
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04577-2

1 3

BestOf: an online implementation selector for the training
and inference of deep neural networks

Sergio Barrachina1 · Adrián Castelló2 · Manuel F. Dolz1  · Andrés E. Tomás2

Accepted: 30 April 2022
© The Author(s) 2022

Abstract
Tuning and optimising the operations executed in deep learning frameworks is a fun-
damental task in accelerating the processing of deep neural networks (DNNs). How-
ever, this optimisation usually requires extensive manual efforts in order to obtain
the best performance for each combination of tensor input size, layer type, and
hardware platform. In this work, we present BestOf, a novel online auto-tuner that
optimises the training and inference phases of DNNs. BestOf automatically selects
at run time, and among the provided alternatives, the best performing implementa-
tion in each layer according to gathered profiling data. The evaluation of BestOf
is performed on multi-core architectures for different DNNs using PyDTNN, a
lightweight library for distributed training and inference. The experimental results
reveal that the BestOf auto-tuner delivers the same or higher performance than that
achieved using a static selection approach.

Keywords  Deep neural networks · Auto-tuning · Implementation selector · Python

Abbreviations
BLAS	� Basic linear algebra subprograms
DNN	� Deep neural network
CNN	� Convolutional neural network
Conv2D	� 2-dimensional convolution

 *	 Manuel F. Dolz
	 dolzm@uji.es

	 Sergio Barrachina
	 barrachi@uji.es

	 Adrián Castelló
	 adcastel@disca.upv.es

	 Andrés E. Tomás
	 antodo@upv.es

1	 Universidad Jaume I, Castellón de la Plana, Spain
2	 Universitat Politècnica de València, València, Spain

http://orcid.org/0000-0001-9466-3398
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04577-2&domain=pdf

	 S. Barrachina et al.

1 3

ConvGEMM	� Convolution via gemm with implicit im2col
DL	� Deep learning
GEMM	� General matrix multiply
im2col	� Image to column transform
im2row	� Image to row transform
MLP	� Multi-layer perceptron
PyDTNN	� Python distributed training of neural networks

1  Introduction

Artificial intelligence, and, in particular, machine learning via deep neural networks
(DNNs) have experienced explosive growth due to the appearance of new algorith-
mic techniques, vast amounts of computer power, and an increased amount of train-
ing data [1–5]. This scenario has pushed the industry to design customised architec-
tures for deep learning (DL), e.g. NVIDIA’s Tensor Cores or Google’s TPUs, as well
as to develop frameworks such as Google’s TensorFlow or Facebook’s PyTorch.

Tuning and optimising DL frameworks on these customised platforms are fun-
damental to reducing the overall training and inference costs [6]. For instance, the
realisation of the forward and backward passes for the training of a convolutional
layer may deliver distinct performance results depending on the selected algorithmic
variant and the problem (layer) size. Similarly, the configurations to conduct indi-
vidual tensor operations, such as paddings, shrinks or transpositions, may also affect
the overall run time depending on their specific tensor size. A naive approach is to
manually optimise the execution of DNN layers by selecting the best implementa-
tion according to post mortem profiling data. However, auto-tuners have been dem-
onstrated to provide a better solution in these scenarios by selecting the algorithm
for each problem that obtain the best performance [7, 8].

Following this trend, in this work, we present a novel online implementation
selector for DL frameworks which automatically selects the best possible implemen-
tation at run time. In particular, this work makes the following contributions:

–	 We present BestOf, an online auto-tuner that selects the best algorithm for each
problem according to their previous performance profiles within the same pro-
gram execution. BestOf has been designed as a Python module and its interface
can be easily used to replace actual calls in the original code for making selec-
tions. This auto-tuner is able to deal with grouped selections, where all routines
in a group must be selected together due to implementation dependencies. More-
over, it can automatically manage and discover nested selections, allowing recur-
sive decisions when inner functions also present alternative implementations.

–	 We integrate BestOf as a module on PyDTNN, a lightweight framework for
distributed training and inference of DNNs [9], and instrument it to permit the
selection of (i) algorithms to perform the forward-backward passes in convo-
lutional neural networks (CNNs), via either im2row+gemm (lowering convolu-
tion to gemm or General Matrix Multiplication [10]), ConvGEMM (gemm with

1 3

BestOf: an online implementation selector for the training…

implicit im2row, see [11]), or variants of the Winograd algorithm [12]; and (ii)
implementations to conduct 4D tensor transpositions.

–	 We evaluate the performance obtained by BestOf for training and inference with
VGG16 and inference with ResNet34 using two multi-core nodes equipped with
Intel Xeon Skylake processors. This study is completed with a per-layer analy-
sis that assesses the performance gains, as well as the throughput attained along
with the training steps.

The rest of the paper is organised as follows. In Sect. 2, we revisit some related
work on auto-tuning tools and frameworks and compare them against the approach
presented in this work. In Sect. 3, we describe the user interface and the internals
of BestOf. In Sect. 4, we briefly introduce PyDTNN and detail how BestOf was
integrated to select different implementation alternatives. In Sect. 5, we evaluate
the benefits of BestOf by comparing its throughput with native versions. Finally, in
Sect. 6, we close the paper with a summary and a collection of concluding remarks.

2 � Related work

Current software libraries in general deploy distinct computational kernels depend-
ing on the underlying hardware. Typically, once the user selects the processor type
(or specification) from within a limited list, the optimum computational kernel is
selected [13]. Usually, this approach does not take into account other considerations
that could affect the kernels performance, such as the problem dimensions.

Conversely, several automatic selections have been applied for decades in order
to extract the maximum computational power of the hardware. The automatic selec-
tion of the best implementation for a computational kernel dates back to the ATLAS
dense algebra library [14]. This library was probably the first popular BLAS imple-
mentation to execute benchmarks during its installation phase in order to select the
best algorithm parameters. Among others, the main parameter in ATLAS is the
matrix multiplication block size which depends heavily on the memory cache prop-
erties. This automatic selection has been extended recently to accelerator platforms,
selecting not only the algorithm implementation but also which hardware to use (for
example, CPU or GPU) [15, 16]. Nevertheless, as the selection is performed offline,
the adopted decision cannot be changed afterwards. The main drawback of offline
selectors is the potentially very large search space for all possible input sizes of an
algorithm. Typically, libraries with offline selectors use heuristics or some form of
optimisation to limit the number of tests performed during the installation process.
This is particularly difficult for the convolution in neural networks which have a
large number of parameters, exponentially increasing the search space. For instance,
the work by Anderson et al. [17] uses partitioned boolean quadratic programming
(PBQP) for selecting the optimal configuration after benchmarking all possible com-
binations of convolution implementations and layer sizes.

In contrast, an online approach traces the execution time during the actual com-
putation, cycling over the different alternatives, to make a decision after suffi-
cient performance data are collected [18–20]. This technique requires the repeated

	 S. Barrachina et al.

1 3

application of an algorithm with the same parameter set, a condition that is met by
the “iterative" nature of DNNs training.

The selection of a proper convolution algorithm has a major impact on DNN
training performance as shown in [6] for GPUs. Popular toolkits, such as cuDNN
(up to version 7) and OpenVINO, employ heuristics to predict which implementa-
tion will be faster given the specific set of parameters of the convolutions at hand.
Offline selection methods have appeared in recent literature [7, 8], but even though
the majority of neural network toolkits have provisions for benchmarking, as far as
we know the latest version of cuDNN is the only one to provide a run-time selector
for alternative convolution implementations.

The BestOf online selector presented in this work differs from other state-of-the-
art alternatives in the following aspects: (i) it is implemented as a Python module,
allowing an easy integration into the PyDTNN DNN training/inference framework,
which is developed in the same programming language; (ii) it presents a very sim-
ple interface that permits making selections by simply replacing the actual calls in
the original source code with calls to BestOf instances; (iii) it supports grouped
selections and can automatically manage and discover nested selections for recursive
decisions; and (iv) it is open source. Unfortunately, as we have not found compara-
ble online selection tools that could be easily applied to our target application, it was
not possible to experimentally compare BestOf with other solutions.

3 � BestOf: An Online Implementation Selector

In this section, we present BestOf, an online auto-tuner developed in Python that is
able to automatically execute a set of alternative algorithms and eventually select,
after a given number of rounds, the best performing option for each problem type.
The selections made by BestOf occur at run time according to the execution time
data gathered from previous executions of the considered routine/algorithm for each
problem size.

Application programming interface The BestOf API is detailed in the example
shown in Listing 1, where we have declared a BestOf object for selecting the best
implementation for the transposing of a Numpy 4D array. There, the constructor
receives the transposition alternatives as a list of pairs, where each pair is formed
by a name and a pointer to the function that should be called when that alternative is
selected. BestOf requires all the alternatives to receive the same parameters in the
same order. However, if this was not the case, it could easily be solved by wrapping
the non-conformant functions. In the example, the first two alternatives of the opera-
tion are developed in Cython and present different loop orderings for transposing
the tensor dimensions, while the last invokes the native transpose routine from
Numpy.

The constructor also requires a pointer to a function that returns the problem size
as a hashable object (get_problem_size parameter in Line 8). For the case of
the transpose, this parameter corresponds to the array shape and is key to enabling
BestOf to identify all the transpose calls that share the same problem size. Other
parameters of the constructor are the rounds value, which specifies the number of

1 3

BestOf: an online implementation selector for the training…

times that all the alternatives have to be executed until a decision is made (see Line
9); and the pruning_speedup factor, which aims to accelerate the decision-
making by pruning those alternatives that are slower than any other by the speci-
fied factor. The pruning is performed only after all the alternatives have been evalu-
ated a minimum given number of rounds, according to the prune_after_round
parameter (see Lines 10–11).

Finally, the example also shows how the created BestOf object can be called on
to perform the transpose (see Lines 13 and 14), while it will silently evaluate the
alternative used on that occasion (or will call on the selected alternative if a decision
has already been made for that problem size).

Internals The BestOf auto-tuner is defined as a Python class implementing the
constructor, a series of auxiliary member methods, and the __call__ method,
which permits calling the instantiated object as if it were a function. In fact, the
__call__ method is the function in charge of measuring the execution times and
making a selection of the best performing alternative when appropriate. This proce-
dure is repeated until a specific number of rounds is reached. At that point, BestOf
selects the alternative that delivers on average the best performance.

Functionality The BestOf auto-tuner is characterised by supporting the following
two features: grouping and nesting.

Grouping One of the requirements for using this auto-tuner is that all the alterna-
tives should work interchangeably, that is, they should not present any side effects or
dependencies among them. In some cases, however, the alternatives may perform a
series of optimisations that assume the state left from a previously called function.
A practical example is the use of the im2row transform in the forward and backward
propagation methods in a convolution layer. As the same computed im2row trans-
formation is used in both methods, the forward method stores it in a temporary vari-
able, so that the backward method does not need to re-compute it. This optimisation
trades memory for execution speed and forces the use of the same algorithm for both
the forward and backward phases.

To tackle such dependencies, BestOf can evaluate grouped implementations,
which consists of a set of algorithms that have to be executed in conjunction. List-
ing 2 declares a BestOf object for selecting the best group of alternatives for exe-
cuting the forward and backward phases of a convolutional layer using either: (i)

	 S. Barrachina et al.

1 3

im2row+gemm; (ii) ConvGEMM; or (iii) the Winograd algorithm. To leverage this
feature, each of the alternatives in the list has to be defined as a tuple containing
the name given to that group and a list with the function pointers that constitute
the group. Internally, BestOf keeps track of the execution times for each group and
problem size, eventually executing the best performing group after completing the
number of rounds specified. Note that, the problem size in the example has to be
defined to include the input parameters of all functions in the group. In this case, we
use a tuple that combines the shapes of the input and weight tensors, which serves to
univocally determine the problem size in the group.

From the user’s perspective, calling on a BestOf object that uses the grouping
feature requires passing an index for identifying which function of the group has to
be executed in the user’s code (see Lines 12–13 in Listing 2).

Nesting The second feature of this auto-tuner is the support for making nested selec-
tions, i.e. an alternate implementation that internally contains other calls to BestOf
objects. In such cases, the selection proceeds by exploring the different branches of a
decision tree that is evaluated at run time. To build the decision tree, the auto-tuner
uses the traceback Python module, which reports the function calls made in the
code at a specific point by retrieving the stack. Using the stack frames, BestOf checks
whether the current object has been invoked from another instance in a previous frame
and, in such cases, registers it as the parent. To select the best-performing branch in the
tree, the auto-tuner makes decisions from the leaves to the root nodes. This is because
each node is required to know the selection made in all its children prior to measuring
the execution time of its alternatives. For this, the implementation of BestOf delays
the evaluation of the parents until all their children have determined their best alterna-
tive. A practical example is shown in Fig. 1. In this case, the im2col forward version
is among the forward options being evaluated by a BestOf instance. When the im2col
forward version is invoked, a 4D transposition must be performed. As there are differ-
ent possible implementations for this transposition, an additional BestOf instance will
evaluate which implementation is faster. While the different transpositions of a given
size are being compared, the corresponding BestOf parent will be locked, i.e. it will
pause its own time comparisons. Another example is when the Winograd algorithm is
among the different forward alternatives being evaluated by BestOf . In this case, as

1 3

BestOf: an online implementation selector for the training…

the Winograd algorithm also selects among different variants, BestOf will automati-
cally discover and manage these nested selections.

Apart from the aforementioned functionalities, the auto-tuner also provides, as
a result, the collected performance metrics and the associated decision trees, which
can be analysed postmortem by users to gain insights into the best performing
implementations in different problem sizes.

4 � Integration in PyDTNN

In this section, we briefly describe PyDTNN, a framework for distributed training
and inference of DNNs, as the BestOf auto-tuner has been integrated into it. Next,
we list the operations in PyDTNN that offer different implementation alternatives in
order to leverage our implementation selector.

Overview of the DL framework. PyDTNN1 is a lightweight framework for dis-
tributed training of DNNs on clusters of computers that has been designed as a
research-oriented tool with a low learning curve. PyDTNN presents the following
appealing properties:

–	 Flexible PyDTNN regards extensibility (and, to a certain extent, simplicity) as a
first-class citizen to allow users to customise the framework to prototype research
ideas.

Fig. 1   Illustration of BestOf nesting: one of the forward implementations performs a transposition,
which also has different possible implementations

1  The PyDTNN framework is available at https://​github.​com/​hpca-​uji/​PyDTNN/, under a GNU General
Public License v3.0.

https://github.com/hpca-uji/PyDTNN/

	 S. Barrachina et al.

1 3

–	 Ample functionality PyDTNN covers DL training and inference for a signifi-
cant part of the most common DNN models: multi-layer perceptrons (MLPs),
convolutional neural networks (CNNs), and transformers for natural language
processing. In practice, PyDTNN provides training and validation accuracies on
par with those attained by Google’s TensorFlow [9].

–	 High performance PyDTNN exploits data parallelism [21], relying on special-
ised message-passing libraries for efficient communication, and kernels from
high performance multi-threaded libraries for the major computational opera-
tions in CPUs and GPUs.

Alternate implementations in PyDTNN. The integration of BestOf in PyDTNN
consisted of incorporating the auto-tuner as a module and in identifying those opera-
tions that rely on alternate implementations. These operations are as follows:

–	 Convolution algorithms The convolutional 2D layers offered in PyDTNN cur-
rently support the execution of the forward and backward passes using the: (i)
im2row+gemm; (ii) ConvGEMM; and (iii) Winograd minimal filtering algorithm.
The incorporation of BestOf, in this case, leverages the afore-mentioned group-
ing feature, for selecting the best performing pair of forward-backward alterna-
tives.

–	 Winograd variants When the preceding Winograd algorithm is applied on
3 × 3 kernel sizes, PyDTNN leverages two different variants using output tiles of
size 2 and 4, respectively. The use of BestOf in this case leads to a nested selec-
tion, given that the Winograd algorithm, as previously explained, is already an
algorithm alternative.

–	 Tensor transpositions While the Numpy transpose routine performs well
for small tensor sizes, it may behave poorly for larger arrays, as the operation is
executed in series, aside from being memory-bound. For this reason, PyDTNN
provides two alternate OpenMP-parallel Cython implementations of the trans-
pose which vary the order in which the dimensions are accessed.

While PyDTNN lacks the level of maturity and the complete functionality of
production-level frameworks, such as TensorFlow or PyTorch, we believe that
PyDTNN offers a more accessible and easier-to-customise solution for the effi-
cient training and inference of DNN models. All these reasons have motivated us to
accommodate BestOf within this framework and to evaluate the performance gains
that can be obtained in both training and inference stages of DL models while select-
ing the best alternative for the three previous operations.

1 3

BestOf: an online implementation selector for the training…

5 � Experimental Results

In this section, we evaluate the performance of the BestOf auto-tuner within
PyDTNN against the static selection of the different algorithms previously
described. In particular, we evaluate the training and inference phases of the VGG16
model using different configurations of threads, datasets, and multi-core architec-
tures; and the inference phase of the ResNet34 model.

For that, we measure the overall training and inference throughput of PyDTNN
with each statically selected variant and with BestOf using the platforms listed
in Table 1. The selected parameters for running the experiments in PyDTNN are
shown in Table 2. The per-layer evaluation analyses the time spent by PyDTNN on
the convolutional layers appearing in the VGG16 [22] and ResNet34 [23] models
for the different convolution algorithms shown in Table 3. Note that, as all filters in
the VGG16 and part of the ResNet34 models are of dimension 3 × 3 , each time the
Winograd alternative is called on to perform the corresponding convolution, BestOf
will also evaluate the two possible Winograd variants that can be applied for this
filter size.

5.1 � Results on training

Figure 2 reports the throughput obtained by the different convolutional algorithms
and the BestOf auto-tuner using 1, 4, 8, and 12 threads on Altec and Volta. The
results show that the im2row transform followed by a gemm is consistently the best
option for all cases. Even in this scenario, BestOf achieves the same performance
when using the CIFAR-10 dataset (see left-hand side plots), and nearly the same
performance as the best option in the case of ImageNet. Note that, these results have
been obtained by training during a single epoch and 120 steps. Under a more realistic

Table 1   Computer platforms
used for the experiments

Platform Altec Volta

CPU model (Intel Xeon Gold) 5120 6126
Cores 14 12
Frequency (GHz) 2.2 2.6
DDR4 RAM (GiB) 96 32

Table 2   DL framework
parameters used for the
experiments

PyDTNN parameters

DNN model VGG16 (training/inference), ResNet34
(only inference)

Datasets (batch size) CIFAR-10 (64), ImageNet (32)
Data layout NHWC
Number format Floating-point Single-precision (FP32)

	 S. Barrachina et al.

1 3

scenario, i.e. over 40 epochs with more than 240 steps per epoch, the BestOf over-
head due to the evaluation of non-optimal variants would be mostly diluted.

Figure 3 shows, for each VGG16 convolutional layer, the average time of the
different forward-backward algorithms. For simplicity, the convolution layers of
VGG16 that use the same input and kernel sizes are grouped in the plot. As reported
there, the im2row transform followed by a gemm achieves the best performance in
nearly all the layers for any combination of dataset and platform. Nevertheless, it is
interesting to note that the relative performance among the different algorithms var-
ies depending on the target architecture.

Table 3   Convolution algorithms used for the experiments

Convolution algorithms

im2row+gemm im2row from Cython v0.29.24 parallelized with OpenMP
gemm from Numpy v1.12.2 linked against BLIS v3.0

ConvGEMM It uses microkernels provided by BLIS v.3.0
Winograd In-house OpenMP-parallel library with

SSE vector instructions and gemm from BLIS v3.0

Fig. 2   Training performance of VGG16 on CIFAR-10 (left) and ImageNet (right) using Altec (top) and
on Volta (bottom) using different forward-backward alternatives and BestOf with the same alternatives

1 3

BestOf: an online implementation selector for the training…

5.2 � Results on inference

Figure 4 depicts the throughput obtained by the different convolutional algorithms
and the BestOf alternative when using 1, 4, 8, and 12 threads. The best algorithm for
inference depends on the number of threads, the dataset, and the node architecture.
This behaviour differs from that observed in the training scenario. For example, the
best option for VGG16 and 8 threads on Altec is the Winograd algorithm, while for
12 threads, im2row+gemm is the best option. Likewise, the preferred option for VGG16
and 8 threads on Altec is the Winograd algorithm while for the same scenario on
Volta, ConvGEMM is the best alternative. It is worth noting that BestOf not only
achieves the performance of the best algorithm in each case, but also outperforms the
other algorithms in all scenarios. This is because BestOf does not select the same algo-
rithm for all the VGG16 layers. Figure 5 shows the same information as that in the
previous figure, but for the ResNet34 model. As can be observed, the results are similar
to those for VGG16, as the best choice on Altec on all the cases but one corresponds to
the Winograd algorithm, and the best alternative on Volta in all the cases is the Con-
vGEMM algorithm.

Figure 6 shows, for each VGG16 convolutional layer, the average time of the distinct
forward algorithms with 12 threads. As shown, the best forward algorithm depends on
the layer (or problem size), the dataset, and the target node architecture. The same effect
can be observed when the ResNet34 model is leveraged (see Fig. 7). Note that, for this

Fig. 3   Average time of the forward-backward alternatives evaluated by BestOf on the convolutional lay-
ers of VGG16 during the training on CIFAR-10 (left) and ImageNet (right) using Altec (top) and Volta
(bottom) and 12 threads

	 S. Barrachina et al.

1 3

model, the Winograd algorithm cannot be used on some of its layers. For these layers,
PyDTNN instructs BestOf to resort only to Winograd and ConvGEMM algorithms.

5.3 � Evolution of the training and inference performance

To gain insights into the behaviour of BestOf, we have also analysed its through-
put over time. Figure 8 depicts the performance evolution over time of the different
algorithms for training and inference with VGG16 using 12 threads on Altec. As
expected, all the PyDTNN variants performing a static selection perform quite uni-
formly during their entire execution. In contrast, the BestOf variant starts at a given
performance that is steadily increased until the best alternative is identified. For the
training experiment, the achieved performance is similar to the im2row+gemm vari-
ant, while for the inference scenario, the BestOf selection outperforms all other var-
iants, as it individually selects the best algorithm for each VGG16 layer.

Fig. 4   Inference performance of VGG16 on CIFAR-10 (left) and ImageNet (right) using Altec (top) and
Volta (bottom) using different forward-backward alternatives and BestOf with the same alternatives

1 3

BestOf: an online implementation selector for the training…

6 � Concluding Remarks

In this work, we have presented BestOf, a novel online implementation selector,
that is capable of selecting at run time among different alternatives the best per-
forming one. Two important features of BestOf are the ability to evaluate groups of
alternatives as a whole as well as making nested decisions.

The experimental results on the VGG16 and ResNet34 model demonstrate that
our auto-tuner is able to improve the overall training and inference times when dif-
ferent algorithms are used to process the convolutional layers. We also observed
that, when the preferred algorithm depends on the target architecture, BestOf eas-
ily identifies the best alternative, avoiding manual efforts to profile each available
alternative. With this in mind, we can conclude that the benefits of the BestOf auto-
tuner highly compensate for the negligible costs in terms of overheads and lines of
code that have to be introduced in the original application.

As part of a future work, we plan to apply the auto-tuner to other fields in order to
test its applicability and to find out which additional requirements should be incor-
porated. As part of this effort, we plan to implement the possibility of retrieving
the decisions made in a previous execution so that BestOf could be useful even for
short-lived applications.

Fig. 5   Inference performance of ResNet34 on CIFAR-10 (left) and ImageNet (right) using Altec (top)
and Volta (bottom) using different forward-backward alternatives and BestOf with the same alternatives

	 S. Barrachina et al.

1 3

Fig. 6   Average time of the forward alternatives evaluated by BestOf on the convolutional layers of
VGG16 during the inference on CIFAR-10 (left) and ImageNet (right) using Altec (top) and Volta (bot-
tom) and 12 threads

Fig. 7   Average time of the forward alternatives evaluated by BestOf on the convolutional layers of
ResNet34 during the inference on CIFAR-10 (left) and ImageNet (right) using Altec (top) and Volta
(bottom) and 12 threads. The Winograd algorithm column is blank on those layers where this algorithm
can not be used

1 3

BestOf: an online implementation selector for the training…

Acknowledgements  This research was funded by Project PID2020-113656RB-C21/C22 supported
by MCIN/AEI/10.13039/501100011033. Manuel F. Dolz was also supported by the Plan Gen–T grant
CDEIGENT/2018/014 of the Generalitat Valenciana. Adrián Castelló is a FJC2019-039222-I fellow sup-
ported by MCIN/AEI/ 10.13039/501100011033.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availibility  The CIFAR-10 and ImageNet datasets used for the current study are publicly avail-
able from the web. See https://​www.​cs.​toron​to.​edu/​~kriz/​cifar.​html and https://​www.​image-​net.​org/,
respectively.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Sze V, Chen Y-H, Yang T-J, Emer JS (2017) Efficient processing of deep neural networks: a tutorial
and survey. Proc IEEE 105(12):2295–2329

	 2.	 Pouyanfar S et al (2018) A survey on deep learning: algorithms, techniques, and applications. ACM
Comput Surv 51(5):92:1-92:36

	 3.	 Hssayni E, Joudar N-E, Ettaouil M (2022) KRR-CNN: kernels redundancy reduction in convolu-
tional neural networks. Neural Comput Appl 34(3):2443–2454

	 4.	 Fernandes Junior FE, Yen GG (2019) Particle swarm optimization of deep neural networks
architectures for image classification. Swarm Evol Comput 49:62–74

	 5.	 Eddine MD, Shen Y (2022) A deep learning based approach for predicting the demand of elec-
tric vehicle charge, J Supercomput

	 6.	 Jordà M, Valero-Lara P, Peña AJ (2019) Performance evaluation of cuDNN convolution algo-
rithms on NVIDIA Volta GPUs. IEEE Access 7:70461–70473

	 7.	 Chen T, Zheng L, Yan E, Jiang Z, Moreau T, Ceze L, Guestrin C, Krishnamurthy A (2018)
Learning to optimize tensor programs. In: Proceedings of the 32nd International Conference on
Neural Information Processing Systems, Ser. NIPS’18. Curran Associates Inc., Red Hook, NY,
USA, pp 3393–3404

Fig. 8   Evolution of the performance for the training (left) and inference (right) of VGG16 and CIFAR-10
with 12 threads on Altec for the different algorithms evaluated and the BestOf alternatives

https://www.cs.toronto.edu/%7ekriz/cifar.html
https://www.image-net.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 S. Barrachina et al.

1 3

	 8.	 Zheng L, Jia C, Sun M, Wu Z, Yu C. H, Haj-Ali A, Wang Y, Yang J, Zhuo D, Sen K et al (2020)
Ansor: generating high-performance tensor programs for deep learning, In: 14th USENIX sym-
posium on operating systems design and implementation (OSDI 20), pp 863–879

	 9.	 Barrachina S, Castelló A, Catalán M, Dolz MF, Mestre JI (2021) Pydtnn: a user-friendly and
extensible framework for distributed deep learning. J Supercomput 77(9):9971–9987

	10.	 Chellapilla K, Puri S, Simard P (2006) High performance convolutional neural networks for doc-
ument processing,” In: Tenth international workshop on frontiers in handwriting recognition

	11.	 Juan PS, Castelló A, Dolz MF, Alonso-Jordá P, Quintana-Ortí ES (2020) High performance and
portable convolution operators for multicore processors, In: 32nd IEEE international symposium
on computer architecture and high performance computing, SBAC-PAD (2020) Porto, Portugal,
September 9–11. IEEE 2020:91–98

	12.	 Winograd S (1980) Arithmetic complexity of computations. Society for Industrial and Applied
Mathematics

	13.	 Low TM, Igual FD, Smith TM, Quintana-Ortí ES (2016) Analytical modeling is enough for
high-performance BLIS. ACM Trans Math Soft (TOMS) 43(2):1–18

	14.	 Whaley RC, Dongarra JJ (1998) Automatically tuned linear algebra software, In: Proceedings
of the 1998 ACM/IEEE Conference on Supercomputing, Ser. SC ’98. IEEE Computer Society,
USA, pp 1–27

	15.	 Dastgeer U, Li L, Kessler C (2013) Adaptive implementation selection in the SkePU skeleton
programming library. In: Wu C, Cohen A (eds) Adv Parallel Process Technol. Springer, Heidel-
berg, pp 170–183

	16.	 del Rio Astorga D, Dolz MF, Sánchez LM, Fernández J, García JD (2018) An adaptive offline
implementation selector for heterogeneous parallel platforms. Int J High Perform Comput Appl
32(6):854–863

	17.	 Anderson A, Gregg D (2018) Optimal dnn primitive selection with partitioned boolean quad-
ratic programming, In: Proceedings of the 2018 International symposium on code generation and
optimization, ser. CGO. New York, NY, USA: Association for Computing Machinery, 2018, pp
340–351. [Online]. Available: https://​doi.​org/​10.​1145/​31688​05

	18.	 Fernández J, Cuadrado AS, del Rio Astorga D, Dolz MF, Daniel García J (2017) Probabilistic-
based selection of alternate implementations for heterogeneous platforms, In: Algorithms and
Architectures for Parallel Processing. Springer International Publishing, pp 749–758

	19.	 Planas J, Badia RM, Ayguadé E, Labarta J (2013) Self-adaptive OmpSs tasks in heterogeneous envi-
ronments,” In: 2013 IEEE 27th international symposium on parallel and distributed processing, pp
138–149

	20.	 Balaprakash P, Dongarra J, Gamblin T, Hall M, Hollingsworth JK, Norris B, Vuduc R (2018) Auto-
tuning in high-performance computing applications. Proc IEEE 106(11):2068–2083

	21.	 Ben-Nun T, Hoefler T (2019) Demystifying parallel and distributed deep learning: an in-depth con-
currency analysis. ACM Comput Surv (CSUR) 52(4):1–43

	22.	 Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recogni-
tion, arXiv:​1409.​1556

	23.	 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition, In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1145/3168805
http://arxiv.org/abs/1409.1556

	BestOf: an online implementation selector for the training and inference of deep neural networks
	Abstract
	1 Introduction
	2 Related work
	3 BestOf: An Online Implementation Selector
	4 Integration in PyDTNN
	5 Experimental Results
	5.1 Results on training
	5.2 Results on inference
	5.3 Evolution of the training and inference performance

	6 Concluding Remarks
	Acknowledgements
	References

