, Y., Liu, X., Li, Y., & Hou, X. (2015). Arabidopsis LEAFY COTYLEDON1 mediates postembryonic development via interacting with PHYTOCHROME-INTERACTING FACTOR4. *The Plant Cell*, *27*(11), 3099-3111.

Hunault, G. and Jaspard, E. (2010). LEAPdb: a database for the late em-bryogenesis abundant proteins.BMC Genomics11: 221.

Debeaujon, I., Lepiniec, L., Pourcel, L., & Routaboul, J. M. (2007). Seed coat development and dormancy. *Annual Plant Reviews Volume 27: Seed Development, Dormancy and Germination*, 25-49.

- J. Buitink, O. Leprince, (2008). Intracellular glasses and seed survival in the dry state, C. R. Biologies 331 788–795.
- Jeevan Kumar, S. P., Rajendra Prasad, S., Banerjee, R., & Thammineni, C. (2015). Seed birth to death: dual functions of reactive oxygen species in seed physiology. Annals of botany, 116(4), 663-668.
- Li, Z.; Wu, S.; Chen, J.; Wang, X.; Gao, J.; Ren, G. & Kuai, B. (2017) NYEs/SGRs-mediated chlorophyll degradation is critical for detoxification during seed maturation in Arabidopsis. The Plant journal: for cell and molecular biology, 92(4), 650–661.
- MacGregor, D. R., Kendall, S. L., Florance, H., Fedi, F., Moore, K., Paszkiewicz, K., Smirnoff, N., Penfield, S. (2015). Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. New Phytol. 205, 642-652.
- Mao, Z.; Sun, W. (2015) Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3.J. Exp. Bot., 66, 4781–4794.
- Matilla, J. (2008). Desarrollo y germinación de las semillas. In: Fundamentos de fisiología vegetal, vol. 21, pp. 537–558. Universidad de Santiago de Compostela, Santiago de Compostela, Galicia, Spain.
- Miura, K., Lin, S., Yano, M., & Nagamine, T. (2002). Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theoretical and Applied Genetics, 104, 981-986.
- Mondoni, A.; Probert, R. J.; Rossi, G.; Vegini, E. & Hay, F. R. (2011) Seeds of alpine plants are short lived: implications for long-term conservation. Annals of botany, 107(1), 171–179.
- Nagel, M., Kranner, I., Neumann, K., Rolletschek, H., Seal, C. E., Colville, L., ... & Börner, A. (2015). Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. Plant, Cell & Environment, 38(6), 1011-1022.
- Niñoles, R., Arjona, P., Azad, S. M., Hashim, A., Casañ, J., Bueso, E., ... & Gadea, J. (2023). Kaempferol-3-rhamnoside overaccumulation in flavonoid 3'-hydroxylase tt7 mutants compromises seed coat outer integument differentiation and seed longevity. New Phytologist, 238(4), 1461-1478.
- P.P. Pang, R.E. Pruitt, E.M. Meyerowitz, (1988) Molecular cloning, genomic organization, expression and evolution of 12S seed storage protein genes of Arabidopsis thaliana, Plant Mol. Biol. 11 805–820.
- Penfield, S., MacGregor, D. R. (2017). Effects of environmental variation during seed production on seed dormancy and germination. J. Exp. Bot. 68, 819-825.

Peris, C. I. L.; Rademacher, E. H. & Weijers, D. (2010) Green beginnings - pattern formation in the early plant embryo. Current Topics in Developmental Biology (Vol. 91). Probert, R. J., Daws, M. I., Hay, F. R. (2009). Ecological correlates of ex situ seed longevity: a comparative study on 195 species. Ann. Bot. 104, 57-69.

Rajjou, L., & Debeaujon, I. (2008). Seed longevity: Survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biologies, 331(10), 796-805.

Rajjou, L., Lovigny, Y., Groot, S.P.C., Belghazi, M., Job, C. and Job, D. (2008) Proteomewide characterization of seed aging in Arabidopsis: a com-parison between artificial and natural aging protocols. Plant Physiol. 148: 620–641

Renard Meseguer, J. (2021). Identification of genes related to seed longevity in Arabidopsis thaliana using genomic molecular techniques (Doctoral dissertation, Universitat Politècnica de València).

Renard, J., Niñoles, R., Martínez-Almonacid, I., Gayubas, B., Mateos-Fernández, R., Bissoli, G., ... & Gadea, J. (2020). Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics. Plant, cell & environment, 43(10), 2523-2539.

Sallon, S., Solowey, E., Cohen, Y., Korchinsky, R., Egli, M., Woodhatch, I., ... & Kislev, M. (2008). Germination, genetics, and growth of an ancient date seed. Science, 320(5882), 1464-1464.

Salvi, P., Varshney, V., & Majee, M. (2022). Raffinose family oligosaccharides (RFOs): role in seed vigor and longevity. Bioscience Reports, 42(10), BSR20220198.

Sano, N., Rajjou, L., North, H. M., Debeaujon, I., Marion-Poll, A., & Seo, M. (2016). Staying alive: molecular aspects of seed longevity. Plant and Cell Physiology, 57(4), 660-674.

Singh, R. P., Prasad, P. V. V., & Reddy, K. R. (2015). Climate change: implications for stakeholders in genetic resources and seed sector. Advances in agronomy, 129, 117-180.

Skubacz, A., Daszkowska-Golec, A., & Szarejko, I. (2016). The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. *Frontiers in plant science*, 7, 1884.

Szechyńska-Hebda, M., Kruk, J., Górecka, M., Karpińska, B., & Karpiński, S. (2010). Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis. The Plant Cell, 22(7), 2201-2218.

Tiwari, B. S., Belenghi, B., & Levine, A. (2002). Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of

mitochondrial permeability transition, and programmed cell death. *Plant physiology*, 128(4), 1271-1281.

Toni Jardón (12 de setiembre de 2017) Viabilidad o Duración De Las Semillas Del Huerto. La Huertina de Toni. Recuperado el 20 de diciembre de 2023 de https://www.lahuertinadetoni.es/viabilidad-o-duracion-de-las-semillas-del-huerto/

Verma, S., Attuluri, V. P. S., & Robert, H. S. (2022). Transcriptional control of Arabidopsis seed development. *Planta*, *255*(4), 90.

Wang, Y., Li, Y., Xue, H., Pritchard, H. W., & Wang, X. (2015). Reactive oxygen species-provoked mitochondria-dependent cell death during ageing of elm (Ulmus pumila L.) seeds. The Plant Journal, 81(3), 438-452.

Zhou, R., Yu, X., Li, X., Dos Santos, T. M., Rosenqvist, E., & Ottosen, C. O. (2020). Combined high light and heat stress induced complex response in tomato with better leaf cooling after heat priming. *Plant Physiology and Biochemistry*, *151*, 1-9.

Zinsmeister, J., Lalanne, D., Terrasson, E., Chatelain, E., Vandecasteele, C., Vu, B. L., Dubois-Laurent, C., Geoffriau, E., Le Signor, C., Dalmais, M., Gutbrod, K., Dörmann, P., Gallardo, K., Bendahmane, A., Buitnk, J., Leprince, O. (2016). ABI5 is a regulator of seed maturation and longevity in legumes. Plant Cell 28, 2735-2754.

Zinsmeister, J., Leprince, O., & Buitink, J. (2020). Molecular and environmental factors regulating seed longevity. Biochemical Journal, 477(2), 305-323.

ANEXO I.

Extracto de los 100 primeros genes con mayor expresión en semillas obtenidas en condiciones de alta intensidad lumínica y a 27°C

En el listado se muestran los genes con mayor expresión en semillas en alta intensidad lumínica en comparación con las obtenidas en condiciones de baja intensidad lumínica. En ambos casos las semillas se obtuvieron en condiciones de 27°C.

Locus	Log2FoldChange	Padj	Descripción
AT1G69260	1,00048301	1 07F-09	ABI five binding protein
AT5G59010	1,0008429		Protein kinase protein with tetratricopeptide repeat domain
AT5G59430	1,00098934		telomeric repeat binding protein 1
AT1G70740	1,00108201		Protein kinase superfamily protein
AT1G29690	1,00126463		MAC/Perforin domain-containing protein
AT3G28910	1,00148444		myb domain protein 30
AT3G20660	1,00206389		organic cation/carnitine transporter4
AT4G00530	1,00246566		unknown protein
AT3G19553	1,00258646	0,04204303	Amino acid permease family protein
AT1G18940	1,00265281	2,01E-06	Nodulin-like / Major Facilitator Superfamily protein
AT4G01395	1,0027466	8,06E-11	no_annotation_available
AT5G14120	1,002891	1,22E-41	Major facilitator superfamily protein
AT5G59790	1,00322118	1,89E-18	Domain of unknown function (DUF966)
AT5G13090	1,00370123	0,02968463	unknown protein
AT2G28330	1,00417799	0,01423418	unknown protein
AT3G21560	1,00432595	1,44E-21	UDP-Glycosyltransferase superfamily protein
AT3G26020	1,00477482	1,63E-06	Protein phosphatase 2A regulatory B subunit family protein
AT3G27890	1,00526252	0,02206968	NADPH:quinone oxidoreductase
AT2G37570	1,00577414	1,57E-11	HSP20-like chaperones superfamily protein
AT3G57750	1,00586957	0,01678975	Protein kinase superfamily protein
AT2G31090	1,00637205	2,75E-08	unknown protein
AT1G73150	1,0064634	2,16E-06	global transcription factor group E3
AT1G66130	1,00698297	0,00158973	NAD(P)-binding Rossmann-fold superfamily protein
AT5G27610	1,00734308	0,0017877	DIRP ;Myb-like DNA-binding domain
AT5G46350	1,00750879	1,59E-05	WRKY DNA-binding protein 8
AT4G19700	1,00841803	9,22E-28	SBP (S-ribonuclease binding protein) family protein
AT5G44080	1,00879196	1,65E-18	Basic-leucine zipper (bZIP) transcription factor family protein
AT2G18735	1,0092357	0,00638742	other RNA
AT2G38610	1,00940041		RNA-binding KH domain-containing protein S-adenosyl-L-methionine-dependent methyltransferases superfamily
AT4G14360	1,0094179	6,52E-15	
AT5G64470	1,00951226		Plant protein of unknown function (DUF828)
AT4G26455	1,00992672	1,78E-12	WPP domain interacting protein 1

AT3G10420	1,01011499	2,04E-39	P-loop containing nucleoside triphosphate hydrolases superfamily protein
AT1G68340	1,01024602	7,37E-10	Protein of unknown function (DUF1639)
AT3G02910	1,0109957	2,82E-20	AIG2-like (avirulence induced gene) family protein
AT5G27840	1,01099737	1,25E-21	Calcineurin-like metallo-phosphoesterase superfamily protein
AT5G13760	1,01147576	2,21E-06	Plasma-membrane choline transporter family protein
AT1G47200	1,01158923	2,38E-14	WPP domain protein 2
AT4G16580	1,01212886	1,51E-09	Protein phosphatase 2C family protein
AT5G12010	1,01239983	5,14E-14	unknown protein
AT4G36380	1,0126427	6,67E-11	Cytochrome P450 superfamily protein
AT5G13330	1,01315062	2,22E-47	related to AP2 6l
AT5G39050	1,01334012	1,49E-47	HXXXD-type acyl-transferase family protein
AT1G05330	1,01355143	0,00498469	unknown protein
AT1G02610	1,01445026	9,35E-08	RING/FYVE/PHD zinc finger superfamily protein
AT1G67340	1,01459233	2,63E-12	HCP-like superfamily protein with MYND-type zinc finger
AT2G17480	1,0147368	0,00545663	Seven transmembrane MLO family protein
AT5G48965	1,01474148	0,00016498	transposable element gene
AT3G27350	1,01477293	1,94E-19	unknown protein
AT5G52300	1,01486278	2,78E-53	CAP160 protein
AT1G27030	1,01604882	2,19E-10	unknown protein
AT4G00660	1,01620677	1,74E-11	RNAhelicase-like 8
AT4G34390	1,0175576	8,21E-07	extra-large GTP-binding protein 2
AT5G05250	1,0186695	7,20E-09	unknown protein
AT5G35680	1,01961586	2,61E-17	Nucleic acid-binding, OB-fold-like protein
AT5G49000	1,01995462	0,00074669	Galactose oxidase/kelch repeat superfamily protein
AT2G39300	1,02005019	0,00884794	unknown protein
AT5G65140	1,0206346	6,01E-31	Haloacid dehalogenase-like hydrolase (HAD) superfamily protein
AT1G25370	1,02085211	1,02E-07	Protein of unknown function (DUF1639)
AT5G57460	1,02129993	0,00068717	unknown protein
AT4G23190	1,02230137	0,01931387	cysteine-rich RLK (RECEPTOR-like protein kinase) 11
AT1G71310	1,0224026	8,53E-08	cobalt ion binding
AT1G69740	1,02294379	1,93E-12	Aldolase superfamily protein
AT1G56660	1,02330744	8,39E-12	unknown protein
AT3G44830	1,02332929	2,22E-21	Lecithin:cholesterol acyltransferase family protein
AT5G01990	1,02431522	6,20E-13	Auxin efflux carrier family protein
AT2G41430	1,02433875	2,11E-32	dehydration-induced protein (ERD15)
AT1G64080	1,02453071	4,41E-06	unknown protein
AT2G23520	1,02465314	0,00613431	Pyridoxal phosphate (PLP)-dependent transferases superfamily protein
AT3G28430	1,0246571	0,0019544	unknown protein
AT1G68020	1,02497429	3,76E-48	UDP-Glycosyltransferase / trehalose-phosphatase family protein
AT2G22795	1,02545898	0,01565027	unknown protein
AT5G02910	1,02671356	2,03E-08	F-box/RNI-like superfamily protein
AT1G02705	1,02712557	0,02859142	no_annotation_available
AT2G39720	1,02909624	3,44E-17	RING-H2 finger C2A

AT1G09810	1,0312937	1,36E-14	evolutionarily conserved C-terminal region 11
AT2G28930	1,03173669	0,00413277	protein kinase 1B
AT2G42280	1,03199507	1,50E-13	basic helix-loop-helix (bHLH) DNA-binding superfamily protein
AT4G10360	1,0337062	0,00197513	TRAM, LAG1 and CLN8 (TLC) lipid-sensing domain containing protein
AT3G22530	1,0360137	4,40E-35	unknown protein
AT5G27320	1,03762467	1,13E-13	alpha/beta-Hydrolases superfamily protein BEST Arabidopsis thaliana protein match is: SET domain protein 14
AT3G62500	1,03815292	0,01657754	(TAIR:AT3G61740.1)
AT4G05070	1,03863571	5,12E-40	Wound-responsive family protein
AT1G59910	1,03899369	7,85E-10	Actin-binding FH2 (formin homology 2) family protein
AT3G04780	1,04100132	1,56E-09	Protein of unknown function (DUF1000)
AT1G19180	1,04100756	1,27E-08	jasmonate-zim-domain protein 1
AT3G05120	1,0413914	1,77E-51	alpha/beta-Hydrolases superfamily protein
AT5G11020	1,04153025	0,01937537	Protein kinase superfamily protein
AT3G15060	1,04185112	2,23E-07	RAB GTPase homolog A1G
AT1G06270	1,04291527	7,30E-05	Pentatricopeptide repeat (PPR) superfamily protein
AT2G17870	1,04303455	5,63E-23	cold shock domain protein 3
AT3G55430	1,04304956	9,67E-39	O-Glycosyl hydrolases family 17 protein
AT1G47500	1,04334625	1,20E-18	RNA-binding protein 47C'
AT1G06530	1,04340458	1,78E-14	Tropomyosin-related
AT1G34180	1,04432102	1,75E-14	NAC domain containing protein 16
AT2G45720	1,04540813	0,00062052	ARM repeat superfamily protein
AT1G70140	1,04671073	1,81E-16	formin 8
AT1G26650	1,04764477	7,97E-05	unknown protein
AT5G15330	1,04805235	4,54E-14	SPX domain gene 4
AT1G18560	1,0480625	0,00732036	BED zinc finger ;hAT family dimerisation domain

Extracto de los 100 primeros genes con menor expresión en semillas obtenidas en condiciones de alta intensidad lumínica y a 27°C

En el listado se muestran los genes con mayor expresión en semillas en alta intensidad lumínica en comparación con las obtenidas en condiciones de baja intensidad lumínica. En ambos casos las semillas se obtuvieron en condiciones de 27°C.

Locus	Log2FoldChange	Padj	Descripción
AT1G67840	1,00076697	0,00224945	chloroplast sensor kinase
AT3G21020	1,00246424	1,21E-11	transposable element gene
AT3G03090	1,00327712	0,00030062	vacuolar glucose transporter 1
AT3G03780	1,00388021	0,01871075	methionine synthase 2
AT5G67570	1,00416054	4,30E-19	Tetratricopeptide repeat (TPR)-like superfamily protein
AT2G42390	1,00568306	0,02047799	protein kinase C substrate, heavy chain-related
AT3G54380	1,00806665	1,36E-18	SAC3/GANP/Nin1/mts3/eIF-3 p25 family
AT5G53580	1,00854632	8,96E-06	NAD(P)-linked oxidoreductase superfamily protein

AT1G07650	1,00964404	0,00244381	Leucine-rich repeat transmembrane protein kinase
AT1G15700	1,00984886	7,72E-11	ATPase, F1 complex, gamma subunit protein
AT5G55370	1,01093196	0,00041304	MBOAT (membrane bound O-acyl transferase) family protein coenzyme F420 hydrogenase family / dehydrogenase, beta subunit
AT1G04620	1,01114331	2,49E-06	•
AT3G24518	1,01181254	0,00019061	other RNA
AT3G60286	-	•	unknown protein
AT1G18060	1,01246213	0,04695067	unknown protein
AT3G02060	1,01276663	4,25E-08	DEAD/DEAH box helicase, putative
AT2G28480	1,01330955	2,19E-09	RNA-binding CRS1 / YhbY (CRM) domain protein
AT1G73750	1,01347849	8,74E-05	Uncharacterised conserved protein UCP031088, alpha/beta hydrolase
AT4G02020	1,01381491	5,72E-10	SET domain-containing protein
AT1G69252	1,01441985	1,17E-28	other RNA
AT3G26650	1,01469814	0,00253556	glyceraldehyde 3-phosphate dehydrogenase A subunit
AT3G19580	1,01600144	1,81E-12	zinc-finger protein 2
AT5G58220	1,01621777	7,38E-13	transthyretin-like protein
AT5G62800	1,01872203	9,24E-22	Protein with RING/U-box and TRAF-like domains
AT1G30530	1,01939859	1,13E-06	UDP-glucosyl transferase 78D1
AT4G26400	1,01966741	0,00158015	RING/U-box superfamily protein
AT2G32520	1,02031052	0,00713403	alpha/beta-Hydrolases superfamily protein
AT1G49340	1,02115652	0,00160458	Phosphatidylinositol 3- and 4-kinase family protein
AT1G01920	1,02135723	4,93E-09	SET domain-containing protein
AT2G29980	1,02192292	0,00040705	fatty acid desaturase 3
AT1G60990	1,02264341	0,03045683	Glycine cleavage T-protein family
AT1G50480	1,02462325	1,52E-32	10-formyltetrahydrofolate synthetase
AT1G48920	1,02486389	4,28E-62	nucleolin like 1
AT1G16520	1,02535797	0,0359348	unknown protein
AT4G08470	1,02539622	0,00052233	MAPK/ERK kinase kinase 3
AT5G35170	1,02671714	3,06E-06	adenylate kinase family protein
AT3G52840	1,02688354	0,0146047	beta-galactosidase 2
AT5G13690	1,02689581	8,91E-09	alpha-N-acetylglucosaminidase family / NAGLU family
AT3G06430	1,02806232	1,20E-15	Tetratricopeptide repeat (TPR)-like superfamily protein
AT1G74510	1,02816672	0,00870032	Galactose oxidase/kelch repeat superfamily protein
AT3G63350	1,02915857	0,00549044	winged-helix DNA-binding transcription factor family protein
AT5G64880	1,02946014	0,01242979	unknown protein
AT2G33620	1,02962206	0,00055193	AT hook motif DNA-binding family protein
AT5G19180	1,03051345	1,95E-23	E1 C-terminal related 1
AT5G47190	1,03235456	0,00040274	Ribosomal protein L19 family protein
AT5G03090	1,03365326	0,0301247	BEST Arabidopsis thaliana protein match is: mto 1 responding down 1 (TAIR:AT1G53480.1) splicing factor PWI domain-containing protein / RNA recognition
AT1G60200	1,03426734	2,56E-15	motif (RRM)-containing protein
AT2G07305	1,03428817		no_annotation_available
AT5G03300	1,03429583		adenosine kinase 2

AT5G54520	1,03434833	5,32E-13	Transducin/WD40 repeat-like superfamily protein
AT2G39550	1,03514151	0,00214028	Prenyltransferase family protein
AT5G07070	1,03523863	0,0278295	CBL-interacting protein kinase 2 BEST Arabidopsis thaliana protein match is: Mitochondrial import inner membrane translocase subunit Tim17/Tim22/Tim23 family
AT1G34630	1,03581344	4,64E-28	protein
AT4G35050	1,0373921	5,63E-19	Transducin family protein / WD-40 repeat family protein
AT1G35516	1,03755221	3,06E-35	myb-like transcription factor family protein
AT3G08590	1,03770071	7,49E-06	$Phosphoglycerate\ mutase,\ 2,3-bisphosphoglycerate-independent$
AT2G04885	1,03772442	0,02521841	no_annotation_available
AT1G31650	1,03785868	0,03818404	RHO guanyl-nucleotide exchange factor 14
AT3G12290	1,03838505	1,40E-06	Amino acid dehydrogenase family protein
AT5G20220	1,03927973	0,00063324	zinc knuckle (CCHC-type) family protein
AT5G63200	1,03948728	7,94E-38	tetratricopeptide repeat (TPR)-containing protein
AT1G20540	1,04029812	0,0270416	Transducin/WD40 repeat-like superfamily protein
AT1G15200	1,04053887	3,68E-26	protein-protein interaction regulator family protein
AT2G35810	1,04083439	2,11E-23	unknown protein
AT1G20380	1,04132369	0,04321631	Prolyl oligopeptidase family protein
AT5G51540	1,04568446	5,64E-05	Zincin-like metalloproteases family protein
AT1G74470	1,0459886	2,24E-05	Pyridine nucleotide-disulphide oxidoreductase family protein
AT3G07650	1,04693986	1,08E-07	CONSTANS-like 9
AT5G48570	1,04729864	3,55E-50	FKBP-type peptidyl-prolyl cis-trans isomerase family protein
AT2G35830	1,04738401	0,0071307	unknown protein
AT5G23430	1,04846554	1,71E-07	Transducin/WD40 repeat-like superfamily protein
AT1G72990	1,04861312	0,00355077	beta-galactosidase 17
AT5G07060	1,04950169		CCCH-type zinc fingerfamily protein with RNA-binding domain peptidyl-prolyl cis-trans isomerases;hydrolases;nucleoside-
AT1G53780	1,04958156		triphosphatases;ATP binding;nucleotide binding;ATPases
AT3G50070	1,04975466	0,00136661	CYCLIN D3;3
AT1G21350	1,050061	0,00166353	Thioredoxin superfamily protein
AT3G53830	1,05052446	8,06E-05	Regulator of chromosome condensation (RCC1) family protein
AT1G64230	1,05210495	1,59E-49	ubiquitin-conjugating enzyme 28
AT3G14940	1,05216814	0,00054965	phosphoenolpyruvate carboxylase 3
AT3G03330	1,05236279	4,83E-31	NAD(P)-binding Rossmann-fold superfamily protein
AT5G65760	1,0526679	1,20E-17	Serine carboxypeptidase S28 family protein
AT3G27190	1,05350411	0,01210097	uridine kinase-like 2
AT4G03440	1,05359182	0,00498687	Ankyrin repeat family protein
AT1G52420	1,05393849	3,90E-11	UDP-Glycosyltransferase superfamily protein
AT2G45200	1,054862	0,00347825	golgi snare 12
AT4G39090	1,05617918	2,41E-08	Papain family cysteine protease
AT5G52550	1,05637775	1,66E-18	unknown protein
AT1G56200	1,0577029	1,25E-32	embryo defective 1303
AT5G40660	1,05774318	1,61E-12	ATP12 protein-related
AT5G12210	1,05942308	7,26E-35	RAB geranylgeranyl transferase beta subunit 1

AT1G80700	1,06074238	0,00033513	unknown protein
AT3G22880	1,06124646	0,03872286	DNA repair (Rad51) family protein
AT3G54820	1,06183716	8,74E-09	plasma membrane intrinsic protein 2;5
AT3G16640	1,06222497	2,38E-110	translationally controlled tumor protein
AT1G08660	1,06259855	0,00164565	MALE GAMETOPHYTE DEFECTIVE 2
AT5G08340	1,06397497	0,00060084	Nucleotidylyl transferase superfamily protein
AT2G18390	1,06556118	4,91E-13	ADP-ribosylation factor family protein
AT1G80830	1,06835136	2,36E-12	natural resistance-associated macrophage protein 1
AT1G08110	1,06883226	2,47E-38	lactoylglutathione lyase family protein / glyoxalase I family protein
AT3G07150	1,06904985	0,02152876	unknown protein

ANEXO II

Extracto de los 100 primeros genes con mayor expresión en semillas obtenidas en condiciones de lata intensidad lumínica y a 22°C

En el listado se muestran los genes con mayor expresión en semillas en alta intensidad lumínica en comparación con las obtenidas en condiciones de baja intensidad lumínica. En ambos casos las semillas se obtuvieron en condiciones de 22°C.

Locus	Log2FoldChange	Padj	Descripción
AT2G36320	1,00146482	2,62E-08	A20/AN1-like zinc finger family protein
AT2G27500	1,00170073	0,02897676	Glycosyl hydrolase superfamily protein
AT4G34710	1,00599867	7,65E-09	arginine decarboxylase 2
AT4G29950	1,00910905	1,37E-06	Ypt/Rab-GAP domain of gyp1p superfamily protein
AT3G15358	1,01136821	0,00234655	unknown protein
AT5G06320	1,01319503	6,66E-08	NDR1/HIN1-like 3
AT5G47930	1,01580085	0,02002882	Zinc-binding ribosomal protein family protein
AT2G15970	1,01738283	0,00012017	cold regulated 413 plasma membrane 1
AT1G43160	1,01761933	1,60E-06	related to AP2 6 CONTAINS InterPro DOMAIN/s: LPS-induced tumor necrosis factor
AT5G13190	1,01796114	0,00204526	alpha factor
AT4G20260	1,01876103	0,00015454	plasma-membrane associated cation-binding protein 1
AT5G16400	1,01902876	0,01340165	thioredoxin F2
AT3G05500	1,02030081	0,00048679	Rubber elongation factor protein (REF)
AT5G02380	1,02049739	0,00173332	metallothionein 2B
AT4G21860	1,02109095	1,83E-05	methionine sulfoxide reductase B 2
AT1G73440	1,02263903	0,03188703	calmodulin-related
AT5G65360	1,02312437	0,02366176	Histone superfamily protein
AT2G43570	1,02501711	0,01681572	chitinase, putative
AT2G30040	1,02557875	4,37E-05	mitogen-activated protein kinase kinase kinase 14
AT4G17530	1,02600143	2,28E-07	RAB GTPase homolog 1C
AT3G44300	1,0261569	3,31E-08	nitrilase 2

AT5G47200	1,02648171	•	RAB GTPase homolog 1A
AT1G07473	,	•	unknown protein
AT1G05010			ethylene-forming enzyme
AT1G74950	1,02852454		TIFY domain/Divergent CCT motif family protein
AT4G29140	1,03046314		MATE efflux family protein
AT4G02890	1,03098965	·	Ubiquitin family protein
AT4G28240	1,03156257	0,00030759	Wound-responsive family protein
AT5G01040	1,03296616	0,00710838	laccase 8
AT5G03030	1,03334499	0,00098071	Chaperone DnaJ-domain superfamily protein
AT1G06040	1,03421217	0,00671391	B-box zinc finger family protein
AT5G65120	1,03498579	0,0017811	unknown protein
AT1G19380	1,03555703	0,02066849	Protein of unknown function (DUF1195)
AT1G04660	1,03750415	2,21E-06	glycine-rich protein
AT3G19615	1,03870526	0,00482167	unknown protein
AT1G11260	1,03885029	4,09E-10	sugar transporter 1
AT3G06420	1,04024824	6,96E-07	Ubiquitin-like superfamily protein
AT5G58070	1,0402686	3,78E-05	temperature-induced lipocalin
AT3G22120	1,04135364	0,00560827	cell wall-plasma membrane linker protein
AT5G09800	1,04196219	0,00020382	ARM repeat superfamily protein
AT2G06985	1,04283017	0,01846976	hypothetical protein
AT3G13450	1,04607385	0,01840488	Transketolase family protein
AT5G64140	1,04836852	0,00254538	ribosomal protein S28
AT1G05330	1,05064702	0,02003739	unknown protein S-adenosyl-L-methionine-dependent methyltransferases superfamily
AT1G01180	1,05172065	1,11E-09	protein
AT2G31090	1,05233864	0,00064576	unknown protein
AT2G45160	1,05294252	0,00466868	GRAS family transcription factor
AT3G05200	1,05831799	5,78E-05	RING/U-box superfamily protein
AT1G53170	•	·	ethylene response factor 8 Phosphatidylinositol N-acetylglucosaminyltransferase, GPI19/PIG-P
AT2G39445	,	0,03437956	
AT2G36080	1,06011653	0,00222706	AP2/B3-like transcriptional factor family protein
AT4G23470	1,06208922	0,00288459	PLAC8 family protein
AT1G12450	1,06331492		SNARE associated Golgi protein family Ribosomal protein L12/ ATP-dependent Clp protease adaptor protein
AT4G37660	1,066337	,	ClpS family protein
AT1G80460	1,06719594	0,00291577	Actin-like ATPase superfamily protein
AT1G66130	1,06817553	0,0001704	NAD(P)-binding Rossmann-fold superfamily protein
AT4G26590	1,06851862	9,29E-05	oligopeptide transporter 5
AT5G05870	1,07008605	2,82E-05	UDP-glucosyl transferase 76C1
AT4G37550	1,07260189	0,03454917	Acetamidase/Formamidase family protein
ATCG00670	1,07301118	0,02003334	plastid-encoded CLP P
AT1G10150	1,07400672	0,00139858	Carbohydrate-binding protein
AT2G01008	1,07428019	0,04424069	FUNCTIONS IN: BEST Arabidopsis thaliana protein match is: maternal
AT4G33666	1,07567559	0,00027934	unknown protein

AT2G45170	1,07590503	3,96E-10	AUTOPHAGY 8E
AT5G03230	1,07620843	0,02800441	Protein of unknown function, DUF584
AT3G60680	1,07743916	0,00011552	Plant protein of unknown function (DUF641)
AT4G12000	1,07760499	0,00081003	SNARE associated Golgi protein family
AT4G14540	1,07811122	0,00342212	nuclear factor Y, subunit B3
AT3G49790	1,0782184	1,48E-07	Carbohydrate-binding protein
AT3G17790	1,07874369	0,0002046	purple acid phosphatase 17
AT3G54990	1,07962015	0,00759436	Integrase-type DNA-binding superfamily protein
AT1G79360	1,0834049	5,10E-06	organic cation/carnitine transporter 2
AT3G52800	1,08412095	0,0012616	A20/AN1-like zinc finger family protein
AT3G10610	1,08809792	0,02482313	Ribosomal S17 family protein
AT1G73790	1,08843717	0,01373514	Protein of unknown function (DUF3743)
AT4G38470	1,08911446	1,98E-05	ACT-like protein tyrosine kinase family protein
AT2G45710	1,09127193	0,00108024	Zinc-binding ribosomal protein family protein
AT3G27380	1,09149109	8,26E-05	succinate dehydrogenase 2-1
AT1G70780	1,0941555	9,20E-06	unknown protein
AT4G05320	1,0959261	2,06E-08	polyubiquitin 10
AT2G19810	1,10017575	0,01669473	CCCH-type zinc finger family protein
AT2G01570	1,10085576	0,00318082	GRAS family transcription factor family protein Rho GTPase activating protein with PAK-box/P21-Rho-binding
AT4G03100	1,10102648	0,00130183	_ ·
AT3G25900	1,10498453	4,78E-06	Homocysteine S-methyltransferase family protein
AT1G62370	1,1080103	0,02402694	RING/U-box superfamily protein
AT5G15120	1,10806443	6,40E-07	Protein of unknown function (DUF1637)
AT3G48510	1,11056297	1,07E-08	unknown protein
AT2G42350	1,11120694	0,01591123	RING/U-box superfamily protein
AT4G36040	1,11176188	7,13E-09	Chaperone DnaJ-domain superfamily protein
ATMG00020	1,11245732	0,03700479	mitochondrial 26S ribosomal RNA protein
AT5G65660	1,11381498	1,20E-15	hydroxyproline-rich glycoprotein family protein P-loop containing nucleoside triphosphate hydrolases superfamily
AT2G27570	1,11442168	0,0140292	protein
AT4G15610	1,11662846	0,01218488	Uncharacterised protein family (UPF0497)
AT5G18670	1,1219846	8,79E-18	beta-amylase 3
AT5G45340	1,12240176	0,00525627	cytochrome P450, family 707, subfamily A, polypeptide 3
AT5G13220	1,12420941	9,72E-05	jasmonate-zim-domain protein 10
AT2G46490	1,12507476	0,00282484	unknown protein
AT4G39800	1,1298691	1,38E-11	myo-inositol-1-phosphate synthase 1
AT2G05310	1,13139093	8,37E-05	unknown protein
AT3G09162	1,13151816	0,00029242	unknown protein

Extracto de los 100 primeros genes con menor expresión en semillas obtenidas en condiciones de lata intensidad lumínica y a 22°C

En el listado se muestran los genes con mayor expresión en semillas en alta intensidad lumínica en comparación con las obtenidas en condiciones de baja intensidad lumínica. En ambos casos las semillas se obtuvieron en condiciones de 22°C.

Lasus	Log2FoldChamas	De d:	December 114m
Locus	Log2FoldChange	Padj	Descripción
AT4G10180	1,00134386	0,01202923	light-mediated development protein 1 / deetiolated1 (DET1)
AT5G45500	1,0030228	0,01949502	RNI-like superfamily protein
AT5G10680	1,00448262	0,00412575	calmodulin-binding protein-related
AT1G79280	1,00511708	0,00053948	nuclear pore anchor
AT2G20210	1,00875971	0,03694895	RNI-like superfamily protein
AT5G43810	1,01199317	0,00019414	Stabilizer of iron transporter SufD / Polynucleotidyl transferase
AT3G53540	1,01272999	0,01703427	unknown protein
AT3G19780	1,0135422	0,00034197	LOCATED IN: endomembrane system; CONTAINS InterPro
AT2G01130	1,0141938	0,01788884	DEA(D/H)-box RNA helicase family protein
AT2G37860	1,01713195	0,04482865	Protein of unknown function (DUF3411)
AT2G41080	1,02522745	0,03195865	Tetratricopeptide repeat (TPR)-like superfamily protein
AT4G36250	1,02924938	0,04053621	aldehyde dehydrogenase 3F1
AT1G55930	1,02980035	0,00028177	CBS domain-containing protein / transporter associated domain-containing protein
AT3G13222	1,03068729	6,82E-05	GBF-interacting protein 1
AT5G27010	1,03682308	0,01838437	ARM repeat superfamily protein
AT1G09680	1,03914647	0,02081298	Pentatricopeptide repeat (PPR) superfamily protein
AT1G09830	1,04151631	0,03305727	Glycinamide ribonucleotide (GAR) synthetase
AT5G49110	1,04807682	0,00562816	unknown protein
AT5G04810	1,04837636	5,47E-05	pentatricopeptide (PPR) repeat-containing protein
AT2G16676	1,04920732	0,00744247	unknown protein
AT1G27770	1,0501149	4,56E-06	autoinhibited Ca2+-ATPase 1
AT1G06900	1,05274081	0,0019048	Insulinase (Peptidase family M16) family protein
AT1G17110	1,061826	0,0007635	ubiquitin-specific protease 15
AT5G10720	1,06284873	0,01716751	histidine kinase 5
AT5G05130	1,06414008	0,00351776	DNA/RNA helicase protein
AT4G16780	1,06679508	4,32E-09	homeobox protein 2
AT2G36720	1,0692524	7,94E-06	Acyl-CoA N-acyltransferase with RING/FYVE/PHD-type zinc finger domain
AT5G20590	1,07121937	0,03678305	TRICHOME BIREFRINGENCE-LIKE 5
AT2G15580	1,07319731	0,00411849	RING/U-box superfamily protein
AT3G15200	1,07503535	0,00099338	Tetratricopeptide repeat (TPR)-like superfamily protein NOL1/NOP2/sun family protein / antitermination NusB domain-containing
AT3G13180	1,07721052	0,00033128	protein
AT1G64880	1,08095423	0,00877149	Ribosomal protein S5 family protein
AT5G48730	1,08497654	0,00881022	Pentatricopeptide repeat (PPR) superfamily protein
AT4G29900	1,09329062	1,32E-05	autoinhibited Ca(2+)-ATPase 10

AT3G11080	1,09793581	0,00055928	receptor like protein 35
AT5G63040	1,10572768	0,0075789	unknown protein
AT5G60100	1,11007945	4,82E-05	pseudo-response regulator 3
AT3G46970	1,11052371	0,01371394	alpha-glucan phosphorylase 2
AT1G05460	1,11510681	0,0038324	P-loop containing nucleoside triphosphate hydrolases superfamily protein
AT1G30010	1,11796527	0,00462293	Intron maturase, type II family protein
AT1G49560	1,12520196	0,00269884	Homeodomain-like superfamily protein
AT1G78700	1,12663216	0,00193834	BES1/BZR1 homolog 4
AT2G25830	1,13132921	0,00072785	YebC-related
AT3G53920	1,13524557	0,00199349	RNApolymerase sigma-subunit C
AT3G26540	1,13576487	0,04968695	Tetratricopeptide repeat (TPR)-like superfamily protein
AT3G49580	1,13900335	0,00170544	response to low sulfur 1
AT4G15440	1,14996948	0,00341011	hydroperoxide lyase 1
AT3G07440	1,15112794	4,86E-06	unknown protein
AT2G36120	1,15392721	0,02791431	Glycine-rich protein family
AT4G19900	1,15520608	0,00177723	alpha 1,4-glycosyltransferase family protein
AT3G60320	1,15965985	6,91E-06	Protein of unknown function (DUF630 and DUF632)
AT5G20320	1,16292515	0,00175101	dicer-like 4
AT1G60860	1,16538169	0,03042445	ARF-GAP domain 2 zinc ion binding;nucleic acid binding;hydrolases, acting on acid anhydrides,
AT1G48360	1,16645025	0,00587244	
AT1G80880	1,16782873	0,0412912	Tetratricopeptide repeat (TPR)-like superfamily protein
AT4G09160	1,18339595	0,04053621	SEC14 cytosolic factor family protein / phosphoglyceride transfer family protein
AT1G06840	1,19437206	-	Leucine-rich repeat protein kinase family protein
AT2G04530	•	0,00117507	Metallo-hydrolase/oxidoreductase superfamily protein
AT1G08450	1,21124801	•	calreticulin 3
AT1G30510	1,21211909	•	root FNR 2
AT4G38010	•	•	Pentatricopeptide repeat (PPR-like) superfamily protein
AT3G04340			FtsH extracellular protease family
AT3G61700			Plant protein 1589 of unknown function
AT2G33051	1,23052346		other RNA
AT1G36180	•	•	acetyl-CoA carboxylase 2
AT2G31890	1,23359248	4,77E-06	
AT4G16340	1,23601249	•	guanyl-nucleotide exchange factors;GTPase binding;GTP binding
AT3G23780	1,24170027	•	nuclear RNA polymerase D2A
AT1G50970	1,24535079		Membrane trafficking VPS53 family protein
AT1G16800	•	-	P-loop containing nucleoside triphosphate hydrolases superfamily protein
AT4G38780	1,26652027	-	Pre-mRNA-processing-splicing factor
AT1G74350			Intron maturase, type II family protein
AT2G40030	1,27731782		nuclear RNA polymerase D1B
AT1G79880	1,29409265	0,00019597	RNA recognition motif (RRM)-containing protein
AT5G12150	1,29715804	0,00136633	Rho GTPase activation protein (RhoGAP) with PH domain
AT4G22280			F-box/RNI-like superfamily protein

AT1G11300	1.30395311	0,00351909	protein serine/threonine kinases;protein kinases;ATP binding;sugar binding;kinases;carbohydrate binding
AT1G13340	1,30682436	1,97E-19	
AT4G04370	1,3123052	0,03919325	Tetratricopeptide repeat (TPR)-like superfamily protein
AT2G30980	1,32147852	0,01787205	SHAGGY-related protein kinase dZeta
AT5G48570	1,34141357	3,93E-13	FKBP-type peptidyl-prolyl cis-trans isomerase family protein
AT1G26240	1,35174567	2,29E-10	Proline-rich extensin-like family protein
AT3G19040	1,35603105	0,02002882	histone acetyltransferase of the TAFII250 family 2
AT1G67490	1,37356588	0,01464669	glucosidase 1
AT1G23935	1,37418212	3.29E-05	CONTAINS InterPro DOMAIN/s: Apoptosis inhibitory 5 (InterPro:IPR008383)
AT3G50420	1,37673264	-,	Pentatricopeptide repeat (PPR) superfamily protein
AT5G67570	1,37750791	•	Tetratricopeptide repeat (TPR)-like superfamily protein
AT5G63630	1,37938178	•	P-loop containing nucleoside triphosphate hydrolases superfamily protein
AT3G26150	1,38433763		cytochrome P450, family 71, subfamily B, polypeptide 16
			pseudogene, similar to Magnesium-chelatase subunit chID, chloroplast
AT2G19250	1,39427439	0,03235201	
AT1G72570	1,40660478	3,72E-06	Integrase-type DNA-binding superfamily protein
AT5G27270	1,40782814	4,49E-05	Tetratricopeptide repeat (TPR)-like superfamily protein
AT3G52870	1,41350737	0,01056082	IQ calmodulin-binding motif family protein
17001000	4 40040500	0.04405055	S-adenosyl-L-methionine-dependent methyltransferases superfamily
AT3G18000	1,42310628	•	·
AT1G60750	1,44927436	5,78E-07	NAD(P)-linked oxidoreductase superfamily protein
AT3G12520	1,45966018	0,03778551	sulfate transporter 4;2
AT5G18340	1,46171477	0,04304048	ARM repeat superfamily protein
AT4G15810	1,46263458	0,00403143	P-loop containing nucleoside triphosphate hydrolases superfamily protein
AT3G13960	1,48382681	0,00076597	growth-regulating factor 5
AT4G33930	1,49577929	3,67E-13	Cupredoxin superfamily protein

ANEXO III

Extracto de los 100 primeros genes con mayor expresión en semillas obtenidas a 27°C

En el listado se muestran los genes con mayor expresión en semillas obtenidas a una temperatura de 27°C en comparación con las obtenidas en condiciones de 22°C. En ambos casos las semillas se obtuvieron en condiciones de alta intensidad lumínica.

Locus	Log2 FoldChange	Padj	Descripción
AT1G62180	1,00057782	3,88E-20	Galactose oxidase/kelch repeat superfamily protein
AT3G60140	1,00115189	2,98E-30	Aluminium induced protein with YGL and LRDR motifs
AT5G04590	1,00148994	0,03085402	Mitochondrial substrate carrier family protein
AT5G64750	1,00180623	4,95E-15	Protein kinase superfamily protein
AT2G25900	1,00254015	2,63E-10	O-fucosyltransferase family protein
AT5G60760	1,00258184	1,68E-17	ATP/GTP-binding protein family

AT1G19530	1,00264001	1,49E-12	Plant-specific transcription factor YABBY family protein
AT4G13510	1,00280872	1,77E-25	lipid phosphate phosphatase 3
AT5G21280	1,00330821	1,50E-28	RNA helicase, putative
AT5G44310	1,00348166	2,45E-15	WD-40 repeat family protein
AT4G26050	1,00445567	2,26E-41	exocyst subunit exo70 family protein F1
AT1G74710	1,004541	9,92E-29	Dihydrolipoamide succinyltransferase
AT4G35160	1,00658174	0,03613688	beta carbonic anhydrase 4
AT5G40340	1,00701606	4,32E-25	Target of Myb protein 1
AT4G13250	1,00706234	5,71E-37	MIF4G domain-containing protein / MA3 domain-containing protein
AT5G16970	1,00708102	1,48E-16	endoplasmatic reticulum retrieval protein 1B
AT3G50970	1,00721849	7,42E-09	unknown protein
AT5G01750	1,00770959	2,97E-10	Expressed protein
AT1G05680	1,00790382	4,13E-33	Zinc finger (C3HC4-type RING finger) family protein
AT4G27530	1,0083712	9,86E-05	unknown protein
AT1G75540	1,00910053	8,23E-11	glycine-rich protein
AT1G01720	1,00913363	0,00013682	2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
AT3G12920	1,00931749	*	Ypt/Rab-GAP domain of gyp1p superfamily protein
AT5G22470	1,00946822		TRICHOME BIREFRINGENCE-LIKE 23
AT2G18700	1,00991165	•	SAUR-like auxin-responsive protein family
AT2G16890	1,01089354		RNase L inhibitor protein-related
AT1G54130	1,01107865		Nuclear transport factor 2 (NTF2) family protein with RNA binding (RRM-RBD-RNP motifs) domain
AT3G53960	1,01278067	1,93E-06	F-box and associated interaction domains-containing protein
AT1G08050	1,01404408	0,02079919	Protein of unknown function (DUF3741)
AT2G37970	1,01464507	0,00017415	Isoprenylcysteine carboxyl methyltransferase (ICMT) family
AT4G18680	1,01468892	0,00066754	Disease resistance protein (TIR-NBS class)
AT1G19540	1,01491938	7,08E-06	Ribosomal L27e protein family
AT5G63350	1,01537197	0,00156586	Low temperature and salt responsive protein family
AT1G47970	1,01601175	5,70E-17	SCARECROW-like 1
AT1G55110	1,0163604	7,24E-28	UDP-Glycosyltransferase superfamily protein
AT1G66260	1,01651237	2,57E-45	proline-rich family protein
AT4G36620	1,01719795	0,00034156	Pleckstrin homology (PH) domain-containing protein
AT4G02280	1,01736837	2,14E-14	DEA(D/H)-box RNA helicase family protein
AT1G15330	1,01766612	4,96E-07	unknown protein
AT5G45830	1,01767009	8,07E-09	Tetratricopeptide repeat (TPR)-like superfamily protein
AT3G54140	1,01780398	0,00433727	translocon outer complex protein 120
AT2G16485	1,0182621	1,10E-52	Oleosin family protein
AT3G29670	1,01882672	0,02631672	transcription regulatory protein SNF5, putative (BSH)
AT4G33700	1,01935452	0,00014161	Pentatricopeptide repeat (PPR) superfamily protein
AT5G01600	1,02040497	1,54E-19	Integrase-type DNA-binding superfamily protein
AT3G46600	1,02058191	2,09E-55	VQ motif-containing protein
AT2G03340	1,020607	1,73E-18	SNF7 family protein
AT3G14050	1,02110378	7,71E-20	unknown protein

AT1G36370	1,02133148	7,99E-06	PAM domain (PCI/PINT associated module) protein
AT5G49930	1,02185078	2,89E-15	INVOLVED IN: intracellular protein transport
AT3G05510	1,02342788	0,01766633	TCP family transcription factor
AT1G27290	1,02343349	0,00235342	zinc induced facilitator 1
AT5G21990	1,02379433	0,00104659	unknown protein
AT1G03790	1,0247769	0,03947937	Zinc finger, RING-type;Transcription factor jumonji/aspartyl beta- hydroxylase
AT4G36040	1,02481316	0,00368424	Sucrase/ferredoxin-like family protein
AT5G65720	1,02553256	0,01700856	Pectin lyase-like superfamily protein
AT2G25625	1,02574678	3,26E-12	SKP1-like 4
AT3G14590	1,02632993	1,98E-19	exocyst subunit exo70 family protein G1
AT4G01870	1,02657462	0,00031867	TBP-associated factor 8
AT5G51070	1,02753899	0,00012083	abscisic acid responsive elements-binding factor 2
AT5G14780	1,02789749	3,24E-14	Plant regulator RWP-RK family protein
AT5G18130	1,02794663	4,61E-30	indeterminate(ID)-domain 4
AT5G03180	1,02884454	0,00192704	ATP-dependent RNA helicase, mitochondrial, putative
AT3G62260	1,02911562	3,65E-47	RING domain ligase1
AT2G03730	1,02966157	1,03E-32	NAC transcription factor-like 9
AT2G42750	1,03012456	2,06E-06	nodulin MtN21 /EamA-like transporter family protein Major Facilitator Superfamily with SPX (SYG1/Pho81/XPR1) domain-
AT4G38810	1,03017129	0,01703882	containing protein
AT5G52530	1,03036331	3,99E-05	RNA-binding KH domain-containing protein
AT5G52580	1,03243667	0,00168445	unknown protein
AT5G09970	1,03251653	3,13E-21	DNA-directed RNA polymerase II protein
AT1G78000	1,03261573	0,00016323	TOXICOS EN LEVADURA 4
AT1G15740	1,03289368	2,55E-16	Transcription factor jumonji (jmjC) domain-containing protein
AT5G24910	1,03314283	4,65E-08	Pleckstrin homology (PH) domain-containing protein
AT1G73730	1,03322241	1,16E-51	Protein of unknown function (DUF760)
AT1G15340	1,0337766	7,52E-31	SAD1/UNC-84 domain protein 1
AT2G21720	1,03412581	1,26E-42	Ribonuclease II/R family protein
AT2G41410	1,03526292	5,37E-06	eukaryotic initiation factor 4B2
AT4G32940	1,03554602	7,55E-17	Integrase-type DNA-binding superfamily protein
AT1G62420	1,03601432	5,17E-15	Ubiquitin-associated/translation elongation factor EF1B protein
AT2G28400	1,03643509	1,20E-11	calmodulin-domain protein kinase 9
AT1G67230	1,03679532	0,00027079	Calcineurin-like metallo-phosphoesterase superfamily protein
AT3G48270	1,03685896	2,18E-05	SWIB complex BAF60b domain-containing protein
AT3G20250	1,03730445	1,99E-05	NAD(P)-binding Rossmann-fold superfamily protein
AT4G20170	1,03744695	0,00380531	Histone superfamily protein
AT3G46590	1,03748514	5,49E-05	Mitochondrial transcription termination factor family protein
AT3G49530	1,03774031	1,57E-27	Major facilitator superfamily protein
AT3G57120	1,03792977	4,89E-18	unknown protein
AT5G52300	1,03899102	1,95E-25	Regulator of Vps4 activity in the MVB pathway protein
AT1G08170	1,03964051	0,00057507	cyclophilin 38
AT4G20820	1,04005332	0,01086445	DNA-binding bromodomain-containing protein

AT1G05150	1,04034263	5,46E-10	unknown protein
AT1G27760	1,04044443	1,31E-06	nascent polypeptide-associated complex subunit alpha-like protein 2 $$
AT4G37260	1,04048678	0,01399506	PYR1-like 13
AT4G11040	1,04195467	8,76E-29	Ubiquitin-like superfamily protein
AT1G13960	1,04202952	0,00204691	unknown protein
AT5G67300	1,04208952	3,12E-27	unknown protein
AT3G51860	1,04240067	0,03884509	unknown protein
AT1G64330	1,04248994	0,00065226	DEA(D/H)-box RNA helicase family protein
AT5G16650	1,04297548	0,03205142	no_annotation_available
AT1G14950	1,04325122	2,00E-31	eukaryotic translation initiation factor 4G

Extracto de los 100 primeros genes con menor expresión en semillas obtenidas a 27°C

En el listado se muestran los genes con menor expresión en semillas obtenidas a una temperatura de 27°C en comparación con las obtenidas en condiciones de 22°C. En ambos casos las semillas se obtuvieron en condiciones de alta intensidad lumínica.

Locus	Log2 FoldChange	Padj	Descripción
AT1G14520	1,0000963	1,02E-24	Pyruvate kinase family protein
AT4G27170	1,00028547	2,28E-05	Sec14p-like phosphatidylinositol transfer family protein
ATMG00160	1,00051795	0,00015669	Pentatricopeptide repeat (PPR) superfamily protein
ATMG00640	1,0007516	4,01E-20	ATP synthase D chain, mitochondrial
AT1G65970	1,00099475	2,16E-07	winged-helix DNA-binding transcription factor family protein
AT5G54740	1,00104275	1,21E-08	unknown protein
AT2G43520	1,00178905	0,01423921	no_annotation_available
AT4G25200	1,00189179	0,02172268	glutathione peroxidase 4
AT1G47540	1,00212157	0,00192269	dual specificity protein phosphatase (DsPTP1) family protein
AT2G21660	1,00212949	4,64E-28	Exonuclease family protein
AT1G20620	1,0026207	8,54E-39	polygalacturonase inhibiting protein 1
AT4G33930	1,00271005	4,21E-06	RING/U-box superfamily protein
ATMG00690	1,00273678	0,00629703	pseudogene similar to peptide chain release factor protein
AT1G56280	1,0038822	4,76E-06	receptor like protein 35
AT5G12020	1,00428727	4,84E-18	Ribosomal protein S13/S15
AT2G07698	1,004336	9,16E-73	unknown protein
AT3G62860	1,00463807	0,02897464	unknown protein
AT1G17530	1,00492655	9,99E-23	Uncharacterised protein family (UPF0497)
ATMG00070	1,00527014	6,25E-10	IQ-domain 22
AT1G76990	1,00558332	0,00050316	Target SNARE coiled-coil domain protein
AT2G19310	1,00592351	4,52E-21	Ribosomal protein S6e
AT2G23110	1,00593456	1,15E-05	RING/U-box superfamily protein

```
AT3G16640 1,00629509
                           2,39E-05 arginine-tRNA protein transferase 2
AT1G71695 1,00704746
                           9,23E-05 UDP-Glycosyltransferase superfamily protein
AT3G16770 1,00801342 0,00164303 Ribosomal L18p/L5e family protein
AT3G47800 1,00828383 0,00092542 unknown protein
AT2G33740 1,00854919
                           2,70E-39 Cytosol aminopeptidase family protein
                                    CONTAINS InterPro DOMAIN/s: RNAse P, Rpr2/Rpp21 subunit
AT2G29500 1,00864975
                           9,15E-14 (InterPro:IPR007175)
AT5G46180
            1,00869825 0,00164958 PDI-like 5-3
ATMG00650 1,00940466
                           2,55E-07 Cyclophilin-like peptidyl-prolyl cis-trans isomerase family protein
AT4G10250 1,00940779
                           1,19E-12 tonneau 2 (TON2)
AT2G24180 1,00986051 0,00105509 Duplicated homeodomain-like superfamily protein
AT3G26510 1,01059048
                           1.52E-07 calnexin 1
AT3G60910 1,01059734 0,00138864 chloroplast sensor kinase
AT4G21320 1,01105112
                           4,01E-06 Cytochrome c oxidase biogenesis protein Cmc1-like
AT1G78380 1,01266085
                           1,07E-07 glucuronokinase G
AT2G27570 1,01270122 0,02940186 unknown protein
AT4G27160 1,01281615
                           8,33E-57 glyoxalase I homolog
                         0,0251778 PLC-like phosphodiesterases superfamily protein
AT5G04750 1,01327051
AT1G55850
           1,01397233
                           2,74E-17 Subunits of heterodimeric actin filament capping protein Capz superfamily
AT1G23310 1,01417283 0,00577464 beta-galactosidase 17
AT5G40850 1,01433009 0,00572343 Nucleotide-diphospho-sugar transferase family protein
AT4G35090
            1,01437878 0,00278985 ERD (early-responsive to dehydration stress) family protein
AT3G24500 1,01483211
                           4,15E-43 unknown protein
AT1G06110 1,01591968
                           1,24E-08 Ribosomal protein L14p/L23e family protein
AT2G29340
             1,0174444
                           4,48E-05 mraW methylase family protein
AT3G02620 1,01781195
                           6,30E-19 Ribosomal protein L22p/L17e family protein
ATMG01360
              1.017978
                           2,54E-12 Uncharacterised protein family SERF
AT1G26665
             1,0184138
                           6,64E-07 transmembrane receptors;ATP binding
AT2G21330 1,01877279
                           1,06E-61 Plant thionin
AT1G21770
            1,01898148 0,00272261 hydroxyethylthiazole kinase family protein
ATMG00510 1,02082753
                           1,60E-23 ribosomal protein 5A
AT3G10450 1,02181935
                           3,32E-15 unknown protein
AT1G65980 1,02207113 0,00134637 unknown protein
AT4G27150
             1,0222963 0,00274228 no annotation available
AT3G45770 1,02237795
                           1,50E-47 zinc transporter of Arabidopsis thaliana
AT3G12960 1,02340933
                           3,73E-08 Chaperone DnaJ-domain superfamily protein
AT1G53540 1,02383517
                           1,75E-11 chaperonin 60 beta
AT1G13340 1,02406769 0,00209205 unknown protein
AT1G51200 1,02455885
                           4,84E-17 glycine decarboxylase P-protein 2
AT5G65380 1,02463835
                         0,0021461 methyl esterase 10
AT4G23050 1,02473601 0,01470284 phloem protein 2-B15
AT4G15910 1,02475631
                           1,45E-10 proline-rich family protein
                           8,93E-17 GBF-interacting protein 1
AT1G64720 1,02502111
AT1G76150 1.02751264
                           1,57E-22 basic helix-loop-helix (bHLH) DNA-binding superfamily protein
```

AT1G03220	1,02758342	3,38E-09	CRM family member 2
AT5G66040	1,02766655	0,02861457	Protein of unknown function (DUF179)
AT4G21790	1,02845291	0,0029671	endoribonuclease L-PSP family protein
AT1G72660	1,02874013	1,26E-35	glutathione S-transferase THETA 1
AT3G19960	1,02884281	1,70E-42	Homeodomain-like superfamily protein
AT1G68240	1,0289642	8,68E-27	NAD(P)-linked oxidoreductase superfamily protein
ATMG00516	1,02904947	8,17E-05	secretion-associated RAS 1B
AT5G19510	1,02995919	2,38E-33	SC35-like splicing factor 33
AT5G03240	1,03003579	0,00294071	PAPA-1-like family protein / zinc finger (HIT type) family protein
AT1C00700	1 0201 4100	0.02224064	BEST Arabidopsis thaliana protein match is: embryo defective 1703
AT1G80780	•	•	(TAIR:AT3G61780.1)
AT1G64795	1,03049633		NAD(P)-binding Rossmann-fold superfamily protein
AT3G62290	1,03119768		alpha/beta-Hydrolases superfamily protein
AT4G21960	1,03172821		DEAD box RNA helicase (RH3)
AT1G65090	1,03174604	•	succinate dehydrogenase 3-1
AT4G38800	1,03182049	•	HSP20-like chaperones superfamily protein
AT1G30230			Protein of unknown function (DUF3411)
AT5G01020	1,03261148		Scorpion toxin-like knottin superfamily protein
AT1G70800	1,03284385		unknown protein
AT4G21860			RNA-binding (RRM/RBD/RNP motifs) family protein
AT4G14270	1,03323619		Transducin/WD40 repeat-like superfamily protein
AT3G58610	1,03331196		translocon at the inner envelope membrane of chloroplasts 55-II
AT2G35820	1,03381798		RING/U-box superfamily protein
AT1G12780	1,03413967		Lactate/malate dehydrogenase family protein
AT3G60730	1,03492879		Class I glutamine amidotransferase-like superfamily protein
AT2G34900			SAUR-like auxin-responsive protein family
AT3G03330	1,03519246		RING/U-box superfamily protein
AT3G27020	1,03639558		Protein of unknown function (DUF2012)
AT4G16330	1,03702043		Eukaryotic aspartyl protease family protein
AT1G64900	1,0370409		breast basic conserved 1
AT2G41530	1,03788954	7,28E-09	mechanosensitive channel of small conductance-like 10
AT5G20720	1,03910187		fatty acid desaturase 7
AT1G07350	1,03924057	2,67E-05	unknown protein
AT1G64230	1,03947011		receptor homology region transmembrane domain ring H2 motif protein 1
AT3G14880	1,03947582	•	unknown protein
AT2G35810	1,03994067	6,17E-12	photolyase/blue-light receptor 2

ANEXO IV

Extracto de los 100 primeros genes con mayor expresión en semillas obtenidas a 22°C

En el listado se muestran los genes con mayor expresión en semillas obtenidas a una temperatura de 22°C en comparación con las obtenidas en condiciones de 27°C. En ambos casos las semillas se obtuvieron en condiciones de alta intensidad lumínica.

Locus	Log2 FoldChange	Padj	Descripción
AT4G35070	1,00013761	3,89E-12	SBP (S-ribonuclease binding protein) family protein
AT4G27230	1,00032395	0,00222193	histone H2A 2
AT3G44460	1,00051291	0,00157827	Basic-leucine zipper (bZIP) transcription factor family protein
AT4G02040	1,00288015	0,00245391	unknown protein
AT5G59950	1,00322235	8,15E-10	RNA-binding (RRM/RBD/RNP motifs) family protein
AT3G55005	1,00425107	0,04316243	tonneau 1b (TON1b)
AT1G15330	1,00498822	1,04E-09	Cystathionine beta-synthase (CBS) protein
AT3G06470	1,00664229	0,00294273	GNS1/SUR4 membrane protein family
AT3G55630	1,00682571	0,03061654	DHFS-FPGS homolog D
AT4G30530	1,00691838	0,00010774	Class I glutamine amidotransferase-like superfamily protein
AT3G16650	1,0084494	0,00032446	Transducin/WD40 repeat-like superfamily protein
AT4G32440	1,00848704	0,01412126	Plant Tudor-like RNA-binding protein
AT1G07150	1,01000091	5,78E-11	mitogen-activated protein kinase kinase kinase 13
AT5G04040	,		Patatin-like phospholipase family protein Ribosomal protein L12/ ATP-dependent Clp protease adaptor protein ClpS
AT4G37660	1,01229675	0,04173698	family protein
AT1G78100	1,01359871	0,00025768	F-box family protein
	1,01529458	1,75E-09	unknown protein
AT5G04590	1,01716757	2,62E-23	sulfite reductase
AT5G19770	1,01745058	2,05E-09	tubulin alpha-3
AT1G20630	1,0177971	3,56E-21	catalase 1
AT4G36648	1,01802739	2,00E-07	other RNA
AT3G22750	1,01806807	2,47E-12	Protein kinase superfamily protein
AT5G59530	1,01903216	2,10E-05	2-oxoglutarate (20G) and Fe(II)-dependent oxygenase superfamily protein
AT2G37150	1,01956324	1,05E-13	RING/U-box superfamily protein
AT2G34740	1,01971036	9,81E-08	Protein phosphatase 2C family protein
AT1G56450	1,01992212	1,51E-10	20S proteasome beta subunit G1
AT4G18680	1,02014393		unknown protein
AT1G30620	1,02106468	0,00013597	NAD(P)-binding Rossmann-fold superfamily protein
AT4G23470	•	·	PLAC8 family protein
AT4G29720	•	,	polyamine oxidase 5
AT4G20410	1,02283554		gamma-soluble NSF attachment protein
AT3G06455	1,02335723	0,00620697	ubiquitin family protein

```
AT4G05120 1,02418593
                          1,64E-12 Major facilitator superfamily protein
AT5G01760 1,02437406 0,00038137 ENTH/VHS/GAT family protein
AT4G29950 1,0247121
                          8,11E-07 Ypt/Rab-GAP domain of gyp1p superfamily protein
AT5G02040 1,0249777
                          1,62E-06 prenylated RAB acceptor 1.A1
AT5G06160 1,02564265
                          1,39E-11 splicing factor-related
AT1G71250 1,02689764 0,01422825 GDSL-like Lipase/Acylhydrolase superfamily protein
AT1G12450 1,02689837 0,00194628 SNARE associated Golgi protein family
AT3G10815 1,02719887 0,03986477 RING/U-box superfamily protein
AT1G70330 1,02898703
                          6,67E-12 equilibrative nucleotide transporter 1
AT2G01275 1,02922334
                          6,88E-07 RING/FYVE/PHD zinc finger superfamily protein
AT1G70740 1,02986231
                          1,10E-09 Protein kinase superfamily protein
AT3G11580 1,03020535
                          3,94E-07 AP2/B3-like transcriptional factor family protein
AT1G24706 1,03100998
                          5,69E-08 THO2
AT3G06420 1,03159845
                          3,36E-08 Ubiquitin-like superfamily protein
AT1G07040 1,03658239
                          1,94E-12 unknown protein
AT4G13250 1,03747917
                          1,85E-30 NAD(P)-binding Rossmann-fold superfamily protein
AT2G45170 1,03859386
                          1,10E-10 AUTOPHAGY 8E
AT1G01180 1,0386677
                          4,70E-10 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein
AT3G47500 1,04021232
                        0,0002968 cycling DOF factor 3
AT3G62100 1,0421427 0,00012707 indole-3-acetic acid inducible 30
AT5G49450 1,04340645
                          5,69E-09 basic leucine-zipper 1
AT3G07215 1,0437713 0,00609927 other RNA
AT4G20260 1,04378779
                          9,23E-05 plasma-membrane associated cation-binding protein 1
AT1G45145 1,04386302 0,04955495 thioredoxin H-type 5
AT4G28660 1,04438622 0,00101817 photosystem II reaction center PSB28 protein
AT5G43260 1,04577332 0,00040409 chaperone protein dnaJ-related
AT2G29570 1,04676993 0,02516339 proliferating cell nuclear antigen 2
AT3G14160
           1,0474064
                          1,42E-07 2-oxoglutarate-dependent dioxygenase family protein
AT1G05690 1,04825232
                          7,26E-11 BTB and TAZ domain protein 3
AT2G02060 1,0482732
                          7,30E-06 Homeodomain-like superfamily protein
AT3G05200 1,04837064
                          2,19E-05 RING/U-box superfamily protein
AT5G41170 1,0487088 0,02446811 Pentatricopeptide repeat (PPR-like) superfamily protein
AT3G62260 1,04875953
                          1,32E-21 Protein phosphatase 2C family protein
AT5G27230 1,04955558 0,00529825 Frigida-like protein
AT5G17810
                          4,09E-07 WUSCHEL related homeobox 12
           1,0523571
AT2G33600 1,05237468 0,00015354 NAD(P)-binding Rossmann-fold superfamily protein
ATCG01020 1,05364271 0,03343894 ribosomal protein L32
AT5G14780 1,05423321
                          1,25E-22 formate dehydrogenase
AT3G52710 1,05454395
                          1,39E-05 unknown protein
AT5G08305 1,05767416 0,00012711 Pentatricopeptide repeat (PPR) superfamily protein
                          1,83E-06 ADP-ribosylation factor B1B
AT5G17060 1,05768155
AT3G06500 1,05813333 0,00115158 Plant neutral invertase family protein
AT2G31020 1,05901805
                          7,67E-07 OSBP(oxysterol binding protein)-related protein 1A
```

AT1G72430	1,06006246	2,32E-08	SAUR-like auxin-responsive protein family
AT4G11280	1,06047898	1,11E-07	1-aminocyclopropane-1-carboxylic acid (acc) synthase 6
AT1G32150	1,06204718	6,38E-08	basic region/leucine zipper transcription factor 68
AT2G16890	1,06215693	3,61E-19	UDP-Glycosyltransferase superfamily protein
AT5G49690	1,06353407	1,90E-20	UDP-Glycosyltransferase superfamily protein
AT3G58840	1,06426155	9,33E-10	Tropomyosin-related
AT4G02195	1,06551626	0,00019605	syntaxin of plants 42
AT5G44080	1,06639091	1,94E-17	Basic-leucine zipper (bZIP) transcription factor family protein
AT3G47550	1,0666557	1,53E-15	RING/FYVE/PHD zinc finger superfamily protein
AT1G49620	1,06746564	0,00030247	Cyclin-dependent kinase inhibitor family protein
AT2G24240	1,06824616	6,68E-09	BTB/POZ domain with WD40/YVTN repeat-like protein
AT1G08320	1,068307	1,36E-05	bZIP transcription factor family protein
AT1G04000	1,07041874	3,33E-08	unknown protein
AT5G63350	1,07115814	2,98E-26	unknown protein
AT5G03690	1,07416356	1,52E-05	Aldolase superfamily protein
AT5G24930	1,07483534	6,85E-18	CONSTANS-like 4
AT4G35860	1,07599538	2,62E-09	GTP-binding 2
AT5G05440	1,07641704	1,83E-06	Polyketide cyclase/dehydrase and lipid transport superfamily protein
AT1G01880	1,07680474	0,0298857	5'-3' exonuclease family protein
AT3G60640	1,07688682	4,15E-07	Ubiquitin-like superfamily protein
AT3G19970	1,0772266	3,96E-06	alpha/beta-Hydrolases superfamily protein
AT3G13570	1,07772238	1,46E-06	SC35-like splicing factor 30A
AT3G45640	1,0792078	9,42E-19	mitogen-activated protein kinase 3
AT2G47730	1,08212478	1,87E-06	glutathione S-transferase phi 8
AT1G76760	1,08454623	6,98E-06	thioredoxin Y1

Extracto de los 100 primeros genes con menor expresión en semillas obtenidas a 22°C

En el listado se muestran los genes con menor expresión en semillas obtenidas a una temperatura de 22°C en comparación con las obtenidas en condiciones de 27°C. En ambos casos las semillas se obtuvieron en condiciones de alta intensidad lumínica.

Locus	Log2 FoldChange	Padj	Descripción
AT5G42120	1,00040117	0,00515413	Concanavalin A-like lectin protein kinase family protein
AT1G67550	1,00102484	0,02620224	urease
AT5G13050	1,00303361	0,03817335	5-formyltetrahydrofolate cycloligase
AT2G18390	1,0031683	2,53E-06	ADP-ribosylation factor family protein
AT4G24490	1,00450265	0,00349372	RAB geranylgeranyl transferase alpha subunit 1
AT5G07060	1,00477665	0,04247459	CCCH-type zinc fingerfamily protein with RNA-binding domain
AT1G14040	1,00551932	0,04502428	EXS (ERD1/XPR1/SYG1) family protein
AT1G11280	1,00578247	0,02447897	S-locus lectin protein kinase family protein
AT2G37760	1,00645787	1,06E-10	NAD(P)-linked oxidoreductase superfamily protein

```
AT5G60700 1,00689982
                          4,79E-05 glycosyltransferase family protein 2
AT2G21710 1,00771209 0,00581295 Mitochondrial transcription termination factor family protein
                                    rhodanese-like domain-containing protein / PPIC-type PPIASE domain-
AT5G19370 1,00965581
                          1,44E-06 containing protein
AT1G14520 1,01027444
                          1,22E-14 myo-inositol oxygenase 1
AT1G78700 1,01028923 0,00668372 BES1/BZR1 homolog 4
AT5G63410 1,01043062 0,01261457 Leucine-rich repeat protein kinase family protein
AT2G14860 1,01060464 0,00900175 Peroxisomal membrane 22 kDa (Mpv17/PMP22) family protein
AT3G19780 1,01093852 0,00014265 LOCATED IN: endomembrane system
AT2G34900 1,0115247
                          1,46E-10 Transcription factor GTE6
AT1G74040 1,01166303 0,00104299 2-isopropylmalate synthase 1
AT5G57260 1.01184121
                          1,02E-12 cytochrome P450, family 71, subfamily B, polypeptide 10
AT4G36260 1,01335296 0,02803478 Lateral root primordium (LRP) protein-related
AT1G06460 1,01349378 0,00028802 alpha-crystallin domain 32.1
AT5G05600 1,01399128
                          5,78E-05 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
AT5G64440 1,01408581 0,00928418 fatty acid amide hydrolase
AT3G15110 1,01425709 0,00117408 unknown protein
AT3G50070 1,01507915 0,03437109 CYCLIN D3;3
AT4G20130 1,01561509
                        0,0032619 plastid transcriptionally active 14
AT2G28480 1,01580157 0,00033052 RNA-binding CRS1 / YhbY (CRM) domain protein
AT3G02690 1.01734106
                          9,64E-05 nodulin MtN21 /EamA-like transporter family protein
AT5G24490 1,01741328
                          1,38E-12 30S ribosomal protein, putative
AT5G14550 1,01744486 0,00818998 Core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase family protein
AT3G28700 1,0179808
                          1,24E-08 Protein of unknown function (DUF185)
AT4G31550 1,01819131
                          1,70E-06 WRKY DNA-binding protein 11
AT1G03360 1,01839179 0,0151278 ribosomal RNA processing 4
AT1G15700 1,01874121
                          9,67E-06 ATPase, F1 complex, gamma subunit protein
AT1G14770 1,02013262 0,00071568 RING/FYVE/PHD zinc finger superfamily protein
                          8,31E-16 serine carboxypeptidase-like 7
AT3G10450 1,02058116
AT2G22490 1,02116616 0,00113631 Cyclin D2;1
AT3G14690 1,02121658
                          2,81E-09 cytochrome P450, family 72, subfamily A, polypeptide 15
AT3G13960 1,02420844 0,01398243 growth-regulating factor 5
AT1G13270 1,02575416 0,02621162 methionine aminopeptidase 1B
AT1G78380 1,02624966
                          7,88E-08 glutathione S-transferase TAU 19
AT1G71695 1,02761729
                          3,26E-17 Peroxidase superfamily protein
AT5G24300 1,02803178 0,00239139 Glycogen/starch synthases, ADP-glucose type
AT4G00630 1,02858324 0,01003489 K+ efflux antiporter 2
AT1G16280 1,02941446 0,00012653 RNA helicase 36
AT2G36000 1,03038199
                          5,73E-10 Mitochondrial transcription termination factor family protein
AT1G76400 1,03718502 0,02736972 Ribophorin I
AT5G44563 1,03887957 0,00073072 no_annotation_available
AT2G37550 1,03896319
                          3,87E-05 ARF-GAP domain 7
AT2G27450 1,04036404
                          6,21E-08 nitrilase-like protein 1
AT3G12950 1,04272233
                          5,00E-05 Trypsin family protein
```

```
AT1G58080 1,04337385
                          8,62E-13 ATP phosphoribosyl transferase 1
AT1G61790 1,04354254
                          1,69E-06 Oligosaccharyltransferase complex/magnesium transporter family protein
AT1G54957 1,04509871 0,00031748 no_annotation_available
AT1G64190 1,04637739 0,00035943 6-phosphogluconate dehydrogenase family protein
AT4G09000 1,0467168
                          2,62E-14 general regulatory factor 1
AT3G18210 1,04755844 0,00129804 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
AT3G16050 1,04764994 0,00090349 pyridoxine biosynthesis 1.2
                          1,35E-09 Homeodomain-like superfamily protein
AT1G01520 1,04883439
AT4G00800 1,05075088 0,00039852 transducin family protein / WD-40 repeat family protein
AT5G12200 1,05093175 0,02018922 pyrimidine 2
AT1G41830 1,0526948
                          1,25E-07 SKU5-similar 6
AT2G46240 1,0533596
                          6,77E-07 BCL-2-associated athanogene 6
AT5G58770 1,05353207 0,00946067 Undecaprenyl pyrophosphate synthetase family protein
AT3G25140 1,05402366
                          5,41E-07 Nucleotide-diphospho-sugar transferases superfamily protein
                                    ATPase E1-E2 type family protein / haloacid dehalogenase-like hydrolase family
AT3G63380 1,05409843
                          1,65E-05 protein
AT5G10910 1,05646418 0,00069122 mraW methylase family protein
AT3G05350 1,05828345 0,00012326 Metallopeptidase M24 family protein
AT3G61430 1,06185378 0,01755677 plasma membrane intrinsic protein 1A
            1,0625068 0,00466157 UDP-glucosyl transferase 78D1
AT1G30530
AT1G71960 1,06349276 0,00389877 ATP-binding casette family G25
AT2G47060 1,06393339 0,01453039 Protein kinase superfamily protein
AT1G15810 1,06449337
                          4,52E-06 S15/NS1, RNA-binding protein
AT1G79880 1,06455704 0,00154093 RNA recognition motif (RRM)-containing protein
AT1G14620 1,06584747 0,03587237 decoy
                          2,06E-06 heat shock transcription factor A2
AT2G26150 1,0664938
AT3G26090 1,06662462 0,00823818 G-protein coupled receptors;GTPase activators
AT1G50940 1,06677605 0,00222112 electron transfer flavoprotein alpha
AT2G36295 1,06745831 0,03289477 unknown protein
AT4G21150 1,06837131
                          7,64E-08 ribophorin II (RPN2) family protein
AT4G23050 1,06963591
                          5,30E-11 PAS domain-containing protein tyrosine kinase family protein
AT4G26270 1,07385368
                          3,98E-14 phosphofructokinase 3
AT5G08780 1,07406302
                          6,85E-06 winged-helix DNA-binding transcription factor family protein
AT3G17170 1,07523601 0,00036887 Translation elongation factor EF1B/ribosomal protein S6 family protein
AT1G48370 1,07594842 0,00060881 YELLOW STRIPE like 8
AT2G35810 1,07612114
                          2,48E-09 unknown protein
AT3G21010 1,07670547
                          8,08E-07 transposable element gene
AT3G22480 1.07677657
                          7,70E-09 prefoldin 2
AT3G04260 1,07704224
                          2,17E-11 plastid transcriptionally active 3
AT4G11990 1,07747115 0,04716456 Cell cycle regulated microtubule associated protein
AT4G30490 1,07781936 0,01165501 AFG1-like ATPase family protein
AT4G16770 1,07894244 0,00024058 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
AT1G08450
                          3,03E-06 calreticulin 3
              1,080421
AT3G25040 1,08225307 0,02233297 endoplasmic reticulum retention defective 2B
```

AT3G17950	1,08504742	0,01261631	unknown protein
AT2G34790	1,08516989	0,00734238	FAD-binding Berberine family protein
AT3G06440	1,08820957	0,00358639	Galactosyltransferase family protein
AT5G62400	1,08853279	0,03272804	unknown protein
AT4G25640	1,08936497	1,86E-12	detoxifying efflux carrier 35