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Abstract

This thesis explores innovative approaches for structural optimization, encompassing
a variety of commonly used optimization algorithms in this field. It specifically focuses
on shape optimization (SO) and topology optimization (TO). The first contribution
of this research revolves around ensuring and maintaining a desired level of accuracy
throughout the TO process and the proposed solution. By establishing confidence in
the suggested components of the TO algorithm, our attention can then shift to the
subsequent contribution.

The second contribution of this thesis aims to establish effective communication
between TO and SO algorithms. To achieve this, our goal is to directly convert the
optimal material distribution proposed by the TO algorithm into geometry. Subse-
quently, we optimize the geometry using SO algorithms. Facilitating seamless com-
munication between these two algorithms presents a non-trivial challenge, which we
address by proposing a machine learning-based methodology. This approach seeks to
extract a reduced number of geometric modes that can serve as a parameterization
for the geometry, enabling further optimization by SO algorithms.

Lastly, the third contribution builds upon the previous idea, taking it a step for-
ward. The proposed methodology aims to derive new components through knowledge-
based approaches instead of relying solely on physics-based TO processes. We argue
that this knowledge can be acquired from the historical designs employed by a given
company as they retain invaluable immaterial know-how. This methodology also re-
lies on machine learning algorithms, but we also consider techniques for analyzing
high-dimensional data and more suitable interpolation strategies.
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Resumen

Esta tesis explora enfoques innovadores para la optimización estructural, abarcando
una variedad de algoritmos de optimización comúnmente utilizados en el campo. Se
centra específicamente en la optimización de forma (SO) y la optimización de topología
(TO). La primera contribución de esta tesis gira en torno a garantizar y mantener un
nivel deseado de precisión durante todo el proceso de TO y la solución propuesta. Al
establecer confianza en los componentes sugeridos por el algoritmo de TO, nuestra
atención puede centrarse en la siguiente contribución.

La segunda contribución de esta tesis tiene como objetivo establecer una comuni-
cación efectiva entre los algoritmos de TO y SO. Para lograr esto, nuestro objetivo
es convertir directamente la distribución óptima de materiales propuesta por el al-
goritmo de TO en geometría. Posteriormente, optimizamos la geometría utilizando
algoritmos de SO. Facilitar una comunicación fluida entre estos dos algoritmos pre-
senta un desafío complejo, que abordamos proponiendo una metodología basada en
aprendizaje automático. Este enfoque busca extraer un número reducido de modos
geométricos que pueden servir como parametrización para la geometría, lo que per-
mite su optimización mediante algoritmos de SO.

Por último, la tercera contribución recoge algunas de las ideas previas y las lleva
un paso hacia delante. La metodología propuesta tiene como objetivo derivar nuevos
componentes a través de enfoques basados en el conocimiento existente en lugar de
depender únicamente de procesos de TO basados en la física. Sostenemos que este
conocimiento se puede obtener del histórico de diseños empleados por una determi-
nada empresa, ya que retienen un valioso conocimiento inmaterial. Esta metodología
también se basa en algoritmos de aprendizaje automático, pero también consideramos
técnicas para analizar datos de alta dimensionalidad y estrategias de interpolación más
adecuadas.
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Resum

Aquesta tesi explora enfocaments innovadors per a l’optimització estructural, abas-
tant una varietat d’algorismes d’optimització comunament utilitzats en el camp. Se
centra específicament en l’optimització de forma (SO) i l’optimització de topologia
(TO). La primera contribució d’aquesta tesi gira entorn de garantir i mantenir un
nivell desitjat de precisió durant tot el procés de TO i la solució proposada. En es-
tablir confiança en els components suggerits per l’algorisme de TO, la nostra atenció
pot centrar-se en la següent contribució.

La segona contribució d’aquesta tesi té com a objectiu establir una comunicació
efectiva entre els algorismes de TO i SO. Per a aconseguir això, el nostre objectiu
és convertir directament la distribució òptima de materials proposta per l’algorisme
de TO en geometria. Posteriorment, optimitzem la geometria utilitzant algorismes
de SO. Facilitar una comunicació fluida entre aquests dos algorismes presenta un
desafiament complex, que abordem proposant una metodologia basada en aprenen-
tatge automàtic. Aquest enfocament busca extreure un nombre reduït de maneres
geomètriques que poden servir com a parametrització per a la geometria, la qual cosa
permet la seua optimització mitjançant algorismes de SO.

Finalment, la tercera contribució recull algunes de les idees prèvies i les porta un
pas cap endavant. La metodologia recomanada té com a objectiu derivar nous com-
ponents a través d’enfocaments basats en el coneixement existent en lloc de dependre
únicament de processos de TO basats en la física. Sostenim que aquest coneixement
es pot obtenir de l’històric de dissenys emprats per una determinada empresa, ja que
retenen un valuós coneixement immaterial. Aquesta metodologia també es basa en al-
gorismes d’aprenentatge automàtic, però també considerem tècniques per a analitzar
dades d’alta dimensionalitat i estratègies d’interpolació més adequades.

xi





Preface

The work presented in this thesis has been carried out at the Institute of Mechanical
and Biomechanical Engineering (I2MB) at the Universitat Politècnica de València,
under the supervision of Juan José Ródenas García and Enrique Nadal Soriano. This
thesis consists of a summary report and the following appended papers:

A D. Muñoz, J. Albelda, J.J. Ródenas and E. Nadal. Improvement in 3D Topol-
ogy Optimization with h-adaptive refinement using the Cartesian Grid Finite
Element Method (cgFEM), International Journal for Numerical Methods in
Engineering, Volume 123 (2021).

B D. Muñoz, E. Nadal, J. Albelda, F. Chinesta and J.J. Ródenas. Allying topol-
ogy and shape optimization through machine learning algorithms. Finite Ele-
ments in Analysis and Design, Volume 204 (2022).

C D. Muñoz, F. Chinesta, E. Nadal, O. Allix and J. J. Ródenas. Manifold learn-
ing for coherent design interpolation based on geometrical and topological de-
scriptors. Computer Methods in Applied Mechanics and Engineering, Volume
405 (2023).

xiii





Acknowledgements

First of all, I would like to thank my supervisors Juan José Ródenas and Enrique
Nadal for their advice and support during these years. They not only provided the
technical guidance necessary to pull this Thesis off but a work environment based on
patience, trust and comprehension. I would like to extend my gratitude to all my
colleagues and staff of the Institute of Mechanical and Biomechanical Engineering. It
was a pleasure to share this stage of my life with all of them.

I have to thank very particularly Francisco Chinesta for letting me be part of his
research group in the Laboratoire Procédés et Ingénierie en Mécanique et Matériaux
(PIMM) at École Nationale Supérieure d’Arts et Métiers. In addition, I will never
forget the contributions made by Olivier Allix. Definitely his help has made my work
more powerful.

I would also like to express my gratitude to the Spanish society for funding the
public education system which provided me the opportunity of growing as a scientist
in the framework of the FPU scholarship program.

Finally, I would like to express my very special thanks to my family and friends, for
bringing me to this world, providing the best life I could ever imagined and supporting
me unconditionally always.

To all of you, thank you so much.

xv





Contents

Abstract vii

Resumen ix

Resum xi

Preface xiii

Acknowledgements xv

I Thesis report 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 State of the art 9
2.1 Structural optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Topology optimization . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Shape optimization . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Hybrid optimization . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Immersed boundary methods . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Cartesian grid Finite Element Method (cgFEM ) . . . . . . . . 15

2.2.1.1 Topology optimization in cgFEM . . . . . . . . . . . 18
2.3 Advanced techniques for high-dimensional data analysis . . . . . . . . 19

2.3.1 Manifold learning . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xvii



Contents

2.3.2 Topological data analysis . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Optimal transport . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Contributions 27
3.1 Advances in structural optimization: topology optimization and hybrid

Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 Benchmark problem . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Improvement strategies in topology optimization . . . . . . . . 32

3.1.2.1 Voxel-type independent integration mesh . . . . . . . 32
3.1.2.2 Solution-based refinement strategies . . . . . . . . . . 34

3.1.3 Hybrid optimization . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.3.1 STEP 1: Topology optimization . . . . . . . . . . . . 40
3.1.3.2 STEP 2: The ML-based TO-SO interface . . . . . . . 42
3.1.3.3 STEP 3: Shape optimization . . . . . . . . . . . . . . 45

3.2 Knowledge-driven design generation . . . . . . . . . . . . . . . . . . . 48
3.2.1 Benchmark Problem . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2.1 Geometrical characterization . . . . . . . . . . . . . . 50
3.2.2.2 Topological characterization . . . . . . . . . . . . . . 51
3.2.2.3 Modifications in LLE to consider geometry and topology 52
3.2.2.4 Optimal transport-based interpolation to recover di-

mensionality . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.2.5 Methodology to propose suitable designs . . . . . . . 57

4 Closure 61
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography 63

II Articles 71

Paper A: Improvement in 3D Topology Optimization with h-adaptive
refinement using the Cartesian Grid Finite Element Method 73

Paper B: Allying topology and shape optimization through machine
learning algorithms 125

Paper C: Manifold learning for coherent design interpolation based on
geometrical and topological descriptors 171

xviii



Part I

Thesis report





Chapter 1

Introduction

1.1. Motivation

Optimization techniques are ubiquitous across various industrial and scientific do-
mains, as they facilitate the identification of the best alternative from a given set of
individuals. In this context, individuals are evaluated based on their ability to per-
form a specific task, with their performance typically quantified using an objective
or loss function, a commonly employed metric in optimization. Moreover, optimiza-
tion problems typically entail a set of constraints that delineate the design space’s
feasibility, thereby reducing the number of individuals under consideration. Although
optimization techniques find application in numerous fields, our research is specifically
focused on structural optimization.

Structural optimization aims to identify the most suitable component from a given
set based on their performance, which is evaluated through an objective function.
The optimal component is the one that minimizes or maximizes the objective func-
tion while fulfilling a set of constraints. In the field of structural optimization, two of
the most common pairs of objective function and constraints are the minimization of
mass/volume while satisfying yield stress constraints, and the maximization of stiff-
ness while fulfilling a volume fraction constraint. Various approaches exist for solving
structural optimization problems, and we will primarily focus on techniques that alter
the shape of the component, namely topology optimization and parametrized shape
optimization (hereafter referred to as shape optimization).
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1. Introduction

Topology optimization algorithms are extensively employed for manipulating the
material topology within the design space through the manipulation of various de-
sign variables [1–3]. For example, the Solid Isotropid Material Penalization (SIMP)
method adjusts the relative density of individual elements, while the Level-Set ap-
proaches utilize auxiliary functions to define the evolving boundary of the shape [4–6].
During the optimization process, the finite element method (FEM) is commonly used
to determine the current state of the design domain. However, FEM calculations can
be computationally expensive, making computational efficiency a crucial factor
in topology optimization due to its iterative nature. Moreover, the accuracy of FEM
results strongly relies on the mesh quality, which in turn affects the performance of
the optimization techniques. Inaccurate FEM solutions can lead to suboptimal
designs that may fail to satisfy the imposed constraints [7].

Shape optimization techniques involve utilizing a computer-aided design (CAD)
model to determine objective functions and constraints commonly employing FEM
calculations. The CAD representation can employ various types of geometric enti-
ties, such as splines or NURBS. In this study, we will employ the STL format to
represent the boundary as a triangular tessellation, which is commonly used in addi-
tive manufacturing processes. One of the primary advantages of shape optimization
lies in the precision in terms of boundary definition. Additionally, the number of
design variables required to parameterize the boundary is typically small, allowing
for the effective exploration of the design space using a wide range of optimization
algorithms. However, it is important to note that this parametrization requires user
intervention and is limited to a fixed topology, thus hindering the exploration
of alternative topologies.

The previous strategies rely on a physics-based methodology for designing struc-
tural components, which may not always align with industry practices. The design
procedure in industry may be driven by various objectives that do not necessarily
prioritize the structural behavior of the component. Consequently, the design process
may not adhere to a predefined set of rules or steps. Instead, the expertise and intu-
ition of different professionals, such as engineers and designers, play a crucial role in
the design process. However, this reliance on individual expertise poses a potential
risk. If a member of the design team leaves, it can result in a substantial loss of
knowledge, which will require significant investments of both time and money to
recover, if possible.
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1.2. Objectives

1.2. Objectives

This thesis aims to make a substantial contribution to the field of structural op-
timization by proposing innovative solutions that address current limitations. The
primary objective is to advance the automation of structural design through the de-
velopment of new methodologies based on optimization techniques. By doing so, we
aim to overcome the existing limitations, which are highlighted in bold, and enable
more efficient and effective structural design processes. To achieve this overarching
goal, we have defined a set of specific objectives outlined below. Each of these objec-
tives is designed to address one or more of the highlighted limitations:

1. Enhancing the computational efficiency of topology optimization al-
gorithms.

To enhance computational efficiency, it is preferable to use meshes consisting
of elements with the same shape. Cartesian elements are commonly employed
for rectangular or cuboidal domains due to their ease of meshing with regu-
lar shapes. However, practical applications often extend beyond such domains.
Standard boundary-conforming finite element (FE) meshes struggle to ensure
uniform element shapes. Immersed boundary methods (IBM), including the Fi-
nite Cell Method (FCM) [8–10], the CutFEM [11], and the Cartesian grid Finite
Element Method (cgFEM) [12, 13], do not conform to the domain’s geometry.
In this thesis, we adopt the cgFEM approach, developed by the supervisors of
this thesis, due to its numerous advantages in terms of computational cost, es-
pecially when applied in iterative processes like optimization algorithms. The
improved efficiency can be attributed to the hierarchical structure of the meshes
and the uniformity of element shapes within them. Further details regarding
these benefits are thoroughly addressed in Paper A.

2. Improving the solution quality of topology optimization algorithms

To address inaccuracies in FE calculations, various mesh refinement techniques
based on error estimation have been developed, such as h-adaptive mesh refine-
ment [14–18]. These techniques refine the mesh in regions where the FE solution
is less accurate, thereby enhancing the quality of the solution. Additionally, tra-
ditional topology optimization algorithms suffer from a significant drawback -
they do not provide a clear geometric definition of the optimal material layout.
To overcome these limitations, we have devised several strategies than the FE
mesh including the incorporation of an integration mesh with higher resolution,
or an additional mesh refinement strategy guided by the density distribution.
Further details on these strategies can be found in Paper A.

3. Reducing user intervention in shape optimization algorithms and en-
abling topology exploration.

5



1. Introduction

To address this objective, a hybrid optimization methodology is desirable. Ini-
tially, topology optimization is employed to explore various topological alterna-
tives and generate a preform. Subsequently, this preform is transformed into an
optimal material distribution layout. An interface is then utilized to establish a
connection between the topology and shape optimization algorithms. This in-
terface generates a parametric geometrical model derived from the topology op-
timization process, which is later utilized by the shape optimization algorithm.
The aim of the shape optimization algorithm is to identify the optimal combi-
nation of parameters that minimizes a given objective function while adhering
to specified constraints. The outcome of this step is a CAD-like representation
of the optimal geometry. The interface can be created using various techniques
and approaches, as demonstrated in previous studies [19–30]. In this work, we
propose employing manifold learning (ML) strategies [31,32] to deduce the geo-
metrical characterization of the interface using a set of parameters representing
the principal geometric modes of the preform. ML algorithms are utilized to
create the parametric model that characterizes the implicit boundary of the
interface using a combination of geometric modes. The extracted geometric fea-
tures may encompass simple entities such as radius or thickness, although they
are generally more complex. Nonetheless, the ML tool identifies the geomet-
ric modes, providing a parametric geometrical representation. This parametric
characterization is then employed to generate new geometries by manually ad-
justing the parameter values or by utilizing an external algorithm for guidance.
In our case, these parameters are introduced as design variables utilized by a
shape optimization algorithm. Further details regarding the proposed hybrid
optimization algorithm can be found in Paper B.

4. Knowledge preserving tool for generative design.

Changes in the design team of an industrial company can lead to potential loss
of knowledge. To avoid this invaluable and intangible asset from being lost, we
propose a methodology for extracting this know-how. The main advantage of
this strategy, apart from enabling us to store the knowledge, is that we can uti-
lize it to generate new components that meet the same criteria as the existing
designs of the company. To achieve this objective, we propose a comprehen-
sive framework that allows for the incorporation of new components based on
user-defined criteria. We introduce new tools to implement this idea. For ex-
ample, topological data analysis (TDA) techniques [33, 34] can be employed to
extract topological features that characterize a given component, such as the
number and size of holes. Thus, a component can be characterized by its ge-
ometry and topology, providing sufficient information to describe the similarity
between individuals in the database using an appropriate metric. This metric
can then be used to obtain the corresponding projection onto a low-dimensional
manifold, employing manifold learning techniques. By exploring the inherent
structure of the database, one can navigate within this manifold and use the

6



1.3. Outline of the thesis

current database as a basis for generating new components. However, standard
interpolation techniques based on the Euclidean metric may introduce artifacts
and yield non-physical components. Therefore, we propose using metrics from
the field of optimal transport (OT) [35–38] to address topological changes when
generating new components, thereby preserving the original dimensionality. The
construction of the knowledge-based generative tool is detailed in Paper C.

1.3. Outline of the thesis

This document consists of two parts: the Thesis report and the Scientific Articles.
After this brief introduction, the first part follows with Chapter 2 that provides an
overview of the current state of the art. Chapter 3 summarizes the work conducted
in this thesis, accompanied by illustrative numerical examples. Finally, Chapter 4
presents the conclusions of this research and proposes directions for future studies.

The second part comprises a compilation of three papers that extensively discuss
the scientific contributions of this work. All papers have already been published in
high-quality, peer-reviewed journals. The contributions are presented in this docu-
ment without any journal editing, and each paper is preceded by a cover page con-
taining a citation to the corresponding journal.

Paper A introduces a 3D topology optimization methodology within the framework
of cgFEM. It explores various strategies to enhance the quality of the solution proposed
by the topology optimization algorithm. Paper B proposes a hybrid optimization
strategy that integrates topology and shape optimization algorithms by automatically
parameterizing the shape’s boundary. Paper C take a step forward and proposes the
generation of new components through a fully knowledge-based approach, where the
knowledge can be derived from the analysis of previous designs.

7





Chapter 2

State of the art

2.1. Structural optimization

Structural optimization techniques play a critical role in the design process of
mechanical components, as they can determine an optimal structural design based on
a given set of applied loads. This optimal design can be obtained by minimizing or
maximizing an objective function while satisfying a set of constraints. In the field of
structural optimization, the most common pairs of objective function and constraints
are the minimization of mass/volume while satisfying a yielding stress constraint, and
the maximization of stiffness while satisfying a volume fraction constraint. Various
approaches exist to solve the structural optimization problem, but in this work, we
will focus on two of the most commonly used techniques: topology optimization and
parametrized shape optimization (hereafter referred to as shape optimization).

2.1.1. Topology optimization
TO is a structural optimization technique that seeks to determine the optimal

distribution of material within a given physical design domain. The problem involves
minimizing or maximizing an objective function subject to a set of constraints that
depend on the applied loads. To solve the TO problem, the design domain is dis-
cretized using the FEM, resulting in a large set of design variables, where each point
can be either a solid material or void. TO has gained popularity due to its capacity
to extensively explore the design space with a reduced computation time.

9



2. State of the art

Among the different approaches, we found those based on strictly 0-1 values of
relative density [39–42]. On the other hand, some TO algorithms applied to struc-
tural problems make use of a fictitious material that exhibits composite behavior [43],
which is defined by a characteristic function that specifies the elastic properties. One
widely used approach to regularize the material properties is the SIMP method [1–3],
which penalizes the density interpolation function. Other techniques have also been
proposed in the literature, including the level-set methods that use nodal values of
an implicit function that defines the boundary [44–48] and those based on phase-field
methods [49].

As previously indicated, structural TO is a technique used to determine the op-
timal distribution of material in a design domain Ω. The SIMP method aims to
minimize the compliance c subject to constraints regarding the volume fraction of
material used in the design space. To solve the optimization problem, the SIMP
method considers the relative density ρ as a continuous variable, rather than a binary
(0-1) variable. The method uses a penalization parameter p to penalize intermediate
density values of ρ and enforce material-void segregation as much as possible. There-
fore, a typical TO problem using the SIMP method can be formulated as follows:

(TO(vf )) =





min
ρ

: c(ρ;u) =
1

2

∫

Ω

ε(u)D(ρ)ε(u)dΩ, (2.1a)

with D(ρ) = ρpD0, (2.1b)

subject to: V (ρ) =

∫

Ω

ρdΩ = V e

∑
ρe = vfV0, (2.1c)

a(u,u; ρ) = l(u) where, (2.1d)

a(u,ν; ρ) =
∫

Ω

ε(u)D(ρ)ε(ν)dΩ, (2.1e)

l(ν) =

∫

Ω

bTνdΩ+

∫

ΓN

tTνdΓN , (2.1f)

0 ≤ ρmin ≤ ρ ≤ 1, (2.1g)

where ε is the strain field and u the displacement field. The matrix D represents
Hook’s law, which relates strains ε and stresses σ. It is important to note that, accord-
ing to the SIMP method, the relation between D and D0 is given by D(ρ) = ρpD0.
Here, D0 is the matrix of Hook’s law for the fully dense material. When p > 1,
intermediate densities in elements are penalized because they contribute with little
stiffness relative to their volume fraction. For isotropic materials with non-negative
Poisson’s ratio, a penalization parameter of p = 3 provides intermediate materials

10



2.1. Structural optimization

that lie between the H-S bound and have physical meaning [50]. The parameter vf is
a prescribed volume fraction, and V0 is the total volume of the design domain. Finally
the lower bound in ρ is set in order to prevent ill conditioning issues [51]. One impor-
tant factor to consider when using the parameter p is its impact on the optimization
algorithm’s convergence. To address the problem of local minima, a continuation
strategy is often employed. As such, the SIMP method suggests starting with p = 1
and gradually increasing it to p = 3 [52] as the optimization process converges.

To optimize the layout of material distribution, it is necessary to obtain the sensi-
tivities of the compliance. As recommended in [51], a low-pass filter should be applied
to the sensitivities to prevent numerical instabilities [53,54] like the checkerboard pat-
tern. The filtering of sensitivities can be computed as follows:

∂̂c

∂ρe
=

1

ρe

N∑

k=1

Ĥk

N∑

k=1

Ĥkρk
∂c

∂ρk
, (2.2)

with the filter Ĥk defined as:

Ĥk = rmin − dist(e, k),

{k ∈ N | dist(e, k) ≤ rmin},
e = 1, 2, . . . , N,

(2.3)

where e is the element to be filtered and k are each of the neighbors of element e. We
define neighbors, denoted by N , as the elements located within a distance of rmin,
which is commonly referred to as the filter size. We chose this filtering technique
due to its simplicity, as opposed to other approaches that require solving differential
equations, such as those based on the Helmholtz equation [55].

The topology optimization algorithm uses the filtered sensitivities to obtain the
new material distribution ρ. In [51], the optimality criteria (OC) algorithm is used.
Other alternatives like the method of moving asymptotes (MMA) [56] and the sequen-
tial quadratic programming (SQP) [57] could also be used. The iterative procedure
is repeated until a convergence criterion is accomplished.

The previous TO problem in (2.1a–2.1g) finds the material distribution given an
amount of material. However, in some situations is interesting to find the quantity
of material for not surpassing certain stress limit indicator. For achieving that, the
problem (2.4a–2.4c) is presented. This consists in an optimization problem that tries
to minimize vf subjected to the final solution of (2.1a–2.1g) providing stresses below
a certain limit.

11



2. State of the art

(TO(vf (Sy))) =





find: vf , (2.4a)

subjected to: max(σ∗
eq) ≡ Scrit, (2.4b)

TO(vf ), (2.4c)

where Scrit is the limit value of σ∗
eq. In this work we considered Scrit as the yield limit

Sy and σ∗
eq represents an equivalent uniaxial stress value. In this work, we used as σ∗

eq

the recovered von Mises stress field σ∗
vm evaluated from σ∗, the so called recovered

stress field, more accurate than the stress field σh provided by the FEM. There are
different procedures to obtain σ∗. Because of their accuracy, the most commonly
used techniques are the superconvergent patch recovery (SPR) technique (proposed
by Zienkiewicz and Zhu [58]) and enhanced versions of this technique, like the SPR-C
technique [59]. This method provides satisfactory results if no singular points appear
in the domain.

In order to obtain σ∗ from the raw FE results, we consider that the use of the
density field ρ in topology optimization implies a particular definition of the stress
field to keep consistency with the expression of the strain energy (compliance) in
(2.1a). We can rewrite equation (2.1a) as:

σhρ
e = D(ρe)ε

h
e = ρpeD0ε

h
e = ρpeσ

h0
e , (2.5)

where σh0
e = D0ε

h
e would represent the original FE stress field at the element, before

considering the density correction. The penalization parameter p in (2.5) is consis-
tent with equation (2.1b) [60, 61]. Taking into account equation (2.5), we propose to
smooth the original stress field at elements, σh0 , for the evaluation of the recovered
stress field and then to modify the resulting recovered stress field using the density
correction.

2.1.2. Shape optimization
SO techniques involve the use of CAD models to determine objective functions

and constraints for optimizing geometries. These CAD representations are based on
various geometrical entities such as splines, NURBS or other entities. One of the
primary advantages of shape optimization techniques is the precision and smoothness
of the boundary definition. This benefit is particularly significant because the number
of design variables required to parameterize the boundary is usually low. As a result,
a wide range of optimization algorithms can be used to explore the design space. In
this work, we consider the shape optimization where the boundary is defined a priori
employing a set of parameters, also known as design variables a, as shown in Figure
2.1.
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Figure 2.1: Parametrized boundary of the design domain.

In the context of structural optimization, the objective function typically involves
optimizing for volume or mass, while the constraints involve ensuring that certain
measures of stress remain within acceptable limits. For example, one common con-
straint is to keep the maximum von Mises stress (max(σ∗

vm)) below the yield stress
limit (Sy). This can be expressed mathematically as follows:

(SOσ(Sy)) =





min
a

: Volume(a), (2.6a)

subjected to: max(σ∗
vm(a)) ≤ Sy. (2.6b)

2.1.3. Hybrid optimization
After a thorough analysis of the characteristics of the two primary structural op-

timization techniques, it is clear that a hybrid optimization methodology would be
beneficial, which consists in bridging both techniques by creating an interface that
allows to jump from the TO results to the SO problem. This approach would leverage
the advantages of topology and shape optimization techniques while addressing their
respective weaknesses, which are more pronounced when these techniques are used
independently.

Several approaches have been proposed in the literature. In this section, we will
discuss some of the main contributions found in the literature. The approach de-
scribed in [20, 21] involves parameterizing the optimal material distribution of a 2D
design domain using curve fitting algorithms. The shape optimization algorithm then
modifies the parameters defining those curves to find the optimal geometry. Artificial
neural networks were also used in [22] to find the set of simple entities that reproduce
the material distribution provided by the topology optimization algorithm. In [23], an
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edge detection technique is used to identify the structural elements provided by the
topology optimization algorithm. In [24], the Canny algorithm is used to detect edges,
and a B-spline representation of the model is manually created. In [25], the mesh for
the shape optimization algorithm is manually created using the material distribution
layout indicated by the topology optimization algorithm. In [26], both optimization
algorithms are simultaneously evaluated, and the shape is modified by considering
the variation of the nodal coordinates of the mesh through weights, acting as design
variables, and predefined perturbation vectors. In [27, 28], a two-stage algorithm is
created where the general geometric definition is achieved in the topology optimiza-
tion step. Then the result is represented with deformable simplicial complexes entities
whose vertices’ positions can be modified by the shape optimization algorithm. Ad-
ditionally, [29] presented a new level-set algorithm that reduces the dimension of the
functional by employing the radial basis functions. Finally, the work developed in [30]
proposes using a shape optimization algorithm first to define the design domain and
then using a topology optimization algorithm to find the optimal material distribution.
Overall, several approaches have been proposed to tackle the challenge of combining
topology and shape optimization. Each approach has its strengths and weaknesses.
These approaches can be useful in different scenarios, and choosing the most suitable
one depends on the specific problem being addressed. However, the automation of this
step is not straightforward: they may need of human intervention, they constrain ex-
cessively the design space or they are not suitable for 3D design domains, for instance.

Precisely, when implementing a hybrid algorithm that combines topology and
shape optimization, the most significant challenge is creating an interface to combine
the two algorithms. As in most of the previous works, we employ an algorithm
composed by of three main steps:

1. TO. In the first step, the algorithm will generate a preform of the optimal
component, which exhibits topological characteristics defined by an optimal
material distribution layout. The design domain described by the analyst will
be taken into consideration.

2. Interface. The second step will involve communication between the topology
and shape optimization algorithms. An interface will be designed to provide a
parametric geometrical model, defined by a reduced number of design variables,
obtained from the intermediate results of the topology optimization process,
and required by the shape optimization algorithm.

3. SO. In the final step, the shape optimization algorithm will use the parametric
geometric model to find the optimal combination of parameters that minimize/-
maximize a given objective function while satisfying the prescribed constraints.
The output of this step will be a CAD-like representation of the optimized geom-
etry, in STL format which will be directly suitable for additive manufacturing.

By following this three-step process, the proposed hybrid optimization strategy
will generate a geometrically optimized design, taking into account both topological
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and shape optimization considerations.

2.2. Immersed boundary methods

IBM have gained popularity in the computational mechanics community due to
their ability to achieve geometry-mesh independence, which significantly reduces the
burden of meshing [8,11,12]). In many cases, the meshing process becomes trivial as
a result. Furthermore, certain IBM implementations have been successfully adapted
to problems where the object under analysis is described by an image, such as med-
ical images. The FCM [8–10] and the cgFEM [12, 13] have both demonstrated their
efficacy in dealing with such problems [62,63].

The IBM approaches offer attractive advantages. Apart from simplifying the mesh-
ing process, they allow the simple definition of efficient data structures to reuse cal-
culations. However, it also presents some challenges that must be considered. In
particular, the computational cost with these techniques shifts from the expensive
meshing algorithm towards the need for:

a) More complex numerical integration schemes for the elements cut by the bound-
ary, so that only the part of the element lying within the physical domain is
considered in the evaluation of volume integrals; and

b) The use of special formulations to impose boundary conditions [64–69]. In the
standard FEM procedures to impose boundary conditions is assumed that the
domain’s boundary is represented by element sides described by nodes placed
on the boundary. These procedures are not suitable for IBM because, in gen-
eral, the boundaries will cut the elements, and there will be no nodes on the
boundaries.

2.2.1. Cartesian grid Finite Element Method
(cgFEM )

There are various IBM approaches, and among them, we select the cgFEM method,
developed by the supervisors of this thesis. The cgFEM method involves embedding
the physical domain ΩPhys within a cuboid that defines the fictitious domain ΩFic.
The fictitious domain is meshed with elements of varying levels, with the Level-0 mesh
considered as a single element that encompasses the entire cuboid. We then split this
mesh into eight new Cartesian elements to create the Level-1 mesh, and recursively
repeat the process to generate meshes with higher refinement levels, resulting in a
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hierarchical structure. The final mesh for the FE analysis comprises elements of dif-
ferent refinement levels. To ensure C0 continuity between contiguous elements from
different levels, multi-point constraints are utilized [70].

In Figure 2.2a, we present an example of a physical domain, denoted as ΩPhys,
with boundary Γ that is smooth enough for our purposes. This physical domain is
embedded within a larger domain, referred to as ΩFic. The boundary Γ of ΩPhys can
be divided into two non-overlapping parts: ΓD and ΓN . These regions respectively
impose the Dirichlet and Neumann conditions. Figure 2.2b depicts the embedding
domain ΩFic, which we discretize using Cartesian elements, Ωe. Finally, we note that
the following expression relates these domains:

ΩPhys ⊆ ΩFic =

ne⋃

e=1

Ωe. (2.7)

(a) Physical and embedding domains.
Boundary conditions.

(b) Discretization of the fictitious do-
main.

Figure 2.2: Representation of the physical domain and the discretization of the
fictitious domain in cgFEM.

The efficiency and main characteristics of the cgFEM methodology are summa-
rized in Figure 2.3, which illustrates a 3D example analyzed using this technique.

- cgFEM is an efficient FE analysis technique that employs a Cartesian discretiza-
tion of the embedding domain, as depicted in Figure 2.3a.

- The analysis mesh utilized by cgFEM to model the physical domain ΩPhys can
include elements of different refinement levels. These elements can be entirely
situated within ΩPhys, cut by its boundary Γ, or be placed outside of it. The
latter are excluded from the analysis mesh, as shown in Figure 2.3b.
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- cgFEM relies on a specially designed integration mesh (Figure 2.3c), based
on the NEFEM integration approach [71]. This approach enables the exact
boundary representation, such as in the form of NURBS or T-Splines [72], to
be taken into account in the integration process.

(a) Physical domain ΩPhys ( 1
4

of a hollow
cylinder) embedded in the fictitious domain
ΩFic (cube).

(b) Discretization of the fictitious domain:
analysis mesh.

(c) Integration Mesh.

Figure 2.3: cgFEM. Different domains involved in a finite element analysis.

To impose the boundary conditions regarding the cgFEM framework some con-
siderations should be done. In the case of Neumann boundary conditions, it is only
necessary to consider that the surface of integration is in the interior of the element, as
it will not generally coincide with any element face. In contrast, the case of Dirichlet
boundary conditions requires more complex techniques. A common approach to im-
pose the essential boundary conditions in a weak form consists on using the Lagrange
multipliers technique [73]. However, the choice of an appropriate Lagrange multiplier
space is not trivial, as a wrong choice could produce oscillations in the Lagrange
multipliers field and thus in the FEM solution. Hence, stabilization techniques are
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needed, and an adaptation of Nitsche’s method is one of the most popular ways of
stabilization [74]. This approach results in the replacement of equation (2.1d) with
the following equation:

a(u,u) +
k

h

∫

ΓD

u · udΓ = l(u) +
k

h

∫

ΓD

g · udΓ +

∫

ΓD

T(ū) · udΓ. (2.8)

A detailed description of the equation’s derivation and its behavior is available
in [65]. The proposed stabilized Lagrange multipliers formulation is notable for its
stabilization term T, which is evaluated as a recovered [58, 59] traction field. Since
this traction field depends on the FE solution, an iterative process using Richardson
iterations is used to solve (2.8). However, this is merely a technical detail since the
stabilization terms given ρ does not play any role in the TO procedure.

2.2.1.1. Topology optimization in cgFEM

We propose utilizing the cgFEM framework for TO, which requires adapting the
algorithm accordingly. The original version of the SIMP method, as presented in [51],
assumed that all mesh elements were of the same shape and size. To implement
the SIMP method within the cgFEM framework, we need to consider two essential
features: (a) elements of different sizes, i.e., from different levels, are used to construct
the analysis mesh; and (b) only the portion of the element within the physical domain
should be considered for elements intersecting the boundary. Therefore, the volume
of the physical domain after discretization should be determined as the sum of the
volumes of each element e within the physical domain:

V (ρ) =
∑

e

ρe · Ve where Ve =

∫

Ωe∩ΩPhys

dΩ. (2.9)

To ensure compliance with the volume constraint during the material distribution
ρ update, it is necessary to evaluate the volume sensitivities. The computation of
volume sensitivities follows the expression:

∂V (ρ)

∂ρe
= Ve (2.10)

Furthermore, in order to incorporate the volume of each element Ve into the com-
putation of the filtered sensitivities (2.2), the corresponding expression must be revised
as shown below:

∂̃c

∂ρe
=

1

ρe

N∑

f=1

ĤfVf

N∑

f=1

ĤfρfVf
∂c

∂ρf
. (2.11)
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Hence, it is necessary to modify the topology optimization formulation. Firstly,
equation (2.1c) should be replaced by equation (2.9) to account for the fact that
each element has a different volume Ve, either due to the mesh being h-adapted or
because the element is intersected by the domain’s boundary. Secondly, to impose
boundary conditions in elements cut by the Dirichlet boundary, a stabilized Lagrange
multipliers formulation is employed. Consequently, equation (2.1d) is substituted by
equation (2.8).

2.3. Advanced techniques for
high-dimensional data analysis

In recent years, data analysis has become an increasingly important area of re-
search, with applications ranging from natural language processing to genomics and
neuroscience. While traditional statistical methods remain valuable, the growing com-
plexity and scale of data sets have led to a need for new approaches that can capture
their underlying structure and patterns. This section explores three related areas
of research that offer promising avenues for analyzing complex data sets: manifold
learning, topological data analysis, and optimal transport. ML aims to discover the
intrinsic low-dimensional structure of high-dimensional data, allowing for effective
visualization and analysis. TDA, on the other hand, seeks to extract topological fea-
tures from data, such as holes and voids, to reveal its underlying structure. Finally,
OT provides a powerful framework for comparing and transforming probability dis-
tributions, enabling efficient data alignment and analysis. While these three areas
of research are distinct, they share a common goal: to provide geometric and topo-
logical insights into complex data sets. By combining these approaches, we can gain
a deeper understanding of the underlying structure of data and develop more effec-
tive techniques for analysis and modeling. In the following sections, we will explore
each of these areas in more detail, highlighting their unique features and potential
applications.

2.3.1. Manifold learning
ML algorithms are commonly used to extract the underlying structure of high-

dimensional data by identifying a set of low-dimensional parameters. In the ML field,
there are a plethora of techniques available, with the principal component analysis
(PCA) [31] being one of the earliest linear techniques, widely used in the past. How-
ever, with the development of ML, non-linear techniques have been introduced that
can preserve the non-linear nature of the original dataset, such as locally linear em-
bedding (LLE) [32]. These techniques are particularly important when dealing with

19



2. State of the art

information from the component’s topology, which is considered highly non-linear [75].

In this study, we have used the LLE algorithm to extract the low-dimensional
parameters of the dataset. Here, each high-dimensional point or snapshot, denoted
as Xi, can be obtained as a linear combination of its K nearest neighbors, with
weights represented by Wij , j ∈ [1,K]. The number of neighbors K is a user-defined
parameter, and the weights are obtained by minimizing the functional represented in
Equation (2.12):

e(W) =
∑

i

||Xi −
∑

j

WijXj ||2. (2.12)

The weights Wij are subjected to the constraint
∑

j Wij = 1. The LLE algorithm
hypothesizes that these weights are invariant to space transformations, and their
values are preserved when changing between spaces. The low-dimensional parameters
can be obtained by minimizing the functional in (2.13):

φ(Y) =
∑

i

||Yi −
∑

j

WijYj ||2, (2.13)

where Yi represents each of the points projected to the embedded space. This equa-
tion can be represented in the form shown in (2.14):

φ(Y) = YTMY, (2.14)
where M = (I −W)T (I −W). The minimization problem can be considered an
eigenvalue problem, where the eigenvectors represent the low-dimensional points Y.

(a) Original sampled dataset. (b) Reduced coordinates proposed by the LLE al-
gorithm.

Figure 2.4: LLE example of an analytic database. Just one dimension is enough to
characterize the database, as illustrated with the preservation of the color distribution.
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The dimension of the embedded space can be a user-defined parameter, but it is
convenient to study the eigenvalues of M. As we minimize (2.14), the target eigen-
vectors are related to the smallest eigenvalues. The detailed mathematical procedure
to obtain the low-dimensional embedded space is explained in [32].

To illustrate the LLE technique, we apply it to an analytical example and present
the results in Figure 2.4. Figure 2.4a shows the original sampled dataset, which is
reduced to the space illustrated in Figure 2.4b, showing that one of its dimensions
was not relevant.

2.3.2. Topological data analysis

The characterization of the component’s topology relies on TDA [33,34]. TDA is a
set of tools used in high-dimensional data analysis to extract topological information
from a group of points, including persistent homology [76]. These techniques are di-
rectly applicable to our work as any signed distance function (SDF) can be converted
into a cloud of points using the coordinates of the nodes in the Cartesian grid and
their respective function values. TDA tools are particularly useful because they em-
ploy methodologies developed for algebraic topology, allowing them to be used over
data represented as a set of points. In Figure 2.5a, we demonstrate an example of
a component’s geometry, and in Figure 2.5b, we illustrate how this information is
transformed into a set of points using TDA.

(a) (b)

Figure 2.5: Example of the particularized SDF that represents a geometry (a) and
the points used for the TDA tools (b).
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To provide an intuitive understanding of the method, we refer to Figure 2.6 and
consider a set of points denoted by A,B,C,D. In general, these points exist in a
high-dimensional space where the intrinsic topology is not visible. To address this,
we introduce a distance parameter r at each point to define the connectivity. By
varying the value of r, we alter the connectivity of the point set, resulting in the
emergence of different k -simplexes. It is worth noting that a 0-simplex corresponds to
a point, a 1-simplex to an edge, a 2-simplex to a triangle, a 3-simplex to a tetrahedron,
and so on.

(a) r < L (b) r = L (c) r =
√
2L

Figure 2.6: Intuitive description of the methodology in TDA tools, (a) with r < L
the set of points A,B,C,D remains disconnected, (b) with r = L the edges AB, BC,
CD, DA appear and also a hole, (c) with r =

√
2L the triangles ABC and ACD

appear, therefore the hole is covered.

Figures 2.6a, 2.6b, and 2.6c show the strategy for extracting topological features
from an unconnected set of points. As the value of r increases, the connectivity of the
points changes, allowing the creation of higher-order simplices, such as 1-simplices
or edges. These edges form a hole in r = L that persists until r =

√
2L, at which

point even higher-dimensional simplices, such as 2-simplices or triangles, are created,
covering the hole and causing it to disappear. Persistent features that are detected
over a wide range of spatial scales r are more likely to represent true topological
features of the underlying point cloud, rather than sampling artifacts or noise. The
value of r at which a persistent feature appears and disappears is used to construct
the persistence diagram (PD) shown in Figure 2.7a, which represents the birth x
and death y of each topological feature found along the growth of r. Since the birth
of any persistent feature, such as a hole, precedes its death, all the points in the
persistence diagram lie above the diagonal y = x. Points near the diagonal may
represent noise or small-scale features, whereas points far from the diagonal represent
topological features that persist and define the overall topology of the component.
The persistence diagram belongs to a non-metric space, so it is not directly suitable
for comparing or evaluating distances between different persistence diagrams, to do
so the space must be equipped with a metric. Other representations of persistent
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homology that contain the same information but are displayed differently are also
available.For instance, applying the mapping f : (x, y)→ (x, y − x) to the PD yields
the lifetime diagram (LD) shown in Figure 2.7b. In the LD, points far from the x-
axis represent more relevant topological features. The same information may also be
displayed in a barcode format, as shown in Figure 2.7c.

(a) Persitence diagram. (b) Lifetime diagram.

(c) Barcode diagram.

Figure 2.7: Different representations of the persistent homology for the example in
Figure 2.5.

One limitation of using certain spaces, like the previous representations of the
topology, is that they have non-Euclidean norms, such as the commonly used L2

norm in many machine learning applications. Hence, it’s necessary to transform the
current descriptor of topological features using a space transformation. To do this,

23



2. State of the art

a persistence surface is defined based on a Gaussian kernel evaluated in the space of
the LD. The resulting surface is then converted into a finite-dimensional discretized
space by fixing a grid with n × n subdomains (pixels) in the plane. Integrating the
persistence surface over each pixel results in the so-called persistence image (PI) ∈ R2,
as shown in Figure 2.8b [77]. By framing the persistence features in this space, we can
leverage a wide range of machine learning algorithms. However, it’s worth noting that
there are limitations to the PI approach, such as sensitivity to the choice of kernel
and the number of pixels n × n in the grid. These limitations should be taken into
consideration when applying this technique.

(a) (b)

Figure 2.8: Space transformation of the persistent homology from the lifetime dia-
gram (a) to the persistence image (b).

2.3.3. Optimal transport
Probability distributions are widely used in many scientific fields as they often

encapsulate uncertain information related to geometric domains. Comparing two or
more probability distributions requires an appropriate notion of similarity or dis-
crepancy. OT techniques [35–37] provide a way to evaluate the similarity between
distributions. The main problem in OT is computing the Wasserstein (also known
as Earth Mover’s) distance between probability distributions. These distance repre-
sent the geometric likeness between two objects by measuring the minimal amount
of "work" needed to mode the mass contained in one object onto the other. Re-
cent developments show that incorporating these distances yields powerful tools for
manipulating distributions, which can be useful for tasks such as geometric domain
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interpolation [38].

To understand OT, we need some background information. We consider a mani-
fold M representing the domain where the geometric domains are located. Then, we
define d : M ×M → R+ to specify the geodesic distance function, so d(Xi,Xj) is
the shortest distance from Xi to Xj along M . We use Prob(M) to indicate the space
of probability measures on M and Prob(M ×M) to refer to probability measures on
the product space of M with itself. We refer to elements µi, µj , · · · ∈ Prob(M) as
marginals and the joint probabilities πii, πij , πjj , · · · ∈ Prob(M ×M) as couplings.
We consider that µi represents the probabilistic distribution of the general function
Xi, which may contain geometric information, such as the distance level-set.

Formally, the 2-Wasserstein distance between µi and µj is defined as

W2(µi, µj) :=

√
inf
π

∫ ∫

M×M

d(x, y)2dπ(x, y), (2.15)

where π represents the transportation plan, which is a coupling in Prob(M×M) that
describes the amount of mass to be displaced.

On the other hand, the Wasserstein barycenter problem aims to find the prob-
abilistic distribution µ̂ that minimizes the weighted functional described in (2.16).
This problem has applications in shape interpolation, where the resulting µ corre-
sponds to the probabilistic functions that describe a geometric domain. In Figure
2.9, we compare the resulting distributions obtained through linear interpolation and
the barycenter interpolation.

µ̂ = argmin
µ

k∑

i=1

αiW
2
2 (µ, µi). (2.16)

(a) Linear interpolation

(b) Barycenter interpolation

Figure 2.9: Comparison of linear and barycenter interpolation. Left and right figures
are the reference distributions while the middle ones show its weighted interpolation.
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Chapter 3

Contributions

The purpose of this chapter is to provide an overview of the contributions made,
while the extended explanation can be found in the scientific papers attached. The
contributions relate to two fields: structural optimization and generative design, that
are closely related to each other. Structural optimization involves the process of min-
imizing or maximizing a specific quantity while adhering to a set of constraints and
algorithmic rules. Generative design, on the other hand, focuses on leveraging the
stored knowledge in a component database to replicate designs for other components
with varying parameters.

This chapter highlights the contributions made in the thesis and presents a sum-
mary of the novelties introduced in each publication. The contributions are catego-
rized into two sections based on the aforementioned fields of knowledge. Each section
includes a reference problem to showcase the various contributions.

3.1. Advances in structural optimization:
topology optimization and hybrid
Techniques

In this chapter, we present our work on improving TO and a hybrid optimization
methodology for structural design. We first describe our advances in topology opti-
mization, where we developed novel algorithms that overcome some of its limitations
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and allow for the design of more practical and manufacturable structures. We then
discuss our contributions to hybrid optimization, where we combined topology opti-
mization with shape optimization techniques to achieve even greater improvements
in structural performance and efficiency.

3.1.1. Benchmark problem
We first define a benchmark problem to evaluate the behavior of the proposed

methodologies. The problem, illustrated in Figure 3.1, consists of a beam with a con-
stant hollowed cross-sectional area, featuring two perpendicular planes of symmetry
at x = 0 and z = 0. The beam is subjected to a pressure P on its internal cylindrical
surface under a plane strain condition, simulated by symmetry boundary conditions
at y = −10 and y = 10.

(a) Model of the 3D domain used for
the optimization problem. Symmetry
boundary conditions on planes x = 0,
z = 0, y = 0 and y = −10.

(b) 2D view of the optimization prob-
lem, including optimal analytical ex-
ternal boundary (in red) with value
Ropt = 9.04681.

Figure 3.1: Reference problem.

The aim of the optimization problem is to minimize the material usage while
ensuring that σvm ≤ Sy. It is known that the optimal shape will take the form of
a thick-walled cylinder. The analytical solutions for displacements (3.1) and stresses
(3.2) of thick-walled cylinders subjected to internal pressure are available in [78].
These equations provide a useful basis for optimizing the design of such cylinders.

1Value truncated to 4 decimal places.
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u =





uR cos(θ)

0

uR sin(θ)





uR =
P (1 + ν)

E(κ2 − 1)

[
(1− 2ν)r +

r2ext
r

]
, (3.1)

σ =





σR cos(θ)2 + σH sin(θ)2

ν(σx + σz)

σR sin(θ)2 + σH cos(θ)2

0

0

(σR − σH) sin(θ) cos(θ)





σR =
P

κ2 − 1

[
1−

(rext
r

)2
]
,

σH =
P

κ2 − 1

[
1 +

(rext
r

)2
]
,

(3.2)

where r =
√
x2 + z2 is the radius of the point, rext and rint are the external and

internal radii, κ = rext/rint, θ = arctan(z, x), P is the internal pressure, E is the
Young Modulus and ν is the Poisson’s ratio.

The maximum von Mises stress in the cylinder can be determined by evaluat-
ing the exact solution for stresses as a function of the external radius. By finding
the value of the minimum external radius that satisfies σvm ≤ Sy, we can identify
the optimal external radius. Using the data presented in Figure 3.1, the optimal
radius is determined to be Ropt = 9.0468 (as shown in Figure 3.1b), which results
in an optimal volume of Vopt = 446.4545. This corresponds to a volume fraction
V/V0 = 0.2174, taking into account the dimensions of the design space illustrated in
Figure 3.1. Topology optimization can also be used to solve the reference problem.
We solve the problem (2.4a–2.4c) with uniform element size of href = 0.9563, a filter-
ing radius of r0 = 1.5×href = 1.4345, and a penalization parameter of p = 3. Figure
3.2 shows the evolution of the optimization algorithm, and Figure 3.3 shows 3D and
2D views of the resulting solution.

Figure 3.3 demonstrates that the TO process generates a solution that resembles a
cylinder, which closely matches the optimal analytical solution. Figure 3.3.b) displays
the optimal analytical radius Ropt alongside the iso-contours of relative densities ρ =
0.01, ρ = 0.5 and ρ = 0.99. To produce these iso-contours, we applied nodal averaging
[79] to the original discontinuous topology optimization solution, which had a constant
ρ value for each element. These iso-contours reveal a problem with the solution: it
fails to provide a clearly defined representation of the edges, instead offering a diffuse
representation characterized by intermediate ρ values over a region approximately
twice the filtering radius thick (2× r0).
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Figure 3.2: Reference Problem: Convergence curves of volume (Top), maximum von
Mises stress (Middle) and compliance (Bottom). This curves represent the evolution
of problem (2.4a–2.4c), where for a given value of vf we solve the problem in (2.1a–
2.1g) then this value is updated looking for the satisfaction of the stress constraint.
Each time the vf is updated, the problem (2.1a–2.1g) is initialized with a uniform
distribution of densities.

To manufacture a component from the solution presented in Figure 3.3, a reason-
able choice would be a hollowed cylinder. The external radius of the cylinder can
be defined as a function of a threshold value of relative density ρ, which would be
selected by the user. Let R̄ρ denote the mean value of the external radius, evaluated
from the iso-contour of the relative density ρ chosen by the user. As the object to
be manufactured is a thick-walled cylinder subjected to internal pressure, we can use
the exact solutions given in Equations (3.1) and (3.2) to determine the maximum von
Mises stress, denoted by σ̂vm(ρ), that would occur in the object. Table 3.1 displays
the values of R̄ρ and σ̂vm(ρ) for three different values of ρ, along with the relative
errors of these magnitudes, denoted by e(R) and e(σ̂vm), respectively, with respect to
the optimal analytical solution of this problem.
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(a) 3D view. (b) 2D view of middle plane section.

Figure 3.3: Reference solution of the reference optimization problem. Elements
with relative density ρ ≤ 0.01 have not been represented in (a). The 2D view in (b)
includes the optimal analytical radius Ropt and the iso-contours ρ = 0.01, ρ = 0.5
and ρ = 0.99 and an example of the area covered by the filter radius.

Threshold R̄ρ e(R) σ̂vm(ρ) e(σ̂vm)

ρ = 0.01 10.3804 14.7408% 2.2586 -9.6579%
ρ = 0.5 8.6663 -4.2057% 2.6039 4.1570%
ρ = 0.99 7.5457 -16.5922% 3.1037 24.1470%

Table 3.1: Reference Problem. Comparison between the solution obtained and the
analytical solution, including the relative error.

where e(R) = 100 · R̄ρ −Ropt

Ropt
and e(σvm) = 100 · σ̂vm(ρ)− Sy

Sy
.

Table 3.1 highlights a second issue with the proposed solution: the imprecise repre-
sentation of the boundary may result in the choice of an external radius that deviates
significantly from the optimal value Ropt. Specifically, opting for a smaller external
radius than Ropt would give rise to a component that violates the stress constraint
σvm ≤ Sy, thereby leading to failure.
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3.1.2. Improvement strategies in topology
optimization

In this section, we present a series of methodologies that utilize the cgFEM tech-
nique to enhance the quality of the solution provided by the topology optimization
algorithm based on the SIMP approach.

3.1.2.1. Voxel-type independent integration mesh

One of the practical applications of cgFEM is in the automated generation of FE
meshes from medical images, where the data is stored in a Cartesian format [80].
This approach is particularly useful for creating FE models of bone tissues. The
fundamental concept involves placing a Cartesian grid (either uniform or h-adapted)
over the medical image. The voxels within each element are linked to the element and
treated as integration subdomains, with associated integration points for each voxel.
By establishing relationships between the material properties and the values used
to represent the medical image, such as Hounsfield values for bone structures, it is
possible to identify correlations between Young’s modulus and these values [80,81]. By
incorporating these relationships during the numerical integration stage of the stiffness
matrix for each element, homogenized stiffness matrices can be produced, which take
into account various voxel values (and their corresponding material properties). As a
result, this modeling technique entails the consideration of two meshes:

a) The analysis mesh, used for the FE analysis, and

b) The integration mesh, a finer discretization of the model embedded in the
analysis mesh. This mesh is composed of voxels and enables a higher resolution
representation of the material distribution within the model than the analysis
mesh.

The proposed method is depicted in Figure 3.4, where it can be observed that our
approach offers a more accurate representation of the material distribution compared
to the standard approach. The advantages of our voxel-type integration approach are
twofold. Firstly, it provides a more detailed representation of the material distribu-
tion, which allows for a better control of the topology optimization process. Secondly,
it reduces the computational cost associated with the FE analysis, as the integration
mesh is finer only where it is necessary, and the analysis mesh is used only for the FE
analysis.
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(a) Analysis mesh without voxel-type
integration (constant ρ at each ele-
ment).

(b) Analysis mesh with voxel-type in-
tegration (constant ρ at each integra-
tion subdomain of each element)

Figure 3.4: Standard vs. Voxel Integration Mesh: representation of ρ and distribu-
tion of Gauss Points (in blue).

It is important to note that in the proposed voxel-type integration approach, the
design variables used by the TO algorithm are not associated with the individual
elements. Rather, they are associated with the integration of subdomains into the
elements. Therefore, in order to compute the sensitivities of the compliance, they
must be determined at the level of the integration subdomains (voxels). Additionally,
the filter radius must be related to the size of the integration subdomains.

We conducted numerical analyses on the reference problem to evaluate the perfor-
mance of the proposed voxel-integration technique. For comparison with the optimal
analytical solution, we utilized the SIMP method algorithm in the analyses without
any iterations on the volume fraction. We set the volume fraction to the same value
as the optimal analytical solution, i.e., V/V0 = 0.2174. Figure 3.5 and Table 3.2
present the comparison of three types of results: the reference results (Figure 3.5.a),
the results obtained through the proposed voxel-type integration approach (Figure
3.5.b), and the reference results that would have been achieved with a one order finer
mesh (Figure 3.5.c). The results demonstrate that the total execution time of the
voxel-type integration approach is only slightly higher than that of the reference so-
lution. Additionally, the boundary definition considerably improves and reaches the
accuracy obtained with finer meshes. The proposed technique enables us to obtain a
boundary definition of the same quality as that obtained with a mesh of elements of
size h/2 at a marginally higher computational cost than with a mesh of elements of
size h.
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(a) Reference solution. No
voxel-type integration. El-
ements of size h = 0.9563.

(b) Voxel integration ap-
proach. Elements of size
h = 0.9563.

(c) No voxel-type integra-
tion. Elements of size h =
0.4781.

Figure 3.5: Effect of voxel-type integration.

Coarse Mesh Fine Mesh
No voxel-integration Voxel-integration No voxel-integration

Threshold R̄ρ e(R) R̄ρ e(R) R̄ρ e(R)

ρ = 0.01 10.6583 17.8136% 9.8911 9.3332% 9.9026 9.4596%
ρ = 0.5 9.0221 -0.2731% 8.9931 -0.5936% 9.0211 -0.2840%
ρ = 0.99 7.5988 -16.0059% 8.2537 -8.7662% 8.3473 -7.7321%

Table 3.2: Results obtained for the Reference problem with a coarse mesh, a coarse
mesh with the voxel-integration technique and a fine mesh.

3.1.2.2. Solution-based refinement strategies

The accuracy of edge definition in topology optimization is influenced by the
element size used and the filter radius employed. Generally, smaller elements and/or
smaller filter radii result in sharper geometries, but also in more complex topologies.
To address this issue, we propose using h-adapted meshing techniques, which are
more efficient than uniform meshes, to decouple the effects of element size and filter
radius. This enables us to obtain a sharp edge representation of controlled topological
complexity. We also employ two mesh refinement strategies to enhance boundary
sharpness and accuracy of the solution:

a) Density-based refinement, where the mesh is refined in regions with inter-
mediate values of relative density, and

b) Error-based refinement, where the mesh is refined in regions where the esti-
mated discretization error is higher.
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In both cases, we refine the mesh using element splitting, whereby each parent
Cartesian brick element of size h is subdivided into 8 children Cartesian elements of
size h/2.

Filtering techniques are commonly employed in topology optimization to mitigate
the occurrence of checkerboard patterns. However, the size of the intermediate den-
sity region is usually around twice the size of the filtering radius rf . To address this
issue, we propose an adaptive filtering approach, wherein the filter radius at each el-
ement is proportional to the element size, and the proportionality constant is defined
by the analyst. This allows for different filter sizes within the same mesh and can
limit the minimum size of the features that define the solution, thereby improving the
boundary definition.

We use a relaxed stopping criterion to reduce the computational burden. Specif-
ically, we propose the computation of the relative variation of the objective function
(the compliance in the SIMP method), given by:

ci−1 − ci
ci−1

× 100 ≤ SC, (3.3)

where c represents the compliance, i stands for the iteration number, and SC is the
user-defined stopping criterion. In our case, we selected SC = 0.01%.

Using filtering techniques with an h-adapted mesh can be computationally expen-
sive in standard FE implementations. This is because the elements surrounding the
filtering radius must be localized at each iteration step. The computational cost can
become even greater when a set of voxels is included within an element to improve
the representation’s accuracy. However, the Cartesian structure of cgFEM meshes
helps to reduce this cost. Hence, we propose the virtual filtering technique based on
the hierarchical structure of the Cartesian grid, that is characterized as follows:

- The Cartesian structure allows to select those elements whose center is within
a cuboid larger that the radius of the filter.

- Based on the hierarchical structure of the meshes we found those elements that
are active in the current mesh.

- The computation of the distance is just carried out within those elements instead
of the whole mesh.

As previously mentioned, we propose a refinement criterion that focuses on refin-
ing elements with intermediate values of relative density ρ, specifically elements with
1 > ρ > ρmin. The effectiveness of this density-based refinement procedure is evalu-
ated on the reference problem, as shown in Figure 3.6b. Although the representation
of the boundary is improved, the lack of quality in the solution leads to radii far from
the optimal. Therefore, the refinement strategy based on the error in the solutions
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also results necessary.

The error-based refinement criterion is based on h-adaptivity, which considers the
accuracy of the numerical solution in terms of the estimation of the discretization
error in the energy norm. This criterion is particularly relevant for volume minimiza-
tion problems with stress constraints, where inaccurate stress evaluations could lead
to non-optimal solutions. Although error estimation techniques have been used to
improve the performance of FE simulations in various fields, their use in topology op-
timization algorithms remains limited. Previous studies that considered the accuracy
of the solution as a mesh refinement criterion in topology optimization used residual-
based error estimators [82]. In this work, we propose to estimate the discretization
error in the energy norm using the approach suggested by Zienkiewicz and Zhu [83].
This involves estimating the error in the energy norm using the following equation:

∥e∗∥ =
√∫

Ω

(σ∗ − σh)D−1(σ∗ − σh)dΩ (3.4)

The integral in equation (3.4) is taken over the domain Ω, but it can be restricted
to a single element’s domain Ωe to obtain an estimate at the element level. However,
the accuracy of the estimate depends on the accuracy of the σ∗ field. To evaluate an
error indicator ζe of the discretization error at the element level, we propose the use
of the following expression, which is consistent with equation (2.1b) for this type of
problem:

ζe =

√∫

Ωe

ρpe(σ∗
e − σh0

e )D−1
0 (σ∗

e − σh0
e )dΩe (3.5)

In [82] the authors argue that recovery-based error estimators are ineffective
over material interfaces. As a result, they caution against using recovery-based er-
ror estimation in topology optimization since it would unnecessarily over-refine the
material/non-material interface. However, in our study, we do not use a binary repre-
sentation of the material, but rather a regularized representation through the relative
density ρ. In fact, in Eq. (3.5), elements with intermediate ρ values typically result
in low ζe values due to the penalization induced by the term ρpe. Therefore, the mesh
optimality criterion utilized for mesh refinement is less likely to refine these elements,
instead concentrating on fully dense elements (ρ = 1) with high-stress gradients.

The current refinement technique based on error will not lead to the refinement of
elements with intermediate values of ρ. Consequently, it will not be useful in enhanc-
ing the boundary representation. Therefore, we suggest combining the error-based
refinement and the density-based refinement. These two techniques will play differ-
ent roles: the error-based refinement will enhance the accuracy of the finite element
results while the density-based refinement will be used to improve the boundary rep-
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resentation.

We performed volume optimization with stress constraints on the reference prob-
lem to evaluate the impact of the proposed refinement criteria. The results are illus-
trated in Figure 3.6, which compares the optimal analytical solution with the results
obtained using the enhancements proposed in this study. The reference result, ob-
tained using uniformly-sized elements and none of the proposed enhancements, is
shown in Figure 3.6a. As previously mentioned, the most notable feature of this
solution is the blurry representation of the exterior surface. When considering the
isocontour ρ = 0.5, the maximum stress value is underestimated, resulting in an
incorrect reduction in the amount of required material, as error estimation is not
activated in this case. Even with voxel integration and density-based refinement, as
shown in Figure 3.6b, the material quantity is still underestimated for the isocontour
ρ = 0.5. However, Figure 3.6c illustrates the result obtained when using the proposed
voxel-type integration approach in conjunction with the proposed density-based and
error-based refinement strategies. The synergistic effect of these techniques results
in a sharply-defined external boundary with a radius close to the optimal analytical
value.

(a) REF (b) DR + VI (c) DR + ER + VI

Figure 3.6: Reference problem: Effect of the proposed improvement strategies on
the final result of the topology optimization process. The acronyms stand for: ref-
erence solution (REF), voxel-type integration (VI), density-based refinement (DR),
and error-based refinement (ER).

Even though the use of voxel-type integration reduces the size of the region with
intermediate values of ρ, the most significant improvement in the sharp definition of
the boundary is achieved through the use of density-based mesh refinement. It is
essential to note that this improvement in the sharp definition of the boundary does
not necessarily correspond to the accurate placement of the boundary. The latter
requires the use of error-based refinement.
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In this study, we aim to investigate the impact of the prescribed error level on
topology optimization. To achieve this goal, we conducted three different simulations
with varying values of the prescribed relative value of the indicator of the relative
discretization error in the energy norm, specifically 10%, 5%, and 2%. The results
of the simulations were analyzed in terms of the external radius, and the findings
are presented in Figure 3.7.The figure illustrates how the prescribed error of the
FE analyses affects the external radius, considering both error-based and density-
based refinement strategies. As shown, the results converge to the optimal analytical
solution as the accuracy of the FE analyses increases.

Figure 3.7: Reference Problem: Effect of prescribed error in energy norm on the
external radius of the solution.

3.1.3. Hybrid optimization
This section describes the proposed hybrid optimization methodology, that com-

bines topology and shape optimization algorithms, developed to create an efficient
structural optimization framework. In the proposed algorithm, topology optimiza-
tion is used to create a predesign of the solution and shape optimization is used to
refine the design. The main feature of the algorithm is the method developed to auto-
matically communicate these two optimization algorithms avoiding user intervention.
This interface algorithm is based on the used of machine learning techniques to au-
tomatically extract, from intermediate results of the TO, the geometrical modes that
represent the TO solution and to use them to create a parametric model that will be
used by the SO algorithm. Figure 3.8 shows the main steps of the proposed strategy.
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Figure 3.8: Workflow of the hybrid optimization methodology.

STEP 1. The TO algorithm solves the problem defined in (2.4a–2.4c). Intermedi-
ate and converged results are gathered and processed. We convert the logical material
distribution into SDF using the level-set method. These functions store the distance
between each node on the Cartesian grid to the implicit boundary (represented as the
0-isolevel).

STEP 2. The database composed by the SDFs is then used to extract the main
geometrical modes through the manifold learning tool, in our case, the LLE algo-
rithm. This process is based on the procedure presented in [75], where a set of X
segmented images of livers were used to train a ML technique to infer the shape of
livers. This technique provided a parameterized model to represent livers based on
just two parameters.

STEP 3. Using the reduced parametric geometrical model, the procedure can
reconstruct new geometries and, thus, use a standard parametric shape optimization
tool to obtain the final optimal geometry, both topologically and structurally opti-
mized, as described in (2.6a–2.6b).
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3.1.3.1. STEP 1: Topology optimization

A TO algorithm, the SIMP method, is used to determine the optimal material
distribution layout in the design domain, specifying the material/void status of each
element in the discretization. To reduce the number of parameters required to de-
scribe the solution’s geometry, we will use a ML algorithm to extract the inherent
structure from the data. The training process for a ML algorithm necessitates a suf-
ficiently large set of snapshots, each representing the geometry to be inferred. As
with most optimization techniques, TO is an iterative method, resulting in the avail-
ability of material distribution information for each iteration. As the TO process
converges, minor changes to the material distribution occur, which are similar to the
final solution and therefore possess the same topology. The ML tool will then infer a
description of the geometry considering a reduced number of parameters, each associ-
ated with a geometrical mode, by leveraging these intermediate material distributions
obtained with the TO algorithm. Because all snapshots maintain the same topology,
their selection is arbitrary. We propose to employ the last iterations of the topology
optimization process to ensure topology invariance. As each snapshot might have
been obtained with a different mesh, we project each snapshot’s information onto a
shared uniform mesh of elements sized identically to the smallest element used in the
definition of the snapshots. The use of a Cartesian grid and the hierarchical data
structure of cgFEM makes this projection process costless and straightforward.

(a) Topology optimization result (b) Nodal projection

Figure 3.9: Reference problem. Optimal topology optimization material distribution
(a) with its nodal projection equivalent (b).

The optimal material distribution layout obtained through the algorithm for the
Benchmark problem is shown in Figure 3.9a. This figure serves to illustrate the
procedure, although no changes in the topology are expected in this particular ex-
ample. To obtain a nodal representation, the element-wise solution provided by the
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TO algorithm will be smoothed using a nodal averaging procedure. The result of this
smoothing process is presented in Figure 3.9b.

Level-set description of the snapshots

As shown in Figure 3.9b, the field represented over the design domain is quasi-
boolean, providing minimal information. Post-processing is required to obtain a
smoother and richer information, using the distance of each node to the implicit
boundary. As the boundary in the regions with intermediate values of ρ is not ex-
plicitly defined, an explicit geometrical definition must be generated. To achieve this,
the marching cubes (MC) algorithm is used [84]. This algorithm provides a polygonal
mesh from the isosurfaces defined by an isovalue ρc existing in the material distribu-
tion with ρc ∈ [0, 1]. Figure 3.10 shows the polygonal mesh obtained from the MC
algorithm for different values of vf for an isovalue ρc = 0.5 in both cases. The final
volume is represented by the isosurface of a selected value of ρc in the regions with
intermediate values of ρ (red surface in Figure 3.10), and by the regions of the CAD
surface that define the design space with ρ = 1 (green transparent surfaces in Figure
3.10).

(a) (b)

Figure 3.10: MC polygonal meshes representing the external cylindrical shape of
the solution obtained from the material distribution considering an isovalue ρc = 0.5,
for vf equal to 0.5 (a) and 0.15 (b).

Once the surface that defines the volume has been evaluated, the nodal densities
representing the solutions are replaced with level-set information, which represents
the distance of each node to the surface. Figure 3.10 shows the cases used to obtain
the distance level-set represented in Figure 3.11. Using this procedure, the quasi-
boolean information of the material distribution is transformed into a smooth and
monotonic level-set.

41



3. Contributions

(a) Distance function obtained from
the boundary shown in Figure 3.10a

(b) Distance function obtained from
the boundary shown in Figure 3.10b

Figure 3.11: Distance function to the boundary, represented as a value equal to 0,
obtained from Figure 3.10.

In order to increase the richness of the dataset, different volume fractions are
considered. To do so, the TO-based problem (2.4a–2.4c) is solved. Additionally, we
suggest increasing the number of snapshots artificially by repeating the same strategy
but considering different values of ρc for each material/void layout. The snapshots
must preserve the topology, and their selection is arbitrary.

3.1.3.2. STEP 2: The ML-based TO-SO interface

The LLE algorithm is used to reduce the dimensionality of the snapshots dataset.
LLE is a ML technique that extracts the latent structure embedded in the high-
dimensional manifold. In our case, the high-dimensional data is constituted by the
SDF of each individual. We hypothesize that the parameters extracted by the LLE
algorithm define a geometrical basis corresponding to the main geometrical modes of
the resulting component.

The dimension of the embedded space may be a user-defined parameter, but it is
convenient to study the eigenvalues of the matrix M in (2.14). As we minimize (2.14),
the target eigenvectors are related to the smallest eigenvalues. Figure 3.12 shows that
the first eigenvalue is significantly larger than the others, indicating that d = 1 is a
suitable choice for the dimensionality of the embedded space.This is consistent with
this benchmark problem, defined by only one parameters, the external radius. For
a detailed mathematical procedure on how to obtain the low-dimensional embedded
space, please refer to [85].

42



3.1. Advances in structural optimization: topology optimization and hybrid
Techniques

Figure 3.12: Reference Problem. First 25 eigenvalues of M (see (2.14)), in the LLE
procedure.

Figure 3.13: Reference problem. Embedded space2 for the reference problem con-
sidering K = 21 neighbours and d = 1 parameters. The y-axis represents the volume
of each individual, while the colour represents if the maximum stress value is below
(green) or above (red) the yield stress limit.

2The representation of the design space in this study is limited by the exploration performed by
the topology optimization algorithm. It is important to note that the algorithm explores a subset of
the design space, and therefore, the results obtained in this study may not fully represent the entire
design space.
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Figure 3.13 displays the embedded space resulting from applying the technique
to the reference problem. The y-axis corresponds to the volume of the final geome-
try, and the x -axis represents the extracted low-dimensional parameter. In this case,
K = 21 neighbors were used from a total of 101 individuals (snapshots). The fea-
sibility of the individuals is represented by the colors in the graph. Green points
indicate structures with maximum stress below the yield stress limit, while red points
correspond to solutions with von Mises stresses above Sy.

We have obtained a low-dimensional embedded manifold that defines the geometri-
cal characteristics of the material distribution. Our objective is to use this information
to create CAD representations of the geometry. Therefore, we define the value of a set
of parameters Ŷi in the embedded space Y. Although this point may be user-defined,
the interesting part of this approach is that it can also be automatically defined by
an algorithm, such as a shape optimization algorithm. We hypothesize that Ŷi is
a weighted interpolation between a set of K̂ neighbors. The value of interpolation
weights Ŵij is obtained by minimizing the functional:

e(Ŵ ) =
∑

i

||Ŷi −
∑

j

ŴijYj ||2 (3.6)

In this case, we assume, as in the LLE technique, that weights Ŵij are invariant
to spatial transformations. As we have computed the neighbors Yj , we gather the
matching high-dimensional points Xj . Finally, we apply the following weighted in-
terpolation to compute X̂i, which is a level-set of the new geometry defined in the
high-dimensional space:

X̂i =

K̂∑

j=1

ŴijXj (3.7)

To illustrate the generation of geometries, we begin by selecting a point Ŷi = 0.5
that belongs to the embedded space formed by Y. In Figure 3.13, the individual Ŷi is
depicted in blue within its space Y. This procedure results in a new point X̂i located
in the high-dimensional space X, which contains distance information of each node to
the boundary of the geometry, as illustrated in Figure 3.14a. We use this information
to compute the boundaries that define the new geometry, as shown in Figure 3.14b.

Note that this procedure allows to define a set of coordinates Ŷi (in this particular
case one unique value, but several in the general case) and obtain the corresponding
geometry. Hence, this is parametrization of the geometry where the parameters are
the coordinates of the reduced space. This is not a conventional parametrization as
the coordinates of the reduced space will not have, in general, a geometrical meaning.
Even though, in this case, we could assume that the coordinate Ŷi is related to the
external radius of the cylinder, but not in a linear fashion.
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(a) Distance level-set. (b) Representation of the geometry recovered
from the level-set.

Figure 3.14: Reference problem. New geometry obtained from the space transfor-
mation of Ŷi into X̂i.

3.1.3.3. STEP 3: Shape optimization

We suggest a final step that guides the modification of the parameter Ŷi using a
shape optimization algorithm. Specifically, we minimize the volume in the region of
feasible designs, where the maximum von Mises stress value is below the prescribed
yield limit, using the updating scheme of the shape optimization algorithm.

As we have defined an implicit parametrization of the design domain’s boundary,
we can express our shape optimization problem as follows:

(SOσ(Sy)) =





min
Ŷ

: Volume(Ŷ ) (3.8a)

subject to: max(σeq(Ŷ )) ≤ Scr (3.8b)

where, σeq represents the equivalent stress value, and Scr denotes the limit value of
σeq. Here, we use the recovered von Mises stress σ∗

vm as the equivalent stress value
and the yield limit Sy as the limit value.

After expressing the geometry as a function of a reduced set of design variables, a
variety of shape optimization algorithms can be used, similar to using a parametrized
CAD model. In our study, we employed the Bayesian optimization algorithm, al-
though other methods such as genetic algorithms or gradient-based algorithms would
also be adequate. Figure 3.15a displays the optimal geometry of the reference problem,
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while Figure 3.15b illustrates the recovered von Mises stress field. Both optimization
algorithms were run using a mesh with an element size of hTO = hSO = 0.9563.

(a) Final geometry (b) Von Mises stress

Figure 3.15: Reference problem. Optimal geometry (in red) from the hybrid op-
timization methodology, providing a cylinder whose external radius is R = 8.5776
along with the optimal analytic radius (in green) Ropt = 9.0468 (a) and the recovered
von Mises stress field (b). The results were obtained using meshes of element size
hTO = hSO = 0.9563.

Figure 3.15 shows the results that satisfy the constraint max(σeq) ≤ Sy. However,
the geometry obtained is far from the analytical optimum. Since the FE numerical
results guide the optimization process, improving their quality can enhance the ac-
curacy of the optimal solution. One way to improve the solution is to reduce the
element size of the FE analysis mesh. However, if we consider that the main goal of
the TO algorithm is to determine the preform of the solution, i.e., a definition of its
topology, the TO algorithm would not require the use of fine discretizations. We will
therefore focus on improving the solution quality considering morerefined meshes in
the shape optimization step, which will ultimately describe the geometry.

The optimal solution depicted in Figure 3.16 was computed using an element
size of hTO = 0.9563 for the topology optimization algorithm and an element size of
hSO = 0.2391 for the shape optimization.
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(a) Final geometry. (b) Recovered von Mises stress field.

Figure 3.16: Reference problem. Results from the hybrid optimization methodology
applied to the reference problem with the optimal analytic radius Ropt = 9.0468,
giving a cylinder whose external radius is R = 9.0477 (a) and Von Mises stresses
(b). The results were obtained using meshes of element size hTO = 0.9563 and hSO =
0.2391.

As in the previous analysis, the constraint max(σeq) ≤ Sy is satisfied. However, in
this case, the optimal radius we obtained is significantly closer to the optimal analytic
solution.

The previous strategy is effective when the database has no topological changes,
which is not always the case when collecting snapshots. The LLE algorithm’s linear
interpolation limits the variability allowed in the geometry represented by the snap-
shots. The interpolation between two snapshots with notable geometrical differences
often results in non-physical components or the emergence of artifacts. This issue is
due to the metric used to classify the geometries and to evaluate the distance between
them. To generalize the methodology, three modifications are required:

1. A suitable metric to assess the similarity between snapshots.

2. An effective strategy for interpolating between geometrical objects.

3. An auxiliary method to classify each individual based on its topology.

The previous points will be discussed in detail in the following section.
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3.2. Knowledge-driven design generation

This section addresses the limitations identified in the hybrid optimization strat-
egy. The aim of this new methodology is to extract knowledge from a database and
utilize it in various applications, including structural optimization. Therefore, this
approach extends the previous concept into a numerical reverse engineering frame-
work that relies on object interpolation techniques. This section outlines the diverse
technologies required to achieve this goal and examines their respective impact on the
resulting outcomes, as well as how they address the aforementioned limitations.

Geometrical
characterization

Database
gathering/generation

Creation of the
low-dimensional

manifold

Topological
characterization

Query point in
the manifold

Meets the defined
parameters?

Extract the
parameters from
the component

Generate new
component

Predesign of the
proposed component

Postprocess the
component to meet

structural constraints

Offline

Online

NoYes

Figure 3.17: Simplified workflow of the methodology proposed.

Figure 3.17 represents the main steps of the methodology presented. In summary,
the main goal of this work is to define an interpolation procedure between existing
components living in a common manifold. The procedure has an offline and an online
phase. The offline phase refers to gathering the dataset and the subsequent treatment
that generates the reduced manifold, while the online phase involves the navigation
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within the manifold and the creation of new components through the interpolation
scheme.

3.2.1. Benchmark Problem
This section demonstrates the application of the previous methodology to an in-

dustrial example that emulates a car’s bumper. Due to the unavailability of actual
data, we generate an artificial database using the aforementioned hybrid optimization
technique. The database simulates the work of manufacturers engaged in designing
car bumpers. The example aims to replicate actual designs of a car’s bumper, taking
into account a simplified 2D domain (Figure 3.18).

The design domain of the problem is characterized by variables h1, h2, and X.
The Dirichlet boundary conditions are defined by the variables w and W , which
specify the position where all displacements are restricted. Additionally, the variable
P determines the value of the applied pressure. For all bumpers, we set P to achieve
the same resulting force applied to each bumper. This example demonstrates how the
proposed strategy performs with complex domains and how it addresses the unusual
issue of data scarcity.

Figure 3.18: Parametrization of the variables that define the design domain and the
boundary conditions of the hybrid optimisation algorithm.

Figure 3.19 presents a representative sample of 9 individuals from a database of
83 individuals, each discretized by 10201 nodes. Each individual is illustrated in the
Figure with a procedure explained in the following section. While bumpers in the
original dataset exhibit varying topologies, we disregard those of little importance
and restrict the final database, as illustrated in Figure 3.19, to bumpers with either 2
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holes or none, given the limited number of bumpers with more than 2 holes obtained
during database creation.

Figure 3.19: Representative sampling of the dataset.

3.2.2. Methodology
This section aims to provide a brief explanation of the various components that

make up the proposed strategy, as illustrated in Figure 3.17.

3.2.2.1. Geometrical characterization

Figure 3.20a displays a component resulting from the hybrid optimization method-
ology. It depicts the SDF, with the boundary defined by its zero value. However, to
use the OT tools correctly, the geometrical objects used as inputs need to be described
by a probabilistic function. In our study, we convert the SDF into a probabilistic func-
tion that takes values between 0 and 1, where the boundary is described using the
mid-value, 0.5. The probabilistic function’s value shows the probability of a point
belonging to the geometry’s interior, which is straightforward when the SDF is avail-
able. Figure 3.20b displays the resulting function that describes the geometry of the
component after its transformation.
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(a) Geometry defined by a SDF. (b) Geometry defined by a probabilistic function.

Figure 3.20: Conversion of the SDF (a) into a probabilistic distribution (b).

3.2.2.2. Topological characterization

We utilize TDA techniques to characterize the topology of each individual com-
ponent, using their persistent homology described by the persistence image.

For example, Figure 3.20b shows the bumper with two holes that we will use
to illustrate our topological characterization. In this particular example, as seen in
Figure 3.21a, the persistent homology seems to capture only one of the two holes,
possibly indicating that they are overlapped in the representation since their birth
and lifetime are the same because of the symmetry of the problem. This overlapping
may cause issues in the clustering task; thus, we consider a different coordinate system
to represent the persistent homology.

(a) Persistence image. (b) Modified persistence im-
age.

(c) Level-set function over the
modified persistence image.

Figure 3.21: Persistent homology of the car’s bumper in Figure 3.20 considering the
repeatability of each persistent feature.

To achieve that, we replace the x-axis of the lifetime diagram, previously rep-
resenting the birth, with the repeatability coordinate. This approach provides the
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corresponding persistence image in Figure 3.21b, where two holes are now repre-
sented. As most of the image domain has a value of 0, this image may be converted
into a function over the whole domain, for instance, employing the level-set method
(see Figure 3.21c).

3.2.2.3. Modifications in LLE to consider geometry and
topology

We employ the LLE algorithm to project individuals into a low-dimensional man-
ifold, which allows for easy visualization and manipulation. Since the components
are described using a set of shape descriptors, we need to make some modifications
to the standard LLE implementation. Our modification involves incorporating the
persistence image (Ti) of each individual as a topological descriptor, in addition to
its geometrical description defined by its SDF (Xi), into the ML stage.

Up to this point, we have solely utilized the geometric representation of the com-
ponents, specifically the SDF, to input data into the LLE algorithm. However, we
suggest integrating both geometrical and topological data by employing a weighted
linear combination of the distances derived from each shape descriptor, where θ rep-
resents the weighting factor. This approach provides a more comprehensive represen-
tation of an individual’s attributes in the low-dimensional manifold. Mathematically,
the combination can be expressed as follows:

d2ij =
θ∑

i

∑
j ||Xi −Xj ||2

· ||Xi −Xj ||2 +
(1− θ)∑

i

∑
j ||Ti −Tj ||2

· ||Ti −Tj ||2 (3.9)

We propose a modification to the LLE algorithm by incorporating topological
information. To achieve this, we modify (2.12), resulting in:

ε(w) =
∑

i


 θ∑

i

∑
j ||Xi −Xj ||2

· ||Xi −
k∑

j

wijXj ||2



+
∑

i


 (1− θ)∑

i

∑
j ||Ti −Tj ||2

· ||Ti −
k∑

j

wijTj ||2

 , (3.10)

where Xi is the level-set representation of the geometry, i.e., the SDF and Ti is the
corresponding persistence image. The optimal weight vector w should consider a
combination of both geometry and topology similarities.
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Influence of the weighting factor θ

After processing the database, each component has two shape descriptors: a ge-
ometrical descriptor defined as a distance function, and a topological descriptor de-
scribed with the persistence image. The next step in our proposed strategy is to
obtain the reduced manifold containing the projection of each individual. To accom-
plish this, we use the modified version of the LLE algorithm that incorporates both
geometrical and topological information and evaluates local vicinities using the Eu-
clidean distance, as shown in equation (3.9). We set the weighting factor to θ = 0.5
and the vicinity to 9 neighbors.

(a) Eigenvalue distribution.

(b) First coordinate of the reduced latent space.

Figure 3.22: Resulting eigenvalue distribution (a) and reduced coordinates (b) em-
ploying the LLE technique with the original data plus the persistence images.

Figure 3.22a shows the eigenvalue distribution, where the smallest eigenvalue is
significantly separated from the rest, indicating that there is one dominant dimension
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in the reduced manifold. This result is unexpected, as it is difficult to represent all
the geometrical and topological details we described earlier with just one dimension.
Figure 3.22b depicts the components’ representation in the reduced manifold, which
suggests that only the topology is inferred, while the geometrical descriptor is not
adequately represented.

(a) Eigenvalue distribution.

(b) Three first coordinates of the reduced latent space.

Figure 3.23: Resulting eigenvalue distribution (a) and reduced coordinates (b) by
using the LLE technique with the original data plus the persistence images.

To address the previous issue, we increased the weighting factor to enhance the
geometrical descriptor’s contribution. Specifically, we set the value of the weight-
ing factor to θ = 0.75. As shown in Figure 3.23a, this led to a more meaningful
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distribution of eigenvalues, with more dimensions characterizing the database. We
selected the first three dimensions for representation purposes, as shown in Figure
3.23b. These results highlight the importance of selecting an appropriate value for θ.
In practice, the user should experiment with several configurations of hyperparame-
ters, such as θ and the number of neighbors k, until a desired criterion is met in the
reduced space.

3.2.2.4. Optimal transport-based interpolation to recover
dimensionality

One notable feature of the LLE is its ability to define an individual based on the
linear interpolation of its neighbors in the vicinity. However, due to the limited data
available, this interpolation scheme is not suitable when using the original LLE tech-
nique. To address this issue, we propose an OT approach for object interpolation. To
test the feasibility of this methodology in producing components with physical sense
and align with the nature of the database, we remove an individual from the database
and attempt to recover it using the inverse mapping of the LLE. Figure 3.24 shows
one such recovered individual.

We represent the original geometry to be recovered and the results obtained
through both linear interpolation and the proposed strategy, which computes the
barycenter problem considering the Wasserstein distances, as in 2.16. In these fig-
ures, some individuals are highlighted: the reference bumpers to be recovered, re-
moved from the database, are highlighted with a black contour, while the neighbors
used to recover the reference bumper are highlighted with a green contour.

Upon analyzing the recovered components, we conclude that the interpolation
based on OT techniques provides components with a physical sense, which are quite
similar to the reference component and preserve the features in the database. In
contrast, linear-based interpolation schemes seem to produce bumpers with artifacts
and loss of features. These results suggest that OT-based interpolation is a more
effective approach for producing components that will enable successful numerical
simulation.

55



3. Contributions

(a) Latent space where we highlight the reference individual
(in black) and the neighbours used to recover it (in green).

(b) Reference bumper.

(c) Recovered bumper by lin-
ear interpolation.

(d) Recovered bumper by op-
timal transport-based interpo-
lation.

Figure 3.24: Recovery of a bumper of the cluster with 2 holes removed from the
database.

We present a quantitative analysis of the differences between the recovered bumpers
and the reference bumper, in addition to the qualitative comparison shown in Figure
3.24. Since the bumper component must satisfy certain structural requirements, we
find it interesting to measure the error metric based on its structural behavior. We
conduct a modal analysis on each recovered component and compare their first nat-
ural frequencies, excluding those associated with the rigid solid movement. We use
the following equation to measure the error:

Errori = 100 ·
∣∣∣∣
ω̂i − ωi

ωi

∣∣∣∣ , (3.11)

where ω̂i and ωi correspond to the ith natural frequency of the recovered bumper and
the reference bumper, respectively.

Figure 3.25 shows that the bumper obtained using the optimal transport-based
interpolation exhibits lower error levels for the first 10 natural frequencies. This result
is significant since it confirms that the proposed method is capable of generating high-
quality reconstructions with minimal errors.
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Figure 3.25: Error measure of each natural frequency for the reconstruction em-
ploying the linear interpolation (blue) and the optimal transport-based interpolation
(orange).

3.2.2.5. Methodology to propose suitable designs

The example above demonstrates the capability of this methodology to accurately
capture the high-dimensionality of the data. By representing the high-dimensional
manifold of the data, we can extend this capability to generate components that may
not exist in the original database. These generated components are based on the
current individuals and their geometrical representations are obtained by projecting
points from the low-dimensional manifold to the high-dimensional manifold. This is
done considering the interpolation scheme in the high-dimensional manifold using the
OT with the weights proposed in the low-dimensional manifold.

To create a new design, the analyst would define a set of geometric constraints
that the design to be created must satisfy. However, since the relationship between
the coordinates of the reduced space and the geometric characteristics in the physical
space is unknown, it will be necessary to navigate the low dimensional manifold to find
the combination of values of the dimensions of the reduced space that provides a design
that meets with the geometric constraints defined by the analyst. This navigation
will be guided by an optimization algorithm. In particular, this example uses genetic
algorithms as the gradient information is not directly available. Figure 3.26 illustrates
the component provided by the algorithm for the following user-defined parameters:
X = 84.91, W = 43.20, h1 = 25.00, h2 = 32.62 and w = 4.43, as shown in Figure
3.18. Additionally, the component is required to have two holes. These parameters
could be those in the construction of the initial database or any parameters that can
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be evaluated from the reconstructed geometries. Additionally, this Figure displays
the coordinates of the proposed component within the low-dimensional manifold.

(a) Latent space where we highlight the corresponding coordinates of the
proposed component (in black).

(b) Proposed component that meets the parameters criteria.

Figure 3.26: Example of navigation within the low-dimensional manifold to find a
given set of parameters.

The proposed component is a preliminary design based on assumed geometrical pa-
rameters. Its final form must satisfy a set of structural criteria. An analyst can modify
the component’s geometry iteratively until these criteria are met. Alternatively, an
algorithmic approach can be employed to fulfill the criteria. Figure 3.27 illustrates
the resulting component obtained through our hybrid optimization methodology.
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Figure 3.27: Optimal component provided by the hybrid optimization methodology
with its corresponding von Mises stress field. The original predesign is represented in
gray.

To execute this algorithm, material properties need to be assigned to the geo-
metrical domain. We took E = 70 GPa, ν = 0.33, and Sy = 300 MPa. Regarding
the boundary conditions, a pressure P was applied, generating a resulting force of
1 × 109 N. The optimization algorithm aims to find the component with the mini-
mum volume/mass while ensuring that the maximum von Mises stress remains below
the yield limit Sy.
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Chapter 4

Closure

4.1. Summary

This thesis presents a set of advances for 3D structural optimization using the
cgFEM. Several contributions were made within this work, including strategies to im-
prove the quality and geometrical definition of the solution in TO algorithms through
mesh refinement methods, an interface to join topology and shape optimization and a
strategy to rapidly generate predesigns for certain applications. These contributions
are detailed as follows:

- Efficient framework for topology optimization based on cgFEM . It
has been shown that cgFEM provides an efficient framework for TO. Thanks
to the use of uniform shape elements the computational cost of the integration
is reduced. Also, the Cartesian structure of the meshes enable the fast filtering
of the sensitivities.

- Improvement of the solution provided by TO algorithms. The voxel-
type integration technique enables sharper solutions without increasing com-
putational cost. Mesh refinement strategies improve the boundary definition
through density-based refinements while the error of the discretization is re-
duced through error-based refinements.

- Reduction of human intervention in structural design. The hybrid opti-
mization methodology, first, employs the TO algorithm to explore the space of
topologies. Then, with the ML technique, an automatic parametrization of the
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boundary is obtained. Finally, these parameters are tuned by SO algorithms to
fulfill the structural constraints.

- Development of a generative design tool that preserves the existing
knowledge. Taking ideas from the hybrid optimization methodology, we used
ML tools to develop a new methodology to create low-dimensional manifolds
from available databases of components. The metric employed to create the
manifolds considered not only geometrical information but also topological in-
formation. Then, we established a method to navigate within this manifold,
using OT tools, to generate new components coherent with the previously ex-
isting designs of the database.
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Abstract

The growing number of scientific publications on Topology Optimization (TO)
shows the great interest that this technique has generated in recent years. Among the
different methodologies for TO, this paper focuses on the well known Solid Isotropic
Material Penalization (SIMP) method [1], broadly used because of its simple formula-
tion and efficiency. Even so, the SIMP method has certain drawbacks, namely: lack of
precision in definition of the edges of the optimized geometry and final results strongly
influenced by the discretization used for the finite element (FE) analyses. In this pa-
per we propose a combination of techniques to limit the effect of these drawbacks and,
thus, to improve the behavior of TO. All these techniques are based on the use of the
Cartesian grid finite element method (cgFEM) [2], an immersed boundary method
whose Cartesian grid structure and hierarchical data structure makes it specially ap-
propriate for TO. All the proposed techniques are framed under the concept of mesh
refinement. First, we propose the use of two meshes, the FE analysis mesh and a
finer mesh for integration and evaluation of sensitivities, to improve the resolution of
the final solution at a marginal computational cost. Then we propose two h-adaptive
mesh refinement strategies [3]. The first one will tend to refine the elements having
intermediate density values and will have the effect of sharpening the definition of
the edges of the optimized geometry. We will clearly show that if the accuracy of the
FE analyses is not taken into account, stress constrained TO will generate solutions
that, once manufactured, will not satisfy the constraints. Hence, we also propose an
h-refinement strategy based on the estimation of the discretization error in energy
norm.
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1. Introduction

1. Introduction

In structural optimization problems, the optimization algorithms must find the
values of a set of parameters that minimize an objective function (usually the mass
or the compliance) subjected to the satisfaction of certain constraints (expressed, for
example, in terms of stresses). In practice, it is common to use the Finite Element
Method (FEM) to evaluate both, the objective function and the constraints.

In the structural optimization field, we can find the shape optimization algorithms.
These algorithms consider that the boundary of the design space is defined by the
design variables. Hence, no topological change is allowed. We would call shape opti-
mization algorithms to those based on the shape derivatives [4] to update the design
variables. If the boundary of the geometry is previously parametrized by an analyst,
we would call it parametrized shape optimization. Both algorithms suffer from the
impossibility of modifying the topology of the design space, although this issue may be
mitigated by the use of topological derivatives [5]. However, there also exist topology
optimization approaches to deal with structural optimization [6]. These techniques
look for the optimal material distribution within a physicial design space. Whereas
shape optimization is a boundary optimization problem defined in many cases by a
relatively small set of parameters that define the boundary, topology optimization is
a domain optimization problem defined by a large set of parameters that depends on
the number of elements used to discretize the design space.

Topology optimization has become widely popular thanks to the regularization
techniques developed by Bendsøe and Kikuchi [7]. One of the most acclaimed ap-
proaches is the Solid Isotropic Material Penalization (SIMP) [1, 8, 9], where the reg-
ularization is carried through a penalization of the density interpolation function.
Although the SIMP method is the technique used in this work, other approaches are
also possible, like those that maintain the discrete definition (0-1 values) of the ma-
terial layout problem [10–13]. Also Leve-Set-based optimization [14–18] processes are
common, but need for special tools to generate additional holes to those considered
in the initial guess. More recently, a Phase-Phield-based topology optimization [19]
implementation has been developed, but C1 continuity is required.

The SIMP method generates a grey scale colour code to represent the quantity of
material at each element, yielding images with irregular shapes not directly suitable
for manufacturing [20]. There exist some approaches to improve the definition of the
boundary. Among others, we emphasize the works in [21], based on projection meth-
ods, and [22], where the mesh is refined along the boundary defined by the topology
optimization algorithm, i.e. along the regions where intermediate density values have
been obtained.
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On the other hand, the quality of the finite element (FE) results strongly depends
on the mesh used for the analysis. Also, the behaviour of the optimization techniques
is strongly influenced by the accuracy of the FE results that drive the iterative opti-
mization process. In the context of structural shape optimization [23] showed the need
to control the discretization error of the FE analyses as inaccurate FE solutions will
lead to non optimal solutions that, in many cases do not even satisfy the constraints.
Obviously, topology optimization driven by FE analyses is also prone to experiencing
such problems. Algorithms that consider h-adaptive mesh refinement based on the
estimated quality of the FE solution are well-established techniques [24–28] that im-
prove the quality of the solution (evaluated by error estimation techniques) refining
the meshes in the regions where the FE solution is less accurate. Mesh optimality
criterion (like minimization of the number of elements in the new mesh to obtain a
prescribed error level, or equi-distribution of the error in the elements of the new
mesh [29]) can be used in h-refinement processes to create computationally efficient
meshes to improve the performance of FE analyses.

Reference [23] showed that the use of insufficiently refined meshes in structural
shape optimization processes could easily lead to final designs that, once built, will
not satisfy the constraints because these constraints were not accurately evaluated.
Hence, this reference recommends the use of h-adaptive mesh refinement strategies
in structural shape optimization problems. Topology optimization also relies on FE
analyses; therefore its output will be influenced by the meshes used for the analyses.
As previously mentioned, mesh refinement strategies based on the greyscale levels
have been used in the literature about topology optimization [22] to improve the
boundary definition. Despite of the importance of the use of mesh refinements strate-
gies in optimization processes, to our knowledge, there is only one reference in the
bibliography where mesh refinement guided by error estimation techniques has been
taken under consideration [30]. In this reference, the authors use a residual based
error estimator to guide the refinement process.

The accuracy of the FE analyses is a relevant factor in topology optimization pro-
cesses but, as these are iterative processes, the computational efficiency of the FE
solvers used is critical. The use of meshes where all the elements have the same shape
helps to improve the performance of the FE solver used for topology optimization
because, in these cases, it is only necessary to evaluate the original stiffness matrix
for one of the elements. Then, the stiffness matrix of any other element is simply
obtained scaling this original matrix if the element has a different size. In fact, in
many of the numerical examples shown in the literature about topology optimization,
the domain used for the optimization is a rectangle (in 2D problems) or a cuboid (in
3D problems), as these shapes can be easily meshed with Cartesian elements. How-
ever, practical applications cannot be restricted to this kind of domains. If standard
boundary-conforming FE meshes are used, it will not be possible to ensure that all
the elements have the shame shape. In the Fictitious Domain Methods (FDM), like
the Finite Cell Method (FCM) [31–33], the CutFEM [34] or the cartesian grid finite
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element method (cgFEM ) [2, 35], the FE mesh is not necessarily conforming to the
geometry. As FCM and cgFEM are both based on the use of Cartesian grids, these
methods represent an alternative to solve this issue. Biomechanical simulations are
very relevant applications of the finite element method. Given the Cartesian struc-
ture used to define medical images, the cgFEM, developed in our research group, was
adapted to automatically create patient-specific FE models, specially of bone struc-
tures, directly from images, eliminating the need to segment the different tissues. We
combined this characteristic of cgFEM with its ability to create FE models from CAD
models to define a basic methodology to run patient-specific implant simulations con-
sidering complete bone-implant oseointegration [36]. A contact formulation was also
developed for the cgFEM framework [37] that allowed us to define a methodology
to run bone-implant simulations considering frictional contact conditions [38]. This
methodology opens the possibility to run realistic patient-specific implant optimiza-
tions, including, not only, shape optimization, but also, topology optimization that
has motivated the elaboration of this paper.

In this paper we will propose a combination of techniques developed within the
framework of cgFEM to enhance the performance of SIMP-based topology optimiza-
tion algorithms in terms of: a) accuracy of FE results to improve the reliability of the
solution, b) boundary definition accuracy to improve suitability for the manufacture
of the final result and c) computer efficiency to control the computational cost of the
topology optimization process.

The paper is organized as follows. The computational efficiency of the techniques
proposed on this paper relies on the characteristics of cgFEM ; hence, we will first
describe the most relevant features of cgFEM in Section 2. Section 3 will show how
the SIMP method can be adapted to solve Topology Optimization problems using
cgFEM. Later, in Section 4, we will describe the different improvement techniques
proposed in this paper: the voxel-integration technique, the adaptive filtering and
the density-based and error-based mesh refinement strategies. In this section we
defined an optimization problem with analytical solution to show the performance of
the proposed improvement techniques, whereas Section 5 we will use more complex
numerical examples to show this performance. To conclude, Section 6 will summarize
the main conclusions of this paper.

2. Cartesian Grid Finite Element Method

The use of FDM has gained popularity in the computational mechanics com-
munity because the geometry-mesh independence enormously reduces the meshing
burden (see for instance [2,31,34]), even converting the meshing process in most cases
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into a trivial process. Additionally, some of the FDM implementations have been
successfully adapted to problems where the object to be analyzed is described by an
image, including medical images. The Finite Cell Method [31–33] and the Cartesian
grid Finite Element Method (cgFEM ) [2, 35] have demonstrated their capabilities to
deal with these problems [39,40].

The basic idea of FDM is to extend the structural analysis problem to an easy-to-
mesh fictitious domain that encloses the physical domain with its complex boundaries.
The attractive advantages of this kind of methods, like the simplification of the mesh-
ing process and the possibility to define a data structure to reuse calculations, come
together with some issues that must be considered. The computational cost with
these techniques moves from the expensive meshing algorithm towards the need for:

a) More complex numerical integration schemes for the elements cut by
the boundary so that only the part of the element lying into the physical
domain is considered in the evaluation of volume integrals; and

b) The use of special formulations to impose the boundary conditions
[41–46]. The standard FEM techniques to impose boundary conditions assume
that the boundary of the domain is represented by element sides described
by nodes placed on the boundary. Hence, these techniques are not valid for
FDM as, in general, the boundaries will cut the elements and there will be no
nodes on the boundaries. The case of Neumann boundary conditions is sim-
ply solved considering that the integration of the surface is deemed inside the
element as, in general, it will not coincide with any element face. The case
of Dirichlet boundary conditions is more complex than the previous one. To
deal with it, a common approach is to impose the essential boundary conditions
in a weak form by using the Lagrange multipliers technique [47]. However, the
choice of an appropriate Lagrange multiplier space is not trivial. A wrong choice
could produce oscillations in the Lagrange multipliers field and thus in the FE
solution. Hence, stabilization techniques are needed, being an adaption of the
Nitsche’s method one of the most popular ways of stabilization [48].

As indicated in Section 1, in this contribution we consider cgFEM, developed by
our research group. In cgFEM the embedding domain is a cuboid (or a rectangle in
the 2D case) that is meshed with elements of different levels. In the Level-0 mesh,
the cuboid is meshed with one single element. Using mesh splitting, this element
is divided into 8 new Cartesian elements that will form the Level-1 mesh. This
splitting process is recursively applied to create meshes (hierarchically related) of
higher refinement levels. Then, elements of different levels of this set of meshes are
used to create the mesh for the FE analysis, where multy-point constraints are used to
impose C0 displacements continuity between adjacent elements of different refinement
levels. Figure 1a represents an example of physical domain, ΩPhys, with a sufficiently
smooth boundary Γ, embedded into the embedding domain ΩFic. The boundary Γ of
ΩPhys can be divided into two non-overlapping parts, ΓD and ΓN , where the Dirichlet
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and Neumann conditions are respectively imposed. Figure 1b, shows the embedding
domain ΩFic, discretized with Cartesian elements. The following expression relates
the different domains:

ΩPhys ⊆ ΩFic =

ne⋃

e=1

Ωe (1)

(a) Physical and embedding domains.
Boundary conditions.

(b) Discretization of the fictitious do-
main.

Figure 1: Cartesian grid finite element method (cgFEM ). Representation of the
physical domain and the discretization of the fictitious domain.

Figure 2 shows a 3D example analyzed with cgFEM that is used here to summarize
the main characteristics of this methodology:

- cgFEM is an efficient FE analysis technique as it considers a Cartesian dis-
cretization of the embedding domain (see Figure 2a) and a Cartesian hierar-
chical data structure [2] that manages the hierarchical relations between the
different refinement levels. This allows cgFEM to easily: share information be-
tween elements of the same or different refinement levels, project information
between meshes, use domain decompositions and multi-grid techniques, etc.

- The analysis mesh used by cgFEM to model the physical domain ΩPhys can
consider elements of different refinement levels. These elements include elements
fully placed into ΩPhys and elements cut by its boundary Γ. Elements fully
outside of ΩPhys are not considered in the analysis mesh (see Figure 2b).

- cgFEM uses a specifically designed integration mesh (Figure 2c) [49], based
on the NEFEM integration approach [50] that allows to consider the exact
boundary representation given by, for instance, NURBS or T-Splines.
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- cgFEM considers mesh refinement procedures based on the complexity of the ge-
ometry and on the Zienkiewitz and Zhu error estimator, using accurate solution
recovery techniques efficiently adapted to cgFEM.

- To impose Dirichlet and Neumann boundary conditions cgFEM uses stabiliza-
tion procedures for the Lagrange multipliers space and for the FE space, where
the stabilization terms are obtained from accurate recovered fields, also used
for error estimation. We refer the interested reader to [42, 51] and [46] for full
details about the techniques used by cgFEM to impose Dirichlet and Neumann
boundary conditions and the stabilization techniques considered in cgFEM.

(a) Physical domain ΩPhys (hook)
embedded in the fictitius domain ΩFic

(cube).

(b) Discretization of the fictitious do-
main: analysis mesh. (c) Integration Mesh.

Figure 2: cgFEM. Different domains involved in a finite element analysis.
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3. Topology Optimization in cgFEM

3.1. The SIMP method
In structural topology optimization we compute the optimal material distribution

ρ in a given design domain Ω. In the context of cgFEM Ω will be the physical domain
ΩPhys previously mentioned. When the topology optimization problem is solved using
the SIMP method, introduced in [1,8,9], the standard optimization problem consists
in minimizing the compliance c subject to certain constraints concerning the amount
of material to be used, expressed as a volume fraction of the total volume of the design
space. In order to solve the standard optimization problem, in the SIMP method the
relative density ρ is considered as a continuous variable, rather than a discrete (0-1
values) variable. In order to enforce as much as possible the segregation of material
and void, the method uses a penalization parameter p to penalize intermediate density
values of ρ. Thus, a typical topology optimization problem that considers the SIMP
method may be presented as,

(TO(vf )) =





min
ρ,u

: c(ρ;u) =
1

2

∫

Ω

ε(u)D(ρ)ε(u)dΩ (2a)

with D(ρ) = ρpD0 (2b)

subject to: V (ρ) =

∫

Ω

ρdΩ = V e

∑
ρe = vfV0 (2c)

a(u,ν; ρ) = l(ν) where, (2d)

a(u,ν; ρ) =
∫

Ω

ε(u)D(ρ)ε(ν)dΩ (2e)

l(ν) =

∫

Ω

bTνdΩ+

∫

ΓN

tTνdΓN (2f)

0 ≤ ρmin ≤ ρ ≤ 1, (2g)

where ε is the strain field, u is the displacement field and ν is the virtual displacement
field. D is the matrix of the Hook’s law that relates strains ε and stresses σ. Note
that the relation between D and D0 proposed by the SIMP method is D(ρ) = ρpD0,
being D0 the matrix of the Hook’s law for the fully dense material. When p > 1,
intermediate densities in elements are penalized because they contribute with little
stiffness in terms of its volume fraction. For isotropic materials and non-negative υ
values, the penalization parameter p = 3 provides intermediate materials in between
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the H-S bound, this is, with physical meaning [52]. Additionally, vf is a prescribed
volume fraction and V0 is the total volume of the design domain. As all elements
have the same size and shape, the volume V (ρ) is evaluated as the volume of the
reference element V e multiplied by the sum of the relative densities of the elements,∑

ρe. Finally, additional side-constraints are added to ρ such that its maximum value
is the unity (fully dense material) while its lower bound is commonly set to 10−3 to
avoid ill-conditioning issues in the elasticity problem [53].

An additional consideration about the parameter p is that it can influence the
convergence of the optimization algorithm. This is why a continuation strategy is
commonly used to avoid local minima issues. Therefore, the SIMP method proposes
to start with a value of p = 1 that slowly increases up to a value p = 3 [54] with the
convergence of the optimization process.

In order to update the layout of material distribution, the sensitivities of the
compliance are needed. In [53] a low-pass filter is applied to the sensitivities to
avoid numerical instabilities [55, 56] such as the checkerboard pattern. The filtering
is evaluated as:

∂̂c

∂ρe
=

1

ρe

N∑

k=1

Ĥk

N∑

k=1

Ĥkρk
∂c

∂ρk
, (3)

with Ĥk defined as:
Ĥk = rmin − dist(e, k),

{k ∈ N | dist(e, k) ≤ rmin},
e = 1, 2, . . . , N,

(4)

where e is the element to be filtered and k are each of the neighbors of element e.
Neighbors N are defined as those elements located at a distance less or equal to rmin,
commonly known as size of the filter. The choice of this filtering technique among
others is due to simplicity. Other approaches need the resolution of a differential
equation, like those based on the Helmholtz equation [57].

The topology optimization algorithm uses the filtered sensitivities to obtain the
new material distribution ρ. In [53], the Optimality Criteria (OC) algorithm is used,
whereas exist some alternatives like the Method of Moving Asymptotes (MMA) [58]
and the Sequential Quadratic Programming (SQP) [59]. The iterative procedure is
repeated until a convergence criterion is accomplished. We describe the structure of
the SIMP method for solving the TO problem in Algorithm 1, where we use the OC
algorithm [53] as the updating scheme f ,
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Algorithm 1: TO(vf ). Compliance minimization algorithm

Define vf
Initialize counter: i = 0
Initialize relative density at each element e: ρei = vf
Repeat = 1
while Repeat = 1 do

Run FE analysis
Obtain compliance, ci, and sensitivities , ∂ci/∂ρei
Filter sensitivities
Update relative density field: ρei+1

= f(ρei , ∂ci/∂ρei)
if ∥ρei+1 − ρei∥∞ ≤ tolerance then

Repeat = 0
end
i = i+ 1

end

3.2. cgFEM implementation
We propose the use of cgFEM, hence, the topology optimization algorithm must

be adapted to the cgFEM framework. In the version of the SIMP method presented
in [53] all the elements in the mesh had the same shape and size. Hence, the first
two features of cgFEM that we must consider when implementing the SIMP method
in cgFEM are that: a) elements of different sizes (i.e. elements from different levels)
are used to create the analysis mesh; and b) only the part of the element within the
physical domain must be considered in the elements cut by the boundary. Thus, the
volume of the domain once discretized must be evaluated as the contribution of the
volume of each element e within the physical domain:

V (ρ) =
∑

e

Veρe, (5)

The volume sensitivities must be evaluated in order to satisfy the volume constraint
when updating the material distribution ρ. Note that this was unnecessary in the
implementation of the SIMP method in [53] since all elements had the same size. The
volume sensitivities are evaluated as:

∂V (ρ)

∂ρe
= Ve, (6)
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Additionally, the expression that computes the filtered sensitivities (3) must be
modified in order to take into account the volume of each element Ve as follows:

∂̃c

∂ρe
=

1

ρe

N∑

f=1

ĤfVf

N∑

f=1

ĤfρfVf
∂c

∂ρf
, (7)

To adapt the features shown above, the topology optimization formulation must be
modified. First, the equation (2c) should be replaced by equation (5), considering that
each element has different volume Ve either because the mesh is h-adapted or because
the element is cut by the domain’s boundary. And second, a stabilized Lagrange
multipliers formulation is used to impose boundary conditions in elements cut by the
Dirichlet boundary. As a result, equation (2d) is replaced by the following equation,

a(u,ν) +
k

h

∫

ΓD

u · νdΓ = l(ν) +
k

h

∫

ΓD

g · νdΓ +

∫

ΓD

T(ū) · νdΓ (8)

A detailed description of the derivation of this equation and the description of its
behavior, out of the scope of this paper, can be found in Reference [42]. The most
relevant feature of the proposed stabilized Lagrange multipliers formulation is that the
stabilization term T is evaluated as a recovered [60,61] traction field. As this traction
field depends on the FE solution, an iterative process, i.e. Richardson iterations, are
used to solve (8). In any case, this is just a technical issue since the stabilization
terms are not affected by ρ and do not play any role in the TO procedure.

3.3. Stress constraints and accuracy
Stress constraints are quite common in structural mechanics. In FE based struc-

tural optimization with stress constraints, the behavior of the optimization technique
is strongly influenced by the accuracy of the stresses evaluated with the FEM that
drive the iterative optimization process. In the context of structural shape optimiza-
tion, [23] showed that inaccurate FE solutions will lead to non optimal solutions that
do not even satisfy the constraints.

Although the discretization error is inherent to the FEM, to the authors’ knowl-
edge, its effect on the outcome of the topology optimization process with structural
constraints, has not been yet analyzed in the literature. In this work, we will anal-
yse this effect in the case of topology optimization processes with stress constraints.
The original SIMP method (Algorithm 1) does not directly considers this kind of
constraints as it is based on a volume constraint. Reference [62] presents a topology
optimization algorithm where the volume constraint of the SIMP method is substi-
tuted by a maximum stress-measure constraint, such as the KS functions [63]. As
the effect of the FE discretization will be present regardless of the method considered
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to impose the satisfaction of the stress constraints, for the sake of simplicity, we im-
plement a very basic, not necessarily efficient, modification of the SIMP method to
impose this kind of constraints, whose behaviour has been checked for the examples
presented in this paper. Thus, in this work, we considered a volume minimization
problem with stress constraints that considers an internal topology optimization loop
based on the SIMP method. Hence, the standard SIMP method described in Algo-
rithm 1, is embedded in a volume optimization as follows:

(TOσ(Sy)) =





min
vf

: TO(vf ) (9a)

subjected to: σ∗
vm ≤ Sy (9b)

where Sy is the yield limit of the material and σ∗
vm is the recovered von Mises stress

field evaluated from σ∗, the so called recovered stress field, more accurate than the
stress field σh provided by the FEM.

The recovered fields are also called smoothed fields, as, in general terms, the stress
recovery procedures take the discontinuous FE stress solution and post-process it to
obtain a continuous smoother solution. There are different procedures to obtain σ∗.
Because of their accuracy, the most commonly used techniques are the Superconver-
gent Patch Recovery (SPR) technique (also proposed by Zienkiewicz and Zhu [60])
and enhanced versions of this technique, like the SPR-C technique [61]. The basic idea
of the SPR technique consists in defining a patch Ωpi with the elements that share a
vertex node i and to evaluate each component of the recovered stress field σ∗

pi in Ωpi

using least squares fitting to fit a polynomial (of the degree of the displacements) to
the values of each component of σh evaluated at the Gauss points of the elements in
Ωpi.

The use of the density field ρ in topology optimization implies, a particular defi-
nition of the stress field to keep consistency with the expression of the strain energy
(compliance) in (2a). We can rewrite equation (2a) as:

σhρ
e = D(ρe)ε

h
e = ρpeD0ε

h
e = ρpeσ

h0
e (10)

where σh0
e = D0ε

h
e would represent the original FE stress field at the element, before

considering the density correction. The penalization parameter p in (10) is consistent
with the equation (2b) [64,65].

Given equation (10), for the evaluation of the recovered stress field we propose to
smooth the original stress field at elements, σh0 , and then to modify the resulting
recovered stress field using the density correction.

There exist many possibilities to address the problem in (9), such MMA or SQP,
which are gradient-based algorithms and need for a regularization of (9b), like KS
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functions. However, the analysis of theses techniques is out of the scope of this con-
tribution. This structure is presented in Algorithm 2. For sake of simplicity, the up-
dating scheme, g in Algorithm 2, used in this work consists on generating a quadratic
polynomial surrogate model, from which the next volume fraction vi+1

f is obtained
as the volume fraction that produces max(σvm) equal the yielding stress limit Sy.
The quadratic polynomial surrogate model is obtained by a curve fitting procedure
over the vectors vf and max(σ∗

vm), that include the last results of the iterative process.

Algorithm 2: TOσ(Sy). Volume Minimization problem with stress con-
straint

Set Sy

Initialize counter: i = 0
Initialize volume fraction vif
while Repeat = 1 do

i = i+ 1
Run Algorithm 1 TO(vif )

Obtain the Stresses of the optimal layout distribution
Evalute the maximum Von Mises Stress: max(σ∗i

vm)
if max(σ∗i

vm) ≤ Sy then
Repeat = 0

end
Update the volume fraction: vi+1

f = g(vf ,max(σ∗
vm), Sy)

end

4. Improvement Strategies

In this section we propose a set of methodologies based on the use of cgFEM to
improve topology optimization algorithms. However, before describing the method-
ologies, we will first introduce an optimization example with analytical solution that
will be used to create a reference solution and, then, to explain the proposed improve-
ment strategies.

4.1. Reference problem
The reference problem used to describe the proposed methodologies is defined in

Figure 3 and corresponds to a constant hollowed cross sectional area beam, with two
perpendicular planes of symmetry (x = 0 and z = 0), under plain strain conditions,
subjected to a pressure P on the internal cylindrical surface.
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4.1 Reference problem

(a) Model of the 3D domain used for
the optimization problem. Symmetry
boundary conditions on planes x = 0,
z = 0, y = 0 and y = −10.

(b) 2D view of the optimization prob-
lem, including optimal analytical ex-
ternal boundary (in red) with value
Ropt = 9.04681.

Figure 3: Reference problem.

The objective of the optimization problem is to minimize the amount of material
while satisfying σvm ≤ Sy. It is known that the optimal shape will also correspond to
a circular external shape, i.e., the optimal shape will take the form of a thick-walled
cylinder. The following equations are the analytical solutions for displacements (11)
and stresses (12) of thick-walled cylinders subjected to internal pressure [66]:

u =





uR cos(θ)

0

uR sin(θ)





uR =
P (1 + ν)

E(κ2 − 1)

[
(1− 2ν)r +

r2ext
r

]
(11)

σ =





σR cos(θ)2 + σH sin(θ)2

ν(σx + σz)

σR sin(θ)2 + σH cos(θ)2

0

0

(σR − σH) sin(θ) cos(θ)





σR =
P

κ2 − 1

[
1− (

rext
r

)2
]

σH =
P

κ2 − 1

[
1 + (

rext
r

)2
] (12)

where r =
√
x2 + z2 is the radius of the point, rext and rint are the external and

internal radii, κ = rext/rint, θ = arctan(z, x), P is the internal pressure, E is the
Young Modulus and ν is the Poisson’s ratio.

1Value truncated to 4 decimal places.
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The maximum von Mises stress in the cylinder can be evaluated, considering the
exact solution in stresses, as a function of the external radius. Therefore, it is possible
to find the value of the minimum external radius that satisfies σvm ≤ Sy. For the data
shown in Figure 3, this radius is Ropt = 9.0468, represented in Figure 3b , that leads
to an optimum volume of Vopt = 446.4545. Taking into account the dimensions of the
design space shown in Figure 3 this corresponds to a volume fraction V/V0 = 0.2174.

4.1.1. Solution with a reference implementation of the SIMP
method in cgFEM

The reference problem can be solved using topology optimization. Let us assume
that we use the iterative process (Algorithm 2) described in Section 3 to solve it,
considering uniform element size href = 0.9563, filtering radius r0 = 1.5 × href =
1.4345 and penalization parameter p = 3. The evolution of the optimization algorithm
is shown in Figure 4 while Figure 5 shows 3D and 2D views of the solution obtained.
This solution will be considered as the Reference Solution.

Figure 4: Reference Problem: Convergence curves of volume (Top), maximum von
Mises stress (Middle) and compliance (Bottom).

Figure 5 shows that the topology optimization process provides a cylinder-like
solution, similar to the optimal analytical solution. Figure 5.b) includes the optimal
analytical radius Ropt together with the iso-contours of relative densities ρ = 0.01,
ρ = 0.5 and ρ = 0.99. To obtain these iso-contours we smoothed the discontinuous
original solution of the topology optimization process, given by a constant value of ρ
at each element, simply using nodal averaging [67]. These iso-contours show a first
problem associated to the solution: the solution obtained does not provide a clearly
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defined representation of the edges but a diffuse representation given by intermediate
values of ρ along a region whose thickness is approximately equal to twice the filtering
radius 2× r0.

(a) 3D view. (b) 2D view of middle plane section.

Figure 5: Reference Solution of the reference optimization problem. Elements with
relative density ρ ≤ 0.01 have not been represented in (a). The 2D view in (b) includes
the optimal analytical radius Ropt and the iso-contours ρ = 0.01, ρ = 0.5 and ρ = 0.99
and an example of the area covered by the filter radius.

If we want to manufacture a component from the solution shown in Figure 5, it
would be reasonable to create a hollowed cylinder. The external radius of the cylinder
could be defined as a function of a threshold value of relative density ρ selected by the
user. Let R̄ρ be this radius, defined as the mean value of external radius evaluated
from the iso-contour of a relative density ρ arbitrarily selected by the user. As the
object to be manufactured would be a thick-walled cylinder subjected to an internal
pressure, it is possible to use the exact solution in (11) and (12) to evaluate the exact
maximum value of the von Mises stress σ̂vm(ρ) that would appear in the object. Table
1 shows the values of R̄ρ and σ̂vm(ρ) that would be obtained for 3 different values of
ρ and the relative errors of these magnitudes e(R) and e(σ̂vm), with respect to the
optimal analytical solution of this problem.

Table 1 shows a second problem associated to the solution: the blurred represen-
tation of the boundary can lead to the selection of an external radius significantly
different to Ropt. In particular, selecting an external radius smaller than Ropt would
produce a component that would not satisfy the stress constrain σvm ≤ Sy, i.e., a
component that would fail.
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Threshold R̄ρ e(R) σ̂vm(ρ) e(σ̂vm)

ρ = 0.01 10.3804 14.7408% 2.2586 -9.6579%
ρ = 0.5 8.6663 -4.2057% 2.6039 4.1570%
ρ = 0.99 7.5457 -16.5922% 3.1037 24.1470%

Table 1: Reference Problem. Comparison between the solution obtained and the

analytical solution, including the relative error measured as e(R) = 100
R̄ρ −Ropt

Ropt

and e(σvm) = 100
σ̂vm(ρ)− Sy

Sy
.

In Figure 6 we represent the evolution of the density along an axis corresponding
the θ = π

4 angle of the cylinder in polar coordinates, where the diffuse zone starts
from r ≈ 7.2.

Figure 6: Reference Problem. Density evolution along radius θ = π
4 compared with

analytical solution.

4.2. Voxel integration approach for higher
geometrical definition

As indicated in the introduction of this paper, one of the applications of cgFEM
is the automatic creation of FE meshes from medical images [36] in which the infor-
mation is also stored using a Cartesian format. cgFEM is especially useful to create
FE models to represent bone tissues. The basic idea consist in placing a Cartesian
grid (either uniform or h-adapted) over the image. The voxels into each element will
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be coupled to the element and considered as integration subdomains, with integration
points associated to each voxel, see Figure 7. It is possible to find relations between
the values used to represent the medical image and material properties. For example,
it is possible to find relations between Young’s modulus and Hounsfield values used
to represent bone structures [36, 68]. Considering these relations during the numeri-
cal integration stage of the stiffness matrix of each element will lead to homogenized
stiffness matrices where the different voxel values (and their associated material prop-
erties) have been taken into account. Therefore, in this modelling technique we can
consider that there are two meshes:

a) The analysis mesh used for the FE analysis, and

b) The integration mesh, finer than the analysis mesh, defined by voxels, that
represents the distribution of material into the model with a resolution higher
than the analysis mesh.

Figure 7: FE model of medical image generated with cgFEM.

We have adapted this idea to the topology optimization framework. We propose
to use an analysis mesh for the FE analyses and a finer mesh, the integration mesh,
obtained by subdivision of the elements not cut by the boundary into 23 integration
subdomains (equivalent to the voxels considered for FE analysis from medical images)
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that will be used to provide a finer topological representation of the material distribu-
tion. Note that this approach, called voxel-type integration, can be considered similar
to the multiresolution (MOPT) design representation approach first proposed in [69]
and later used in [70]. Figure 8 compares the standard approach and the proposed
voxel-type integration approach in a mesh with elements of different sizes.

(a) Analysis mesh without voxel-type
integration (constant ρ at each ele-
ment).

(b) Analysis mesh with voxel-type in-
tegration (constant ρ at each integra-
tion subdomain of each element)

Figure 8: Standard vs. Voxel Integration Mesh: representation of ρ and distribution
of Gauss Points (in blue).

With the voxel-type integration approach, volume integrals at each element will
be evaluated as:

∫

Ωe

f(x, y, z)dΩe =
NS∑

i

∫

Ωi

f(x, y, z)dΩi (13)

where f(x, y, z) is the function to be integrated, Ωe is the domain of the element, NS
stands for the number of integration subdomains in each element and Ωi is the ith
integration subdomain. The integral in (13) is numerically evaluated as:

∫

Ωe

f(x, y, z)dΩe =

NS∑

i

GP∑

j

f(ξ, η, τ)|J
Ωi→Ω̃i

|Hj (14)

where the domains Ωi and Ω̃i are shown in Figure 9 in a 2D view, GP stands for the
number of Gauss Points used in each integration subdomain, |J | is the Jacobian of
the transformations of coordinates and H are the weights of each Gauss Point.
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Figure 9: Voxel Integration Mesh. Spaces used for integration.

Note that in the proposed voxel-type integration approach, the design variables
are not associated to the elements, instead, they are associated to the integration
subdomains into the elements. Hence, the sensitivities of the compliance must be
computed at the level of the integration subdomains (voxels) and the filter radius
must be related also to the size of the integration subdomains. The structure of the
SIMP method Algorithm 1 considering the voxel-integration approach is stated in the
Algorithm 3.

Algorithm 3: TOV (vf ). Compliance minimization algorithm with voxel-
integration approach.

Define vf
Initialize counter: i = 0
Initialize relative density at each element e: ρei = vf
Subdivide the elements of analysis mesh into voxels v.
Repeat = 1
while Repeat = 1 do

Run FE calculations on analysis mesh
Project the results to the voxel mesh
Obtain compliance, ci, and sensitivities , ∂ci/∂ρvi at voxels
Filter sensitivities at voxels
Update relative density field: ρvi+1

= f(ρvi , ∂ci/∂ρvi
) at voxels

if ∥ρvi+1 − ρvi∥ ≤ tolerance then
Repeat = 0

else
Project relative density field to analysis mesh

end
i = i+ 1

end

We ran numerical analyses on the reference problem to test the performance of
the proposed voxel-integration technique. In the analyses, to simplify the comparisons
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with the optimal analytical solution, we used the SIMP method algorithm without
considering iterations on the volume fraction, which was prescribed equal to the vol-
ume fraction of the optimal analytical solution, i.e. V/V0 = 0.2174. Figure 10 and
Table 2 compare three kinds of results: the reference results (Figure 10.a) shown
in Section 4.1.1, the results obtained following the proposed voxel-type integration
approach (Figure 10.b) and the reference results that would be obtained with one
order finer mesh (Figure 10.c). The results show that whereas the total execution
time of the voxel-type integration approach is barely higher than that of the refer-
ence solution, the boundary definition considerably improves, reaching the accuracy
that would be obtained with finer meshes. Thus, the proposed technique allows us
to obtain a boundary definition of a quality corresponding to a mesh of elements of
size h/2 at a computational cost only slightly higher than that of a mesh of elements
of size h. These results are also shown in Figure 11 where we compare the evolution
of the density in the reference problem for these three cases with the exact analytical
solution along an axis corresponding to a θ = π

4 angle.

(a) Reference solution. No
voxel-type integration. El-
ements of size h = 0.9563.

(b) Voxel integration ap-
proach. Elements of size
h = 0.9563.

(c) No voxel-type integra-
tion. Elements of size h =
0.4781.

Figure 10: Effect of voxel-type integration.

Coarse Mesh Fine Mesh
No voxel-integration Voxel-integration No voxel-integration

Threshold R̄ρ e(R) R̄ρ e(R) R̄ρ e(R)

ρ = 0.01 10.6583 17.8136% 9.8911 9.3332% 9.9026 9.4596%
ρ = 0.5 9.0221 -0.2731% 8.9931 -0.5936% 9.0211 -0.2840%
ρ = 0.99 7.5988 -16.0059% 8.2537 -8.7662% 8.3473 -7.7321%

Table 2: Results obtained for the Reference problem with a coarse mesh, a coarse
mesh with the voxel-integration technique and a fine mesh.
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Figure 11: Reference Problem. Density evolution along radius for angle θ = π
4

showing the effect for the voxel integration approach.

4.3. Adaptive mesh refinement
The accuracy of the edge definition depends on the size of the element used for

the topology optimization process and the size of the filter used (i.e. smaller elements
and/or smaller radius produce sharper geometries). However, the complexity of the
topology obtained also depends on these two quantities (smaller elements and/or
smaller radius will produce more complex geometries). We propose to use h-adapted
meshing techniques (more efficient than uniform meshes) to decouple these two effects
to be able to obtain sharp edge representation of controlled topological complexity of
the solution together with the following two mesh refinement strategies to improve
boundary sharpness and accuracy of the solution:

a) Density-based refinement, where the mesh is refined in regions with intermediate
values of relative density, and

b) Error-based refinement, where the mesh is refined in regions where the estimated
discretization error is higger.

In both cases the mesh is refined using element splitting (each parent Cartesian
brick element of size h will be subdivided into 8 children Cartesian elements of size
h/2). Multi-point constraints are used to enforce C0 continuity of the displacement
field between adjacent elements of different refinement levels [71].
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4.3.1. Adaptive virtual filtering

Filtering techniques are commonly used in topology optimization to avoid checker-
board patterns. As mentioned in Section 4.1.1, the size of the region of intermediate
densities is approximately equal to the double of the size of the filtering radius rf .
Taking this into account, we propose to use an adaptive filter size strategy where
the filter radius at each element is proportional to the element size (being the pro-
portionality constant defined by the analyst), thus allowing for different filter sizes
in the same mesh. This strategy will be useful both, to limit the minimum size of
the features that define the solution and to improve its boundary definition. This
adaptive filter strategy is described by Algorithm 4:

Algorithm 4: TOV,AFS(vf ). Adaptive Filter Strategy

Define volume fraction vf .
Create initial analysis mesh with elements of uniform size h = H0.
Subdivide elements of analysis mesh into "voxels" of uniform size hv = Hv

0 .
Define initial filtering radius r0f .
Define filter size ratio Cr = r0

Hv
0
.

Initialize relative density at each element e: ρei = vf .
Assign each voxel v the density of its parent element ρei .
Refine = 1
while Refine = 1 do

Define filter radius rvf of each voxel v of size hv as rvf = Crh
v.

Run Algorithm 3 TOV (vf ) using a relaxed stopping criterion.
Find the set SR of elements of the analysis mesh to be refined, as
indicated by the density- and/or the error-based refinement strategies.

if SR ̸= ∅ then
Split elements in SR.
Project ρe of original elements to their children elements.
Discard children elements fully lying outside the design space.
Subdivide resulting elements into voxels v and assign its density.

else
Refine = 0

end
end

From now on, Algorithm 2 TOσ(Sy) will call Algorithm 4 TOV,AFS(vf ), as inner
topology optimization algorithm, instead of Algorithm 1 TO(vf ). Strict convergence
criterion are not necessary in the proposed strategy because the general characteris-
tics of the solution are already defined after the initial iterations of the SIMP method
algorithm. Hence we use a relaxed stopping criterion to alleviate the computational
burden. We propose, the computation of the relative variation of the objective func-
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tion (the compliance in the SIMP method), evaluated as:

ci−1 − ci
ci−1

× 100 ≤ SC (15)

where c represents the compliance, i stands for the iteration number and SC is the
stopping criteria value defined by the user, in our case we have selected SC = 0.01%.

Figure 12 shows the results of different topology optimization strategies used to
solve a cantilever beam clamped on the left hand-side of the domain with a distributed
tangential load applied on the central part of the boundary located at the right hand-
side of the domain and solved with a 2D implementation of the proposed methodology.
These results will be used to explain how does the adaptive filter strategy work.

Figure 12a shows the result obtained with a coarse mesh of elements of uniform
size Ha = 1 and a filter radius set to ra = 1.5Ha = 1.5. The figure shows that
the internal boundaries of the solution are diffusely defined and that the minimum
thickness of the bars is about 3Ha = 2ra.

Figure 12b shows the result obtained with a finer mesh of elements of uniform
size Hb = 0.25Ha = 0.25, and a filter radius rb = ra = 1.5. Because of the smaller
element size, the density distribution is smoother; however, the internal boundaries
of the solution are, again, not clearly defined and the minimum thickness of the bars
is similar to that of the previous case.

Figure 12c shows the results considering the mesh size used in the previous case,
i.e. Hc = Hb = 0.25Ha = 0.25. However, in this case, we used a filter radius
rc = 1.5Hc = 0.375. As shown, the thickness of the diffuse internal boundaries that
define the solution is smaller than in the previous cases, but, the minimum thickness
of its features is smaller than in the previous cases, thus leading to a more complex
and difficult to manufacture design.

Figure 12d shows the result of the proposed strategy, in which three mesh refine-
ment levels have been used with sizes Ha = 1, Hb = 0.5Ha = 0.5 and Hc = 0.25Ha =
0.25 and corresponding filter radii ra = 1.5Ha = 1.5, rb = 0.5ra = 0.75Ha = 0.75 and
rc = 0.25ra = 1.5Hc = 0.375. It can be observed that there is a better definition of
the internal boundaries, because smaller filter radii are used along these regions as a
consequence of using smaller elements. It can also be observed that the use of the
biggest filter radius in the initial mesh has the effect of defining the overall features
of the solution that will be kept during the process. Hence, with this strategy the
filter radius considered in the coarsest mesh is used to limit the minimum size of the
features that define the solution. This will help to control the overall complexity of
the solution and to facilitate its manufacture. Then, the subsequent meshes are used
to sharpen the definition of the boundaries that define the solution, thus limiting the
mesh-dependency of the solution.
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(a.1) Uniform mesh of element size
Ha = 1.

(a.2) Result obtained for mesh (a.1)
with filter radius set to ra = 1.5.

(b.1) Uniform mesh of element size
Hb = 0.25.

(b.2) Result obtained for mesh (b.1)
with filter radius set to rb = 1.5.

(c.1) Uniform mesh of element size
Hb = 0.25.

(c.2) Result obtained for mesh (c.1)
with filter radius set to rc = 0.375.

(d.1) h-adapted mesh2of element sizes
Ha = 1, Hb = 0.5 and Hc = 0.25 .

(d.2) Result obtained for mesh (d.1)
with filter radius set to ra = 1.5, rb =
0.75 and rc = 0.375.

Figure 12: Filtering Technique. Optimal solution of the "Cantilever" problem con-
sidering different types of discretizations.

The use of the filtering techniques in an h-adapted mesh involves a considerable
computational cost in standard FE implementations since the surrounding elements
falling into the filtering radius must be localized at each iteration step. This is even
accentuated when a set of voxels are considered into an element to increase the accu-
racy of the representation. The Cartesian structure of the cgFEM meshes is useful to
reduce this computational cost. We propose the use of a virtual filtering technique,
described in Algorithm 5, based in the hierarchical structure of the Cartesian grid.

2Note that children elements fully outside the design space are removed from the mesh when their
parent elements cut by the boundary are refined.
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Algorithm 5: Virtual Filter Creation
Define initial filtering radius r0f .
Define mesh of elements of uniform size H0.
Define filter size ratio Cr = r0f/H0.
Ne =Number of elements
for e← 1 to Ne do

Get size of element e: he

Compute filter radius for element e: ref = heCr

Use Cartesian structure to select K = set of elements whose center is
within a cube of size 2ref centered in e.

Subdivide the K elements into Kv voxels.
Nv =Number of voxels
for v ← 1 to Nv do

Get filter size of v: rvf = hvCr

Assess distance between v and each voxel kv in Kv

end
end
Assemble filter matrix Hf .

4.3.2. Density-based refinement

The first refinement criterion considered in this work consists in refining the
elements whose relative density ρ takes intermediate values i.e. elements where
1 > ρ > ρmin.

Let us consider the well-known "MBB-Beam" problem to illustrate the procedure.
To reduce computational cost only half of the beam has been modelled, considering
the symmetry of the problem. Figure 13 shows the evolution of the process and a
total of 3 refinement steps. For each of them, the figure represents the mesh used and
the solution provided by the topology optimization algorithm, clearly showing how
the solution evolves toward sharper representations of the edges.

Figure 14 shows the evolution of the compliance along the process. The graph
shows that after the convergence criterion has been meet for each mesh, the mesh
refinement leads to further reduction of the compliance.
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Figure 13: Detailed example of Density-based refinement.

Figure 14: Density-based refinement. Evolution of the compliance along the density-
based refinement process.

The effects of the proposed density-based refinement procedure were evaluated
on the reference problem and shown in Figure 15. The figure compares the results
provided by the SIMP method with a coarse mesh with the result obtained through
the refinement process. As in the case of Figure 10, we did not consider iterations
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on the volume fraction and prescribed its value to that of the optimal solution, i.e.
V/V0 = 0.2174. The figure shows how the thickness of the diffuse region that defines
the edge of the solution decreases, leading to a more accurate representation of the
boundary. Table 3 numerically compares the solutions obtained with the analytical
solution. A graphical representation of this information is also shown in Figure 16.

(a) Coarse Mesh (b) h-adapted Mesh

Figure 15: Density based refinement. Comparison of the material distribution ob-
tained with a) a coarse mesh and b) an h-adapted mesh.

Coarse Mesh h-adapted Mesh
Threshold R̄ρ e(R) R̄ρ e(R)

ρ = 0.01 10.6583 17.8136% 9.1336 0.9601%
ρ = 0.5 9.0221 -0.2731% 9.0273 -0.2149%
ρ = 0.99 7.5988 -16.0059% 8.9410 -1.1697%

Table 3: Reference Problem: Effect of density-based refinement. Comparison with
reference solution.
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Figure 16: Reference Problem. Density evolution along radius θ = π
4 , comparing the

reference solution with the solution obtained with density-based refinement. Volume
fraction vf set to optimal value.

4.3.3. Error-based refinement

The second refinement criterion considered in this work is to h-adapt the mesh
as a function of the accuracy of the numerical solution, evaluated in terms of the
estimation of the discretization error in energy norm. Increasing the accuracy of
the FE results is specially relevant for the volume minimization problems with stress
constrains since non accurate stress evaluations would lead to non-optimal solutions.
However, the use of error estimation techniques to improve the behaviour of topology
optimization algorithms is scarce. In previous publications where the accuracy of the
solution was considered as a mesh refinement criterion in topology optimization, the
authors used residual-based error estimators [30]. In our case, we propose to estimate
the discretization error in energy norm following the idea proposed by Zienkiewicz
and Zhu [3], who estimated the error in energy norm using the following equation:

∥e∗∥ =
√∫

Ω

(σ∗ − σh)D−1(σ∗ − σh)dΩ (16)

where Ω is the domain of integration, that can be restricted to the domain Ωe of a
single element to obtain the estimate at the element level. The accuracy of (16) de-
pends on the accuracy of the σ∗ field. We propose the use of the following expression,
consistent with (2a), to evaluate an error indicator ζe of the discretization error at
element level for this kind of problems:

ζe =

√∫

Ωe

ρpe(σ∗
e − σh0

e )D−1
0 (σ∗

e − σh0
e )dΩe (17)
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4.3 Adaptive mesh refinement

In Reference [30] the authors indicated that recovery-based error estimators are
not effective along material interfaces. Therefore, the authors of this reference advised
against the use of recovery-based error estimation in topology optimization because it
would produce unnecessary overrefinement along the material/no-material interface.
However, we are not considering a binary representation of the material but its regu-
larized representation through the relative density ρ. In fact, in (17), elements with
intermediate ρ values usually result in low ζe values because of the penalization in-
duced by the term ρpe. Hence, the mesh optimality criterion used for mesh refinement
will tend not to refine these elements, concentrating the mesh refinement mainly in
fully dense elements (ρ = 1) with high stress gradients.

As the error-based refinement will not produce refinement in elements with inter-
mediate values of ρ, it will not help to improve the boundary representation. Therefore
we propose the combined use of the error-based refinement and the density-based re-
finement, each of them having a different role: while the objective of the error-based
refinement will be to increase the accuracy of the FE results, the objective of the
density-based refinement will be to improve the boundary representation.

4.3.4. Numerical performance

We ran the volume optimization with stress constraints on the reference problem
to test the effect of the different refinement criteria. The results are shown in Figure
17. This figure compares the optimal analytical solution with the results obtained
through the use of the improvements proposed in this paper. The reference result,
obtained with elements of uniform size and none of the proposed improvements, is
shown in Figure 17a (already shown if Figure 5b). As previously indicated, the most
relevant characteristic of this solution is the diffuse representation of the external
surface of the solution. Considering the isocontour ρ = 0.5 since, in this case, the
control on the solution quality (error estimation) is not activated, the maximum stress
value is underestimated, yielding to wrong reduction of the amount of material needed.

Figure 17b shows that the use of the proposed Voxel Integration approach in the
elements fully located into the domain, that only represents a small increment of the
computational cost, reduces the thickness of the diffuse representation of the external
boundary; hence, this technique has been used in the remaining cases. Figure 17b
and 17c also shows that by using the voxel integration and density-based refinement,
even if the accuracy of the boundary is increased, the material quantity remains un-
derestimated considering the isocontour ρ = 0.5.

Figure 17d shows the result of considering the error based refinement prescribing
a 5% error level, that reduces the element size in the region of the internal radius
increasing the accuracy of the maximum von Misses FE stress that drives the opti-
mization loop with stress constrains. As a consequence of this, the amount of material
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used increases, getting closer to the analytical solution.

Finally Figure 17e displays the result obtained when considering the proposed
Voxel Integration approach together with the proposed density-based and error-based
refinement strategies. This result shows that the synergistic effect of these techniques
leads to a sharp definition of the external boundary with a radius close to the optimal
analytical value.

(a) REF

(b) VI (c) DR + VI

(d) ER + VI (e) DR + ER + VI

Figure 17: Reference Problem: Effect of the proposed improvement strategies on the
final result of the topology optimization process. The acronyms stand for: Reference
solution (REF), Voxel-type Integration (VI), Density-based Refinement (DR), and
Error-based Refinement (ER).
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4.3 Adaptive mesh refinement

Figure 18 compares the density distribution along an angle θ = π
4 obtained using

the proposed techniques with the analytical solution while Figure 19 compares the
von Mises stress. As observed, when error-based refinement is used a more accurate
von Mises stress distribution is obtained, that leads to better representation of the
external radius. Obviously, the underestimations / overestimations of the optimal
external radius will lead to maximum von Mises stresses over / below Sy, represented
in Figure 20. These figures show that although the use of the voxel-type integration
reduces the size of the region with intermediate values of ρ, the most significant
improvement on the sharp definition of the boundary is obtained through the use
of the density-based mesh refinement. This improvement on the sharp definition of
the boundary does not necessarily come together with the accurate placement of the
boundary, that requires the use of the error-based refinement.

Figure 18: Reference Problem: Effect of the proposed improvement strategies on
the radius. Acronyms stand for: Reference solution (REF), Voxel-type Integration
(VI), Density-based Refinement (DR), and Error-based Refinement (ER).
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Figure 19: Reference Problem: Effect of the proposed improvement strategies on
the von Mises stress value along a θ = π/4 angle. Acronyms stand for: Reference
solution (REF), Voxel-type Integration (VI), Density-based Refinement (DR), and
Error-based Refinement (ER).

Figure 20: Reference Problem: Effect of the proposed improvement strategies on the
maximum von Mises stress value. Reference solution (REF), Voxel-type Integration
(VI), Density-based Refinement (DR), and Error-based Refinement (ER).

In order to analyse the influence of the prescribed error level, we run the topology
optimization process with 3 different values (10%, 5% and 2%) of the prescribed
relative value of the indicator of the relative discretization error in energy norm.
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Figure 21 shows how the value of the external radius is affected by the prescribed
error of the FE analyses in two different cases, when the error-based refinement is
considered (Figure 21.a) and when the density-based refinement is also considered
(Figure 21.b). The graphs shows that the results converge to the optimal analytical
solution when the accuracy of the FE analyses is increased, showing also the need of
using the density-based refinement to obtain a sharper boundary representation.

(a) Effect of error-based refinement

(b) Effect of error + density based refinement.

Figure 21: Reference Problem: Effect of prescribed error in energy norm on the
external radius of the solution.
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5. Numerical examples

We used the academic problem in the Section 4 to show the performance of the
proposed techniques. In this Section we have applied these techniques on a more
complex examples.

5.1. Hook
The first example corresponds to a hook as displayed in Figure 22. The vertical

displacements of the top surface are constrained. Rigid body motion is avoided using
appropriate constraints on this surface. A pressure P=1 is imposed in the inner
cylindrical surface. The material properties considered in this problem are: Young’s
Modulus E = 1000, Poisson ratio ν = 0.3 and yield limit Sy = 2. We used Algorithm
2 TOσ(Sy) to minimize the mass of the hook satisfying σ̂vm ≤ Sy, considering the
voxel-integration approach, the density-based refinement strategy and the error-based
refinement strategy.

Figure 22: Design domain of the hook problem with dimensions and boundary
conditions.

The analysis has been carried out considering a initial mesh with elements of
uniform size H1 = 0.2550 and a filter radius set to r1 = 1.5H1 = 0.3825. In the h-
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adaptive analyses we used up to 2 further mesh refinement levels obtained by element
splitting, leading to elements of size H2 = 0.5H1 = 0.1275 and H3 = 0.25H1 =
0.0637. As the adaptive filtering technique (Section 4.3.1) is considered, the filter
sizes for these element sizes are: r2 = 0.5r1 = 0.1913 and r3 = 0.25r1 = 0.0956. The
refinement criterion considers both, the density-based and the error-based strategies.
The prescribed estimated error in energy nor of the FE solution was set to 7.5%. The
topology of the solution obtained, together with the h-adapted mesh used is shown
in Figure 23.

Figure 23: Hook problem: Results obtained with the refinement techniques proposed
in this paper (the elements whose density is ρ < 0.5 are not shown).

A pictorial representation of this solution together with the Von Mises stress dis-
tribution is shown in Figure 24.
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(a) Representation of the optimal so-
lution.

(b) Penalized recovered Von Mises
stresses.

Figure 24: Hook problem: Results obtained with the strategies proposed in this
work.

In order to analyze the quality of the solution obtained with the techniques pro-
posed in this paper, we solved the same problem with a fixed size coarse. The result,
including the von Mises stress distribution, is shown on Figure 25a, where the only ele-
ments represented are those with ρ ≥ 0.5. Figure 25a shows that the stress constraint
is satisfied. However, if we refine the mesh around the inner cylindrical surface,
project the material distribution obtained with the coarse mesh on this new mesh
and run the FE analysis we will obtain a different stress distribution. This new stress
distribution, obtained with a mesh finer than in the previous case and, thus, more
accurate, is shown in Figure 25b. This figure shows von Mises stresses undoubtedly
above the maximum allowable limit on the inner cylindrical surface stress (grey color
is used for σvm > Sy), clearly showing the need to use the error-based refinement
strategy. Figure 25, where the only elements represented are those with ρ ≥ 0.5, also
clearly shows the staircase (jagged boundary) effect produced by the coarse elements,
much more noticeable than in the case of Figure 23, that shows a better boundary
definition, clearly showing the need to use the density refinement strategy.
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5.2 Dental implant

(a) σvm obtained with coarse mesh. (b) σvm obtained with mesh refined
along the inner arc.

Figure 25: Hook problem: Results obtained with coarse mesh (the elements whose
density is ρ < 0.5 have not been represented), the mesh is shown as well.

5.2. Dental implant
As indicated in the introduction, cgFEM can be used to run patient-specific sim-

ulations considering bone-implant frictional contact conditions. A detailed descrip-
tion of the methodologies involved, out of the scope of this paper, can be found
in [37–39, 46, 72]. Hence, in this example, we used this simulation techniques to test
the behaviour of the methodologies proposed in this paper in implant optimization.
In particular, this second numerical example corresponds to a dental implant in a
mandible, as show in Figure 26. In this example, we considered Dirichlet constraints
applied on the bone and a constant pressure (P = 2) on the upper surface of the im-
plant. Finally, a bone-implant contact interaction was defined. The Young’s Modulus
of the prosthesis is E = 1000, with a Poisson ratio ν = 0.3. The elastic properties of
the image are based on its Hounsfield scale as described in [73]. In this case, we use
the Algorithm 1 to minimize the compliance subject to a volume constrain, in this
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case vf = 0.5. The analysis was addressed considering a initial mesh with uniform size
H1 = and a filter radius set to r1 = 1.75H1. We consider one further mesh refinement
with the parameters of element size as H2 = 0.5H1 = and a filter of r2 = 0.5r1 =.
The mesh refinement strategy selected in this analysis is based on the density infor-
mation. Furthermore, a subdivision in the analysis mesh is considered to conform the
voxel integration mesh, and improve the geometry resolution. This information is all
referred to the mesh of the prosthesis. Regarding the mesh of the medical image, we
consider a initial refinement based on the Hounsfield scale, to properly represent the
elastic properties assigned to each element.

Figure 26: Portion of mandible with prosthesis. The colorbar represents the value
in the Hounsfield scale for the mandible.

The results obtained, considering a fully dense layer of elements on the implant
surface are show in Figure 27.

116



6. Conclusions

(a) Topology optimization result and mesh. (b) Representation of the topology optimiza-
tion result.

Figure 27: Dental implant optimization (section).

6. Conclusions

We would like to conclude with the most relevant conclusions of this paper:

• cgFEM represents an appropriate framework for topology optimization as it
allows to consider any arbitrary domain taking advantage of the computational
efficiency provided by the Cartesian mesh structure and the hierarchical data
structure.

• The voxel-type integration technique is an efficient method to achieve sharper
geometries without increasing the computational cost of the FE calculations .
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• The use of the adaptive filter allows to create optimal material distributions
with geometric complexity control, where the size of the geometrical details is
essentially defined by the size of the filter radius specified for the elements of
the coarsest mesh, but allowing for a sharp definition of the boundary of the
final solution. This is a relevant property that allow us to tune the topology
optimization process as a function of the resolution of the fabrication process
to be used. This achievement is highly related to the manufacturing point of
view, where the simplicity of a given component is translated in a reduction of
the final cost, in raw material and manufacturing processes.

• The mesh refinement procedure has impact on two aspects of the obtained
optimal geometry. In the first place, the density-based refinement allows us to
obtain geometrical definitions of the boundaries. In the second place, the error-
based refinement provides solutions with discretization error control, through
the accuracy for the FE analyses prescribed by the analyst. This implies a
more accurate evaluation of the constraints evaluated by means of the FEM, as
required to appropriately drive the TO process. Hence, by coupling this two
approaches, the optimal material distribution obtained is more accurate and
alike to the real manufacturing component.
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Abstract

Structural optimization is part of the mechanical engineering field and, in most
cases, tries to minimize the overall weight of a given design domain, subjected to func-
tionality constraints given in terms of stresses of displacements. The most relevant
techniques are topology and shape optimization. Topology optimization provides the
optimal material distribution layout into a given, static, design domain. On the other
hand, shape optimization provides the optimal combination of the parameters that
define the required parametrization of the domain’s boundary. Both techniques have
strengths and weaknesses, thus a hybrid optimization approach that combines the for-
mer techniques will define a more general structural optimization framework that will
take advantage of their synergistic combination. The difficulty arises when communi-
cating both techniques for which, in this paper, we propose a machine learning-based
methodology.

Key words

Topology Optimization; Mesh Refinement; h-adaptivity; cgFEM ; Shape Optimiza-
tion; Hybrid Optimization; Machine Learning; Dimensionality Reduction; Locally
Linear Embedding
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1. Introduction

1. Introduction

Optimization is the mathematical discipline that tries to find the best element of a
given set. The search is driven by the performance of each element, measured through
a predefined loss function. Optimization techniques are extensively used in fields such
as science, engineering or economics. We will focus on the engineering field, specially
on structural optimization.

Structural optimization is a crucial tool in the design process of mechanical com-
ponents, since it is able to generate the optimal design domain according to a set of
applied loads. The optimal design must minimize or maximize an objective function
while satisfying a set of constraints. The most common pairs of objective function
and constraints found in the structural optimization field are: the minimization of
the mass/volume while satisfying a yielding stress constraint and the maximization
of the stiffness while satisfying a volume fraction constraint. There exist different ap-
proaches to solve the structural optimization problems. Among them, we will focus
on the most common ones, namely, topology and shape optimization techniques.

Topology optimization algorithms allow to modify the topology of the material
in the design space at the expense of a large amount of design variables, such as the
relative density of each element with the SIMP method [1–3], the distance of each
node to the implicit boundary with the Level-Set approaches [4–6] or the Phase Field
for topology optimization [7–9]. The current work is based on the SIMP method that
provides an optimal material distribution layout over the design domain defined by
a blurred boundary which is not directly suitable for manufacturing. A review of
the SIMP method can be found in Appendix A.1. On the other hand, shape opti-
mization techniques, use a CAD representation of the boundary of the geometry to
compute the objective function and constraints. This CAD representation may be
defined using many types of geometrical entities (splines, NURBS, etc.). In our case,
the boundary will be represented using the STL format, i.e., a triangular tessellation
of the geometric boundary. Thus, the optimal geometry provided is directly suitable
for manufacturing. In this work, we consider the parameterized shape optimization
algorithm which needs a user-defined parameterized boundary of fixed topology that
does not allow to explore new topologies. The main benefit of using shape optimiza-
tion techniques is the accuracy and smoothness of the boundary definition. This
benefit is even greater if we take into account that the number of design variables
necessary to parameterize the boundary of the geometry is usually low, this allowing
the exploration of the design space with a huge variety of optimization algorithms.
A description of the shape optimization problem considering geometrical parameters
can be found in the Appendix A.2.
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Given the characteristics of these two types of optimization techniques, it would
be desirable to develop a hybrid approach that harness the strengths and discards the
weaknesses of the topology and shape optimization techniques when used separately.

This hybrid algorithm could be defined by the following steps:

1. Topology optimization. This step should provide a preform with topological
characteristics defined in terms of an optimal material distribution layout, con-
sider the design domain defined by the analyst.

2. Interface. This step should communicate both topology and shape optimization
algorithms. This interface should generate the parametric geometrical model
(defined by design variables) required by the shape optimization algorithm from
the results of the topology optimization process.

3. Shape optimization. The shape optimization algorithm should then use this
model and will find the optimal combination of its parameters that minimize a
given objective function while satisfying the prescribed constraints. The final
results of this step should be a CAD-like representation of the optimal geometry
directly suitable for manufacturing.

The main issue that we face when implementing such a hybrid algorithm is the
development of step 2, the interface step, that allies both topology and shape opti-
mization algorithms. Below are, to the authors’ knowledge, the main contribution to
this topic that can be found in the bibliography. Reference [10] manually parametrized
the result of the topology optimization solution, and used it in the parametrized shape
optimization algorithm. In the approach described in [11,12], the authors parametrize
the optimal material distribution of a 2D design domain by means of curve fitting al-
gorithms. The parameters that define those curves are then modified by the shape
optimization algorithm to find the optimal geometry. Also, we would like to highlight
the work in [13] where the use of Artificial Neural Networks allow to find the set
of simple entities that reproduce the material distribution provided by the topology
optimization algorithm. Additionally, alternative approaches are found in the litera-
ture. For instance, in [14] the authors use an edge detection technique to identify the
structural elements provided by the topology optimization algorithm. In ref. [15] the
authors use a edge detection technique, the Canny algorithm, and manually create a
B-spline representation of the model. In [16] the authors manually create the mesh
for the shape optimization algorithm by means of the material distribution layout
indicated by the topology optimization algorithm. Also, in [17] the authors simul-
taneously evaluate both optimization algorithms; in this case the shape is modified
considering the variation of the nodal coordinates of the mesh by means of weights,
acting as design variables, and predefined perturbation vectors. In [18, 19], the au-
thors create a two-stage algorithm where the overall geometric definition is achieve
in the topology optimization step. Then the result is represented with Deformable
Simplicial Complex entities whose vertices’ positions can be modified by the shape
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optimization algorithm. Also, [20] presented a new level-set algorithm that allows
to reduce the dimension of the functional by means of the Radial Basis Functions.
Finally, we highlight the interesting work developed in [21] where the authors propose
to first use a shape optimization algorithm to define the design domain and then to
use a topology optimization algorithm to find the optimal material distribution.

In our work, we propose the use of a machine learning technique to infer the
geometrical characterization defined by a set of parameters. Specifically, we use a
Manifold Learning (ML) algorithm, a subfield of the machine learning techniques.
These algorithms will automatically create a parametric model, defined as a combi-
nation of geometrical modes that explicitly characterizes the implicit boundary given
by the material distribution provided by the topology optimization algorithm. The
extracted geometrical features may take the form of simple geometrical entities, such
as radius or thickness but, in general, the extracted geometrical features will be more
complex. In any case, the ML tool will be able to identify the geometrical modes,
providing a parametric geometrical representation. We will then be able to use this
parametric characterization to generate new geometries by modifying the value of
the parameters, either manually or guided by an external algorithm. In our case, we
will introduce these parameters as the design variables used by a shape optimization
algorithm.

The paper is organized as follows. The implementation of the hybrid optimization
algorithm relies on a set of technologies or methods, that are presented in Section
2. Following, in Section 3, we will describe the benchmark analytic problem used to
check the functionalities developed. Then, in Section 4 we will describe the strategy
considered to achieve an hybrid optimization framework and how the previously de-
scribed technologies interact with each other. Later, in Section 5 we will show the
behaviour of the proposed methodology by means of numerical analyses considering
the benchmark problem together with the numerical analyses on the well-known MBB
beam problem and a hook problem. Finally, in Section 6, we will conclude the paper
with some final remarks. An Appendix is also included, for the sake of completeness,
to properly describe some methods and technologies discussed in this work.

2. Methodologies

As proposed in Section 1, our goal is to ally topology and shape optimization
techniques in order to develop a hybrid optimization framework. To accomplish this
objective, we will make use of different methodologies and technologies.
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On one hand, we will harness the capabilities of ML techniques to infer information
from datasets. The topology optimization technique produces intermediate solutions
during the iterative process. After the initial steps of the process, characterized by
substantial modification of the solution, i.e., once the final convergence to the solution
has started, the intermediate solutions will only undergo minor modifications around
the final solution. Then, we propose to consider these solutions obtained from the
iterative process as snapshots that will be used by a ML algorithm to infer the char-
acteristics of the geometry provided by the TO technique. We will use the parameters
associated to the geometrical modes to generate new geometries, not existing in the
original dataset. The generation of the new geometries may be guided through a
shape optimization technique, accordingly, obtaining an optimal geometry suitable
for manufacturing. In order to achieve this objective, we rely on the ML algorithms.
There exist a huge variety of techniques in the ML field, such as the Principal Com-
ponent Analysis (PCA) [22], which finds the directions of maximum variation in the
original dataset. The former algorithm is a linear technique, mainly used some time
ago, but currently non-linear techniques have been developed to obtain the inherent
structure of the dataset. These techniques can preserve the non-linear behaviour of
the initial dataset, such as the Locally Linear Embedding (LLE) [23] (see Appendix
A.3). In this work we use the LLE to compute the manifold space. As the geometrical
modes indicate the directions of the geometry evolution towards the minimization of
the fitness function, we will use the parameters associated to the geometrical modes
to generate new geometries, not existing in the original dataset.

On the other hand, the main concerns about structural optimization are its effi-
ciency and accuracy. Therefore, we use the cgFEM framework to compute the FE
calculations. In short, cgFEM [24,25] is a Fictitious Domain Method (FDM) [26–28],
thus the domain discretization is considered over an easy-to-mesh fictitious domain
that embeds the physical domain. In cgFEM, this embedding domain is a cube and
the mesh is obtained by using a set of Cartesian grids. The inherent hierarchical struc-
ture of mesh allows to easily share information between elements or meshes. Thanks
to the use of the Cartesian grids, all elements in the mesh are regular hexahedrons.
This particular feature decreases drastically the computational effort devoted to in-
tegration, as the information of one element may be shared with the rest. Appendix
A.4 conscientiously review the cgFEM.

3. Reference Benchmark Problem

The reference problem used to describe the proposed methodologies is defined in
Figure 1 where we use a coherent system of units. This problem corresponds to a
constant hollowed cross sectional area beam, with 2 perpendicular planes of symmetry
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(x = 0 and z = 0), under plain strain conditions, subjected to a pressure P on the
internal cylindrical surface.

(a) Model of the 3D domain used for
the optimization problem. Symmetry
boundary conditions on planes x = 0,
z = 0, and also on y = 0 and y = −10
to represent the plane strain condition.

(b) 2D view of the optimization prob-
lem, including optimal analytical ex-
ternal boundary (in red) with value
Ropt = 9.0468.

Figure 1: Reference problem.

The objective of the optimization problem is to minimize the amount of material
while the maximum von Mises stress value (max(σvm)) is equal to the yield limit
(Sy). It is known that the optimal shape will also correspond to a circular external
shape, i.e., the optimal shape will take the form of a thick-walled cylinder. The
following equations are the analytical solutions for displacements (1) and stresses (2)
of thick-walled cylinders subjected to internal pressure [29]:

u =





uR cos(θ)

0

uR sin(θ)



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where r =
√
x2 + z2 is the radius of a point of coordinates (x, y, z) in the domain,

rext and rint are the external and internal radii, κ = rext/rint, θ = arctan(z, x), E is
the Young Modulus and ν is the Poisson’s ratio.

The maximum von Mises stress in the cylinder can be evaluated, considering the
exact solution in stresses, as a function of the external radius. Therefore, it is possible
to find the value of the minimum external radius that satisfies max(σvm) ≤ Sy. For
the data shown in Figure 1, this radius is Ropt = 9.0468, represented in Figure 1, that
leads to an optimum volume Vopt = 446.4545.

4. Hybrid Optimization

In this section we will describe the details about the strategy that we propose to
ally topology and shape optimization techniques and to create a general structural
optimization framework. We will describe the procedure developed to automatically
extract the geometrical parameters and how we use them. In Figure 2, we show the
main steps in the proposed strategy.

Figure 2: Hybrid optimization workflow.
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To summarize, as represented in Figure 2, we postprocessed the material distribu-
tion layout provided by the TO algorithm to create a distance level-set. This level-set
has the information of the distance between each node to the implicit boundary. Then,
the level-set is used to extract the geometrical modes by using a ML tool. This process
is based on the procedure presented in [30] where, using a set of X segmented images
of livers, a ML technique, trained to infer the shape of livers provided a parametrized
model to represent livers based on just two parameters. Finally, using the reduced
parametric geometrical model, the procedure is able to reconstruct a CAD geometry
and, thus, to use a standard parametric shape optimization tool to obtain the final
geometry, both topologically and structurally optimized.

4.1. Manifold Learning. Parametrization
Topology optimization algorithms provide an optimal material distribution layout

of the design domain, i.e. the material/void status of each element considered in the
discretization. In our case, based on the SIMP method, the elements also may have
intermediate relative densities, representing fictitious material properties. We want
to infer the geometry of the solution provided by the TO algorithm, described by a
large number of parameters (one relative density per element) and to describe it using
a reduced number of parameters. Hence, we will use a ML algorithm to reduce the di-
mensionality of the solution. The training process of a ML algorithm requires the use
of a sufficiently large amount of snapshots, each of them representing the geometry
to be inferred. As most optimization techniques, TO is an iterative method, which
means that the material distribution information of each iteration will be available.
Once the TO process has started to converge, there will only be minor changes in
the material distribution, that will be very similar to that of the final solution and,
therefore, with the same topology. Hence, these intermediate material distributions
of the iterative process will be suitable for the ML tool, that will be able to describe
the geometry using a reduced number of parameters, each of them associated to a
geometrical mode. The choice of snapshots is arbitrary, as far as all of them maintain
the same topology. The strategy followed in this work is to select the last iterations
from the topology optimization process, thus mainly ensuring the topology invariance
while detecting the evolution of the geometry in these last steps. As each snapshot
can have different size, we propose to project the information of each snapshot to a
common uniform mesh of elements having the size of the smallest element used in the
definition of the snapshots. Thanks to the Cartesian grid and the hierarchical data
structure of cgFEM, this projection process is costless and straightforward.

In Figure 3a, we show the optimal material distribution layout provided by the
TO algorithm for the Benchmark problem. Although, in this example there will
be no change in the topology, but it will help us to illustrate the procedure. The
element-wise solution directly provided by the TO algorithm, will be first smoothed
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using nodal averaging procedure, whose result is show in Figure 3b, to obtain a nodal
representation.

As shown in Figure 3b, the field represented over the design domain is quasi-
boolean, so the information it provides is very limited. To solve this problem, this
information must be postprocessed in order to obtain a much richer information given
by the distance of each node to the implicit boundary. As the boundary in the regions
with intermediate values of ρ is not explicitly defined, we have to generate an explicit
geometrical definition. To do it, we use the Marching Cubes (MC) [31] algorithm that
provides a polygonal mesh from the isosurfaces, defined by an isovalue ρc, existing in
the material distribution with ρc ∈ [0, 1].

(a) Topology optimization result (b) Nodal projection

Figure 3: Reference problem. Optimal topology optimization material distribution
(a) with its nodal projection equivalent (b).

Figure 4 represents the polygonal mesh obtained from the MC algorithm for differ-
ent values of vf for an isovalue ρc = 0.5 in both cases. The final volume is represented
by the isosurface of selected value of ρc in the regions with intermediate values of ρ
(red surface in Figure 4) and by the regions of the CAD surface that define the design
space with ρ = 1 (green transparent surfaces in Figure 4).

Once the surface defining the volume has been evaluated, the solutions repre-
sented by nodal densities are replaced by the level-set information that represents
the distance of each node to the surface. In Figure 5, we represent the distance
level-set obtained from the cases represented in Figure 4. With this procedure we
transformed the quasi-boolean information of the material distribution into a smooth
and monotonous level-set.
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(a) (b)

Figure 4: MC polygonal meshes representing the external cylindrical shape of the
solution obtained from the material distribution considering an isovalue ρc = 0.5, for
vf equal to 0.5 (a) and 0.15 (b).

(a) Distance function obtained from
the boundary shown in Figure 4a

(b) Distance function obtained from
the boundary shown in Figure 4b

Figure 5: Distance function to the boundary, represented as a value equal to 0,
obtained from Figure 4.

In the original algorithm of the SIMP method (see Algorithm 1 in Appendix A.1)
the volume fraction is set as a constraint and the compliance is minimized. The al-
gorithm will only provide a limited exploration of the design space as a single value
of the volume fraction will be considered. Additionally, as no further constraints are
taken into account, the outcome of the algorithm is not fully useful for structural
applications where, for example, stress constraints are very common. To ensure de-
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sign richness, we have implemented a simple, not fully robust implementation of a
TO algorithm, where a heuristic stress scaling technique, not to be compared with a
stress constraint, adapts the volume fraction to target a given maximum stress value,
for instance the yield limit [32]. It must be taken into account that this simple strat-
egy, not suitable for problems with stress singularities, is not a procedure to impose
stress constraints, which would require a consistent treatment of the stress gradients,
including a regularization of the stress field [33,34] and a more advanced optimization
algorithm. These more advanced algorithms could also be considered, but they are
out of the scope of the paper as we simply need a basic exploration of the design space
considering appropriate volume fractions. Hence, we propose the use of Algorithm 2
defined in Appendix A.1. Algorithm 2 consists of two nested loops. The inner loop
follows the strategy of the original SIMP method and produces solutions of minimum
compliance, subjected to the volume fraction constraints dictated by the outer loop.
The main benefit of using this approach within the hybrid optimization framework is
that it will automatically increase the richness of the snapshots dataset by extending
the exploration of the design space varying the values of the volume fraction that
will tend to increase the density of the snapshots around the vicinity of the optimal
volume fraction.

We also propose to increase the number of snapshots, by simply repeating the
previous strategy. Considering, for each material/void layout different values of ρc.
The snapshots chosen to train the ML model are arbitrary, but all of them must have
the same topology. Once the snapshots have been evaluated as previously described,
we will use them as the training dataset for the ML model, specifically for the LLE
algorithm, as indicated. LLE algorithm is a ML technique that extracts the embedded
manifold structure existing in a high-dimensional space, which in our case is defined
by the distance level-set. This embedded manifold or low-dimensional space will be
defined by a set of parameters. We will consider that these parameters characterize
and describe the geometrical features of our preform. Let Xi be each of the training
high-dimensional points (or snapshots). The LLE hypothesize that any point may
be obtained as a linear combination of K neighbours with Wij , j ∈ [1,K]. The
number of neighbours K is user-defined and the weights are obtained by minimizing
the functional represented in equation (3):

e(W) =
∑

i

||Xi −
∑

j

WijXj ||2, (3)

where Wij are subjected to the constraint
∑

j Wij = 1. The LLE entrusts that these
weights are invariant to space transformations. Hence, the value of the weights is
preserved when changing between spaces. Now, the low-dimensional parameters may
be obtained by minimizing the functional in (4):

φ(Y) =
∑

i

||Yi −
∑

j

WijYj ||2, (4)

140



4.1 Manifold Learning. Parametrization

where Yi represent each of the points projected to the embedded space. The former
equation may be represented in the form shown in (5):

φ(Y) = YTMY, (5)

with,
M = (I−W)T (I−W). (6)

The minimization problem could be considered as an eigenvalue problem, where the
eigenvectors represent the low-dimensional points Y. The dimension of the embedded
space may be a user-defined parameter, but it is convenient to study the eigenvalues
of M. As we minimize (5), the target eigenvectors are related to the smallest eigen-
values, as shown in Figure 6, we define the dimensionality as d = 1 because the first
eigenvalue is far from the following. The detailed mathematical procedure to obtain
the low-dimensional embedded space is explained in [35].

Figure 6: Reference Problem. First 25 eigenvalues of M (see (6)), in the LLE
procedure.

Figure 7 shows the embedded space obtained by this technique applied to the
reference problem. The y-axis represents the volume of the final geometry whereas
the x -axis represents the extracted low-dimensional parameter. We used K = 21
neighbours from a total amount of 101 individuals (snapshots). The colours of the
graph in Figure 7 represents the feasibility of the individuals, green points denote
structures with maximum stress below the (yield) stress limit while red points have
von Mises stresses above the yield limit Sy.
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Figure 7: Reference problem. Embedded space1 for the reference problem consid-
ering K = 21 neighbours and d = 1 parameters. The y-axis represents the volume
of each individual, while the colour represents if the maximum stress value is below
(green) or above (red) the yield stress limit.

4.2. Generation of new geometries
We have obtained a low-dimensional embedded manifold that defines the geomet-

rical characteristics of the material distribution. Our goal is to use this information
to create CAD representations of the geometry. Hence, we define the value of a set of
parameters Ŷ i in the embedded space Y. This point may be user-defined, however
the interesting part of this approach is that it can be automatically defined by an al-
gorithm, e.g. a shape optimization algorithm. We hypothesize that Ŷ i is a weighted
interpolation between a set of K̂ neighbours. The value of interpolation weights Ŵij

is obtained minimizing the functional,

e(Ŵ ) =
∑

i

||Ŷ i −
∑

j

ŴijY j ||2 (7)

In this case, we assume, as in the LLE technique, that weights Ŵij are invari-
ant to space transformations. As we have computed the neighbours Y j , we gather
the matching high-dimensional points Xj . Finally, we apply the following weighted
interpolation to compute X̂i, i.e., a level-set of the new geometry defined in the
high-dimensional space:

1Notice that the design space is not fully represented as it depends on the exploration performed
by the topology optimization algorithm.
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X̂i =
∑

j

ŴijXj (8)

In order to show how the geometries are generated, we select a point Ŷ i = 0.5 that
belongs to the embedded space created by Y. In Figure 7, we show the individual Ŷ i

(in blue) in its space Y. This procedure provides as a result a new point located in the
high-dimensional space X, called X̂i. The individual X̂i has the distance information
of each node to the boundary of the geometry, as represented in Figure 8a. We harness
this information to compute the boundaries that define the new geometry, as shown
in Figure 8b.

(a) Distance level-set. (b) Representation of the geometry recovered
from the level-set.

Figure 8: Reference problem. New geometry obtained from the space transformation
of Ŷ i into X̂i.

A clearer understanding of the influence of the geometric modes using this pro-
cedure can be obtained through the example shown in Section 5.1, where a more
complex geometry has been considered.

4.3. Shape Optimization
In previous sections, we have presented a procedure to automatically parametrize

the material distribution from the topology optimization and to extract the main
geometrical features (Section 4.1). We have also shown how this parametrization is
used to generate new geometries (Section 4.2). This strategy has interest in itself,
as we are able to generate new geometries not existing in the training set of data.
As the purpose of this paper is to ally topology and shape optimization techniques,
we propose a final step where the modification of the parameter Ŷ i is guided by the

143



Paper B

updating scheme of a shape optimization algorithm, the minimization of the volume
into the region of feasible design where the maximum von Mises stress value is below
the prescribed yield limit.

As we have defined our implicit parametrization of the boundary of the design
domain, our shape optimization problem can be expressed with the following equation,

(SOσ(Sy)) =





min
Ŷ

: Volume(Ŷ ) (9a)

subjected to: max(σeq(Ŷ )) = Scr (9b)

where σeq represents an equivalent stress value and Scr is the limit value of σeq. For
example, the stress value used in this paper is the recovered von Mises stress σ∗

vm

while the limit value is equal to the yield limit Sy.

Once we have expressed the geometry as a function of a reduced set of design
variables, as if we were having a parametrized CAD model, we are able to use a
wide range of shape optimization algorithms. In this work, we use, for the numerical
examples, the Bayesian optimization algorithm. Additionally, other approaches are
available such as Genetic Algorithms or Gradient-based algorithms. Figure 9a shows
the optimal geometry of the reference problem, and Figure 9b represents the recov-
ered von Mises stress field. These results are obtained using a mesh of element size
hTO = hSO = 0.9563, for both optimization algorithms.

The results shown in Figure 9 satisfy that the maximum stress value is equal
to the stress limit (Sy). However, the optimal geometry is far from the analytical
optimum. As the optimization process is guided by the FE numerical results, we
need to improve their quality to improve the accuracy of the optimal solution. One
strategy to improve the solution is to reduce the element size of the FE analysis
mesh. If we consider that the main objective TO algorithm is to obtain the preform
of the solution, i.e. a definition of its topology, the TO algorithm does not require
the use of fine discretizations, therefore, we focus the solution improvement on the
shape optimization step, the step that will finally define the geometry. The optimal
solution shown in Figure 10 was computed with an element size of hTO = 0.9563
for the topology optimization algorithm and an element size of hSO = 0.2391 for the
shape optimization.
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(a) Final geometry (b) Von Mises stress

Figure 9: Reference problem. Optimal geometry (in red) from the hybrid optimiza-
tion algorithm with the optimal analytic radius (in green) Ropt = 9.0468 (a) and the
recovered von Mises stress field (b) The results were obtained using meshes of element
size hTO = hSO = 0.9563.

(a) Final geometry. (b) Recovered von Mises stress field.

Figure 10: Reference problem. Hybrid optimization result of the reference problem
with the optimal analytic radius Ropt = 9.0468 (a) and Von Mises stresses (b). The
results were obtained using meshes of element size hTO = 0.9563 and hSO = 0.2391.

As in the previous analysis, the maximum von Mises stress value is equal to the
prescribed yield limit, but in this case the optimal radius we get is far closer to
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the optimal analytic solution. In order to understand the influence of the mesh in
the accuracy and performance, in Table 1 we compare the time consumed in each
optimization along with the relative error with the optimal analytic solution. Table
1 includes the analyses whose FE meshes correspond to hTO = hSO = 0.9563, hTO =
0.9563 with hSO = 0.4781, hTO = 0.9563 with hSO = 0.2391, hTO = hSO = 0.4781,
hTO = 0.4781 with hSO = 0.2391 and hTO = hSO = 0.2391. Additionally, in Figure 2,
we gather the optimal geometry obtained with each of the analysis and compare it
with the optimal analytic solution.

Relative time err(R)

(%)TO(vf (Sy)) MG SOσ(Sy) Total
hTO = 0.9563

hSO = 0.9563
1 1 1 1 -5.1862

hTO = 0.9563

hSO = 0.4781
1 1.333 2.4943 1.5894 -0.0971

hTO = 0.9563

hSO = 0.2391
1 3.9167 14.3239 6.2539 0.0101

hTO = 0.4781

hSO = 0.4781
4.6415 12.2500 3.7898 4.5121 -0.8554

hTO = 0.4781

hSO = 0.2391
4.6415 14.8333 15.3864 9.0861 -0.0043

hTO = 0.2391

hSO = 0.2391
54.4868 187.3333 13.5739 42.1104 -0.0021

Table 1: Reference Problem. Relative time comparison for the different analysis
considered. TO(vf (Sy)) stands for the Topology Optimization process where the vf
scales the von Mises stress to target Sy, MG represents the Model Generation proce-
dure and SOσ(Sy) refers to the Shape Optimization process defined by (9a) and (9b).
The column Total is the accumulated processing time. The last column represents
the relative error (err(R)) in the radius with respect to the optimal analytical radius
for each analysis obtained as err(R) =

R−Ropt

Ropt
× 100.
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TOσ(Sy)

SOσ(Sy) h = 0.9563 h = 0.4781 h = 0.2391

h = 0.9563

h = 0.4781 -

h = 0.2391 - -

Table 2: Reference Problem. Comparison of solutions obtained with each analysis.
The green curve corresponds to the optimal analytical radius Ropt = 9.0468.

Tables 1 and 2 show that, for this problem:

- The largest influence on the time taken for the Model Generation (MG) comes
from the size of the elements used by the TO process.

- The last column of Table 1 shows that, although smaller values of hTO lead to
more accurate results, the main influence on the accuracy comes from the hSO,
the size of the elements used for the SO process.

5. Numerical Examples

After having shown the results provided by the proposed hybrid optimization al-
gorithm for the academic reference problem, in this Section, we will use two additional
examples. Specifically, we will use the well-known MBB problem and a hook problem.
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5.1. MBB Problem
Let us consider the well-known "MBB-Beam" problem to illustrate the proposed

procedure. To reduce computational cost only half of the beam has been modelled,
considering the symmetry of the problem, as shown in Figure 11. Additionally, in
order to consider Plane Strain behaviour, the surface shown in front and its opposite
are constrained in its normal direction. Also in Figure 11, we represent the geometrical
dimensions of the design space and the boundary conditions. In particular, the beam
is bi-supported and subjected to a parabolic pressure P , whose maximum value equals
Pmax = 1. As the elastic properties of the material we consider a Young’s Modulus
E = 1000, a Poisson’s ratio ν = 0.3 and a yield limit Sy = 0.3.

Figure 11: MBB problem.

The first step of the procedure is to run the topology optimization algorithm that
will provide the optimal material distribution layout to be used as preform. The
analysis was been carried out considering a initial mesh with elements of uniform size
hTO = 0.9563 and a filter radius set to rf = 1.5hTO = 1.4345. In Figure 12 we show
the optimal material distribution provided by the topology optimization algorithms.

From Figure 12, we consider that the preform provided by the topology optimiza-
tion algorithm lacks of enough boundary definition as the diffuse region (elements
with intermediate densities) represents a high percentage of the total design domain.
As shown in [32], h-adaptive mesh refinement strategies allow to enhance the bound-
ary resolution and to improve the solution’s quality. In cgFEM we can consider two
refinement strategies, a) a density-based refinement, where elements with interme-
diate values of relative density are refined to sharpen the boundary definition, and
b) a quality-based refinement where the mesh refinement is guided by the estimated
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error in energy norm. In this particular case, we harness the density-based refinement
strategy to improve the boundary definition, since the shape optimization algorithm
will be in charge of the quality of the solution, as explained in Section 4.3. We
need to define an acceptable error level to ensure the proper convergence of the Al-
gorithm 2. In this example we prescribed a maximum estimated relative error on
energy norm ηmax = 12.5% [32]. With these considerations, we analysed the MBB
problem with an initial mesh with elements of uniform size h1

TO = 0.9563 and a fil-
ter radius set to r1f = 1.5h1

TO = 1.4345 and a second h-adapted mesh with elements
of size h1

TO and h2
TO = 0.4782 and an adaptive filter radius with lengths of r1f and

r2f = 1.5h2
TO = 0.7173. The resulting material distribution layout is shown in Figure

13, that shows a sharper boundary definition, and a final relative error in energy norm
of η = 12.0839%.

Figure 12: MBB Problem. Optimal material distribution layout from the topology
optimization algorithm, obtained with a uniform mesh of non-conforming hexahedra
of size hTO = 0.9563, represented on the conforming tetrahedra used as integration
subdomains. Some finite elements, in blue, are added in the representation to show
the difference between the integration subdomains and elements.

As in the Reference benchmark problem, once the preform is defined by the topol-
ogy optimization algorithm, we train the reduced model with the material distribu-
tions obtained during the topology optimization process. To accomplish this, we use
the LLE algorithm with a vicinity K = 30 over a total of 140 points (snapshots).
Later, we define the number of dimensions of the embedded space taking into account
the eigenvalues obtained from the LLE procedure. In this case, we considered d = 3
because the first three eigenvalues were isolated from the rest, as shown in Figure 14.
Figure 15 represents the resulting embedded space along with several geometries to
illustrate the results.
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Figure 13: MBB Problem. Optimal material distribution layout from the topology
optimization algorithm, obtained with an h-adapted mesh of non-conforming hexahe-
dra of sizes hTO = {0.4782, 0.9563, 1.9126}, represented on the conforming tetrahedra
used as integration subdomains.2.

Figure 14: First 25 eigenvalues of the M (see (6)), belonging to the LLE procedure.

2Note that some elements have been coarsened as they do not influence the overall error.
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Figure 15: MBB problem. Embedded space for the reference problem considering
K = 30 neighbours and d = 3 parameters. The colours show the volume of each
individual. Additionally, some individuals are visualized with its CAD geometry
representation.

In Figure 16, we show the reference geometry (obtained with the mean values
of the range achieved for each of the three parameters considered) in grey, and the
variation of each geometric mode between its lower and upper limit, in red and green
colours, respectively. As shown, the variation of the parameters do not only imply
the erosion of the structure but also variation of the bars’ angles and non-uniform bar
sections variations.

(a) First geometric mode. (b) Second geometric mode. (c) Third geometric mode.

Figure 16: Influence of each geometry mode in the new generated geometries. The
reference geometry, obtained from the mean values of the range of each parameter, is
represented in grey. We show the variation of each geometric mode by representing
their lower and upper values, in red and green colour, respectively.

With the low-dimensional space properly defined, the shape optimization algo-
rithm will use it as a design space. We used a Bayesian algorithm to update the
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design variables until the convergence criterion was satisfied. The analysis was car-
ried out with an initial uniform mesh with element size equal h1

SO = 0.4782. In
order to get a solution with a high quality, we use an h-adaptive refinement strategy
based on the error, specifically we enforce the maximum estimated relative error to
ηmax = 6%. Hence, we allow following h-adapted meshes with elements of size h1

SO
and h2

SO = 0.2391. The evolution of the optimization process through the Bayesian
algorithm is represented in Figure 17. The optimal CAD geometry is shown in Figure
18a, while, in Figure 18b, we display the corresponding recovered von Mises stress
field, calculated with a final relative error in energy norm of η = 5.4659%.

Figure 17: MBB problem. Convergence graph of the Bayesian optimization algo-
rithm.

(a) Representation of the optimal geometry. (b) Solution of the von Mises stress field.

Figure 18: MBB Problem. Hybrid optimization optimal geometry (a) and the
corresponding recovered von Mises stress field (b).

As shown in Figure 18a, we obtained a CAD representation of the MBB problem,
which is directly suitable for manufacturing. Furthermore, in Figure 18b, we repre-
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sented the von Mises stress field whose maximum value is equal to the yield limit
Sy = 0.3.

5.2. Hook Problem
The second example corresponds to a hook as displayed in Figure 19. The essential

boundary conditions are imposed over the green surface, while we consider symmetry
on the red surface. Rigid body motion is avoided using appropriate constraints on
these surfaces. A parabolic pressure with a maximum value P = 1 is imposed in
the inner cylindrical surface. The material properties considered in this problem are:
Young’s Modulus E = 1000, Poisson’s ratio ν = 0.3 and yield limit Sy = 3.

Figure 19: Hook Problem. Problem representation with geometrical dimensions.
Essential boundary conditions imposed over the green surface and symmetry on the
red surface, also a parabolic pressure with maximum value P = 1 is imposed in the
inner cylindrical surface.

As in previous examples, the process starts with the topology optimization algo-
rithm. As in the MBB problem, we consider density and error-based h-adaptive re-
finement with a prescribed maximum estimated relative error in energy norm equal to
ηmax = 7.5% . Specifically, we consider an initial mesh with uniform size h1

TO = 0.1275

and a second h-adapted mesh with elements size h1
TO and h2

TO = 0.0637. In Figure
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20 we represent the optimal material distribution provided by the TO algorithm,
obtained with a final relative error η = 5.9703%.

Figure 20: Hook Problem. Optimal material distribution layout obtained from the
topology optimization algorithm, represented on the conforming tetrahedra used as
integration subdomains. Notice that integration subdomains whose elemental density
is ρe < 0.5 are discarded from the representation.

Once the preform is defined by the topology optimization algorithm, we obtain the
embedded manifold. As previously, we use the LLE algorithm, in this particular case,
we consider a vicinity of K = 12 neighbours over a total of 60 snapshots. Studying the
eigenvalues obtained, represented in Figure 21, we consider a dimensionality d = 2,
as the first two eigenvalues are isolated from the rest.
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Figure 21: Hook Problem. Eigenvalues of the LLE method that define the quantity
of independent geometrical modes.

With the reduced embedded space generated from the LLE algorithm, we run
the shape optimization algorithm. The analysis is calculated with an initial uniform
mesh of size h1

SO = 0.0637 and an h-adapted refinement strategy that allows following
meshes with element size h1

SO and h2
SO = 0.03185, and a prescribed maximum relative

error in energy norm ηmax = 3%. For this example, we also use a Bayesian optimiza-
tion algorithm. The iterative process is represented in Figure 22 and the results we
obtained are shown in Figure 23, which are calculated with a final relative error of
η = 2.7010%.

Figure 22: Hook problem. Convergence graph of the Bayesian optimization algo-
rithm.
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(a) Representation of the optimal geometry. (b) Solution of the von Mises stress.

Figure 23: Hook Problem. Representation of the result obtained: optimal geometry
(a) and von Mises stress field (b).

6. Conclusion

In order to conclude the current work, we would like to synthesize some final
remarks:

- Shape optimization algorithms based on parametrized geometrical representa-
tions provide manufacturable solutions but are unable to explore topologies
other that the topology described by the prescribed parametrized geometrical
model.

- The topology optimization algorithms based on the extensively used SIMP
method for structural optimization provide a material distribution that charac-
terizes the topology of the solution. However, this material distribution is not
directly suitable for manufacturing.

- In this paper we have proposed a hybrid structural optimization methodology
that allies TO and SO algorithms to obtain a synergetic combination of both
techniques. This hybrid methodology would represent a more general and pow-
erful structural optimization framework.
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- The key aspect of this methodology is the use of a machine learning algorithm
to automatically bridge TO and SO algorithm.

- The use of a manifold learning technique, such as the LLE, allowed us to extract
the geometrical modes defined by the material distribution information provided
by the TO algorithm. In order to correctly use these techniques, the data must
be adequately processed. We transform the quasi-boolean material distribution
into a richer level-set with the information of the distance of each node to the
boundary.

- The existence of a latent embedded space among the material distribution data,
allows to extract the geometrical modes that define the solution of the TO
algorithm. These modes can then define a parametric geometrical model that
will be used to create brand new geometries topologically equivalent to each
other.

- The geometry parametrization tool developed in this work may be guided by a
user or by an algorithm. In case the tool is managed by a parametrized shape
optimization algorithm, this algorithm will consider the embedded space as its
design space.

A. Appendices

A.1. Appendix: Topology Optimization
Topology optimization tries to find the optimal material distribution layout over

a given physical design domain. As it belongs to the structural optimization field,
it handles the minimization of an objective function subjected to the satisfaction
of a set of constraints. The topology optimization problem is defined over a design
domain, thus it is characterized by a large set of design variables, as any element of the
discretization may be material or void. Thanks to the consideration of the fictitious
material as a composite behaviour [36] where the elastic properties are defined through
a characteristic function, topology optimization has become widely used. The Solid
Isotropic Material Penalization (SIMP) method regularizes the material properties
as a penalization of the density interpolation function. In addition to the SIMP
method, there exist other techniques in the bibliography: strictly based in the 0-1
values of relative density [37–40], level-set based on the nodal values of an implicit
function [41–45] and based on the phase-field [46], for instance.
In structural topology optimization we compute the optimal material distribution ρ in
a given design domain Ω, which is defined as a continuous variable bounded between
0 (void) and 1 (material). When the structural topology optimization problem is
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solved using the SIMP method, introduced in [1–3], usually, the optimization problem
consists in minimizing the compliance c(ρ) subject to certain constraints concerning
the amount of material. In order to enforce the material/void segregation as much as
possible, the method uses a penalization parameter p to penalize intermediate density
values. Thus, the SIMP method considers the following optimization problem:

(TO(vf )) =





min
ρ

: c(ρ) =
1

2

∫

Ω

ε(u)D(ρ)ε(u)dΩ (10a)

with D(ρ) = ρpD0 (10b)

subject to: V (ρ) =

∫

Ω

ρdΩ = V e

∑
ρe = vfV0 (10c)

a(u,u; ρ) = l(u) where, (10d)

a(u,ν; ρ) =
∫

Ω

ε(u)D(ρ)ε(ν)dΩ (10e)

l(ν) =

∫

Ω

bTνdΩ+

∫

ΓN

tTνdΓN (10f)

0 ≤ ρmin ≤ ρ ≤ 1, (10g)

considering Voigt’s notation ε is the strain field and u is the displacement field. D is
the matrix of the Hooke’s law that relates strains ε and stresses σ. As shown in the
equation, in the SIMP D is defined as a function of D0 (the matrix of the Hooke’s
law for the fully dense material), the density field ρ and the penalization parameter
p. Additionally, vf is a prescribed volume fraction and V0 is the total volume of the
design domain. Finally, an additional side-constraint is added on ρ.
In Algorithm 1, we show the structure of the SIMP method with the compliance c as a
objective function and the volume fraction as constraint. Additionally, we remark the
need of a filtering technique to avoid numerical instabilities, in this case sensitivities
filtering. Finally, the use of an updating scheme f to obtain a new set of design
variables ρi+1, such as the Optimality Criteria (OC) [47], is also required.

For the sake of simplicity, we implemented a very basic, not necessarily efficient
algorithm (Algorithm 2) that performs a heuristic stress scaling procedure [32], whose
behaviour has been checked for the examples presented in this paper. The proposed
algorithm allows us to explore different volume fraction following a simple stress scal-
ing procedure where the volume fraction is adapted to target a predefined maximum
stress value. In particular, the objective of the implemented algorithm is to find the
value of volume fraction that would produce a solution whose maximum von Mises
stress targets the value of a critical stress, max(σ∗

eq) ≡ Scrit. To accomplish this ob-
jective, we define two nested loops, the outer loop will drive the selection of the value
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Algorithm 1: TO(vf ). Compliance minimization algorithm

Define vf
Initialize counter: i = 0
Initialize relative density at each element e: ρei = vf
Repeat = 1
while Repeat = 1 do

Run FE analysis
Obtain compliance, ci, and sensitivities , ∂ci/∂ρei
Filter sensitivities
Update relative density field: ρei+1

= f(ρei , ∂ci/∂ρei)
if ∥ρei+1 − ρei∥∞ ≤ tolerance then

Repeat = 0
end
i = i+ 1

end

of the volume fraction and evaluate if the prescribed level of stress is achieved. Mean-
while, the inner loop will follow the strategy proposed in the original SIMP method,
that minimizes the compliance of the component subjected to a volume fraction con-
straint, whose value has been defined in the outer loop. As our procedure is based
on the original SIMP method, we will only consider minimum compliance solutions.
The algorithm described above, may be formulated as follows, where we indicate that
the problem is subjected to the calculation of the algorithm that describes the SIMP
method (Algorithm 1),

(TO(vf (Sy))) =





find: vf (11a)

subjected to: max(σ∗
eq) ≡ Scrit (11b)

TO(vf ) (11c)

where Scrit is the limit value of σ∗
eq. In this work we considered Scrit as the yield limit

Sy and σ∗
eq represents an equivalent uniaxial stress value. In this work, we used as σ∗

eq

the recovered von Mises stress field σ∗
vm evaluated from σ∗, the so called recovered

stress field, more accurate than the stress field σh provided by the FEM. There are
different procedures to obtain σ∗. Because of their accuracy, the most commonly
used techniques are the Superconvergent Patch Recovery (SPR) technique (proposed
by Zienkiewicz and Zhu [48]) and enhanced versions of this technique, like the SPR-C
technique [49].
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The use of the density field ρ in topology optimization implies, a particular defi-
nition of the stress field to keep consistency with the expression of the strain energy
(compliance) in (10a). We can rewrite equation (10a) as:

σhρ
e = D(ρe)ε

h
e = ρpeD0ε

h
e = ρpeσ

h0
e (12)

where σh0
e = D0ε

h
e would represent the original FE stress field at the element, before

considering the density correction. The penalization parameter p in (12) is consistent
with equation (10b) [33,50]. Taking into account equation (12), for the evaluation of
the recovered stress field we propose to smooth the original stress field at elements,
σh0 , and then to modify the resulting recovered stress field using the density correc-
tion.

The steps to address the problem in (11) are presented in Algorithm 2. As pre-
viously mentioned, the structure of the problem is a nested optimization loop. The
outer loop searches for the volume fraction whose corresponding maximum von Mises
stress equals the yield limit, while the inner loop minimizes the compliance of the
component subjected to the volume fraction defined in the outer loop. For the sake of
simplicity, the updating scheme g in Algorithm 2 consists of a quadratic curve fitting
procedure. This method uses the information of the last 3 iterations, specifically the
values of volume fractions vf and their corresponding stress max(σ∗

vm), to fit a sur-
rogate model and infer the next value of vi+1

f that would produce a max(σ∗
vm) ≡ Sy.

A schematic representation of this strategy is show in Figure 24.

Algorithm 2: TO(vf (Sy)). Stress scaling algorithm for evaluation of volume
fraction for which max(σ∗

vm) ≡ Sy, with inner topology optimization loop
based on the SIMP method.

Set Sy

Initialize counter: i = 0
Initialize volume fraction vif
Repeat = 1
while Repeat = 1 do

i = i+ 1
Run Algorithm 1 TO(vif )

Obtain the stresses of the optimal layout distribution
Evalute the maximum von Mises stress: max(σ∗i

vm)
if max(σ∗i

vm) ≡ Sy then
Repeat = 0

end
Update the volume fraction: vi+1

f = g(vf ,max(σ∗
vm), Sy)

end
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Figure 24: Schematic representation of the curve fitting procedure (g in Algorithm
2). Considering the volume fraction exploration algorithm, we use the value of the
last three iterations and its corresponding maximum von Mises stress, and adjust a
curve. The volume fraction value for which this curve will reach the value of the yield
limit (Sy) corresponds to the next value of volume fraction.

A.2. Appendix: Shape Optimization
In this work we consider the parametrized shape optimization where the boundary

is defined a priori by means of a set of parameters, also known as design variables a,
as shown in Figure 25.

The shape optimization formulation applied to the structural behaviour commonly
uses the volume or mass as the objective function and a given measure of the stresses
as a constraint, for instance to keep the maximum von Mises stress max(σ∗

vm) below
the yield stress limit Sy, as follows:

(SOσ(Sy)) =





min
a

: Volume(a) (13a)

subjected to: max(σ∗
vm(a)) ≤ Sy (13b)
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Figure 25: Parametrized boundary of the design domain.

A.3. Appendix: Manifold Learning
The data in most fields of science and engineering has high dimensionality. In

order to manage high quantity of data and to handle it adequately, its dimension
must be reduced. Manifold Learning (ML) techniques are a set of algorithms that
transform the high-dimensional data into a reduced space. This manifold preserves
the original structure of the high-dimensional space by extracting the main principal
characteristics. The manifold learning eases the classification, visualization or even
understanding of the high-dimensional data.

Additionally, in this work the reduced dimensions are used to generate new high-
dimensional data, not existing in the original dataset. Linear techniques, such as
Principal Component Analysis (PCA) were initially used to perform the dimension-
ality reduction. But in last decades, non-linear techniques have been developed to
obtain the manifold space. The advantage of this techniques is that they are able
to transform complex non-linear data. We propose the use of the Locally Linear
Embedding (LLE). Figure 26 shows how it maintains the structure of a given dataset.
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(a) High dimensional space. (b) Sampled space.

(c) Embedded space.

Figure 26: Example of the LLE algorithm, (a) represents the original high dimen-
sional data, (b) shows a sampled space from the high dimensional space and (c)
illustrates the embedded manifold provided by the LLE algorithm over the sampled
high dimensional space.

A.4. Appendix: Cartesian grid Finite Element
Method (cgFEM )

The accuracy of the FE analysis is a relevant factor in optimization processes but,
as these are iterative algorithms, the computational efficiency of the FE analysis is
critical. The use of meshes where all the elements have the same shape helps to im-
prove the overall performance of the FE analysis. In these cases, the stiffness matrix
evaluated for one element can be used for any other element having the same material
properties simply considering a stiffness scaling factor evaluated as a function of the
ratio of the element sizes. In fact, in most numerical examples shown in the literature
of topology optimization, the domain used for the optimization is a rectangle (2D) or
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a cuboid (3D), as these shapes can be easily meshed with Cartesian elements. How-
ever, practical applications cannot be restricted to this kind of domains. If standard
boundary-conforming FE meshes were used, it would not be possible to ensure that
all the elements have the same shape. The use of Fictitious Domain Methods (FDM),
where the FE mesh is not necessarily conforming to the geometry, like the Finite Cell
Method [26–28] or the Cartesian grid finite element method (cgFEM ) [24, 25], both
of them based on the use of Cartesian grids, is an alternative to solve this issue.

In particular, in cgFEM we embed the physical domain, ΩPhys, in a cuboid defin-
ing the fictitious domain, ΩFic. The fictitious domain is meshed with elements of
different levels. Considering the Level-0 mesh as a single element embedding the
cuboid, we split the mesh into 8 new Cartesian elements that structure the Level-1
mesh. We repeat the same process recursively to create meshes with higher refinement
levels, so they have a hierarchical structure. Then, the mesh for the FE analysis is
created with elements of different levels of refinement. In order to impose C0 conti-
nuity between contiguous elements from different level, we use multi-point constraints.

Figure 27a represents an example of physical domain, ΩPhys, with a sufficiently
smooth boundary Γ, embedded into the embedding domain ΩFic. The boundary Γ of
ΩPhys can be divided into two non-overlapping parts, ΓD and ΓN , where the Dirichlet
and Neumann conditions are respectively imposed. Figure 27b, shows the embedding
domain ΩFic, discretized with Cartesian elements. The following expression relates
the different domains:

ΩPhys ⊆ ΩFic =

ne⋃

e=1

Ωe (14)

Figure 28 shows a 3D example analyzed with cgFEM that is used here to summa-
rize the main characteristics of this methodology:

- cgFEM is an efficient FE analysis technique as it considers a Cartesian dis-
cretization of the embedding domain (see Figure 28a).

- The analysis mesh used by cgFEM to model the physical domain ΩPhys can
consider elements of different refinement levels. These elements include elements
fully placed into ΩPhys and elements cut by its boundary Γ. Elements fully
outside of ΩPhys are not considered in the analysis mesh (see Figure 28b).

- cgFEM uses a specifically designed integration mesh (Figure 28c), based on the
NEFEM integration approach [51] that allows to consider the exact boundary
representation given by, for instance, NURBS or T-Splines [52].
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A.4 Appendix: Cartesian grid Finite Element Method (cgFEM )

(a) Physical and embedding domains.
Boundary conditions.

(b) Discretization of the fictitious do-
main.

Figure 27: Cartesian grid finite element method (cgFEM ). Representation of the
physical domain and the discretization of the fictitious domain.

(a) Physical domain ΩPhys (Cylinder) embedded
in the fictitious domain ΩFic (cube).

(b) Discretization of the fictitious domain:
analysis mesh.

(c) Integration Mesh.

Figure 28: cgFEM. Different domains involved in a finite element analysis.
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A stabilized Lagrange multipliers formulation is used to impose boundary con-
ditions in elements cut by the Dirichlet boundary. As a result, equation (10d) is
replaced by the following equation,

a(u,ν) +
k

h

∫

ΓD

u · νdΓ = l(ν) +
k

h

∫

ΓD

g · νdΓ +

∫

ΓD

T(ū) · νdΓ (15)

A detailed description of the derivation of this equation and the description of
its behaviour, out of the scope of this paper, can be found in Reference [53]. The
most relevant feature of the proposed stabilized Lagrange multipliers formulation is
that the stabilization term T is evaluated as a recovered [48, 49] traction field. As
this traction field depends on the FE solution, an iterative process, i.e. Richardson
iterations, is used to solve (15). The stabilization terms are not affected by ρ and do
not play any role in the TO procedure.
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Abstract

In the context of intellectual property in the manufacturing industry, know-how
is referred to practical knowledge on how to accomplish a specific task. This know-
how is often difficult to be synthesised in a set of rules or steps as it remains in the
intuition and expertise of engineers, designers, and other professionals. Today, a new
research line in this concern spot-up thanks to the explosion of Artificial Intelligence
and Machine Learning algorithms and its alliance with Computational Mechanics and
Optimisation tools. However, a key aspect with industrial design is the scarcity of
available data, making it problematic to rely on deep-learning approaches. Assuming
that the existing designs live in a manifold, in this paper, we propose a synergistic use
of existing Machine Learning tools to infer a reduced manifold from the existing lim-
ited set of designs and, then, to use it to interpolate between the individuals, working
as a generator basis, to create new and coherent designs. For this, a key aspect is
to be able to properly interpolate in the reduced manifold, which requires a proper
clustering of the individuals. From our experience, due to the scarcity of data, adding
topological descriptors to geometrical ones considerably improves the quality of the
clustering.

Thus, a distance, mixing topology and geometry is proposed. This distance is
used both, for the clustering and for the interpolation. For the interpolation, relying
on optimal transport appear to be mandatory. Examples of growing complexity are
proposed to illustrate the goodness of the method.

Key words

Structural Optimisation, Machine Learning, Dimensionality Reduction, Locally Lin-
ear Embedding, Topological Data Analysis, Optimal Transport
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1. Introduction

1. Introduction

In the context of intellectual property in the industry, know-how is referred to
the practical knowledge about how to accomplish a specific task [1]. Most of this
know-how resides in the intuition and expertise of engineers and designers, among a
wide variety of professionals. Thus, it is extremely difficult to characterize by rules
or steps. In order to not lose a given know-how, we would like to be able to extract
it from the objects previously created.

For this, as it is done today in many other domains in engineering, we propose to
ally tools emerging from Artificial Intelligence and Machine learning with techniques
belonging to Computational Mechanics and Optimisation. But what could be a possi-
ble strategy? A key difficulty is scarcity in the number of designs in a given industry.
This implies that it is not possible to properly use deep-learning approaches for this
purpose [2]. Therefore, among the available tools, we have selected those allowing us
to infer, if possible, a reduced manifold of the existing designs. Being its existence our
main hypothesis. It will be possible if these techniques can adequately approximate
the low dimensionality space where the current designs belong to. This is mandatory
because, with few individuals, compared to deep-learning approaches, one can expect
to interpolate, in a sense to be precised later, only in low dimensional space.

In our scientific context, a related question naturally arises: how to characterise
the existing component designs? This first paper will consider the design as the ob-
jects’ geometries. Clearly, in the future, we should include other characterisations,
as the strains or stress fields, for instance, two crucial measures in the structural
mechanics field. Even considering this restricted definition of design, one should be
precise in characterising a geometry because there exist multiple ways to do it. In
fact, it is our experience that this choice may significantly influence the dimensions
of the reduced manifold. A criterion of choice is that the implicit space should be
a manifold of possible designs. That is, we need to create appropriate designs when
interpolating between existing designs.

The first part of the paper is devoted to finding a shape characterisation that
allows obtaining an attractive latent space of existing designs and interpolating in
this reduced space. The designs are characterized by their geometry and topology.
The relevance of the geometrical information is evident. However, in the context of
small data, topology play an important role since it is additional information than
the algorithms may use. Among those descriptors, the easiest to manipulate are those
based on fields. Thus, for the geometry, we employ the Level-set Functions [3,4]. For
the topology we use the principle of persistent homology [5], which belongs to the
field of Topological Data Analysis tools [6,7], to create a geometrical 2D image of the
topology of the object, the so-called persistence image [8]. Mixing geometrical and
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topological descriptors is thus possible. Then, we adopt the use of Manifold Learn-
ing techniques (ML) [9] to reduce the dimension of the data by extracting the latent
structure stored in it. There exists an immense variety of techniques in the ML field,
such as the Principal Component Analysis (PCA) [9], which finds the direction of
maximum variation in the original dataset. To overcome the limit of this linear tech-
nique, non-linear extensions have been proposed. These techniques can preserve the
non-linear nature of the original dataset. Among the different non-linear techniques
such as Sammon mapping [10], k -PCA [11], Laplacian eigenmaps [12], Isomaps [13]
and Autoencoders [14–16], we select the Locally Linear Embedding (LLE) [17]. This
technique has been successfully used when data is highly non-linear [18], as in the
case of the information coming from the component’s topology, and has shown good
results in previous works [19,20].

The second part of the paper is devoted to the interpolation of objects in the
manifold of the existing designs. Apart from dimensionality reduction, rather than
using the entire basis, LLE identifies the neighbours used to reconstruct an individual
decreasing the computational cost. The evaluation of the vicinity needed for LLE
is usually made employing the distances between individuals, which, in the standard
LLE implementation, corresponds to the L2 euclidean metric. As the scarcity of data
is a usual situation in the context we work on, relying on the euclidean norm and
the linear interpolation as a basis for the component generator could be ineffective
and could also produce components with no physical sense and artefacts. Then, we
propose to make use of Optimal Transportation tools (OT) [21–24], which include the
Wasserstein metric [22, 23]. Additionally, we will consider this metric in the solution
of the barycentre problem [25] to interpolate within the objects based on the vicini-
ties defined by the LLE. As a reminder, solving the search of the barycentre problem
considering the L2 euclidean metric is equivalent of using the linear interpolation.

The outline of this article is established as follows. We intend to illustrate the basic
ideas with a simple example in each section before applying them to a more complex
numerical example of a car bumper. Then, we first try the standard procedure with
the LLE algorithm, and in the following sections, we assess the improvements achieved
when applying the techniques presented in this introduction. Later, we employ the
selected strategy in the car bumper example. To finalise, we conclude the article by
gathering some final thoughts.

2. Methodology

Figure 1 represents the main steps of the methodology presented. In summary,
the main goal of this work is to define an interpolation procedure between existing
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2.1 Reference database

components living in a common manifold. The procedure has an offline and an online
phase. The offline phase refers to gathering the dataset and the subsequent treatment
that generates the reduced manifold, while the online phase involves the navigation
within the manifold and the creation of new components through the interpolation
scheme.

Geometrical
characterization

Database gather-
ing/generation

Evaluation of the
low-dimensional

manifold using LLE

Topological charac-
terization by TDA

Query point in
the manifold

Individual generation
by OT interpolation

Offline

Online

Figure 1: Simplified workflow of the methodology proposed.

2.1. Reference database
We will apply each of the strategies considered in this paper to an elementary

academic problem. It consists of a dataset of 75 individuals, the geometry being a
square including one, two and three holes, preserving the local shape, but modify-
ing the position. Therefore, the geometry is defined with only 3 parameters: the
horizontal position, the vertical position and the number of holes. The reference
database is composed of the shape descriptors of each individual. In the introduction,
we suggested that geometry descriptors based on domain fields are more convenient
for our purpose. Thus, for the geometrical characterisation, we rely on the Level-set
method [3, 4]. Among the variety of level-set functions available in the bibliography,
we employ the Signed Distance Function (SDF), which has the particularity of stor-
ing the distance to the boundary of the component. Therefore, the zero-isovalue of
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the level-set function corresponds to the boundary of the component [26–31]. In this
example, each level-set function is discretized by 961 nodes. A subset of the database
is shown in Figure 2. In this Figure, as in the rest of the paper, the geometry of each
individual is defined by its SDF.

Figure 2: Signed Distance Function of a representative sampling of the complete
database (75 individuals).

2.2. Geometry-based strategy
Following the steps illustrated in the workflow scheme, see Figure 1, the database

is gathered and represented in the Figure 2. As we mentioned above, we consider an
elementary academic example to describe the proposed strategy. In Figure 2, we show
a sampling of the 75 individuals that compose the database. Each of the individuals
is defined by its Signed Distance Function whose zero level (black contour in the
images) represents their geometry. Each individual of the database consists of a set of
circles of constant diameter that can be located at any position in a square domain.
In the standard implementation of the strategy, no further preprocessing of the data
is needed, that is, the topological characterization (step 3 in Figure 1) is not applied.
Then, the next step is to reduce the dimensionality of the database. As we expect the
manifold to be of a non-linear nature, we rely here on the Locally Linear Embedding
(LLE) algorithm. We chose the LLE algorithm since it provides not only the manifold
but a set of non-linear modes that could be used to move into the manifold.
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2.2 Geometry-based strategy

2.2.1. Overview of the original LLE algorithm

Let Xi be each sample of the training set in the high-dimensional space. The LLE
algorithm hypothesize that any point in the database must be obtained as a weighted
linear combination of k neighbours with wij , j ∈ [1, k] as,

Xi =

k∑

j

wijXj , (1)

The neighbours that compose the vicinity of each individual are obtained by choosing
the k individuals with smallest distance dij , evaluated as,

dij = ||Xi −Xj || (2)

where || · || is the Frobenius norm.

The number of neighbours k is user-defined, and the weights wij are obtained by
minimising the functional represented in equation (3):

ε(w) =
∑

i

||Xi −
k∑

j

wijXj ||2, (3)

where wij are subjected to the constraint
∑

j wij = 1. The LLE entrust that these
weights are invariant to space transformations. Hence the value of the weights is
preserved when changing between spaces. Keeping the weights unchanged, the pro-
jection of Xi on the reduced space, denoted Yi is defined by the minimisation of the
functional in (4):

ϵ(Y) =
∑

i

||Yi −
k∑

j

wijYj ||2, (4)

If all eigenvectors are kept, all the original information is stored, otherwise, we re-
tain the eigenvectors associated to the d smallest eigenvalues and maintain the latent
structure of the database. The number of eigenvalues is defined by the user and it
is assumed to be small. In the reference example, if the technique succeed, it will be 3.

High-dimensional individuals may be obtained as a weighted linear combination of k
neighbours, therefore, the reduced manifold of existing designs may be defined as the
set of points Y such that:

Y =





k∑

j

w̄ijYj ∈ Rd |
k∑

j

w̄ij = 1



 (5)
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Even though this set is never constructed, an element Ȳi in Y may be associated to
the element X̄i of the original space as,

X̄i =
k∑

j

w̄ijXj , (6)

where the weights w̄ij are obtained by minimizing the following functional:

ϵ̄(w̄) = ||Ȳi −
k∑

j

w̄ijYj ||2. (7)

When seeking for a new individual, for example in order to optimise a product, one
may search for the best element within the manifold. The technique to perform such
a search will be the object of a companion paper.

2.2.2. Application of the LLE to reference database: results
and drawbacks

We apply here the LLE algorithm to the reference database with the number of
neighbours in the vicinity taken as k = 4. The resulting eigenvalues are represented in
Figure 3a while, in Figure 3b, we illustrate the spatial distribution of the coordinates
in the reduced space, where each individual is classified by its topology, that is, the
number of holes is represented by the colour of the points.

(a) Eigenvalues obtained from minimizing (4). (b) Two first coordinates of the reduced latent
space.

Figure 3: Resulting eigenvalue distribution (a) and reduced coordinates (b) by using
the LLE technique with the original data.

On Figure 3a the eigenvalue spectrum of the problem in (4) is displayed. On this
graph the 2 lowest eigenvalues are separated from the rest of the spectrum. This
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2.3 Geometry and Topology-based strategy

information is used to retain a latent space of dimension 2. In this case, we know
beforehand that the reduced space is of dimension 3 (horizontal and vertical position
of the holes and number of holes), but the method fails in obtaining it. To evaluate
the performance of this methodology, we design an experiment where one of the
individuals is removed from the database. Then we try to recreate it by using the
inverse mapping of the LLE. In Figure 4 we illustrate the original individual (on the
left) along with the recovered one (on the right).

(a) Original component with
one hole (left) and the recov-
ered one (right).

(b) Original component with
two holes (left) and the recov-
ered one (right).

(c) Original component with
three holes (left) and the re-
covered one (right).

Figure 4: Examples of original components removed from the database and the
recovered ones by the vicinity information.

Comparing the original individual with the recovered one, we could conclude that
the performance of this strategy is unsatisfactory. Indeed, it cannot reconstruct any
of the original individuals. One of the aspects that may improve the methodology’s
performance is to add topological information to the strategy in order to obtain an
appropriate clustering of the original database. As you can observe, the recovered
individuals preserve the position of the holes in two scenarios (cases a and c) but
never match the number of holes. Presumably, this behaviour is due to the reduced
amount of information (small data). Therefore we propose to harness the available
samples by extracting more information, i.e. the topology.

2.3. Geometry and Topology-based strategy
This section revisits the conclusions gathered in the previous section and develops

a strategy to possibly improve the overall performance of the previous one. The
first modification considered consists in the addition of topological information. This
section explains how topology is characterized, how this information is obtained and
how we propose to merge geometrical and topological information. The final objective
is to cluster the data into its different topologies to aid the interpolation scheme to
create pertinent individuals.

2.3.1. Topological Data Analysis overview

In this work, we consider that the number of holes defines the topology of an object,
so we need a tool to automatically infer the number of holes and give some sense of its
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size, but we also need to define a technique to properly compare different topologies.
We propose to employ the Topological Data Analysis (TDA) [6,7] that encompasses a
set of tools from high-dimensional data analysis which extract topological information
from a group of points. These techniques are directly applicable as any SDF can be
converted into a cloud of points employing the coordinates on the nodes in a Cartesian
grid and its function value. The topological characterisation we use is based on the
principle of persistent homology [5], which extracts the most relevant features in a
point cloud; as mentioned, these features may be the number of holes and a sense of
its size, for instance. In Figure 5a we show an synthetic example of a component’s
SDF, along with its boundary, while, in Figure 5b, we represent the resulting set of
points considered for the TDA strategy, i.e. negative values of the SDF represent the
domain of the geometry.

(a) Geometry descriptor of an individual
composed by 4 circles.

(b) Equivalent point cloud.

Figure 5: Synthetic example for TDA (a) SDF (zero value corresponds to the bound-
ary, in black) (b) the resulting points employed for the TDA tools.

Considering the resulting unconnected set of points ∈ R2, we define a circle with
a radius r from each point. As the value of r increases, the connectivity of points
changes. A connection is established when two or more points are inside of a circle
of radius r. This change in connectivity allows the creation of geometrical entities
such as edges or triangles, whose vertices are the set of points. At some moment,
the connectivity of the points will create a set of edges that form a closed polygon.
If we keep increasing r, the connectivity will create entities of higher dimensions,
such as triangles that will cover the hole and then disappear. Persistent features
detected with a wide range of spatial scales r are considered more likely to represent
a true topological feature of the underlying point cloud instead of artefacts of the
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sampling or noise. The value r in which a persistent feature appears and disappears
is used to create the persistence diagram (PD), representing the birth x and death y of
each topological feature found during the growth of r. As for any persistent feature,
for instance, a hole, the birth precedes the death, all the points of the persistence
diagram are located above the diagonal y = x, and any point (x, y) near the diagonal
may represent noise or small scale features. Points far from the diagonal represent
topological features that persist and may be considered to define the overall topology
of the component.

(a) Lifetime diagram. (b) Persistence image.

Figure 6: Space transformation of the persistent homology from the lifetime diagram
(a) to the persistence image (b).

The persistence diagram belongs to a non-metric space, so comparing or evaluating
a distance between different persistence diagrams is not directly possible. Different
representations of the persistent homology are available that contain the same infor-
mation but are displayed differently. We obtain the lifetime diagram (LD) (see Figure
6a) if we apply the mapping f : (x, y)→ (x, y − x) to the persistence diagram (PD),
as in the PD, points far from the x -axis represent more relevant topological features.
The drawback of using those spaces is that they are not equipped with a norm, such
as the L2 metric commonly used in most Machine Learning applications. Thus, we
need to apply space transformation to the current descriptor of topological features
to a more appropriate representation equipped with a suitable norm. For that pur-
pose, following the rationale in [8], we use the persistence surface, which is based on a
Gaussian kernel evaluated in the space of the LD. The surface created is then reduced
to a finite-dimensional discretised space. In particular, we fix a grid in the plane with
n× n subdomains (pixels). The integration of the persistence surface over each pixel
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gives, as a result, the so-called Persistence Image (PI) ∈ R2 (see Figure 6b) [8].

In Figure 6a, we illustrate how the four holes that appear in 5b are translated
into the persistence diagram employing the persistent homology. Figure 6a represents
one point per hole, and its coordinates correspond to the value of r when the hole is
detected in x − axis and the total lifetime of the hole in y − axis. Notice that the
birth of each feature is the same due to the uniformity of the grid used to describe the
SDF. Figure 6b illustrates the resulting persistence image obtained from the space
transformation of the persistence diagram.

2.3.2. Modifications in LLE to consider geometry and
topology

The modification of the original strategy considers adding the persistence image
(Ti) of each individual to its geometrical description defined by its SDF (Xi) as
the topological descriptor into the manifold learning stage. So far, the information
to feed the LLE algorithm corresponded to the geometrical representation of the
components, i.e., the SDF. To feed the LLE algorithm with both geometrical and
topological information we propose to make use of a weighted linear combination of
the distances from each shape descriptor, topological and geometrical, as,

d2ij =
θ∑

i

∑
j ||Xi −Xj ||2

· ||Xi −Xj ||2 +
(1− θ)∑

i

∑
j ||Ti −Tj ||2

· ||Ti −Tj ||2 (8)

where θ is the weighting factor.

Additionally, we introduce the topological information in the LLE by modifying
the equation (3), leading to:

ε(w) =
∑

i


 θ∑

i

∑
j ||Xi −Xj ||2

· ||Xi −
k∑

j

wijXj ||2



+
∑

i


 (1− θ)∑

i

∑
j ||Ti −Tj ||2

· ||Ti −
k∑

j

wijTj ||2

 , (9)

where Xi is the level-set representation of the geometry, i.e., the SDF and Ti is the
corresponding persistence image. The optimal w takes into account a mixture of the
likeness of the geometry and topology.
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2.3.2.1. Weighting factor selection

Considering the previously discussed modifications of the standard LLE implemen-
tation and the reference database, we compute the local vicinities of each individual
considering the distance defined in equation (8). Later, we continue with the minimi-
sation of the functional in equation (9). The next steps of the algorithm LLE are not
modified. As in the previous example, we consider k = 4 neighbours with a randomly
defined weighting factor of θ = 0.5. In Figure 7a we show the distribution of the
eigenvalues obtained from the LLE, and we conclude that the reduced dimensions are
2, again failing in obtaining the right number of dimensions. Figure 7b illustrates the
projection of each individual to the reduced manifold of two dimensions.

(a) Eigenvalue distribution.

(b) Two first coordinates of the reduced latent space.

Figure 7: Resulting eigenvalue distribution (a) and reduced coordinates (b) by using
the LLE technique including both, the original data and the persistence images.
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In Figure 7 we see that each cluster is collapsed in one point in the reduced mani-
fold, which prevents the extraction of geometrical modes, as well as the interpolation
between individuals, indicating, perhaps that the topology information has too much
influence. Hence, we modify the value of the weighting factor, in this case, θ = 0.8.
As in the previous example, Figure 8a shows the eigenvalues obtained, which suggests
us that 3 reduced dimensions seem acceptable, as expected, in this case. In Figure 8b
we also represent the spatial distribution of the projected individuals in the reduced
manifold.

(a) Eigenvalue distribution.

(b) Three first coordinates of the reduced latent space.

Figure 8: Resulting eigenvalue distribution (a) and reduced coordinates (b) by using
the LLE technique considering the original data and the persistence images.

With this value of the weighting factor θ, we improve the clusterisation with re-
spect to the previous example. We could also extract geometrical information related
to the horizontal and vertical location of the circles, which was impossible considering
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the previous value of the weighting factor θ.

As in the previous experiment, we evaluate the method’s performance trying to
recover several individuals removed from the dataset. Figure 9 shows the comparison
between the original individual and the recovered one using the expression shown in
(1). Even though the clusterisation is drastically improved, the recovered functions
are far from the original ones, they match the position of the holes and slightly the
topology but the results are not satisfactory so far. At this moment, our hypothesis
here is that we have been able to properly organize the dataset in the reduced space,
but that we lack of a proper interpolation approach to define the manifold.

(a) Original component with
one holes (left) and the recov-
ered one (right).

(b) Original component with
two holes (left) and the recov-
ered one (right).

(c) Original component with
three holes (left) and the re-
covered one (right).

Figure 9: Examples of original components removed from the database and the
recovered ones by the vicinity information.

The influence of the weighting factor may be seen as a regularization in the metric.
This regularization enables the modification of the quantity of topological information
added to the metric. However, the weighting factor is a hyperparameter and must
be set by the user. The fulfilment of some criterion may guide the selection of its
value. Different criteria may be considered, such as seeking a particular characteristic
in the reduced manifold, for instance, the clusterization in topologies, or improving
the quality of the recovered individuals.

2.3.3. Optimal Transport-based interpolation to recover
dimensionality

A relevant characteristic of the LLE is that it allows to define one individual
through the linear interpolation between the neighbours of its vicinity (1). Due to
the scarcity of data this interpolation scheme, considering the original LLE technique
is not appropriate, as seen before. This is why we propose to rely on an Optimal
Transport approach for the objects’ interpolation [21–24].

2.3.3.1. Optimal Transport overview.

Optimal Transport techniques are based on the use of the Wassersteing distance
W2 between objects, also known as Earth Mover’s distance [22, 23]. These dis-

189



Paper C

tances represent the geometric likeness between two objects by measuring the minimal
amount of "work" needed to move the mass contained in one object onto the other.
We may extrapolate this capability to tasks like geometric domain interpolation by
solving the barycentre problem [25] stated as,

Z∗
i = argmin

Zi

k∑

j=1

wjW
2
2 (Zi,Zj). (10)

where, Zi and Zj correspond to the interpolated individuals and the individuals used
for the interpolation, respectively. Also, W2 corresponds to the Wasserstein metric
and wj are the interpolation weights. In Figure 10 we illustrate the resulting functions
obtained from the linear and the optimal transport interpolation between two original
functions.

(a) Linear interpolation

(b) Optimal Transport interpolation

Figure 10: Comparison between linear and optimal transport interpolation. Figures
on left and right are the original functions while the middle figures show their weighted
interpolation.

2.3.3.2. Applying Optimal Transport-based interpolation to
the reference database.

As seen in Section 2.3.3.1 the improvements achieved in the clustering task were
not translated to the recovery performance. Considering the manifold obtained in
Figure 8b, we modify the interpolation scheme, in this case, using the tools from OT.
In Figure 11, we solve the barycentre problem considering the Wasserstein distance
after transforming the original SDF into a probabilistic function which indicates the
probability that a point is inside the geometry, being the implicit boundary described
by the 0.5 value. Figure 11 shows that the original components and the recovered
ones are virtually the same; thus, the modification in the interpolation scheme entail
a relevant improvement in the reconstruction of objects.
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3. Numerical Example

(a) Original component with
one holes (left) and the recov-
ered one (right).

(b) Original component with
two holes (left) and the recov-
ered one (right).

(c) Original component with
three holes (left) and the re-
covered one (right).

Figure 11: Examples of original components removed from the database and the
recovered ones by the vicinity information.

It is interesting to get insight of the relative effect of optimal transport and the
use of topological descriptors. For this, we apply the OT strategy without adding
topological information (manifold shown in Figure 3b). This change the set of neigh-
bours used to reconstruct individuals. From Figure 12 we can see that an OT strategy
associated with a poor clustering does not lead to satisfactory results. Hence, from
now on, in this paper we will rely on the simultaneous use of both strategies.

(a) Original component with
one holes (left) and the recov-
ered one (right).

(b) Original component with
two holes (left) and the recov-
ered one (right).

(c) Original component with
three holes (left) and the re-
covered one (right).

Figure 12: Examples of original components removed from the database and the
recovered ones by the vicinity information, considering the OT strategy but not taking
into account topology information.

3. Numerical Example

This section shows how the previous methodology is applied to an industrial ex-
ample that mimics car’s bumpers. Due to the impossibility of gathering actual data,
we create the database artificially through a hybrid optimisation technique [20, 32].
We have generated a database that simulates the work of manufacturers, specifically
those engaged in the car’s bumper design. This example tries to mimic the actual
designs of a car’s bumper considering a simplified 2D domain. The design domain of
the problem (see Figure 13) is characterized by variables h1, h2, and X, which define
the region where the material is allowed to exist. The Dirichlet boundary conditions
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are defined by the variables w and W , that specify the position where all displace-
ments are restricted. Additionally, the variable P determines the value of the pressure
applied; for all bumpers, we define the value of P in order to get the same resulting
force applied to each bumper. This problem shows how the presented strategy works
with more complex examples where the scarcity of data is also considered.

Figure 13: Parametrization of the variables that define the design domain and the
boundary conditions of the hybrid optimisation algorithm.

Figure 14a shows an example of the resulting component obtained through the
hybrid optimisation algorithm. This figure represents the SDF, with the boundary
defined by its zero value. However, the input geometrical objects must be described
by a probabilistic function to use the OT tools properly. In our case, we convert the
SDF into a probabilistic function with its limits between 0 and 1 and the boundary
described using the mid-value, 0.5. The value of the probabilistic function indicates
the probability that a point belongs to the interior of the geometry, which, for a given
kernel, is straightforward when the SDF is available. Then, Figure 14b illustrates the
resulting function that describes the geometry of the component after its transforma-
tion.

Figure 15 shows a representative sampling of 9 individuals the database, which
is composed of 83 individuals. Also, each individual is discretized by 10201 nodes.
From now on, the standard geometrical descriptor will be the probabilistic function for
representation purposes. Even though bumpers conform to the original dataset with
various topologies, we neglect those with little importance. Then, the final database,
as illustrated in Figure 15 consists of bumpers whose topology has 2 holes or none
of them, as only a very reduced number of bumpers with more than 2 holes were
obtained during the creation of the database.
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3.1 Topological characterization

(a) Geometry defined by a SDF. (b) Geometry defined by a probabilistic function.

Figure 14: Conversion of the SDF (a) into a probabilistic distribution (b).

Figure 15: Probabilistic functions of sampled components from the database.

3.1. Topological characterization
As a reminder, the final proposed strategy considers the complete characterisa-

tion of the shape of a component, including its geometry and topology. Thus, the
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next step is to obtain the persistent homology of each bumper in the database. Let’s
consider the bumper in Figure 14b, which presents two holes, to better illustrate the
topological characterisation. We would compute the persistence image of each indi-
vidual employing its persistent homology. The persistent homology, in this example
(see Figure 16a), seems to capture one of the two holes, which may indicate that they
are overlapped in the representation as the birth and lifetime are the same. This
behaviour may be a source of issues in the clustering task, so we consider a different
coordinate system to represent the persistent homology. As the we use a uniform
grid to represent the probabilistic function of each bumper, the birth of each hole is
always the same (the spacing of the grid), so we assume that this coordinate its not
that relevant and consider a different coordinate that includes the times a identical
topological feature is repeated. So, the x-axis of the lifetime diagram, previously
representing the birth, is replaced by the repeatability coordinate, providing the cor-
responding persistence image in Figure 16b, where two holes are now represented. As
most of the image domain has 0 value, this image may be converted into a function
over the whole domain, for instance, employing the level-set method (see Figure 16c).

(a) Persistence diagram. (b) Modified persistence dia-
gram.

(c) Level-set function over the
modified persistence diagram.

Figure 16: Persistent homology of the car’s bumper in Figure 14 considering the
repeatability of each persistent feature.

3.2. Influence of the weighting factor θ

Once the database has been processed, we have two shape descriptors for each
component: a geometrical descriptor defined as a probabilistic function and a topo-
logical descriptor described with the persistence image. The next step within the
proposed strategy consists in obtaining the reduced manifold containing the projec-
tion of each individual. For this problem, we used the modified version of the LLE
that merges geometrical and topological information and use the euclidean distance
to evaluate the local vicinities as in equation (8). The value of the weighting factor is
arbitrarily set to θ = 0.5, and the vicinity is set to 9 neighbours. Figure 17a shows the
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eigenvalue distribution, where the smallest one is far from the rest, which implies that
there is one dominant dimension in the reduced manifold. This seems strange as it is
difficult to represent properly all the geometrical and topological details we described
above with just one dimension. That is why we decided to modify the value of the
weighting factor. Indeed, Figure 17b shows the representation of the components in
the reduced manifold and we conclude that just the topology is inferred, so we must
increase the contribution of the geometrical descriptor.

(a) Eigenvalue distribution.

(b) First coordinate of the reduced latent space.

Figure 17: Resulting eigenvalue distribution (a) and reduced coordinates (b) by
using the LLE technique with the original data plus the persistence images.

For the next test, we set the value of the weighting factor to θ = 0.7. Figure 18a
shows the eigenvalue distribution where now more dimensions seem to characterize
the database. In this example, we selected the 3 first dimensions, for representation
purpose, as shown in Figure 18b, to describe the resulting reduced manifold. These
results show that an appropriate selection of θ is required. In practice, the user should
test several configurations of the hyperparameters θ and number of neighbours k until
satisfied with the reduced space.
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(a) Eigenvalue distribution.

(b) Three first coordinates of the reduced latent space.

Figure 18: Resulting eigenvalue distribution (a) and reduced coordinates (b) by
using the LLE technique with the original data plus the persistence images.

3.3. Results
To check the feasibility of this methodology to produce components with physical

sense and framed on the nature of the database, we repeat the same experiment
as done with the moving circles example. This experiment consists of removing an
individual from the database and trying to recover it using the inverse mapping of
the LLE proposed in this paper. Figures 19 and 21 show examples of recovered
individuals. Each Figure shows the recovery of one random individual selected from
each of the clusters (cluster of topologies with 0 holes in Figure 19 and with 2 holes
in Figure 21).
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(a) Latent space where we highlight the reference individual
(in black) and the neighbours used to recover it (in green).

(b) Reference bumper. (c) Bumper recovered by linear
interpolation.

(d) Bumper recovered by op-
timal transport-based interpola-
tion.

Figure 19: Recovery of a bumper of the cluster with 0 holes removed from the
database.

In each case, we present, using probabilistic functions, the original geometry to
be recovered and the results obtained through linear interpolation and with the pro-
posed strategy that computes the barycentre problem considering the Wasserstein
distances. Some individuals are highlighted in theses figures: the reference bumpers
to be recovered, removed from the database, (highlighted with a black contour) and
the neighbours used to recover the reference bumper (highlighted with a green con-
tour). Analysing the recovered components, we conclude that the interpolation based
on OT techniques provides components with physical sense, quite similar to the ref-
erence component and preserving the features in the database, while, on the contrary
linear-based interpolation schemes seem to produce bumpers with artefacts and loss
of features, that, consequently will prevent any successful numerical simulation.
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Figure 20: Error measure of each natural frequency for the reconstruction employing
the linear interpolation (blue) and the optimal transport-based interpolation (orange).

Additionally to the qualitative comparison in Figures 19 and 21, we compute a
quantitative difference between the recovered bumpers and the reference one. As
this component will fulfil certain structural criteria, we consider it interesting to
compute an error metric based on its structural behaviour. Therefore, we carry out
a modal analysis in each recovered component and then, we compare its first natural
frequencies (removing those associated with the rigid solid movement) considering the
following expression to measure its error,

Errori = 100 ·
∣∣∣∣
ω̂i − ωi

ωi

∣∣∣∣ , (11)

where, ω̂i and ωi correspond to the ith natural frequency of the recovered bumper
and the reference one, respectively. The error of the example in Figure 19 is illus-
trated in 20, while Figure 22 represents the error of the example pictured in Figure
19. In general terms, both Figures show that the bumper obtained employing the op-
timal transport-based interpolation presents lower error levels for the first 50 natural
frequencies.
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(a) Latent space where we highlight the reference individual
(in black) and the neighbours used to recover it (in green).

(b) Reference bumper. (c) Recovered bumper by linear
interpolation.

(d) Recovered bumper by op-
timal transport-based interpola-
tion.

Figure 21: Recovery of a bumper of the cluster with 2 holes removed from the
database.

Figure 22: Error measure of each natural frequency for the reconstruction employing
the linear interpolation (blue) and the optimal transport-based interpolation (orange).
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With the creation of the reduced manifold, we are not limited to recover individuals
in the database. Instead we are also able to navigate along this manifold being able
to obtain the projection of the original high dimensional space corresponding to the
points on the low dimensional manifold. The resulting projection of these points will
entail the creation of new components non-existing in the original database, as we
will be able to retrieve the geometrical and topological information. Figure 23a shows
an arbitrary point in the reduced manifold located between the topological clusters,
along with the neighbours, of different topologies, used for its interpolation. Figures
23b and 23c illustrate the resulting component obtained by linear and by optimal
transport interpolations.

(a) Latent space where we highlight the reference individual
(in black) and the neighbours used to recover it (in green).

(b) Recovered bumper using linear
interpolation.

(c) Recovered bumper using opti-
mal transport interpolation.

Figure 23: Creation of a new bumper employing the proposed methodology.

In order to illustrate the robustness and the generative capability of the methodol-
ogy proposed, we extend this numerical example by adding a new experiment. Based
on the previous example (Figure 23), this experiment navigates within the manifold
and generates new bumpers that are non-existing in the original database. We use
the bumper coordinates in Figure 23 as a reference. Then we define 3 directions, each
corresponding to the axis of the coordinate system of the reduced parametric space.
As a reminder, we use the LLE technique that extracts the non-linear structure of
the high-dimensional data. In our example, these are a set of non-linear geometrical
modes. The non-linearity means that each mode may influence the recovered data dif-
ferently depending on its position in the manifold. Therefore, this experiment shows
the local influence of each axis in the neighbourhood of the reference coordinates.
Generally, we can conclude that the first dimension is in charge of the bumper’s cur-
vature. In contrast, the second one seems more related to the topological change and
the holes’ size. Finally, the third one may modify the bumper’s overall height and the
holes’ size.
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(a) Latent space where we highlight the query points, classified by the variation
in its coordinates: reduced dimension 1 (orange points), reduced dimension 2
(purple points) and reduced dimension 3 (green points).

(b) Evolution of individuals according to the reduced dimension 1 (orange points).

(c) Evolution of individuals according to the reduced dimension 2 (purple points).

(d) Evolution of individuals according to the reduced dimension 3 (green points).

Figure 24: Creation of a set of new bumpers employing the proposed methodology.

Figure 24 illustrate this experiment where the reduced manifold along with the
points of the study are represented in Figure Figure 24a. Also, Figures 24b, 24c
and 24d show the resulting set of bumpers in each axis. Not all bumpers have the
structural qualities we might expect, for instance, the first bumper of the second axis.
It seems that this is a region where the topology of the bumper changes. The holes
in the component get bigger until they reach the surface, therefore, modifying the
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topology. However, we can still extract some conclusions about the influence of each
axis on the characteristic of the generated bumper.

4. Conclusions

We have proposed a strategy to create a low dimensional manifold to describe
an existing database of designs defined by their geometry and topology. We are
able to navigate within this manifold not only to recover existing designs but, more
interesting, to create new coherent designs. We have accomplished this goal using
different tools such as the LLE, the TDA and the OT. To conclude the current work,
we would like to synthesise some final thoughts:

- Manifold Learning (ML) strategies, such as the Locally Linear Embedding, are
appropriate tools to visualise and manipulate high-dimensional data by extract-
ing the inherent latent structure. The resulting dimensions may be considered
a shape generator basis, employing the inverse mapping to recover the original
dimensionality.

- The use of the level-set method seems to be a coherent framework to characterise
the geometry of the components as it allows direct comparison between different
shapes. We found the widely used Signed Distance Functions convenient for our
purposes.

- Topological Data Analysis tools aid the clustering task carried out by the di-
mensionality reduction algorithm.

- We propose to adequately combine the geometrical description provided by the
SDFs with topological information to obtain a synergetic effect. This requires
the definition of θ, a parameter that weights the influence of theses two different
informations.

- The use of Optimal Transport tools in the ML strategy represents a definitive im-
provement with respect to the standard LLE algorithm implementation. Thanks
to these techniques, the recovered individuals resemble the original database and
have a physical sense from a structural point of view.

- Due to the computational cost of evaluating the Wasserstein distances, we pro-
pose a compromise strategy, where the Wassertein distances are computed just
when interpolating, instead of using them to create the reduced space.

- In the same way, using the LLE, allows to evaluate the Wasserstein distances
among few neighbours instead of the full database.
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- One of the limitations of the proposed methodology is its maturity. We still need
to establish a metric that assesses the quality of the component reconstruction
for any problem. For this reason, we cannot measure the influence of each
hyperparameter appearing in the methodology, like the weighting factor or the
number of neighbours, possibly leading to reduced manifolds not being able to
extract the knowledge of the database.

- Once these limitations are surpassed, the potential applications of the method-
ology are several. For instance, it could be used for the development of a design
tool able to propose, taking the know-how into account, predesigns characterized
by the sets of parameters defined by the user. These predesigns may be then
modified to meet other design requirements. Also, this methodology could be
used for the development of an optimization algorithm that navigates the result-
ing reduced manifold to find the optimal component that maximizes/minimizes
an objective function subject to a set of design constraints.

5. Future works

In this last section we would like to highlight some future developments from the
current work:

- As we show with the last example, we are able to navigate the reduced manifold
to obtain new components non-existing in the original dataset. This tools could
be used, for instance, to obtain components defined in terms of geometrical
and/or topological constraints or in terms of the structural behaviour of the
component, for example.

- The selection of the weighting factor θ may be guided by and optimisation
algorithm by looking for some specific characteristics of the resulting reduced
manifold.
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