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Abstract: In recent years, the modeling and simulation of lithium-ion batteries have garnered
attention due to the rising demand for reliable energy storage. Accurate charge cycle predictions
are fundamental for optimizing battery performance and lifespan. This study compares particle
swarm optimization (PSO) and grey wolf optimization (GWO) algorithms in modeling a commercial
lithium-ion battery, emphasizing the voltage behavior and the current delivered to the battery.
Bio-inspired optimization tunes parameters to reduce the root mean square error (RMSE) between
simulated and experimental outputs. The model, implemented in MATLAB/Simulink, integrates
electrochemical parameters and estimates battery behavior under varied conditions. The assessment
of terminal voltage revealed notable enhancements in the model through both the PSO and GWO
algorithms compared to the non-optimized model. The GWO-optimized model demonstrated
superior performance, with a reduced RMSE of 0.1700 (25 ◦C; 3.6 C, 455 s) and 0.1705 (25 ◦C;
3.6 C, 10,654 s) compared to the PSO-optimized model, achieving a 42% average RMSE reduction.
Battery current was identified as a key factor influencing the model analysis, with optimized models,
particularly the GWO model, exhibiting enhanced predictive capabilities and slightly lower RMSE
values than the PSO model. This offers practical implications for battery integration into energy
systems. Analyzing the execution time with different population values for PSO and GWO provides
insights into computational complexity. PSO exhibited greater-than-linear dynamics, suggesting a
polynomial complexity of O(nk), while GWO implied a potential polynomial complexity within the
range of O(nk) or O(2n) based on execution times from populations of 10 to 1000.

Keywords: Particle Swarm Optimization (PSO); Grey Wolf Optimizer (GWO); lithium-ion battery
modeling; charge-discharge cycle predictions; bio-inspired algorithms

1. Introduction

The increase in renewable energy system production has increased the necessity of
using battery storage systems to meet energy demand and production. Recent advances
in low-carbon and sustainable batteries have given lithium-ion batteries a key role in
decarbonizing energy production [1–3]. The increasing global demand for clean and
sustainable energy sources has rapidly accelerated the development and deployment
of storage systems like lithium-ion batteries, along with other energy storage systems
for various applications [4], including electric vehicles, portable electronics, and large
hybrid renewable energy systems, and the need for research on improving energy storage
systems performance [5,6]. The widespread adoption of lithium-ion batteries can be
attributed to their high energy density, long cycle life, and relatively low self-discharge rate,
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making them a very suitable technology for electric vehicle and mobile electronic device
applications [7] or even it can be used in big systems to provide energy in a viable way.
Additionally, the increasing environmental concerns and international regulations have
further contributed to the popularity of these batteries as a means of reducing greenhouse
gas emissions as they can be integrated into microgrids based on hybrid renewable energies
as a promising energy storage system [8,9], not only to make use of electricity as final energy
but also for heating systems such as the one proposed by the authors in [10] where they
study a microgrid topology with a storage system based on traditional batteries; however,
they found significant challenges in terms of the use of conventional batteries. However,
storing energy in batteries is a very effective way for later use [11,12] compared to other
methods. As a result, there is a growing need for accurate and reliable models to predict
the performance and lifetime of these batteries, which are essential for optimizing their
performance, ensuring their longevity, improving safety, and using metaheuristic methods
to estimate their operative parameters and performance improvement [13].

The complexity of the electrochemical and thermal characteristics of lithium-ion batter-
ies makes developing robust models a very challenging task [14]. Various battery modeling
approaches have been proposed in the literature to simulate lithium-ion battery response, in-
cluding electrochemical models [15], thermal models [16], and electrical circuit models [17];
an essential task of battery models is to provide effective state-of-charge (SOC) estimations
since this is a crucial parameter that may affect not only system efficiency but also eco-
nomic constraints. The work developed in [18] presents an innovative AdaBoost-BPNN
(Back Propagation Neural Network) model to enhance the precision of SOC estimation
in lithium-ion batteries; the model outperforms traditional methods, as shown in [19], by
applying artificial neural networks to a linear regression model. However, the proposed
methods lack a detailed exploration of parameter optimization and applicability across
diverse battery types.

The electrochemical models offer a detailed understanding of batteries’ chemical
and electrical reaction mechanisms, but are often computationally expensive and time-
consuming [20]. On the other hand, thermal models are essential for predicting temperature
variations and managing thermal issues during battery operation [21]. However, these mod-
els may not wholly understand the electrochemical processes inside the battery. Besides
SOC estimation, a practical battery model may also give insights into the thermal perfor-
mance of the batteries to design an effective battery management system (BMS) [22,23].
Recently, electrical circuit models have gained popularity due to their computational effi-
ciency and their ability to integrate electrochemical parameters to predict battery behavior
under various conditions, such as temperature changes and charge/discharge cycles, as
the authors presented in [24], where the system is modeled using MATLAB/Simulink
version 2023a. The developed model has various applications, such as characterizing new
lithium-ion batteries. In recent years, advancements in computing technology have enabled
researchers to explore new approaches for modeling lithium-ion batteries by incorporating
machine learning and artificial intelligence techniques [25]. These new approaches have
shown promising results in improving battery models’ accuracy and reliability, especially
when combined with traditional modeling techniques [26]. Furthermore, data-driven
techniques have also been employed to develop empirical models based on experimental
data, offering a faster and more efficient alternative to traditional classic physics-based
models [27].

In the context of recent research on lithium-ion battery modeling, optimization algo-
rithms play a crucial role in tuning the model parameters to improve the accuracy and
performance of the battery’s models [28]. Several optimization techniques have been em-
ployed, including gradient-based optimization [29], genetic algorithms [30], and swarm
intelligence-based algorithms. Among these algorithms, Particle Swarm Optimization
(PSO) [31,32] and Grey Wolf Optimizer (GWO) [33] have emerged as promising tools for
optimizing model parameters in lithium-ion battery modeling. These algorithms have
demonstrated their effectiveness in various engineering applications [34], showing their
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efficiency in the adjustment of system parameters, as in [35], where several bio-inspired
optimization methods were applied and compared for the design of optimal Maximum
Power Point Tracker—Proportional-Integral-Derivative (MPPT PID) controllers for renew-
able energies, showing a better performance than classical methods. They, therefore, can
potentially improve the accuracy of lithium-ion battery models [36]. However, there is
limited research comparing the performance of PSO and GWO in the context of lithium-ion
battery modeling and simulation [37].

Given the importance of accurate and reliable lithium-ion battery models for various
applications, this paper aims to present a comparative study of PSO and GWO applied to a
proposed lithium-ion battery model and compared it to an experimental model. This model
combines mathematical equations and electrochemical experimental data, complemented
by representation through an equivalent circuit. This model was adapted to an RC circuit
with the ability to simulate electrochemical features such as SOH and temperature inside
the cell. These parameters will be validated in future work with experimental results.

The primary objective is to optimize the parameters and reduce the root mean square
error (RMSE) between the battery’s simulated and experimental current outputs. To achieve
this, a model that integrates electrochemical parameters into an electrical circuit to esti-
mate the behavior of the battery under different conditions is developed, considering
temperature changes and charge/discharge cycles. The model is implemented using MAT-
LAB/Simulink [38], and the optimization results are evaluated based on the reduction of
the RMSE from the optimized models compared to the not optimized and the experimental
model, optimization algorithm convergence, and computation time as well as electrical
parameter estimation.

2. Methodology

This section describes the methodology for developing the proposed lithium battery
model and its improvement using optimization algorithms. The methodology is shown in
Figure 1. As can be seen in the mentioned figure, the methodology starts with a literature
review and model development. The proposed battery model is a “synthetic” model
since it is based on experimental data and reported results from different authors [39–42].
The proposed battery model is based on an equivalent hybrid electrical circuit model,
which includes the development of electrical and electrochemical equations. After the
battery model was obtained, the model was optimized by implementing the PSO and GWO
optimization algorithms to find the best combination of the proposed equivalent electric
circuit of the model. For the validation stage of the methodology, the model was validated
using experimental data and compared to the PSO- and GWO-improved models.

Figure 1. Overall methodology for battery model development and improvement.
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2.1. Lithium-Ion Battery Selection

The Panasonic model NCR18650B battery was chosen for the development of the
proposed lithium battery model. This battery is widely used in laboratory studies due to
its low cost, availability in the market, and ease of obtaining measurable parameters of
interest, such as current, voltage, temperature, and state of charge.

For the developed model, electrochemical and electrical characteristics were con-
sidered. The thermal and electric characteristics reported in related works from lithium
batteries were considered and integrated into an electrical circuit model.

It is essential to emphasize the significance of the study in the mathematical modeling
and equivalent circuits of a lithium-type battery.

Within the realm of computational analysis, this study highlights the identification
and integration of parameters into equivalent circuits. To achieve this, understanding the
experimental parameters is crucial. Panasonic NCR18650B is a rechargeable lithium-ion
battery extensively employed in various electronic devices and research projects in energy
and storage topics.

The essential features of the Panasonic NCR18650B lithium battery are as follows:

• Battery capacity and voltage: The Panasonic NCR18650B is well known for its high
nominal capacity of approximately 3400 mAh and a nominal voltage of 3.6 V. These
features make it perfect for applications that require extended battery life.

• Research usage: Battery research often involves analyzing battery parameters, such as
capacity, voltage, internal resistance, and cycle life. Lithium-ion cells are commonly
studied using batteries similar to Panasonic NCR18650B, which is a reliable battery
that can assess performance and durability.

• Battery test methodologies: In research studies, specific tests can be conducted to better
understand a battery’s behavior under various conditions. These tests include charge
and discharge cycles, internal resistance tests, electrochemical impedance spectroscopy
(EIS), and aging analysis.

• Specific NCR18650B characteristics: It is important to note the specific characteristics
of NCR18650B in a research study. This may include details about its actual capacity,
behavior during charge and discharge cycles, internal resistance at different charge
states, and other electrical and physical parameters.

• Safety considerations: It is crucial to follow safety practices during battery testing,
which include monitoring temperature, preventing short circuits, and using appropri-
ate testing equipment designed for batteries, as lithium-ion batteries can be sensitive
to extreme conditions.

Table 1 below presents different authors’ parameters and experimental methodologies
for constructing the proposed battery model.

Table 1. Related research works for lithium-ion batteries.

Authors Parameter Analized Used Methodology
(Brief Description) Main Descriptive Results Year

[39]

Initial Capacity, Final Capacity,
and Aging (MACCOR 4000 Series)
Voltage Drop Restriction
(Measured at 4 Terminals)
Voltage Measurement (Directly
at Terminals)
Cycle Safety (Utilizing a Sand
Tank, Thermal Support, and
Electrolyte Leak Restriction)
Electrochemical Impedance
Spectroscopy (BioLogic VMP3)
Cell Dimensions (Vernier)
Battery Weight (Mettler AE 260
Delta Range)

1. Initial Cell Capacity
2. Dimensions and Weight
3. Electrochemical Impedance

Spectroscopy (EIS)
4. Full Aging Cycle
5. Partial Aging Cycle
6. Final Cell Capacity

Capacity: 3070 Ah
Minimum Capacity: 2950 Ah
Average Capacity: 2862–2961 Ah
Ohmic Resistance Total Charge: 58 Ω
Ohmic Resistance Partial Charge: 47 Ω
Average Energy Capacity (Wh): 10.19–10.61
Nominal Weight (g): ≤47.5
Measured Weight (g): 44.66
Nominal Length (mm): ≤65.3
Dimensions (mm): 65.08 Average Diameter
(mm): ≤18.5 Measured Diameter (mm): 18.28
Specific Energy (Wh/kg): 228.3–237.6
Energy Density (Wh/L): 596.9–621.3
Cost per Cell (AU$): 11.48 Cost/Measured
Capacity ($/kWh): 1125.9–1081.8
Cost/Measured SE ($kg/kWh): 50.29

2015
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Table 1. Cont.

Authors Parameter Analized Used Methodology
(Brief Description) Main Descriptive Results Year

[40] Internal Resistance

Bench laboratory tests utilized
batteries, AIM-TTI LD300 power
supply, VOLTCRAFT HPS 11560
load, National Instruments
USB-6008 card, and Tektronix
current sensor. Impedance
spectroscopy applied
single-frequency voltage or
current, measuring phase shift and
amplitude via Fast Fourier
Transform for
frequency-dependent impedance
analysis, utilizing user-friendly
instruments with a high
signal-to-noise ratio.

Dynamic resistance curves within the battery. 2018

[41] Internal Resistance
Capacitance Not specified State of Charge: 0–100% Internal Resistance:

0.101 Ω Differential Capacitance: 10,709 F 2020

[42]

Voltage Range and Load
Limitations Assigned Capacities
and C Rates Resistance
Measurements Cell Temperatures

Voltage Range and Load
Limitations: 3.00 to 4.10 V.
Assigned Capacities and C Rates:
4.20 V to 2.5 V, 2.90 Ah for
high-energy cells and 2.60 Ah.Test
Charging: C/50.
Discharge: 1 C, 0.2 C
Resistance Measurements:
dV/dI

Capacity (Ah): 2.83
Specific Energy (Wh kg−1): 220
Energy Density (Wh L−1): 622
DC resistance, 80% SOC (mΩ): 48
1 kHz impedance, as received (mΩ): 24

2021

2.2. Electrical Model

The methodology used incorporates electrochemical modeling to investigate redox
processes within a cell, allowing for the analysis of these events experimentally and analyti-
cally. As these electrochemical processes are examined more thoroughly, their complexity
increases, posing challenges for effective modeling. One such complexity is the influence of
temperature, which depends on heat generation, energy balance, and cooling processes
under different conditions.

Heat transfer in a battery is typically unstable, varies over time, and is determined
by an internal heat source. It is necessary to establish the operating conditions and the
technical limits of the batteries to choose heat generation modeling; this leads to carry
out and energy balance [43]. Heat generation depends on the state of the battery and the
entropy process of the cell, which is specific to the electrochemical reactions performed.
The cell’s total transfer and phase heat were relatively small, allowing the entropy heat to
be equivalent to Joule heat. Assuming there is no heat exchange with the exterior, the basic
form of the battery’s heat capacity is given by [44,45], as shown in Equation (1).

q =
I

Vb

[
(Vbatt − VOC) + T

∂Uo

∂T

]
(1)

where q is the heat generation rate by the battery, I is the current in the battery, Vbat is
the measured amount of voltage (terminal voltage), VOC is the open-circuit voltage, T is
the cell temperature, and ∂Uo

∂T is the entropy heat coefficient. This dynamic behavior has
allowed for deeper thermal modeling of batteries, starting with the early models developed
by Pals and Newman, who conducted various tests and conditioned thermal models for
lithium polymer batteries.

Heat transfer processes in batteries are typically transient and time dependent, with
an internal heat source driving them. The proposed methodology considers batteries’
operating conditions and technical limitations, enabling energy balancing.

Some electrochemical models with thermodynamic tendencies use the experimental
characterization of commercial cells to analyze the three-dimensional behavior of heat
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transfer and how it affects the charge and discharge of the battery in its electrochemical
components, such as its anodes, cathodes, and electrolytes. The presented work used
experimental data to model the lithium-ion battery model effectively.

2.3. Proposed Hybrid-Electrical Model

The proposed model considers that specific parameters change over time, resulting
in a dynamic open-circuit voltage (VOC) as the state of charge (SOC) varies. A diagram
of the proposed electrical model is shown in Figure 2. IBAT is the current. The model
was validated in two scenarios, at different load ratios from 0.5 A to 5 A in increments of
0.5 A and constant temperature, and at different temperature values from −20 to 60 ◦C
in increments of 20 ◦C and constant load ratio, to observe the model’s behavior under
different operation conditions.

Figure 2. Proposed electrical system model. Modified from [13].

Despite being considered simple, it is possible to integrate electrochemical equations
into the results of RC models with two arrays. These equations relate the open-circuit
voltage (VOC) to the temperature change inside the cell. Additionally, based on these data
and considering the charge or discharge current, equations were developed to estimate
the health status. Experimentally, these two characteristics are usually obtained with high-
quality and expensive sensors. The idea of using this model in future work is to better
understand the behavior of a battery with relationships such as charging from renewable
sources and non-constant discharges. This highlights the need for it to be more accessible
to adapt to these variables.

The proposed model is based on other related word experimentation results imple-
mented to determine the battery’s primary characteristic curves, allowing for the analysis
and development of a model that approximates experimental data and identifies critical
points in battery behavior. For this model, a compilation of experimental data from various
authors (mentioned in Table 1) was carried out. With these parameters, a hybrid model
was developed for implementation in a virtual battery. It is worth noting that the data and
methodologies provided by these authors were respected, and all data used were already
noise-filtered by the source. Battery manufacturers provide useful parameters for modeling
real-time battery behavior approximations. Understanding specific critical points of the
battery enables improvements in the model through optimization techniques.

Figure 3 illustrates the principles applied in formulating the equations for this model.
The equations were formulated after identifying the main dependent and independent
variables and parameters involved in lithium-ion battery dynamics. The proposed model
acknowledges that specific parameters exhibit variations over time when dealing with
a lithium-ion battery. Consequently, features like state of charge undergo fluctuations,
introducing dynamism to the open-circuit voltage (VOC).
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Figure 3. Dependent and independent variables for modeling a battery.

The SOC and VOC relationship characterization curve can be analyzed from the
technical data sheet of batteries, which provides a linear zone as part of the proposed basic
model. Equation (2) shows the relation between VOC and SOV, making the battery model
nonlinear. This nonlinearity is emphasized by incorporating equations of electrochemical
phenomena, which are linked to ambient temperature and their interaction with electrical
devices, both for charging and discharging. Thus, a hybrid model is established, primarily
governed by Equations (2)–(7).

VOC =

(
−1

CCAP
·Ipro f ile

)
+ SOC (2)

dVTS
dt

= − 1
RTS·CTS·VCTS

+
1

CTS·Ipro f ile
(3)

dVTL
dt

= − 1
RTL·CTL·VCTL

+
1

CTL·Ipro f ile
(4)

Vbat = VOC·VTS − VTL − Ipro f ile·Rs (5)

where CCAP is the relationship between the capacity C and a determined experimental
time, and Ipro f ile refers to the amount of current used for charging/discharging. Compo-
nents such as an RC array (RTS, CTS: resistance and capacitance corresponding to the short
transient; RTL, CTL: resistance and capacitance for the long transient) and their interaction
with the current as the output voltages in the short and long transient, VCTS and VCTL,
respectively. VTS and VTL are the total voltage for short and long transients.

This model considers open-circuit voltage behavior and exhibits voltage short and
long transient stages, expressed in Equations (2)–(4). The overall voltage behavior is the
relationship between the three functions in Equation (5).

The battery behavior can be better described due to its interaction with SOC, VOC, and
transient components. This allows for establishing a function for the cell mass temperature,
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considering the experiment’s ambient temperature as a reference. This function is described
in Equation (6):

Tcell = Tamb +

[
Tamb +

(0.012 + 1.09·SOC)
VOC − (1.05·SOC)− Vnom

]
(6)

This data interacts with the SOC, and if it presents a value greater than 1, it is consid-
ered an overload, indicating a possible battery failure. When graphed, it also shows the
point at which the battery begins to damage due to the stress provided by each charging
and discharging cycle. This relationship is based on open-circuit voltage, and the termi-
nal voltage (Vbat) is also affected consequently. The relationship between both yields the
battery’s state of health (SOH), expressed in Equation (7):

SOH =
Qm

Qnom
(7)

Another option to find SOH is the relationship between the battery’s maximum
capacity, differential capacity, and discharge depth. To obtain this equation, it is necessary to
solve polynomials for treatment and find the battery capacity dynamically, with coefficients
δ (−0.025) and φ (1.05). This is expressed in Equation (8):

Battcap =
[
δ+ SOH22 + (φ·SOH) + Vnom

]
dt (8)

An equivalent circuit model was developed to estimate the battery’s behavior under
different operating conditions. This model was based on the Randles circuit model, which
consists of a resistor (R) in series with a capacitor (C) and a constant-phase element (CPE)
that represents the double-layer capacitance of the electrodes. The model also includes a
Warburg impedance element to account for the diffusion process in the battery.

By utilizing the change in SOC behavior over time and the charging-discharging stages
of the battery through experimental time, an equation can be established to predict the
number of battery cycles (Ncycles), as presented below:

Ncycles =

∣∣∣∣ Ipro f ile

(SOC − 1)·Vnom

∣∣∣∣ (9)

where Ipro f ile is a predetermined charging/discharging profile.
Faraday’s electrochemical law establishes a relationship between Gibbs’ free energy

and the energy obtained from the system. Consequently, a “damage” point can be found
in each transient stage due to the aging of materials and the number of charging and dis-
charging cycles, leading to variations in the battery’s output capacity. Equations (2) and (5)
describe the general battery behavior concerning voltage and time.

The simulation in this work was performed using MATLAB software version 2023a
with the Simulink tool due to its ease of use with electrical parameters. The model is based
on two separate circuits connected by controlled voltage and current sources. The first
circuit describes the charging and discharging of the batteries in Equations (5)–(7), and the
second circuit describes the transient behavior in Equations (3) and (4).

Dynamic cell behavior should be analyzed using high-end devices through experi-
ments. Experimental methodologies allow for the study of the electrochemical behavior of
materials and their interaction with the environment. However, these methods are costly
and have limited forecasting capabilities based on the data.

2.4. Optimization Algorithms

Two bio-inspired optimization algorithms were employed to optimize the parame-
ters of the developed battery model: Particle Swarm Optimization (PSO) and Grey Wolf
Optimizer (GWO).
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Particle Swarm Optimization (PSO): The Particle Swarm Optimization algorithm
is inspired by the collective behavior observed in various animal species searching for
resources within their surroundings. PSO represents search agents as particles within a
swarm, each characterized by its position, velocity, and acceleration rates within a search
space. Initially, multiple particles are distributed throughout the search space, potentially
containing the global optimization problem solution. The objective function must be
assessed and minimized to identify a global solution.

The particles’ positions, velocities, and accelerations are updated every iteration to
converge toward the global solution. A fitness function is computed for each particle,
and the optimal fitness function value among all particles is considered the global best.
Each particle’s personal best fitness function value is updated throughout the iterative
process. The particles’ velocities are accelerated towards the global best solution and each
particle’s personal best solution in each iteration. As iterations progress, the particles’
velocities are accelerated towards the global best and personal best solutions, as described
in Equation (11).

Vij = w · Vij + c1 · rand1 ·
(

Pij − Xij
)
+ c2 · rand2 ·

(
Gj − Xij

)
Xij = Xij + Vij (10)

In the previous equation, Vij represents the velocity of the i-th particle in the j-th di-
mension while Xij signifies the position of the i-th particle in the j-th dimension. Pij denotes
the personal best position of the i-th particle in the j-th dimension and Gij stands for the
global best position in the j-th dimension. The inertia weight is represented by w, whereas
c1 and c2 are the acceleration constants. Additionally, rand1 and rand2 are random numbers
ranging from 0 to 1. The following is the pseudocode of the PSO algorithm:

1. Assign random positions and velocities to particles within the exploration space.
2. Determine the fitness of each particle by utilizing the objective function.
3. Refresh the personal best position and fitness for every particle.
4. Update the swarm’s global best position and fitness.
5. Utilize Equation (1) to modify the velocity and position of each particle.
6. Repeat steps 2 through 5 until a termination condition is satisfied (for example, the

maximum number of iterations is reached, or the desired fitness level is attained).

Grey Wolf Optimizer (GWO): In nature, grey wolves display a distinct hierarchical
structure within their packs, typically comprising 5 to 12 wolves. Within this hierar-
chy, a dominant alpha wolf leads the pack, with secondary beta wolves following, then
subordinate delta wolves, and ultimately the follower omega wolves. The GWO-based
optimization process is carried out through three primary phases that emulate the hunt-
ing behavior of grey wolves in their natural habitat, encompassing encircling, hunting,
and attacking.

Encircling phase:
In this phase, every wolf adjusts its position within the search space according to the

best relative position to the prey, as identified by the alpha wolf. The prey’s encirclement
and herding behavior are mathematically represented using Equations (11)–(14).

→
X(t + 1) =

→
Xpos(t)−

→
A
→
D (11)

→
A = 2ar1 − a (12)

→
C = 2r2 (13)

→
D = |

→
C
→
Xpos(t)−

→
X(t)| (14)

The previous equations mathematically depict the encircling and herding behavior
of the prey, in which vector alpha signifies the best relative position to the prey, a is a
coefficient, A, C, and D are vectors. The vector X denotes the prey’s position, vector
Xi represents the position of the wolf, i stands for the current iteration, and r1 and r2 are
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values randomly generated between zero and one. Furthermore, the value of vector a
decreases linearly in accordance with the iterations.

Hunting stage:
In the hunting stage, the positions of the wolves are updated according to their

proximity to the prey. The wolf closest to the prey assumes the role of the alpha wolf, while
the beta and delta wolves are designated based on their respective distances to the prey.
Equations (15)–(17) depict the updating process of the wolves’ positions.

→
Xi(t + 1) =

→
Xi1 +

→
Xi2 +

→
Xi3

3
(15)

→
Xi1 =

→
Xα(t)−

→
A1

→
Dα

→
Xi2 =

→
Xβ(t)−

→
A2

→
Dβ

→
Xi3 =

→
Xδ(t)−

→
A3

→
Dδ

 (16)

→
Dα = |C1

→
Xα(t)−

→
Xi(t)|

→
Dβ = |C2

→
Xβ(t)−

→
Xi(t)|

→
Dδ = |C3

→
Xδ(t)−

→
Xi(t)|

 (17)

In these equations,
→
Xi(t + 1) represents the wolf with the most favorable position

relative to the prey, i denotes the current iteration number of the GWO algorithm, is a
random number ranging from zero to one, and encapsulates the encircling effect.

Attack stage:
During the attack stage, the wolves aim to minimize their distance to the prey prior

to initiating an attack. The prey, in this context, refers to the optimal global solution of
the optimization problem, symbolized as vector A in Equation (18). The vector A features
a decreasing a coefficient that depends on the iteration number and reduces linearly in
accordance with Equation (18).

a = 2 − t
(

2
T

)
(18)

The pseudocode of the GWO algorithm used in this work is shown below:

1. Initialize a population of wolves Xi,j with random positions within the search space.
2. Initialize alpha, beta, and delta positions.
3. Set the iteration counter e = 1.
4. Evaluate the fitness of each wolf in the population.
5. While e ≤ MaxIteration, execute the following steps:

5.1 Update the search agents’ positions using the encircling prey and hunting
mechanisms.

5.2 Update each wolf’s position based on the current positions of the alpha, beta,
and delta wolves.

5.3 Calculate the distance factors (Dα, Dβ, Dδ) for each wolf.
5.4 Update the positions of the wolves based on the distance factors and the

random exploration factor.
5.5 Evaluate the fitness of each wolf in the population.
5.6 Update alpha, beta, and delta positions based on the fitness values of the wolves.

5.6.1 If a wolf has better fitness than alpha, it becomes a new alpha.
5.6.2 If a wolf has better fitness than beta but worse fitness than alpha, it

becomes a new beta.
5.6.3 If a wolf has better fitness than delta but worse fitness than alpha and

beta, it becomes the new delta.

5.7 Increment the iteration counter e by 1.
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6. End while.
7. Return the best solution found: the wolf with the best fitness function value is consid-

ered the solution to the optimization problem.

To compare the performance of the PSO and GWO algorithms, the root mean square
error (RMSE) between the simulated and experimental current outputs of the battery
was used as the objective function. The optimization process was carried out using the
MATLAB version 2023a Optimization Toolbox, and the performance of the two algorithms
was evaluated based on the reduction in the RMSE.

2.5. Model Validation and Performance Assessment

The developed battery model consists of two interconnected circuits with voltage
control and a current source. The first part of the circuit, represented by Equations (6)–(8),
corresponds to the charging/discharging process of the battery, while Equations (4) and (5),
from the above methodology section of this paper, describe the behavior of the transients
within the battery. The model incorporates electrochemical parameters as part of the elec-
trical components, allowing for estimation of the battery’s behavior and comparison with
experimental results by calculating the root mean square error within the battery current.

The selected battery for experimentation was the Panasonic NCR18650B model, de-
signed for use in electric vehicle packs and other electric mobility applications, such as in
airplanes. The open circuit voltage and SOC of this battery are presented in Table 2.

Table 2. Battery parameters used in experimentation and simulation.

Parameter Value

Nominal Voltage [V] 3.60
Nominal Capacity [mAh] 3350.00

Nominal Energy [Wh] 11.79
Specific Energy [Wh/kg] 243.00

Weight [g] 48.50
Ambient Temperature [◦C] 25.00

Charge Rate [C] 3.2
Simulation Time [s] 3600

Internal Resistance [Ω] 0.23

The experimental parameters for RTS, CTS, RTL, and CTL were obtained through
experimentation and analysis of the literature. For the model developed in this work, the
following heuristic values were used, as presented in Table 3.

Table 3. Open circuit voltage and SOC for the Panasonic NCR18650B battery used for simulation in
the model.

SOC (%) Open Circuit Voltage (V)

0 2.81
20 3.32
40 3.51
60 3.68
80 3.80

100 4.20

The presented parameters are useful for forecasting the loading and unloading stages.
Through analysis of the temperature parameters, some systems can be adapted to estimate
the battery’s behavior correctly. This is because, when certain peaks of changes in behavior
are determined, the phenomenon or some consequences that the battery would suffer can
be predicted.

The presented parameters in Table 4 offer a reliable way of forecasting the battery’s
charge and discharge stages. By analyzing the temperature parameters, the behavior of
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the battery can be correctly estimated, especially when determining the peaks of load
changes. This could lead to the development of systems that can detect such peaks and
adjust accordingly, thereby improving the safety and performance of lithium-ion batteries.

Table 4. Experimental and proposed model parameters.

Parameter Experimental Value Proposed Model Value

RTS [Ω] 0.02 0.01
CTS [F] 3384.00 1.00
RTL [Ω] 0.26 0.02
CTL [F] 20,249.00 5400.00

To evaluate the algorithm’s performance, the Root Mean Squared Error (RMSE) is used
as the output of the objective function. The RMSE is measured between the current deliv-
ered by the battery over time and the current estimated by the synthetic model optimized
by both the GWO and the PSO. Equation (19) shows the RMSE as an objective function.

Min

RMSE =

√√√√ 1
n

n

∑
j=1

(
Ire f − Imodel

)2

 (19)

The optimization vector for the algorithms is constructed by the variables of the
proposed hybrid model, represented by X in Equation (20).

X = [RTS, CTS, RTL, CTL] (20)

The lower bound (LB) and upper bounds (UB) of the values used for each variable of
the X vector are shown in Equations (21) and (22), respectively.

LB = [5300, 0.01, 0.02, 5400] (21)

UB = [20, 248, 0.26, 0.05, 20, 248] (22)

The values expressed in Equations (21) and (22) for the limits of each variable of the
X vector of Equation (20) are based on values commonly used for this type of model.

Since the proposed hybrid model is an electrochemical equivalent of a real battery, the
combination of the X values will result in a better or worse model measured as a function
of the RMSE with respect to the experimental control measurements.

3. Results and Discussion

This section presents an analysis of the outcomes derived from evaluating the proposed
hybrid-electrical lithium-ion battery model and a comparative assessment of the Particle
Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) models. The objective is to
gain insights into the performance and accuracy of each model in predicting battery current
and voltage. The analysis is based on the root mean square error (RMSE), optimization
algorithm performance comparison, and battery model outputs.

3.1. Comparison of PSO and GWO Algorithm Performance

Optimization algorithms play an essential role in tuning the parameters of the battery
model to improve its accuracy and performance. This study compared two bio-inspired
optimization algorithms, PSO and GWO, regarding their performance in optimizing the
parameters of the developed battery model. The comparison was carried out using the
RMSE as the objective function, algorithm convergence, and performance comparisons;
the results show that both algorithms effectively optimized the model’s parameters and
improved its accuracy.
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After the simulations were run, the GWO algorithm outperformed the PSO algorithm
regarding the convergence rate and computational time. The convergence curve of the best
GWO and PSO is shown in Figure 4.

Figure 4. PSO and GWO algorithm convergence curves.

In Figure 4, it can be observed that, although the objective function values are very
similar, the convergence speed of the GWO is generally faster towards the global optimum
of the problem. In Table 5, the performance results of each algorithm applied to the lithium
battery model are presented in detail.

Table 5. Comparison of PSO and GWO algorithms under various parameter configurations.

Configuration
Set

Population/
Wolves

Self
Adjustment

Social
Adjustment Time (s) Number of

Iterations
Function

Evaluations

Best
Function

Value

PSO 1 10 3 1 185.16 16 337 131.84
PSO 3 100 3 1 974.84 1 1117 132.32
PSO 4 1000 3 1 1040.23 1 1180 131.71
PSO 5 10 1 3 228.84 11 268 131.73
PSO 7 100 1 3 244.27 1 288 132.86
PSO 8 1000 1 3 1060.00 1 1277 131.69

GWO 1 10 - - 74.90 10 247 131.71
GWO 3 100 - - 940.36 10 310 131.74
GWO 4 1000 - - 10,654.39 10 1207 131.69

Given that each optimization problem is unique, the corresponding search space will
possess a distinct topology and, consequently, different local optima where an optimization
algorithm may be trapped. It is, therefore, important to ensure the convergence of opti-
mization algorithms while averting local optima. The initial step to secure convergence
for an optimization algorithm in a problem with an unknown search space topology in-
volves preliminary exploration of potential solutions by testing the diverse configuration
parameter values of the optimization algorithms to be used.

This process includes varying both in magnitude and in combination the different
configuration values of each algorithm. Then, a comparison is made between the results,
considering computation time, number of iterations, and value of the fitness function as
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indicative of the speed of convergence of the algorithm, and, therefore, its ability to avoid
being trapped in local optimums.

Once the adjustment parameters have been identified, within whose values the best
objective function value has been obtained, it can be considered that better algorithm
convergence under those conditions is assured. Table 5 details the initial exploration of the
different configurations for this study’s PSO and GWO algorithms.

As can be seen in Table 5 above, the values of the evaluated objective function converge
in values between 131 and 132 and a total number of function evaluations between 247 and
1277 for the different configuration parameters of the optimization algorithms evaluated. It
is important to note that in optimization, the number of evaluations to a model or objective
function per iteration is not a fixed value, so each iteration in the same optimization run
can have a different number of evaluations to the objective function. This depends on the
algorithm’s convergence characteristics and the particles’ initial position in the search space.
That is why, in Table 5 above, differences are observed between the number of iterations
and the number of evaluations for each run. A lower value of the function indicates a better
configuration of the algorithm. An analysis of algorithm execution time as the population
sizes of the PSO and GWO vary can give insights about the computational complexity of
each algorithm. It is remarkable how, when the population increases, so does the execution
time. For the PSO algorithm, the increase in computational time for a population of 10 to
1000 suggests nonlinear growth, approaching a polynomial complexity on the order of
O(nk) where k > 1. Similarly, the GWO shows an increase in execution times for larger
population numbers, suggesting a polynomial complexity potentially of the range O(nk)
and even O(2n). Table 6 details the best solutions found, comparing the execution times
and values obtained from the optimization variables.

Table 6. Summary of PSO and GWO optimization model simulations.

Parameter PSO Algorithm GWO Algorithm

Best objective function value 131.71 131.69
Fastest execution time (s) 185.00 75.00
Slowest execution time (s) 10,060.00 10,654.00

Maximum number of iterations [0–16] 10
Population/number of wolves [10–1000] [10–1000]
Social adjustment parameter [0.01–3] NA
Auto-adjustment parameter [0.01–3] NA
Variables Lower Bound (LB) [5300, 0.01, 0.02, 5400] [5300, 0.01, 0.02, 5400]
Variables Upper Bound (UB) [20,248, 0.26, 0.05, 20,248] [20,248, 0.26, 0.05, 20,248]

CTL (F) 20,208.30 20,248.00
RTL (Ohm) 0.25 0.26
RTS (Ohm) 0.02 0.02

CTS (F) 5539.83 5400.00

Table 6 summarizes the configuration parameters and the results obtained by the PSO
and GWO for the best optimization runs for each algorithm. It should be noted that the
values of the upper and lower bound limits of the optimization variables were determined
in the first instance by a literature review of related works, with the values reported by these
authors but were later refined and adjusted through the initial exploration of the behavior
of the algorithms for different combinations of configuration parameters and limit values
for the optimization variables. Choosing the right values of the configuration parameters
of an optimization algorithm for a given problem is important since they directly affect the
performance of the algorithm, both in its speed of convergence and in the quality of the
solution found, that is, whether it remains trapped in local optimums. Choosing unsuitable
values for the configuration parameters of the optimization algorithms, e.g., too wide
maximum and minimum limits, too large or too small population size, among others, can
cause the algorithm to be slower to find the best solution, or even not to find a satisfactory
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solution. This would result in an unsuitable battery model, with a significant error between
reference models and the proposed battery model.

The analysis of the findings presented in Table 6 is crucial for understanding the per-
formance and efficiency of both algorithms in optimizing the hybrid-electrical lithium-ion
battery model. Table 6 shows that the GWO algorithm achieved a slightly better best
objective function value (131.6906) than the PSO algorithm (131.7112). This suggests that
the GWO model might offer marginally improved optimization performance. It should
be noted that although the optimization algorithm finds a set of values for the vector of
optimization variables (RTS, CTS, RTL, CTL), the objective of the optimization is not the
estimation of constructive electrical values of a battery, but rather an equivalent model that
explains the dynamics of the battery without being necessary that the values of these virtual
electrical variables have a physical interpretation. This optimization aims to minimize the
error between the battery current estimated by the model and the experimental dataset. A
significant difference is found in the execution times, with the GWO algorithm presenting
a considerably faster execution time (75.00 s) than the PSO algorithm (185.00 s). How-
ever, it is worth noting that the GWO algorithm also exhibits the slowest execution time
(10,654.00 s), slightly higher than the PSO algorithm’s slowest execution time (10,060.00 s).
This information indicates that although the GWO algorithm can achieve quicker solutions,
its execution time may vary considerably.

3.2. Proposed Optimized Model Evaluation

Validation of the developed lithium-ion battery model is essential to ensure its accuracy
and reliability. In this study, experimental data were used to validate the performance
of the developed model under different conditions, including charge/discharge cycles.
The model’s parameters were determined based on the electrochemical and electrical
characteristics of the battery, and the model’s accuracy was evaluated using statistical
metrics, such as the root mean square error (RMSE). The validation results show that the
developed model accurately predicts the behavior of the lithium-ion battery, and the RMSE
between the simulated and experimental current output was minimized. The current
parameter was selected as the focus of analysis, as it showed the highest error between the
proposed and experimental data. Therefore, the objective function sought to minimize this
error using the optimization algorithms presented in this work.

3.2.1. Battery Terminal Voltage

One of the parameters that can be accessed through the technical specifications of
batteries is the open circuit voltage, while users can measure the terminal voltage. As a
result, experimentation with these parameters was required. The model (and its subsequent
optimization) was carried out using the open circuit voltage, whereas the terminal voltage
provided data that the user could quantify.

Figure 5 shows the predicted terminal voltage using the model compared to the
experimental data obtained. This also demonstrates how the optimization algorithms
improved the model. This was conducted under standard temperature conditions (25 ◦C,
with a charge ratio of 3.2 C). The main comparisons are accompanied by the computation
time used by the optimization algorithms.

3.2.2. Battery Current

A parameter sensitivity analysis determined that the current delivered by the battery
has the most significant influence on the battery model analysis. This is not only from a
comparative standpoint but also for the practical application of the battery, as it could be a
determining factor for its integration into an energy system.
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Figure 5. Comparison of terminal voltage predictions and experimental data under standard condi-
tions for (a) a computation time of near 455 s. 25 ◦C; 3.2 C and (b) for 10,654 s. 25 ◦C; 3.2 C.

Figure 6 demonstrates how the optimization algorithms aim to approach the values
obtained through experimentation, thereby reducing the error, and assigning optimized
values to the established model. Upon closer inspection, the GWO algorithm tends to
approach the experimental results more closely. In addition, Table 6 showcases the perfor-
mance of the proposed model, the PSO-optimized model, and the GWO-optimized model
under two different sets of conditions: 25 ◦C temperature with 3.6 ◦C current and varying
timing components (454.8947 and 10,654.387312 s). The performance is measured using the
RMSE, which calculates the differences between the predicted battery current values and
the values obtained from the experimental dataset. Lower RMSE values indicate a more
accurate model with predictions that closely resemble the experimental data.

Figure 6. Comparison of optimization algorithms in approaching experimental results for battery
current for (a) a computation time of near 455 s, 25 ◦C; 3.2 C and (b) for 10,654 s. 25 ◦C; 3.2 C.

After examining Table 7, it is evident that the PSO and GWO models outperform
the proposed model under both sets of conditions. For the first set of conditions (25 ◦C;
3.2 C, 455 s), the RMSE values for the proposed non-optimized, PSO, and GWO models
are 48.0662, 0.2909, and 0.1700, respectively. Similarly, for the second set of conditions
(25 ◦C; 3.2 C, 10,654 s), the RMSE values are 48.0662, 0.2915, and 0.1705. In both cases, the
PSO and GWO models exhibit significantly lower RMSE values than the proposed model,
suggesting superior performance and a better fit to the experimental data.
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Table 7. Performance and electrical configuration of the proposed model, PSO, and GWO optimized
lithium-ion battery models at 25 ◦C.

Conditions/Parameter Criteria Model Before
Optimization

PSO-Optimized
Model

GWO-Optimized
Model

25 ◦C; 3.2 C, Timing (s):
454.8947 RMSE 48.06 0.29 0.17

25 ◦C; 3.2 C, Timing (s):
10,654.387312 RMSE 48.06 0.29 0.17

CTL F 0.01 20,208.30 20,248.00
RTL Ohm 1.00 0.25 0.26
RTS Ohm 0.02 0.02 0.02
CTS F 5400.00 5539.83 5400.00

The RMSE values for the PSO and GWO models are similar, indicating comparable
accuracy in predicting battery current under the given conditions. However, the GWO
model displays slightly lower RMSE values in both cases, suggesting that it may offer a
marginally better performance than the PSO model. This analysis demonstrates that the
PSO and GWO models predict battery current under the tested conditions more accurately
than the non-optimized proposed model. The GWO model exhibits the best performance
among the evaluated models.

In recent research, RMSE values have been used as the objective function performance
index for different parameters in the optimization of battery modeling. Table 8 shows some
authors, the sought-after parameters, and the values from this work.

Table 8. Comparative model performance.

Reference Typo of Model Parameter RMSE

[46] Electrochemical
Experimental SOC 0.3400 to 1.4000

[47] Electrochemical
Experimental SOC 0.4083 to 0.4307

[48] Equivalent Electric
Circuit Voltage 0.0018 to 0.0047

[49] Hybrid Model SOH 0.5600 to 4.900
Proposed not optimized

model
Hybrid Synthetic

Model Current 0.4806

Proposed optimized
model

Hybrid Synthetic
Model Current 0.3988

The optimization of these parameters using PSO and GWO algorithms has led to
significant improvements in the performance of the battery model, as indicated by the
reduced RMSE values presented in the previous analysis.

4. Conclusions

This study analyzes lithium-ion battery modeling and optimization using PSO and
GWO algorithms. The research emphasized the battery terminal voltage and current in the
battery as key parameters in the evaluation of the optimization algorithms’ performance.

The analysis of terminal voltage demonstrated that both the PSO and GWO algorithms
improved the model compared to the proposed non-optimized model. The GWO-optimized
model exhibited a lower RMSE value of 0.1700 (at 25 ◦C; 3.6 C, 455 s simulation time) and
0.1705 (at 25 ◦C; 3.6 C, 10,654 s simulation time) compared to the PSO-optimized model
with RMSE values of 0.2901 and 0.2915, respectively, meaning an average RMSE reduction
of 42% achieved by the GWO in comparison to the PSO algorithm. These results indicate
that optimized models could provide more accurate predictions, allowing users to make
informed decisions in battery applications.
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Regarding the battery’s current, the study established that it has the most significant
influence on battery model analysis. The optimized models, especially the GWO model,
exhibited enhanced performance in predicting battery current under various conditions,
with a marginally lower RMSE value than the PSO model, offering practical implications
for integrating batteries into energy systems.

The performance comparison of the PSO and GWO algorithms revealed that the GWO
algorithm had a faster convergence rate than the PSO algorithm. The GWO algorithm was
also found to be less sensitive to initial conditions, suggesting that it may be more robust
and reliable for optimizing the parameters of the battery model.

The research concludes that securing convergence for optimization algorithms in
problems with unknown search space topology involves preliminary exploration of poten-
tial solutions by testing extreme configuration parameter values. Once these parameters
are identified, convergence is considered assured. The evaluated objective function in
this study converged between values 131 and 132, with a varying number of function
evaluations. The analysis of algorithm execution time reveals insights into computational
complexity, with both PSO and GWO showing potential polynomial complexities. This
study emphasizes the importance of comparing execution times and values obtained from
optimization variables, demonstrating how the algorithms aim to approach values obtained
through experimentation. Additionally, the use of current as the analyzed parameter distin-
guishes this work from others, which typically focus on parameters like SOH, voltage, or
current in battery modeling optimization. The research ultimately contributes to reducing
errors and assigning optimized values to the established model.

An analysis of the execution time for different population values for both PSO and
GWO can provide insights into the computational complexity of these algorithms. In the
case of the PSO algorithm, the rate change of execution time from a population size of 10
to a maximum of 1000 suggested a greater than linear dynamic, showing a polynomial
complexity in the order of O(nk). For the GWO, the execution time from populations of 10
to 1000 implies a polynomial complexity potentially in the range of O(nk) or O(2n).

The implications of this study’s findings are significant for designing and operating
lithium-ion batteries in various applications, including electric vehicles, portable electronics,
and renewable energy systems. The optimized battery models can help improve efficiency
and performance in these applications, with the GWO-optimized model outperforming
the proposed model by more than 282 times in terms of RMSE values. Furthermore, the
study can inform the development of future optimization algorithms and battery models,
enhancing their accuracy and reliability. This research has demonstrated the effectiveness of
using optimization algorithms, particularly the Grey Wolf Optimizer, in improving lithium-
ion battery models. The insights gained from this study can contribute to advancing battery
technology and its applications across various industries. Nevertheless, to improve the
model, it must be tested using other batteries.
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Abbreviations

BMS Battery Management Systems
BPNN Back Propagation Neural Network
Cbat Charge of battery
CPE Constant-phase element
DOC Deep of Charge
DOD Deep of Discharge
EIS Electrochemical impedance spectroscopy
GWO Grey Wolf Optimizer
MPPT-PID Maximum Power Point Tracker—Proportional Integral and Derivative
PSO Particle Swarm Optimization
RMSE Root Mean Squared Error
SOC State of Charge
SOH State of Health
Nomenclature
a GWO attack coefficient
Battcap Dynamic battery capacity Ah (Amperes-hour)
C1 PSO self-acceleration factor
C2 PSO social-acceleration factor
CCap Battery capacitance F (Farads)
CTL Long transient capacitance F (Farads)
CTS Short transient capacitance F (Farads
δ Aging coefficient
→
Dα GWO alpha wolf sorting
→
Dβ GWO beta wolves sorting
→
Dδ GWO follower wolves sorting
φ Aging correction coefficient
Gj PSO best global position
q Heat generation rate W (Watts)
I Electrical current A (Amperes)
Ibat Battery electrical current A (Amperes)
Imodel Battery model output current A (Amperes)
Ipro f ile Battery electrical current profile A (Amperes)
Ire f Battery reference output current A (Amperes)
LB Optimization variables Lower Bound limits
Ncycles Battery number of cycles
T Temperature ◦C (Celsius degrees)
∂Uo
∂T Entropy heat coefficient V

◦C (Volts/Celsius degrees)
Pij PSO best personal particle position
Qnom Nominal battery capacity Ah (Amperes-hour)
Qm Measured battery capacity Ah (Amperes-hour)
RS Internal resistance Ω (Ohms)
RTL Long transient resistance Ω (Ohms)
RTS Short transient resistance Ω (Ohms)
Tenv Environmental temperature ◦C (Celsius degrees)
Tcell Battery cell temperature ◦C (Celsius degrees)
UB Optimization variables Upper Bound limits
Vbat Battery voltage V (Volts)
VCTL Long transient capacitor voltage V (Volts)
VCTS Short transient capacitor volage V (Volts)
Vij PSO particle speed
Vnom Nominal voltage V (Volts)
VOC Open circuit voltage V (Volts)
VTL Long transient total voltage V (Volts)
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VTS Short transient total voltage V (Volts)
X Optimization variables vector
Xij PSO particle position
→
Xpos(t) GWP wolf position
→
Xi(t + 1) GWO wolf position update
w PSO inertia factor
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