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Abstract

This thesis explores innovative approaches for structural optimization, encompassing
a variety of commonly used optimization algorithms in this field. It specifically focuses
on shape optimization (SO) and topology optimization (TO). The first contribution
of this research revolves around ensuring and maintaining a desired level of accuracy
throughout the TO process and the proposed solution. By establishing confidence in
the suggested components of the TO algorithm, our attention can then shift to the
subsequent contribution.

The second contribution of this thesis aims to establish effective communication
between TO and SO algorithms. To achieve this, our goal is to directly convert the
optimal material distribution proposed by the TO algorithm into geometry. Subse-
quently, we optimize the geometry using SO algorithms. Facilitating seamless com-
munication between these two algorithms presents a non-trivial challenge, which we
address by proposing a machine learning-based methodology. This approach seeks to
extract a reduced number of geometric modes that can serve as a parameterization
for the geometry, enabling further optimization by SO algorithms.

Lastly, the third contribution builds upon the previous idea, taking it a step for-
ward. The proposed methodology aims to derive new components through knowledge-
based approaches instead of relying solely on physics-based TO processes. We argue
that this knowledge can be acquired from the historical designs employed by a given
company as they retain invaluable immaterial know-how. This methodology also re-
lies on machine learning algorithms, but we also consider techniques for analyzing
high-dimensional data and more suitable interpolation strategies.

vii






Resumen

Esta tesis explora enfoques innovadores para la optimizacion estructural, abarcando
una variedad de algoritmos de optimizaciéon comtunmente utilizados en el campo. Se
centra especificamente en la optimizacion de forma (SO) y la optimizacion de topologia
(TO). La primera contribucion de esta tesis gira en torno a garantizar y mantener un
nivel deseado de precision durante todo el proceso de TO y la solucién propuesta. Al
establecer confianza en los componentes sugeridos por el algoritmo de TO, nuestra
atencion puede centrarse en la siguiente contribucion.

La segunda contribucién de esta tesis tiene como objetivo establecer una comuni-
cacion efectiva entre los algoritmos de TO y SO. Para lograr esto, nuestro objetivo
es convertir directamente la distribucién 6ptima de materiales propuesta por el al-
goritmo de TO en geometria. Posteriormente, optimizamos la geometria utilizando
algoritmos de SO. Facilitar una comunicacion fluida entre estos dos algoritmos pre-
senta un desafio complejo, que abordamos proponiendo una metodologia basada en
aprendizaje automatico. Este enfoque busca extraer un nimero reducido de modos
geométricos que pueden servir como parametrizaciéon para la geometria, lo que per-
mite su optimizacién mediante algoritmos de SO.

Por ultimo, la tercera contribucién recoge algunas de las ideas previas y las lleva
un paso hacia delante. La metodologia propuesta tiene como objetivo derivar nuevos
componentes a través de enfoques basados en el conocimiento existente en lugar de
depender tnicamente de procesos de TO basados en la fisica. Sostenemos que este
conocimiento se puede obtener del histérico de disenos empleados por una determi-
nada empresa, ya que retienen un valioso conocimiento inmaterial. Esta metodologia
también se basa en algoritmos de aprendizaje automatico, pero también consideramos
técnicas para analizar datos de alta dimensionalidad y estrategias de interpolaciéon mas
adecuadas.
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Resum

Aquesta tesi explora enfocaments innovadors per a l'optimitzaci6é estructural, abas-
tant una varietat d’algorismes d’optimitzacié comunament utilitzats en el camp. Se
centra especificament en 'optimitzacié de forma (SO) i l'optimitzacié de topologia
(TO). La primera contribucié d’aquesta tesi gira entorn de garantir i mantenir un
nivell desitjat de precisié durant tot el procés de TO i la solucié proposada. En es-
tablir confianga en els components suggerits per 'algorisme de TO, la nostra atencio
pot centrar-se en la segiient contribuci6.

La segona contribuci6é d’aquesta tesi té com a objectiu establir una comunicacié
efectiva entre els algorismes de TO i SO. Per a aconseguir aixo, el nostre objectiu
és convertir directament la distribucié optima de materials proposta per ’algorisme
de TO en geometria. Posteriorment, optimitzem la geometria utilitzant algorismes
de SO. Facilitar una comunicacié fluida entre aquests dos algorismes presenta un
desafiament complex, que abordem proposant una metodologia basada en aprenen-
tatge automatic. Aquest enfocament busca extreure un nombre reduit de maneres
geomeétriques que poden servir com a parametritzacié per a la geometria, la qual cosa
permet la seua optimitzacidé mitjangant algorismes de SO.

Finalment, la tercera contribuci6 recull algunes de les idees prévies i les porta un
pas cap endavant. La metodologia recomanada té com a objectiu derivar nous com-
ponents a través d’enfocaments basats en el coneixement existent en lloc de dependre
dinicament de processos de TO basats en la fisica. Sostenim que aquest coneixement
es pot obtenir de I'historic de dissenys emprats per una determinada empresa, ja que
retenen un valuds coneixement immaterial. Aquesta metodologia també es basa en al-
gorismes d’aprenentatge automatic, perd també considerem técniques per a analitzar
dades d’alta dimensionalitat i estratégies d’interpolacié més adequades.
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Thesis report







Chapter 1

Introduction

1.1. Motivation

Optimization techniques are ubiquitous across various industrial and scientific do-
mains, as they facilitate the identification of the best alternative from a given set of
individuals. In this context, individuals are evaluated based on their ability to per-
form a specific task, with their performance typically quantified using an objective
or loss function, a commonly employed metric in optimization. Moreover, optimiza-
tion problems typically entail a set of constraints that delineate the design space’s
feasibility, thereby reducing the number of individuals under consideration. Although
optimization techniques find application in numerous fields, our research is specifically
focused on structural optimization.

Structural optimization aims to identify the most suitable component from a given
set based on their performance, which is evaluated through an objective function.
The optimal component is the one that minimizes or maximizes the objective func-
tion while fulfilling a set of constraints. In the field of structural optimization, two of
the most common pairs of objective function and constraints are the minimization of
mass/volume while satisfying yield stress constraints, and the maximization of stiff-
ness while fulfilling a volume fraction constraint. Various approaches exist for solving
structural optimization problems, and we will primarily focus on techniques that alter
the shape of the component, namely topology optimization and parametrized shape
optimization (hereafter referred to as shape optimization).




1. Introduction

Topology optimization algorithms are extensively employed for manipulating the
material topology within the design space through the manipulation of various de-
sign variables [1-3]. For example, the Solid Isotropid Material Penalization (SIMP)
method adjusts the relative density of individual elements, while the Level-Set ap-
proaches utilize auxiliary functions to define the evolving boundary of the shape [4-6].
During the optimization process, the finite element method (FEM) is commonly used
to determine the current state of the design domain. However, FEM calculations can
be computationally expensive, making computational efficiency a crucial factor
in topology optimization due to its iterative nature. Moreover, the accuracy of FEM
results strongly relies on the mesh quality, which in turn affects the performance of
the optimization techniques. Inaccurate FEM solutions can lead to suboptimal
designs that may fail to satisfy the imposed constraints [7].

Shape optimization techniques involve utilizing a computer-aided design (CAD)
model to determine objective functions and constraints commonly employing FEM
calculations. The CAD representation can employ various types of geometric enti-
ties, such as splines or NURBS. In this study, we will employ the STL format to
represent the boundary as a triangular tessellation, which is commonly used in addi-
tive manufacturing processes. One of the primary advantages of shape optimization
lies in the precision in terms of boundary definition. Additionally, the number of
design variables required to parameterize the boundary is typically small, allowing
for the effective exploration of the design space using a wide range of optimization
algorithms. However, it is important to note that this parametrization requires user
intervention and is limited to a fixed topology, thus hindering the exploration
of alternative topologies.

The previous strategies rely on a physics-based methodology for designing struc-
tural components, which may not always align with industry practices. The design
procedure in industry may be driven by various objectives that do not necessarily
prioritize the structural behavior of the component. Consequently, the design process
may not adhere to a predefined set of rules or steps. Instead, the expertise and intu-
ition of different professionals, such as engineers and designers, play a crucial role in
the design process. However, this reliance on individual expertise poses a potential
risk. If a member of the design team leaves, it can result in a substantial loss of
knowledge, which will require significant investments of both time and money to
recover, if possible.
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1.2. Objectives

This thesis aims to make a substantial contribution to the field of structural op-
timization by proposing innovative solutions that address current limitations. The
primary objective is to advance the automation of structural design through the de-
velopment of new methodologies based on optimization techniques. By doing so, we
alm to overcome the existing limitations, which are highlighted in bold, and enable
more efficient and effective structural design processes. To achieve this overarching
goal, we have defined a set of specific objectives outlined below. Each of these objec-
tives is designed to address one or more of the highlighted limitations:

1. Enhancing the computational efficiency of topology optimization al-
gorithms.

To enhance computational efficiency, it is preferable to use meshes consisting
of elements with the same shape. Cartesian elements are commonly employed
for rectangular or cuboidal domains due to their ease of meshing with regu-
lar shapes. However, practical applications often extend beyond such domains.
Standard boundary-conforming finite element (FE) meshes struggle to ensure
uniform element shapes. Immersed boundary methods (IBM), including the Fi-
nite Cell Method (FCM) [8-10], the CutFEM [11], and the Cartesian grid Finite
Element Method (cgFEM) [12,13], do not conform to the domain’s geometry.
In this thesis, we adopt the cgFEM approach, developed by the supervisors of
this thesis, due to its numerous advantages in terms of computational cost, es-
pecially when applied in iterative processes like optimization algorithms. The
improved efficiency can be attributed to the hierarchical structure of the meshes
and the uniformity of element shapes within them. Further details regarding
these benefits are thoroughly addressed in Paper A.

2. Improving the solution quality of topology optimization algorithms

To address inaccuracies in FE calculations, various mesh refinement techniques
based on error estimation have been developed, such as h-adaptive mesh refine-
ment [14-18|. These techniques refine the mesh in regions where the FE solution
is less accurate, thereby enhancing the quality of the solution. Additionally, tra-
ditional topology optimization algorithms suffer from a significant drawback -
they do not provide a clear geometric definition of the optimal material layout.
To overcome these limitations, we have devised several strategies than the FE
mesh including the incorporation of an integration mesh with higher resolution,
or an additional mesh refinement strategy guided by the density distribution.
Further details on these strategies can be found in Paper A.

3. Reducing user intervention in shape optimization algorithms and en-
abling topology exploration.
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To address this objective, a hybrid optimization methodology is desirable. Ini-
tially, topology optimization is employed to explore various topological alterna-
tives and generate a preform. Subsequently, this preform is transformed into an
optimal material distribution layout. An interface is then utilized to establish a
connection between the topology and shape optimization algorithms. This in-
terface generates a parametric geometrical model derived from the topology op-
timization process, which is later utilized by the shape optimization algorithm.
The aim of the shape optimization algorithm is to identify the optimal combi-
nation of parameters that minimizes a given objective function while adhering
to specified constraints. The outcome of this step is a CAD-like representation
of the optimal geometry. The interface can be created using various techniques
and approaches, as demonstrated in previous studies [19-30]. In this work, we
propose employing manifold learning (ML) strategies [31,32] to deduce the geo-
metrical characterization of the interface using a set of parameters representing
the principal geometric modes of the preform. ML algorithms are utilized to
create the parametric model that characterizes the implicit boundary of the
interface using a combination of geometric modes. The extracted geometric fea-
tures may encompass simple entities such as radius or thickness, although they
are generally more complex. Nonetheless, the ML tool identifies the geomet-
ric modes, providing a parametric geometrical representation. This parametric
characterization is then employed to generate new geometries by manually ad-
justing the parameter values or by utilizing an external algorithm for guidance.
In our case, these parameters are introduced as design variables utilized by a
shape optimization algorithm. Further details regarding the proposed hybrid
optimization algorithm can be found in Paper B.

4. Knowledge preserving tool for generative design.

Changes in the design team of an industrial company can lead to potential loss
of knowledge. To avoid this invaluable and intangible asset from being lost, we
propose a methodology for extracting this know-how. The main advantage of
this strategy, apart from enabling us to store the knowledge, is that we can uti-
lize it to generate new components that meet the same criteria as the existing
designs of the company. To achieve this objective, we propose a comprehen-
sive framework that allows for the incorporation of new components based on
user-defined criteria. We introduce new tools to implement this idea. For ex-
ample, topological data analysis (TDA) techniques [33,34] can be employed to
extract topological features that characterize a given component, such as the
number and size of holes. Thus, a component can be characterized by its ge-
ometry and topology, providing sufficient information to describe the similarity
between individuals in the database using an appropriate metric. This metric
can then be used to obtain the corresponding projection onto a low-dimensional
manifold, employing manifold learning techniques. By exploring the inherent
structure of the database, one can navigate within this manifold and use the
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current database as a basis for generating new components. However, standard
interpolation techniques based on the Euclidean metric may introduce artifacts
and yield non-physical components. Therefore, we propose using metrics from
the field of optimal transport (OT) [35-38] to address topological changes when
generating new components, thereby preserving the original dimensionality. The
construction of the knowledge-based generative tool is detailed in Paper C.

1.3. Outline of the thesis

This document consists of two parts: the Thesis report and the Scientific Articles.
After this brief introduction, the first part follows with Chapter 2 that provides an
overview of the current state of the art. Chapter 3 summarizes the work conducted
in this thesis, accompanied by illustrative numerical examples. Finally, Chapter 4
presents the conclusions of this research and proposes directions for future studies.

The second part comprises a compilation of three papers that extensively discuss
the scientific contributions of this work. All papers have already been published in
high-quality, peer-reviewed journals. The contributions are presented in this docu-
ment without any journal editing, and each paper is preceded by a cover page con-
taining a citation to the corresponding journal.

Paper A introduces a 3D topology optimization methodology within the framework
of c¢gFEM. It explores various strategies to enhance the quality of the solution proposed
by the topology optimization algorithm. Paper B proposes a hybrid optimization
strategy that integrates topology and shape optimization algorithms by automatically
parameterizing the shape’s boundary. Paper C take a step forward and proposes the
generation of new components through a fully knowledge-based approach, where the
knowledge can be derived from the analysis of previous designs.







Chapter 2

State of the art

2.1. Structural optimization

Structural optimization techniques play a critical role in the design process of
mechanical components, as they can determine an optimal structural design based on
a given set of applied loads. This optimal design can be obtained by minimizing or
maximizing an objective function while satisfying a set of constraints. In the field of
structural optimization, the most common pairs of objective function and constraints
are the minimization of mass/volume while satisfying a yielding stress constraint, and
the maximization of stiffness while satisfying a volume fraction constraint. Various
approaches exist to solve the structural optimization problem, but in this work, we
will focus on two of the most commonly used techniques: topology optimization and
parametrized shape optimization (hereafter referred to as shape optimization).

2.1.1. Topology optimization

TO is a structural optimization technique that seeks to determine the optimal
distribution of material within a given physical design domain. The problem involves
minimizing or maximizing an objective function subject to a set of constraints that
depend on the applied loads. To solve the TO problem, the design domain is dis-
cretized using the FEM, resulting in a large set of design variables, where each point
can be either a solid material or void. TO has gained popularity due to its capacity
to extensively explore the design space with a reduced computation time.
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Among the different approaches, we found those based on strictly 0-1 values of
relative density [39-42]. On the other hand, some TO algorithms applied to struc-
tural problems make use of a fictitious material that exhibits composite behavior [43],
which is defined by a characteristic function that specifies the elastic properties. One
widely used approach to regularize the material properties is the SIMP method [1-3],
which penalizes the density interpolation function. Other techniques have also been
proposed in the literature, including the level-set methods that use nodal values of
an implicit function that defines the boundary [44-48] and those based on phase-field
methods [49].

As previously indicated, structural TO is a technique used to determine the op-
timal distribution of material in a design domain . The SIMP method aims to
minimize the compliance ¢ subject to constraints regarding the volume fraction of
material used in the design space. To solve the optimization problem, the SIMP
method considers the relative density p as a continuous variable, rather than a binary
(0-1) variable. The method uses a penalization parameter p to penalize intermediate
density values of p and enforce material-void segregation as much as possible. There-
fore, a typical TO problem using the SIMP method can be formulated as follows:

H}Oin: c(p;u) = %/Qe(u)D(p)s(u)dQ, (2.1a)

with D(p) = pPDo, (2.1b)

subject to:  V(p) = /deQ =VeY pe =viVo, (2.1c)

(TO(vy)) = a(u, u; p) = [(u) where, (2.1d)
a(u,v;p) = / e(u)D(p)e(v)dQ, (2.1e)

Q
l(v) = / b’ vd —|—/ tTvdly, (2.1f)
Q I'n

where € is the strain field and u the displacement field. The matrix D represents
Hook’s law, which relates strains € and stresses o. It is important to note that, accord-
ing to the SIMP method, the relation between D and Dy is given by D(p) = p?Dy.
Here, Dg is the matrix of Hook’s law for the fully dense material. When p > 1,
intermediate densities in elements are penalized because they contribute with little
stiffness relative to their volume fraction. For isotropic materials with non-negative
Poisson’s ratio, a penalization parameter of p = 3 provides intermediate materials

10
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that lie between the H-S bound and have physical meaning [50]. The parameter vy is
a prescribed volume fraction, and Vj is the total volume of the design domain. Finally
the lower bound in p is set in order to prevent ill conditioning issues [51]. One impor-
tant factor to consider when using the parameter p is its impact on the optimization
algorithm’s convergence. To address the problem of local minima, a continuation
strategy is often employed. As such, the SIMP method suggests starting with p = 1
and gradually increasing it to p = 3 [52] as the optimization process converges.

To optimize the layout of material distribution, it is necessary to obtain the sensi-
tivities of the compliance. As recommended in [51], a low-pass filter should be applied
to the sensitivities to prevent numerical instabilities [53,54] like the checkerboard pat-
tern. The filtering of sensitivities can be computed as follows:

~ 0
— ZHkpka—@ (2.2)

with the filter I/{\k defined as:

ﬁk = Tmin — diSt(ev )7
{k € N |dist(e,k) < rmin}, (2.3)
e=1,2,..., N,

where e is the element to be filtered and k are each of the neighbors of element e. We
define neighbors, denoted by N, as the elements located within a distance of 7,,;,,
which is commonly referred to as the filter size. We chose this filtering technique
due to its simplicity, as opposed to other approaches that require solving differential
equations, such as those based on the Helmholtz equation [55].

The topology optimization algorithm uses the filtered sensitivities to obtain the
new material distribution p. In [51], the optimality criteria (OC) algorithm is used.
Other alternatives like the method of moving asymptotes (MMA) [56] and the sequen-
tial quadratic programming (SQP) [57] could also be used. The iterative procedure
is repeated until a convergence criterion is accomplished.

The previous TO problem in (2.1a-2.1g) finds the material distribution given an
amount of material. However, in some situations is interesting to find the quantity
of material for not surpassing certain stress limit indicator. For achieving that, the
problem (2.4a-2.4c) is presented. This consists in an optimization problem that tries
to minimize vy subjected to the final solution of (2.1a-2.1g) providing stresses below
a certain limit.

11
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find: vy, (2.4a)
(TO(vs(Sy))) = 4 subjected to: maz(oy,) = Scrit (2.4b)
TO(vy), (2.4c)

where S¢pi; is the limit value of o7,. In this work we considered Sc;;+ as the yield limit
Sy and o7, represents an equivalent uniaxial stress value. In this work, we used as o7,
the recovered von Mises stress field o7, evaluated from o*, the so called recovered
stress field, more accurate than the stress field o” provided by the FEM. There are
different procedures to obtain o*. Because of their accuracy, the most commonly
used techniques are the superconvergent patch recovery (SPR) technique (proposed
by Zienkiewicz and Zhu [58]) and enhanced versions of this technique, like the SPR-C
technique [59]. This method provides satisfactory results if no singular points appear
in the domain.

In order to obtain ¢* from the raw FE results, we consider that the use of the
density field p in topology optimization implies a particular definition of the stress
field to keep consistency with the expression of the strain energy (compliance) in
(2.1a). We can rewrite equation (2.1a) as:

0'2” = D(pe)sg = PgDoé‘g = pgag”, (25)

where o0 = Dge would represent the original FE stress field at the element, before

considering the density correction. The penalization parameter p in (2.5) is consis-
tent with equation (2.1b) [60,61]. Taking into account equation (2.5), we propose to
smooth the original stress field at elements, o, for the evaluation of the recovered
stress field and then to modify the resulting recovered stress field using the density
correction.

2.1.2. Shape optimization

SO techniques involve the use of CAD models to determine objective functions
and constraints for optimizing geometries. These CAD representations are based on
various geometrical entities such as splines, NURBS or other entities. One of the
primary advantages of shape optimization techniques is the precision and smoothness
of the boundary definition. This benefit is particularly significant because the number
of design variables required to parameterize the boundary is usually low. As a result,
a wide range of optimization algorithms can be used to explore the design space. In
this work, we consider the shape optimization where the boundary is defined a priori
employing a set of parameters, also known as design variables a, as shown in Figure
2.1.

12
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Figure 2.1: Parametrized boundary of the design domain.

In the context of structural optimization, the objective function typically involves
optimizing for volume or mass, while the constraints involve ensuring that certain
measures of stress remain within acceptable limits. For example, one common con-
straint is to keep the maximum von Mises stress (max(o},,,)) below the yield stress
limit (S,). This can be expressed mathematically as follows:

min : Volume(a), (2.6a)
(50,(5y)) =
subjected to: max(c},,(a)) < Sy. (2.6b)

2.1.3. Hybrid optimization

After a thorough analysis of the characteristics of the two primary structural op-
timization techniques, it is clear that a hybrid optimization methodology would be
beneficial, which consists in bridging both techniques by creating an interface that
allows to jump from the TO results to the SO problem. This approach would leverage
the advantages of topology and shape optimization techniques while addressing their
respective weaknesses, which are more pronounced when these techniques are used
independently.

Several approaches have been proposed in the literature. In this section, we will
discuss some of the main contributions found in the literature. The approach de-
seribed in [20,21] involves parameterizing the optimal material distribution of a 2D
design domain using curve fitting algorithms. The shape optimization algorithm then
modifies the parameters defining those curves to find the optimal geometry. Artificial
neural networks were also used in [22] to find the set of simple entities that reproduce
the material distribution provided by the topology optimization algorithm. In [23], an
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edge detection technique is used to identify the structural elements provided by the
topology optimization algorithm. In [24], the Canny algorithm is used to detect edges,
and a B-spline representation of the model is manually created. In [25], the mesh for
the shape optimization algorithm is manually created using the material distribution
layout indicated by the topology optimization algorithm. In [26], both optimization
algorithms are simultaneously evaluated, and the shape is modified by considering
the variation of the nodal coordinates of the mesh through weights, acting as design
variables, and predefined perturbation vectors. In [27,28], a two-stage algorithm is
created where the general geometric definition is achieved in the topology optimiza-
tion step. Then the result is represented with deformable simplicial complexes entities
whose vertices’ positions can be modified by the shape optimization algorithm. Ad-
ditionally, [29] presented a new level-set algorithm that reduces the dimension of the
functional by employing the radial basis functions. Finally, the work developed in [30]
proposes using a shape optimization algorithm first to define the design domain and
then using a topology optimization algorithm to find the optimal material distribution.
Overall, several approaches have been proposed to tackle the challenge of combining
topology and shape optimization. Each approach has its strengths and weaknesses.
These approaches can be useful in different scenarios, and choosing the most suitable
one depends on the specific problem being addressed. However, the automation of this
step is not straightforward: they may need of human intervention, they constrain ex-
cessively the design space or they are not suitable for 3D design domains, for instance.

Precisely, when implementing a hybrid algorithm that combines topology and
shape optimization, the most significant challenge is creating an interface to combine
the two algorithms. As in most of the previous works, we employ an algorithm
composed by of three main steps:

1. TO. In the first step, the algorithm will generate a preform of the optimal
component, which exhibits topological characteristics defined by an optimal
material distribution layout. The design domain described by the analyst will
be taken into consideration.

2. Interface. The second step will involve communication between the topology
and shape optimization algorithms. An interface will be designed to provide a
parametric geometrical model, defined by a reduced number of design variables,
obtained from the intermediate results of the topology optimization process,
and required by the shape optimization algorithm.

3. SO. In the final step, the shape optimization algorithm will use the parametric
geometric model to find the optimal combination of parameters that minimize/-
maximize a given objective function while satisfying the prescribed constraints.
The output of this step will be a CAD-like representation of the optimized geom-
etry, in STL format which will be directly suitable for additive manufacturing.

By following this three-step process, the proposed hybrid optimization strategy
will generate a geometrically optimized design, taking into account both topological
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and shape optimization considerations.

2.2. Immersed boundary methods

IBM have gained popularity in the computational mechanics community due to
their ability to achieve geometry-mesh independence, which significantly reduces the
burden of meshing [8,11,12]). In many cases, the meshing process becomes trivial as
a result. Furthermore, certain IBM implementations have been successfully adapted
to problems where the object under analysis is described by an image, such as med-
ical images. The FCM [8-10] and the cgFEM [12,13] have both demonstrated their
efficacy in dealing with such problems [62,63].

The IBM approaches offer attractive advantages. Apart from simplifying the mesh-
ing process, they allow the simple definition of efficient data structures to reuse cal-
culations. However, it also presents some challenges that must be considered. In
particular, the computational cost with these techniques shifts from the expensive
meshing algorithm towards the need for:

a) More complex numerical integration schemes for the elements cut by the bound-
ary, so that only the part of the element lying within the physical domain is
considered in the evaluation of volume integrals; and

b) The use of special formulations to impose boundary conditions [64-69]. In the
standard FEM procedures to impose boundary conditions is assumed that the
domain’s boundary is represented by element sides described by nodes placed
on the boundary. These procedures are not suitable for IBM because, in gen-
eral, the boundaries will cut the elements, and there will be no nodes on the
boundaries.

2.2.1. Cartesian grid Finite Element Method
(cgFEM)

There are various IBM approaches, and among them, we select the cgF’EM method,
developed by the supervisors of this thesis. The cgF’EM method involves embedding
the physical domain Qpy,s within a cuboid that defines the fictitious domain Qpe.
The fictitious domain is meshed with elements of varying levels, with the Level-0 mesh
considered as a single element that encompasses the entire cuboid. We then split this
mesh into eight new Cartesian elements to create the Level-1 mesh, and recursively
repeat the process to generate meshes with higher refinement levels, resulting in a
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hierarchical structure. The final mesh for the FE analysis comprises elements of dif-
ferent refinement levels. To ensure C° continuity between contiguous elements from
different levels, multi-point constraints are utilized [70].

In Figure 2.2a, we present an example of a physical domain, denoted as Qppys,
with boundary I' that is smooth enough for our purposes. This physical domain is
embedded within a larger domain, referred to as Q ;.. The boundary I' of Q2pp,,s can
be divided into two non-overlapping parts: I'p and I'y. These regions respectively
impose the Dirichlet and Neumann conditions. Figure 2.2b depicts the embedding
domain Qg;., which we discretize using Cartesian elements, §2.. Finally, we note that
the following expression relates these domains:

QPhys c QFic = U Q°. (27)
e=1

I'p e
D Qe
I e
LV
/
A
e
FN \
I'p
(a) Physical and embedding domains. (b) Discretization of the fictitious do-
Boundary conditions. main.

Figure 2.2: Representation of the physical domain and the discretization of the
fictitious domain in cgFEM.

The efficiency and main characteristics of the cgFEM methodology are summa-
rized in Figure 2.3, which illustrates a 3D example analyzed using this technique.

- ¢gFEM is an efficient FE analysis technique that employs a Cartesian discretiza-
tion of the embedding domain, as depicted in Figure 2.3a.

- The analysis mesh utilized by cgF’/EM to model the physical domain {2pjys can
include elements of different refinement levels. These elements can be entirely
situated within £2ppys, cut by its boundary I', or be placed outside of it. The
latter are excluded from the analysis mesh, as shown in Figure 2.3b.
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- ¢gFEM relies on a specially designed integration mesh (Figure 2.3c), based
on the NEFEM integration approach [71]. This approach enables the exact
boundary representation, such as in the form of NURBS or T-Splines [72], to
be taken into account in the integration process.

(a) Physical domain Qppys (3 of a hollow
cylinder) embedded in the fictitious domain
Qpic (cube).

%

ST TSA

(b) Discretization of the fictitious domain: (c) Integration Mesh.
analysis mesh.

Figure 2.3: cgFEM. Different domains involved in a finite element analysis.

To impose the boundary conditions regarding the cgFEM framework some con-
siderations should be done. In the case of Neumann boundary conditions, it is only
necessary to consider that the surface of integration is in the interior of the element, as
it will not generally coincide with any element face. In contrast, the case of Dirichlet
boundary conditions requires more complex techniques. A common approach to im-
pose the essential boundary conditions in a weak form consists on using the Lagrange
multipliers technique [73]. However, the choice of an appropriate Lagrange multiplier
space is not trivial, as a wrong choice could produce oscillations in the Lagrange
multipliers field and thus in the FEM solution. Hence, stabilization techniques are
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needed, and an adaptation of Nitsche’s method is one of the most popular ways of
stabilization [74]. This approach results in the replacement of equation (2.1d) with
the following equation:

a(u,u)—l—ﬁ/ u-udF:l(u)—I—E/ g-udl + T () - udl. (2.8)
h Jrp h Jrp I'o

A detailed description of the equation’s derivation and its behavior is available
in [65]. The proposed stabilized Lagrange multipliers formulation is notable for its
stabilization term T, which is evaluated as a recovered [58,59] traction field. Since
this traction field depends on the FE solution, an iterative process using Richardson
iterations is used to solve (2.8). However, this is merely a technical detail since the
stabilization terms given p does not play any role in the TO procedure.

2.2.1.1. Topology optimization in cgFEM

We propose utilizing the cgFF’EM framework for TO, which requires adapting the
algorithm accordingly. The original version of the SIMP method, as presented in [51],
assumed that all mesh elements were of the same shape and size. To implement
the SIMP method within the cgFEM framework, we need to consider two essential
features: (a) elements of different sizes, i.e., from different levels, are used to construct
the analysis mesh; and (b) only the portion of the element within the physical domain
should be considered for elements intersecting the boundary. Therefore, the volume
of the physical domain after discretization should be determined as the sum of the
volumes of each element e within the physical domain:

Vip) = Zpe -V, where V., = dQ. (2.9)

QemQPhys

To ensure compliance with the volume constraint during the material distribution
p update, it is necessary to evaluate the volume sensitivities. The computation of
volume sensitivities follows the expression:

oV (p)
Ope

=V, (2.10)

Furthermore, in order to incorporate the volume of each element V. into the com-
putation of the filtered sensitivities (2.2), the corresponding expression must be revised
as shown below:

ey N
Jdc 1 Z ~ Jdc
~ -1
Pe E qevy !
f=1
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Hence, it is necessary to modify the topology optimization formulation. Firstly,
equation (2.1c) should be replaced by equation (2.9) to account for the fact that
each element has a different volume V,, either due to the mesh being h-adapted or
because the element is intersected by the domain’s boundary. Secondly, to impose
boundary conditions in elements cut by the Dirichlet boundary, a stabilized Lagrange
multipliers formulation is employed. Consequently, equation (2.1d) is substituted by
equation (2.8).

2.3. Advanced techniques for
high-dimensional data analysis

In recent years, data analysis has become an increasingly important area of re-
search, with applications ranging from natural language processing to genomics and
neuroscience. While traditional statistical methods remain valuable, the growing com-
plexity and scale of data sets have led to a need for new approaches that can capture
their underlying structure and patterns. This section explores three related areas
of research that offer promising avenues for analyzing complex data sets: manifold
learning, topological data analysis, and optimal transport. ML aims to discover the
intrinsic low-dimensional structure of high-dimensional data, allowing for effective
visualization and analysis. TDA, on the other hand, seeks to extract topological fea-
tures from data, such as holes and voids, to reveal its underlying structure. Finally,
OT provides a powerful framework for comparing and transforming probability dis-
tributions, enabling efficient data alignment and analysis. While these three areas
of research are distinct, they share a common goal: to provide geometric and topo-
logical insights into complex data sets. By combining these approaches, we can gain
a deeper understanding of the underlying structure of data and develop more effec-
tive techniques for analysis and modeling. In the following sections, we will explore
each of these areas in more detail, highlighting their unique features and potential
applications.

2.3.1. Manifold learning

ML algorithms are commonly used to extract the underlying structure of high-
dimensional data by identifying a set of low-dimensional parameters. In the ML field,
there are a plethora of techniques available, with the principal component analysis
(PCA) [31] being one of the earliest linear techniques, widely used in the past. How-
ever, with the development of ML, non-linear techniques have been introduced that
can preserve the non-linear nature of the original dataset, such as locally linear em-
bedding (LLE) [32]. These techniques are particularly important when dealing with
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information from the component’s topology, which is considered highly non-linear [75].

In this study, we have used the LLE algorithm to extract the low-dimensional
parameters of the dataset. Here, each high-dimensional point or snapshot, denoted
as X;, can be obtained as a linear combination of its K mnearest neighbors, with
weights represented by W;j;,j € [1, K]. The number of neighbors K is a user-defined
parameter, and the weights are obtained by minimizing the functional represented in
Equation (2.12):

e(W) = ZHXZ- —ZWinjH?. (2.12)

The weights W;; are subjected to the constraint ) | y W;; = 1. The LLE algorithm
hypothesizes that these weights are invariant to space transformations, and their
values are preserved when changing between spaces. The low-dimensional parameters
can be obtained by minimizing the functional in (2.13):

p(Y) = Z Y; - Z Wi Y2, (2.13)

where Y; represents each of the points projected to the embedded space. This equa-
tion can be represented in the form shown in (2.14):

o(Y)=Y'MY, (2.14)

where M = (I — W)T(I — W). The minimization problem can be considered an
eigenvalue problem, where the eigenvectors represent the low-dimensional points Y.
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(a) Original sampled dataset. (b) Reduced coordinates proposed by the LLE al-
gorithm.

Figure 2.4: LLE example of an analytic database. Just one dimension is enough to
characterize the database, as illustrated with the preservation of the color distribution.
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The dimension of the embedded space can be a user-defined parameter, but it is
convenient to study the eigenvalues of M. As we minimize (2.14), the target eigen-
vectors are related to the smallest eigenvalues. The detailed mathematical procedure
to obtain the low-dimensional embedded space is explained in [32].

To illustrate the LLE technique, we apply it to an analytical example and present
the results in Figure 2.4. Figure 2.4a shows the original sampled dataset, which is
reduced to the space illustrated in Figure 2.4b, showing that one of its dimensions
was not relevant.

2.3.2. Topological data analysis

The characterization of the component’s topology relies on TDA [33,34]. TDA is a
set of tools used in high-dimensional data analysis to extract topological information
from a group of points, including persistent homology [76]. These techniques are di-
rectly applicable to our work as any signed distance function (SDF) can be converted
into a cloud of points using the coordinates of the nodes in the Cartesian grid and
their respective function values. TDA tools are particularly useful because they em-
ploy methodologies developed for algebraic topology, allowing them to be used over
data represented as a set of points. In Figure 2.5a, we demonstrate an example of
a component’s geometry, and in Figure 2.5b, we illustrate how this information is
transformed into a set of points using TDA.

.‘

(a) (b)

=

=

=

—

Figure 2.5: Example of the particularized SDF that represents a geometry (a) and
the points used for the TDA tools (b).
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To provide an intuitive understanding of the method, we refer to Figure 2.6 and
consider a set of points denoted by A, B,C,D. In general, these points exist in a
high-dimensional space where the intrinsic topology is not visible. To address this,
we introduce a distance parameter r at each point to define the connectivity. By
varying the value of r, we alter the connectivity of the point set, resulting in the
emergence of different k-simplexes. It is worth noting that a O-simplex corresponds to
a point, a 1-simplex to an edge, a 2-simplex to a triangle, a 3-simplex to a tetrahedron,
and so on.

% ’ A

r\ ® ) ‘/\‘ ‘r(”
D oA
(a) r<L (b) r=1L (c) r=+2L

Figure 2.6: Intuitive description of the methodology in TDA tools, (a) with r < L
the set of points A, B, C, D remains disconnected, (b) with » = L the edges AB, BC,
CD, DA appear and also a hole, (c) with r = /2L the triangles ABC and ACD
appear, therefore the hole is covered.

Figures 2.6a, 2.6b, and 2.6¢ show the strategy for extracting topological features
from an unconnected set of points. As the value of r increases, the connectivity of the
points changes, allowing the creation of higher-order simplices, such as 1-simplices
or edges. These edges form a hole in 7 = L that persists until r = /2L, at which
point even higher-dimensional simplices, such as 2-simplices or triangles, are created,
covering the hole and causing it to disappear. Persistent features that are detected
over a wide range of spatial scales r are more likely to represent true topological
features of the underlying point cloud, rather than sampling artifacts or noise. The
value of r at which a persistent feature appears and disappears is used to construct
the persistence diagram (PD) shown in Figure 2.7a, which represents the birth
and death y of each topological feature found along the growth of . Since the birth
of any persistent feature, such as a hole, precedes its death, all the points in the
persistence diagram lie above the diagonal y = x. Points near the diagonal may
represent noise or small-scale features, whereas points far from the diagonal represent
topological features that persist and define the overall topology of the component.
The persistence diagram belongs to a non-metric space, so it is not directly suitable
for comparing or evaluating distances between different persistence diagrams, to do
so the space must be equipped with a metric. Other representations of persistent
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homology that contain the same information but are displayed differently are also
available.For instance, applying the mapping f : (z,y) — (z,y — ) to the PD yields
the lifetime diagram (LD) shown in Figure 2.7b. In the LD, points far from the z-
axis represent more relevant topological features. The same information may also be
displayed in a barcode format, as shown in Figure 2.7c.
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(a) Persitence diagram. (b) Lifetime diagram.
0 2 4 6 8 10 12 14 16
Lifetime

(¢) Barcode diagram.

Figure 2.7: Different representations of the persistent homology for the example in
Figure 2.5.

One limitation of using certain spaces, like the previous representations of the
topology, is that they have non-Euclidean norms, such as the commonly used Lo
norm in many machine learning applications. Hence, it’s necessary to transform the
current descriptor of topological features using a space transformation. To do this,
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a persistence surface is defined based on a Gaussian kernel evaluated in the space of
the LD. The resulting surface is then converted into a finite-dimensional discretized
space by fixing a grid with n x n subdomains (pixels) in the plane. Integrating the
persistence surface over each pixel results in the so-called persistence image (PI) € R?,
as shown in Figure 2.8b [77]. By framing the persistence features in this space, we can
leverage a wide range of machine learning algorithms. However, it’s worth noting that
there are limitations to the PI approach, such as sensitivity to the choice of kernel
and the number of pixels n x n in the grid. These limitations should be taken into
consideration when applying this technique.
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Figure 2.8: Space transformation of the persistent homology from the lifetime dia-
gram (a) to the persistence image (b).

2.3.3. Optimal transport

Probability distributions are widely used in many scientific fields as they often
encapsulate uncertain information related to geometric domains. Comparing two or
more probability distributions requires an appropriate notion of similarity or dis-
crepancy. OT techniques [35-37] provide a way to evaluate the similarity between
distributions. The main problem in OT is computing the Wasserstein (also known
as Earth Mover’s) distance between probability distributions. These distance repre-
sent the geometric likeness between two objects by measuring the minimal amount
of "work" needed to mode the mass contained in one object onto the other. Re-
cent developments show that incorporating these distances yields powerful tools for
manipulating distributions, which can be useful for tasks such as geometric domain
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interpolation [38].

To understand OT, we need some background information. We consider a mani-
fold M representing the domain where the geometric domains are located. Then, we
define d : M x M — R+ to specify the geodesic distance function, so d(X;,X;) is
the shortest distance from X,; to X; along M. We use Prob(M) to indicate the space
of probability measures on M and Prob(M x M) to refer to probability measures on
the product space of M with itself. We refer to elements p;, ptj,--- € Prob(M) as
marginals and the joint probabilities m;;, m;;, 75, -+ € Prob(M x M) as couplings.
We consider that p; represents the probabilistic distribution of the general function
X;, which may contain geometric information, such as the distance level-set.

Formally, the 2-Wasserstein distance between p; and p; is defined as

Wapis 15) = \/ir;f [ dwyraney. (2.15)

where 7 represents the transportation plan, which is a coupling in Prob(M x M) that
describes the amount of mass to be displaced.

On the other hand, the Wasserstein barycenter problem aims to find the prob-
abilistic distribution /i that minimizes the weighted functional described in (2.16