Document downloaded from:

http://hdl.handle.net/10251/202855

This paper must be cited as:

Herreros-Pomares, A.; Doria, P.; Gallach, S.; Meri-Abad, M.; Guijarro, R.; Calabuig-Fariñas, S.; Camps, C.... (2022). A Sonic Hedgehog Pathway Score to Predict the Outcome of Resected Non-Small Cell Lung Cancer Patients. Annals of Surgical Oncology. 30(2):1225-1235. https://doi.org/10.1245/s10434-022-12565-2



The final publication is available at https://doi.org/10.1245/s10434-022-12565-2

Copyright Springer

Additional Information

1 Establishment of a Sonic Hedgehog Pathway Score to Predict the Outcome of **Resected Non-Small Cell Lung Cancer Patients** 2 Alejandro Herreros-Pomares<sup>1,2,\*</sup>, Paula Doria<sup>3</sup>, Sandra Gallach<sup>2,4,5</sup>, Francisco Aparisi 3 <sup>6</sup>, Ricardo Guijarro<sup>2,5,7,8</sup>, Silvia Calabuig-Fariñas<sup>2,4,5,9</sup>, Eloísa Jantus-Lewintre<sup>1,2,4,5,\*</sup> and 4 Carlos Camps 2,4,5,6,10 5 6 <sup>1</sup> Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain; herreros ale@gva.es (A.H.-P.); jantus elo@gva.es (E.J.-L) 7 8 <sup>2</sup> Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; gallach sangar@gva.es (S.G.); guijarro ricjor@gva.es (R.G.); 9 calabuix\_sil@gva.es (S.C.-F.); camps\_car@gva.es (C.C.) 10 <sup>3</sup> Persona Biomed Spain S.L., 46015 Valencia, Spain 11 <sup>4</sup> Molecular Oncology Laboratory, Fundación Investigación Hospital General 12 13 Universitario de Valencia, 46014 Valencia, Spain <sup>5</sup> TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación 14 del Hospital General Universitario de Valencia, 46014 Valencia, Spain 15 <sup>6</sup> Department of Medical Oncology, Hospital General de Reguena, 46340 Valencia, 16 17 Spain; aparisi fraapa@gva.es <sup>7</sup> Department of Surgery, Universitat de València, 46010 Valencia, Spain 18 <sup>8</sup> Department of Thoracic Surgery, Hospital General Universitario de Valencia, 46014 19 20 Valencia, Spain <sup>9</sup> Department of Pathology, Universitat de València, 46010 Valencia, Spain 21 <sup>10</sup> Department of Medicine, Universitat de València, 46010 Valencia, Spain 22 23 \* Correspondence: herreros\_ale@gva.es (A.H.-P.); jantus\_elo@gva.es (E.J.-L) 24 Simple summary 25 26 In recent years, considerable progress has been achieved in clinical trials for Hedgehog (Hh) pathway inhibitors, resulting in regulatory approvals of several molecules targeting 27 28 Hh components for cancer treatment. Unfortunately, the link between Hh signaling pathway and lung cancer, which is the leading cause of cancer death in the world, is less 29 30 clear, with contradictory results reported that have hampered the usage of Hh inhibitors. In this study, the gene expression of the main components of Hh signaling was 31 32 evaluated in non-small cell lung cancer (NSCLC) patients. Our results indicate that Hh

pathway plays an important role in NSCLC prognosis and suggest that their components
could constitute a potential target with major implications in patients' survival.

35

#### Abstract

Mutations and deregulations in the components of the Hedgehog (Hh) pathway have 36 been associated to cancer onset and tumor growth in some malignancies, but their role 37 in non-small cell lung cancer (NSCLC) remains unclear. This study aims to investigate 38 the expression pattern of the main components of Hh pathway in tumor and adjacent 39 normal tissue biopsies of resectable NSCLC patients. The relative expression of GLI1, 40 41 PTCH1, SHH and SMO was analyzed by quantitative PCR and associated with 42 clinicopathological information. Significant variations in the expression levels of the 43 genes analyzed were found for tumor and normal tissues and for patients with different 44 ECOG and histology. In addition, patients with higher expression levels of PTCH1 presented better outcomes. A gene expression score, called Hedgehog score, was then 45 46 calculated using the absolute regression coefficients of a multivariate model including 47 the components of Hh signaling analyzed. Kaplan–Meier analysis showed that patients 48 with high Hedgehog score have shorter Relapse-Free Survival (RFS) [39.13 vs. 81.23 months (mo), p = 0.025] and overall survival (OS) [44.50 vs. 95.40 mo, p = 0.039]. 49 50 Similarly, patients in the adenocarcinoma (ADC) subcohort had shorther RFS [29.83 vs. 51 71.63 mo, p = 0.036] and OS [29.83 vs. 90.43 mo, p = 0.012]. Multivariate analysis indicated that the Hedgehog score is an independent biomarker of prognosis for OS in 52 both the entire cohort [hazard ratio (HR): 1.564; 95% confidence interval (CI), 1.052-53 2.326; p = 0.027] and the ADC subcohort [HR: 2.399; 95% CI, 1.164–4.946; p = 0.018]. 54 This score was validated in an independent cohort of NSCLC patients from The Cancer 55 Genome Atlas (TCGA), which confirmed its prognostic value. Our findings provide 56 relevant prognostic information for NSCLC patients and support future trials targeting 57 Hh pathway. 58

59 Keywords: Lung cancer; Hedgehog pathway; Cancer Stem Cells; CSC targeting;
60 Tumor treatment; SMO antagonist

61

## 63 INTRODUCTION

Lung cancer is the second most commonly diagnosed form of cancer, with more 64 than 2.2 million new cases (11.4%) in the world in 2020, and the leading cause of 65 cancer-related death, with 1.80 million deaths (18.0%) (1). Histologically, lung cancer 66 patients are classified into non-small cell lung cancer (NSCLC), which represents the 67 85% of diagnosed patients and includes adenocarcinoma (ADC), squamous cell 68 69 carcinoma (SCC), and large-cell carcinoma (LCC) and small cell lung cancer (SCLC), which accounts for a 15% of all cases. There have been notable improvements in cancer 70 71 diagnostics and therapeutics over the past decades (2,3), but many patients still develop treatment resistance, progress, and die (4,5). Surgery is still the standard of care for 72 73 early-stage NSCLC patients with a good ECOG, but the recurrence rate ranges from 35 74 to 50% and, after an apparently successful surgical intervention, the development of 75 secondary tumors frequently leads to the relapse of resected patients (6). This heightened rate of lung cancer related mortality highlights the importance of gaining a 76 better understanding of this disease through extensive new researches. 77

The hedgehog (Hh) signaling pathway is an important component on the 78 79 regulation of stem cells properties during the embryonic development and in adult tissues (7). In lung tissue, Hh signaling pathway seems to be inactive in all cells of the 80 human adult lung epithelium except for the progenitor cells (8). The persistence of Hh 81 82 signaling in the epithelial progenitor cells seems to facilitate these cells maintenance and play a decisive role in tissue response to injuries in the airway epithelia (9,10). 83 However, mutations and deregulations of genes related to Hh pathway have been 84 reported in several solid tumors, including lung cancer, which contribute to the onset of 85 cancer and accelerate its growth (11). The first connection between aberrant Hh 86 signaling and cancer was the discovery of a mutation in the transmembrane receptor 87 PTCH1 that causes a rare condition, named Gorlin syndrome (12). Gorlin syndrome 88 89 patients suffer from various basal cell carcinomas (BCC) throughout their lifetimes and 90 are predisposed towards other types of cancer. Additionally, increased Hh signaling has been reported in a third of all human medulloblastoma cases, frequently due to PTCH1 91 and *SUFU* mutations (13,14). In all these cases, deregulated Hh signaling have been 92 proven to increase cell proliferation and tumor formation, resulting in regulatory 93 approvals of several SMO antagonists for tumor treatment. Unfortunately, the link 94 95 between Hh pathway and lung cancer is less clear. Activation of Hh pathway has been

- 96 clearly reported on small cell lung cancer (SCLC) cell lines and tumors (15,16), but not
- 97 in non-small cell lung cancer (NSCLC), although the blockade of Hh signaling
- 98 increases sensitivity to EGFR-TKIs in NSCLC cell lines (17,18).

| 99  | The objective of this study was to provide new insight into the role of Hh                |
|-----|-------------------------------------------------------------------------------------------|
| 100 | signaling pathway in NSCLC. Tumor and adjacent normal tissue biopsies were obtained       |
| 101 | from non-pretreated early-stage NSCLC patients at the time of surgery. We identified      |
| 102 | significant differences in the expression of core Hh components between samples           |
| 103 | (tumor and adjacent healthy) and patients and investigated their prognostic implications. |
| 104 | A gene signature based on the four Hh components analyzed was established,                |
| 105 | constituting an independent prognostic biomarker for OS in NSCLC. The results             |
| 106 | obtained were further validated using an independent cohort of NSCLC patients from        |
| 107 | The Cancer Genome Atlas (TCGA).                                                           |
| 108 |                                                                                           |
| 109 |                                                                                           |
| 110 |                                                                                           |
| 111 |                                                                                           |
| 112 |                                                                                           |
| 113 |                                                                                           |
| 114 |                                                                                           |
| 115 |                                                                                           |
| 116 |                                                                                           |
| 117 |                                                                                           |
| 118 |                                                                                           |
| 119 |                                                                                           |
| 120 |                                                                                           |
| 121 |                                                                                           |

#### 122 MATERIALS AND METHODS

## 123 **Patients and sample collection**

124 This study included 245 patients from the General University Hospital of Valencia who underwent surgery between 2004 and 2017 and who fit the eligibility 125 126 criteria: resected, non-pretreated stage I-IIIA patients (according to the American Joint 127 Committee on Cancer staging manual) with a histological diagnosis of NSCLC. The study was conducted in accordance with the Declaration of Helsinki, and the 128 institutional ethical review board approved the protocol. The most relevant demographic 129 130 and clinicopathological characteristics of the cohort are shown in Table 1. Tumor and adjacent normal tissue specimens were obtained at the time of surgery and frozen at -80131 °C in RNAlater® (Applied Biosystems, USA) to avoid degradation of RNA. Patients 132 133 with post-surgical complications were excluded and only those patients who had at least 134 1 month of follow-up were included.

#### 135 Gene expression analysis

RNA from frozen tissue samples was extracted using standard TRIZOL 136 (Invitrogen, USA) method. Reverse transcription reactions were performed from 1.0 µg 137 of total RNA using random hexanucleotides and a High-Capacity complementary DNA 138 (cDNA) Reverse Transcription Kit (Applied Biosystems, USA) following the 139 manufacturer's instructions. The thermal cycling conditions were as follows: 10 min at 140 141 25 °C, 120 min at 37 °C, and 5 s at 85 °C. The relative gene expression of GLI1, 142 PTCH1, SHH and SMO was analyzed by RTqPCR using 1 µL of cDNA, TaqMan Gene Expression Master Mix (Applied Biosystems, USA) and the corresponding TaqMan 143 144 Gene Expression Assay (Hs01110766\_m1, Hs00181117\_m1, Hs00179843\_m1 and 145 Hs01090242\_m1, respectively) in a 5 µL final reaction volume. The RTqPCR was performed on a Roche LightCycler®480 II system (Roche Ltd., Basel, Switzerland) 146 with the following thermal cycling parameters: 2 min at 50 °C and 10 min at 95 °C, 40 147 cycles of 15 s at 95 °C and 1 min at 60 °C. For efficiency calculations, we used random-148 primed qPCR Human Reference cDNA (Clontech, USA). ACTB, GUSB, and CDKN1B 149 150 were selected as endogenous controls using GeNorm software. Relative gene expression levels were expressed as the ratio of target gene expression to the geometric mean of the 151 endogenous gene expressions according to Pfaffl formula (19). It was considered a gene 152 to be overexpressed when the median of the relative gene expression of the pathological 153

area referred to the adjacent healthy tissue was higher than 2 and underexpressed when
it was less than 0.5. Gene expression levels were dichotomized as "high" and "low"
according to the median of each case.

## 157 **Bioinformatic analysis**

Expression levels of *GLI1*, *PTCH1*, *SHH* and *SMO* were evaluated in two lung cancer data sets from The Cancer Genome Atlas (TCGA) consortium (20,21). Clinical and RNA-sequencing (Illumina HiSeq platform) information was directly downloaded from the ICGC Data Portal (22), <u>https://dcc.icgc.org/releases/current/projects/LUAD-</u> US, and https://dcc.icgc.org/releases/current/projects/LUSC-US.

## 163 Statistical analyses

Continuous variables were compared by non-parametric Mann-Whitney U and 164 165 Kruskal–Wallis tests. Survival analyses were performed using univariate Cox regression analysis and Kaplan–Meier (log-rank) test method with clinicopathological variables 166 167 and dichotomized gene expression levels. Relapse-Free Survival (RFS) spans from surgery to relapse or exitus dates and and overall survival (OS) from surgery to exitus 168 169 dates, following the Response Evaluation Criteria in Solid Tumors (RECIST). For 170 patients who neither relapsed nor died, the last recorded follow-up was considered. To assess the independent value of the tested biomarkers, a Cox proportional hazard model 171 for multivariate analyses was used. All significant variables from the univariate were 172 entered into the multivariate analyses in a forward stepwise Cox regression analysis. 173 174 Furthermore, we also calculated gene expression score based on multi-gene signature 175 using a method previously reported (23,24). Univariate Cox regression analysis was 176 used to select genes associated with mortality (Z-score >1.5), which were afterwards 177 included in a multivariate risk model. All genes were included for these purposes, and expression values for all analyses were continuous variables. A probability of 95% (p < p178 179 0.05) was considered statistically significant for all analyses. Statistical analyses and 180 boxplots were performed using the IBM® SPSS Statistics version 23.0 and R version 181 3.6.2.

182

183

## 185 **RESULTS**

# Hedgehog pathway molecules are differentially expressed along resected NSCLC samples

- 188 The demographic and clinicopathological data of the 245 resected NSCLC
- patients included in this part of the study is available at **Table 1**. The median patient age
- 190 was 65 years [range: 54-83], 82.4% were males, 46.5% had ADC, and 54.3% of them
- 191 were diagnosed at stage I of the disease. During the follow-up (median 34.2 months),
- 192 101 patients relapsed (41.4%) and 117 died (48.0%).
- **Table 1**. Clinicopathological characteristics of the patients included in the study.

| Characteristics                | N (245) | %     |
|--------------------------------|---------|-------|
| Age at surgery (median, range) | 65 [26  | 5-85] |
| Gender                         |         |       |
| Male                           | 202     | 82.4  |
| Female                         | 43      | 17.6  |
| Stage                          |         |       |
| Ι                              | 133     | 54.3  |
| II                             | 70      | 28.6  |
| IIIA                           | 42      | 17.1  |
| Histology                      |         |       |
| SCC                            | 111     | 45.3  |
| ADC                            | 114     | 46.5  |
| Others                         | 20      | 8.2   |
| ECOG Performance Status        |         |       |
| 0                              | 154     | 62.9  |
| 1/2                            | 91      | 37.1  |
| Differentiation grade          |         |       |
| Poor                           | 57      | 23.3  |
| Moderate                       | 96      | 39.2  |
| Well                           | 46      | 18.8  |
| NS                             | 46      | 18.8  |
| Smoking habits                 |         |       |
| Current                        | 116     | 47.3  |
| Former                         | 101     | 41.2  |
| Never                          | 28      | 11.4  |

194 ADC, adenocarcinoma; SCC, Squamous Cell Carcinoma

We measured the expression of components of HH signaling pathway (Figure 1A and 196 197 **1B**) in primary lung tumor and paired non-cancerous tissues (adjacent healthy lung) 198 tissue) using RTqPCR. We found that SMO (2.66X) and GLI1 (1.52X) were overexpressed in the tumor compared with normal-paired tissue, whereas *PTCH1* 199 (0.81X) and SHH (0.34X) were underexpressed (Figure 2A). Non-parametric tests were 200 201 conducted to determine associations between the relative gene expressions and 202 clinicopathological variables (Supplementary Table S1). The Mann-Whitney U test 203 revealed that the expression of PTCH1 and SHH was significantly higher in patients 204 with ECOG 1/2 than in patients with ECOG 0 (Figure 2B and 2C). In addition, the 205 expression of *PTCH1* was significantly higher in patients with SCC histology than in 206 patients with ADC (Figure 2D). Similarly, the expression of GL11 and SMO was 207 significantly higher in patients with SCC histology than in patients with ADC or other 208 histologies (Figure 2E and 2F).







Afterwards, survival data was used to associate components of HH pathway with
 NSCLC patients' prognosis. Cox regression and Kaplan–Meier analyses revealed that

- patients with high *PTCH1* had longer RFS (44.50 vs. 88.23 months, p = 0.003, Figure
- **219 2G**). A statistical trend toward better OS was also detected (49.63 vs. 95.40 months, p =
- 220 0.071). Additionally, survival analyses were applied according to patient histology,
- associating high *PTCH1* with better RFS and OS in ADC patients (42.90 vs. 81.23
- months, p = 0.016, for RFS and 42.90 vs. 84.77 months, p = 0.022, for OS, respectively,
- Figure 2H and 2I). No other significant associations were found between gene
- 224 expression and survival (Supplementary Table S2).





Figure 2. Expression of the components of HH signaling pathway in lung cancer.

- 227 Ratio between the transcription levels of SHH, PTCH1, GLI1 and SMO in lung cancer
- and adjacent normal tissues (A). Representation of *PTCH1* (B) and *SHH* (C)
- 229 expressions according to ECOG Performance Status and PTCH1 (D), GL11 (E) and
- 230 SMO (F) expressions according to the tumor histology. Kaplan–Meier plots for RFS in
- 231 the entire cohort (G) and for RFS and OS in the ADC subcohort (H-I) according to
- 232 *PTCH1* expression.

## 234 Hedgehog Score is a prognostic biomarker for RFS and OS in NSCLC

| 235 | Thereafter, we intended to create a gene expression score that can provide more                             |
|-----|-------------------------------------------------------------------------------------------------------------|
| 236 | accurate predictions for patients' prognostic (23,24). We constructed a model based on                      |
| 237 | the relative contribution of HH pathway components in the multivariate analysis                             |
| 238 | (considering absolute regression coefficients, see Supplementary Table S3), and the                         |
| 239 | resulting score was named Hedgehog Score, with the following equation: (PTCH1x-                             |
| 240 | (0.170) + (SHHx0.013) + (GLI1x0.074) + (SMOx0.007). No associations between                                 |
| 241 | Hedgehog Score and clinicopathological variables were found (Supplementary Table                            |
| 242 | ${f S4}$ ). Kaplan–Meier analysis showed that patients with high Hedgehog Score (> median)                  |
| 243 | had shorter RFS (39.13 vs. 81.23 months, $p = 0.025$ ; Figure 3A) and OS (44.50 vs.                         |
| 244 | 95.40 months, $p = 0.039$ ; Figure 3B). We also performed stratified analyses by                            |
| 245 | histology and found a similar association between high Hedgehog score and prognosis                         |
| 246 | for ADC patients (RFS: 29.83 vs. 71.63 months, $p = 0.036$ ; Figure 3C and OS: 29.83                        |
| 247 | vs. 90.43 months, $p = 0.012$ ; Figure 3D). To evaluate the potential use of the Hedgehog                   |
| 248 | Score as an independent prognostic biomarker, a multivariate analysis was performed                         |
| 249 | including all the significant variables from the univariate analyses (age, tumor node                       |
| 250 | metastasis (TNM) staging, ECOG, KRAS mutation, PTCH1, and the Hedgehog Score).                              |
| 251 | Results obtained from this multivariate analysis indicated that ECOG and the Hedgehog $% \mathcal{A}^{(1)}$ |
| 252 | Score in the entire cohort and age, KRAS mutation and the Hedgehog Score in the ADC                         |
| 253 | cohort were independently associated with survival (see Table 2).                                           |
|     |                                                                                                             |

|                                                      |       | Global coho | ort     | ADC subcohort |             |         |  |
|------------------------------------------------------|-------|-------------|---------|---------------|-------------|---------|--|
| Variables                                            | HR    | 95% CI      | p-value | HR            | 95% CI      | p-value |  |
| <b>Performance Status</b><br>1/2 vs. 0               | 1.670 | 1.092-2.553 | 0.018*  | -             | _           | -       |  |
| Age<br>>65 vs. <65                                   | -     | -           | -       | 2.269         | 1.124-4.581 | 0.022*  |  |
| <b>KRAS mutation</b><br><i>Mutated vs. Wild Type</i> | -     | -           | -       | 2.206         | 1.007-4.834 | 0.048*  |  |
| Hedgehog Score<br>High vs. low                       | 1.564 | 1.052-2.326 | 0.027*  | 2.399         | 1.164-4.946 | 0.018*  |  |

ADC, adenocarcinoma; HR, hazard ratio; CI, confidence interval



Figure 3. Prognostic value of the Hedgehog Score. Kaplan–Meier plots for RFS and
OS according to the CSC score in the entire cohort (A-B) and the adenocarcinoma
subcohort (C-D).

An independent cohort of NSCLC patients from TCGA was then used for the validation of the Hedgehog Score. Clinicopathological characteristics of these patients are summarized in **Supplementary Table S5**. Cox regression and Kaplan-Meier analyses of individual genes indicated that NSCLC patients with high expression of *PTCH1* have better RFS (**Supplementary Table S6**). In addition, ADC patients with high expression of *PTCH1* exhibited longer OS as well. Similarly, the association 267 between high Hedgehog Score and worse RFS and OS was confirmed in both the

268 NSCLC cohort and the ADC subcohort (**Figure 4**).







271 OS according to the CSC score in the entire cohort (A-B) and the adenocarcinoma

- subcohort (**C-D**) from TCGA.
- 273
- 274
- 275
- 276

#### 277 **DISCUSSION**

278 The management of NSCLC has evolved substantially over the last 15 years. Specific anti-target therapies have emerged, including inhibitors of EGFR (gefitinib, 279 280 erlotinib, afatinib, dacomitinib and osimertinib) (25-27), ALK and ROS1 (crizotinib, 281 lorlatinib, ceritinib, brigatinib and entrectinib) (28,29), and BRAF and MEK 282 (dabrafenib and trametinib) (30), which have increased patients' survival and decreased 283 the toxicity produced by conventional chemotherapy. Additionally, cancer 284 immunotherapy has set a new standard in the treatment of NSCLC with the approvals of 285 monoclonal antibodies that block the immune checkpoint molecule programmed cell death 1 (PD1) (pembrolizumab and nivolumab) and its ligand (PD-L1) (atezolizumab) 286 (31). In spite of all these advances, lung cancer remains as the leading cause of cancer-287 288 related death in the world due to treatment resistance (1).

There is strong evidence pointing out that treatment resistance is highly 289 associated to populations of tumor cells with stem-like properties, named cancer stem-290 291 like cells (CSCs), which are able to survive using different mechanisms, including self-292 renewal, asymmetric division capacity, aberrant regulation of cell cycling, and enhanced 293 tumorigenic activity (32). These characteristics are a direct result of the expression of 294 signaling pathways which are essential for stem cell populations (Herreros-Pomares 295 2022). Among these pathways, Hh signaling constitutes an important component on the regulation of stem cells properties. Indeed, considerable progress has been achieved in 296 297 clinical trials targeting Hh pathway, especially for the treatment of basal cell carcinoma (BCC) and acute myeloid leukemia (AML), for which SMO antagonists (vismodegib, 298 299 sonidegib and glasdegib) have received regulatory approvals (33–35). Unfortunately, 300 the role of Hh pathway in lung cancer remains elusive (36).

301 Thus, we evaluated the expression of the main components of Hh signaling in tumor and adjacent normal biopsies from NSCLC patients. SMO and GLI1 were found 302 overexpressed in tumor tissue, whereas the expression of PTCH1 and SHH was higher 303 304 in the adjacent normal tissue. Overexpression of SMO and GLI1 has been previously 305 reported in tumor tissues from breast and pancreatic cancer, being associated with tumor 306 size, lymph node metastasis and postoperative recurrence (37–39). In contrast, loss of 307 the tumor suppressor PTCH1 has been reported in some tumors, including BBC (40), medulloblastoma (41) colorectal (42), and breast (43) cancers. In NSCLC, disparate 308 results have been published. An immunohistochemical analysis of 81 NSCLC samples 309

reported negative to weak expression of Shh, Gli-1, SMO and Ptch-1 compared with 310 311 normal lung epithelial cells (44). An opposite observation was reported in another study including 80 NSCLC cases which concluded that all the HH-signaling molecules 312 313 examined were overexpressed in tumor samples compared with the adjacent nonneoplastic lung parenchyma (45). The reason behind these contrasting results remains 314 315 unknown, but clinical and pathological features, such as the smoking habit, have been linked to the activation of the pathway (46). Therefore, we evaluated the associations 316 317 between the relative gene expressions and the clinicopathological variables of patients. 318 We found that those with worse ECOG (1/2) had higher expression of *PTCH1* and *SHH* 319 and that the expression of PTCH1, GL11 and SMO was higher in SCC than in ADC and 320 other histologies. Again, results from previous studies range from those that find no 321 correlations (47) to those that associated high levels of Hh components with SCC 322 histology (PTCH1 and SMO), tumor grade (PTCH1), node metastasis (SMO) and 323 visceral pleural invasion (Shh) (45,48).

324 In parallel, several studies have tried to evaluate if Hh components are associated with lung cancer patients' survival (44,47-50). In a study including 248 325 326 early-stage NSCLC, no significant association were found between RFS or OS and any of the Hh components analyzed by immunohistochemistry (IHC) (47). Similar results 327 328 were found by Savani and colleagues, who analyzed the expression of Gli1, Shh, Smo 329 and Ptch1 in a tissue microarray including 42 NSCLC patients (44). In contrast with 330 these results, two independent studies reported that the expression of Shh was significantly associated with shorter OS (48,49), whereas the study conducted by Kim 331 and colleagues concluded that the high expression of SHH and GLI-1 was related to 332 333 better progression-free survival (PFS) and OS. In our study, only the expression of PTCH1 was found associated to better prognosis. In consonance with this finding, the 334 335 loss of *PTCH1* was previously linked to poor survival in SCC (51). Unfortunately, these 336 studies focus on single genes with limited prognostic value. Finding gene expression 337 signatures that identify altered pathways in carcinogenesis could lead to the discovery of 338 molecular subclasses and predict patients' outcomes better (52,53). We created a score 339 combining the expression of Hh components, which was an independent prognostic biomarker for resectable NSCLC patients. To validate it, the expression of these genes 340 341 was evaluated in an independent cohort of lung ADC and SCC patients from TCGA, 342 finding that patients with elevated Hedgehog score had shorter RFS and OS. These

results are of great importance because current clinicopathological staging methods 343 344 have limited success in predicting patient survival and today we still cannot predict 345 which patients will be cured, and which ones will relapse after surgery. Gene expression 346 scores based on RTqPCR have demonstrated being useful for classifying tumors and predicting prognosis, being even approved as prognostic tools in clinical practice (54). 347 This technology is a well-implemented methodology in our group for biomarkers' 348 research, previously reporting CSC, angiogenesis and immune checkpoint scores for 349 NSCLC (24,55,56). The Hedgehog Score proposed can help in future clinical practice, 350 351 since high scores may reflect an activation of the Hh signaling pathway that may 352 indicate which patients should be closely followed after a successful surgery because 353 they have a higher risk to relapse and die and that could potentially benefit from Hh 354 pathway inhibitors. The development of targeted therapies against this signaling 355 pathway might be essential to prevent relapse of patients and improve their future 356 outcome.

357

## 358 CONCLUSIONS

Treatment resistance makes lung cancer a global health challenge that needs to 359 360 be addressed. Our results indicate that the activation of Hh signaling, a potential mechanism of treatment resistance, is associated to worse outcome in NSCLC, 361 362 representing an independent prognostic biomarker for patients' survival. Thus, the 363 clinical implementation of the Hh score could help in distinguishing which patients 364 have more risk to relapse and die. Future clinical trials should be carried out trying to 365 determine the safety and efficacy of the new therapeutic strategies against Hh 366 components, since they could have major implications in NSCLC patients' survival. 367 368 369 370 371

372

373

## 375 **REFERENCES**

- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.
   Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
   Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021
   May;71(3):209–49.
- 380 2. Hirsch FR, Suda K, Wiens J, Bunn PAJ. New and emerging targeted treatments
  381 in advanced non-small-cell lung cancer. Lancet. 2016 Sep;388(10048):1012–24.
- Rizvi NA, Peters S. Immunotherapy for Unresectable Stage III Non-Small-Cell
   Lung Cancer. Vol. 377, The New England journal of medicine. United States,
   United States; 2017. p. 1986–8.
- Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, Adaptive, and
   Acquired Resistance to Cancer Immunotherapy. Cell. 2017 Feb;168(4):707–23.
- 387 5. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non388 small cell lung cancer. Nature. 2018 Jan;553(7689):446–54.
- Raman V, Yang C-FJ, Deng JZ, D'Amico TA. Surgical treatment for early stage
  non-small cell lung cancer. J Thorac Dis. 2018 Apr;10(Suppl 7):S898–904.
- Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the
  immune microenvironment of cancer stem cells a clinical update. Nat Rev Clin
  Oncol. 2020 Apr;17(4):204–32.
- Velcheti V, Govindan R. Hedgehog signaling pathway and lung cancer. J Thorac
   Oncol [Internet]. 2007 Jan [cited 2016 Feb 4];2(1):7–10. Available from: http://www.sciencedirect.com/science/article/pii/S1556086415300101
- Peng T, Frank DB, Kadzik RS, Morley MP, Komal S, Wang T, et al. Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature. 2015;526(7574):578–82.
- 400 10. Metcalfe C, Siebel CW. The Hedgehog Hold on Homeostasis. Cell Stem Cell
  401 [Internet]. 2015 Nov 5;17(5):505–6. Available from:
- 402 http://www.sciencedirect.com/science/article/pii/S1934590915004683
- 403 11. Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling
  404 pathway in cancer: beyond Smoothened. Oncotarget [Internet].
  405 2015;6(16):13899–913. Available from:
- 406 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4546439&tool=pmce
   407 ntrez&rendertype=abstract
- Hahn H, Wicking C, Zaphiropoulos PG, Gailani MR, Shanley S, Chidambaram
  A, et al. Mutations of the Human Homolog of Drosophila patched in the Nevoid
  Basal Cell Carcinoma Syndrome. Cell [Internet]. 1996 Jun [cited 2016 Jan
  12];85(6):841–51. Available from:
- 412 http://www.sciencedirect.com/science/article/pii/S0092867400812684
- 413 13. Thalakoti S, Geller T. Basal cell nevus syndrome or Gorlin syndrome. Handb
  414 Clin Neurol. 2015;132:119–28.
- 415 14. Shanley S, McCormack C. Diagnosis and Management of Hereditary Basal Cell
  416 Skin Cancer. Recent results cancer Res Fortschritte der Krebsforsch Prog dans

| 417                                                                                                                    | les Rech sur le cancer. 2016;205:191–212.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 418 15.<br>419<br>420                                                                                                  | Park K-S, Martelotto LG, Peifer M, Sos ML, Karnezis AN, Mahjoub MR, et al. A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat Med. 2011;17(11):1504–8.                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>421 16.</li> <li>422</li> <li>423</li> <li>424</li> </ul>                                                     | Kaur G, Reinhart RA, Monks A, Evans D, Morris J, Polley E, et al.<br>Bromodomain and hedgehog pathway targets in small cell lung cancer. Cancer<br>Lett [Internet]. 2016 Feb;371(2):225–39. Available from:<br>http://dx.doi.org/10.1016/j.canlet.2015.12.001                                                                                                                                                                                                                                                                                                         |
| 425 17.<br>426<br>427                                                                                                  | Giroux Leprieur E, Antoine M, Vieira T, Rozensztajn N, Ruppert A-M, Rabbe N, et al. [Role of the Sonic Hedgehog pathway in thoracic cancers]. Rev Mal Respir. 2015 Oct;32(8):800–8.                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>428 18.</li> <li>429</li> <li>430</li> <li>431</li> </ul>                                                     | Bai X-Y, Zhang X-C, Yang S-Q, An S-J, Chen Z-H, Su J, et al. Blockade of<br>Hedgehog Signaling Synergistically Increases Sensitivity to Epidermal Growth<br>Factor Receptor Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer Cell<br>Lines. PLoS One. 2016;11(3):e0149370.                                                                                                                                                                                                                                                                                    |
| <ul> <li>432 19.</li> <li>433</li> <li>434</li> <li>435</li> <li>436</li> </ul>                                        | Pfaffl MW, Duquenne M, François JM, Parrou J-L, Francois J, Gancedo C, et al.<br>A new mathematical model for relative quantification in real-time RT-PCR.<br>Nucleic Acids Res [Internet]. 2001 May 1 [cited 2017 Jun 7];29(9):45e – 45.<br>Available from: https://academic.oup.com/nar/article-<br>lookup/doi/10.1093/nar/29.9.e45                                                                                                                                                                                                                                 |
| <ul> <li>437 20.</li> <li>438</li> <li>439</li> <li>440</li> <li>441</li> <li>442</li> <li>443</li> <li>444</li> </ul> | Hammerman PS, Lawrence MS, Voet D, Jing R, Cibulskis K, Sivachenko A,<br>Stojanov P, McKenna A, Lander ES, Gabriel S, Getz G, Sougnez C, Imielinski<br>M, Helman E, Hernandez B, Pho NH, Meyerson M, Chu A, Chun HJ, Mungall<br>AJ, Pleasance E, Robertson A, Sipahimala TE, Cancer Genome Atlas Research<br>Network. Comprehensive genomic characterization of squamous cell lung<br>cancers. Nature [Internet]. 2012 Sep 27 [cited 2014 Jul 11];489(7417):519–25.<br>Available from:<br>http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3466113&tool=pmce |
| <ul> <li>445</li> <li>446 21.</li> <li>447</li> <li>448</li> <li>449</li> <li>450</li> <li>451</li> </ul>              | Cancer Genome Atlas Research Network, Collisson EA, Campbell JD, Brooks<br>AN, Berger AH, Lee W, et al. Comprehensive molecular profiling of lung<br>adenocarcinoma. Nature [Internet]. 2014 Jul 9 [cited 2014 Jul 9];511(7511):543–<br>50. Available from:<br>http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4231481&tool=pmce<br>ntrez&rendertype=abstract                                                                                                                                                                                               |
| 452 22.<br>453<br>454                                                                                                  | Zhang J, Baran J, Cros A, Guberman JM, Haider S, Hsu J, et al. International<br>Cancer Genome Consortium Data Portala one-stop shop for cancer genomics<br>data. Database (Oxford). 2011;2011:bar026.                                                                                                                                                                                                                                                                                                                                                                 |
| 455 23.<br>456<br>457                                                                                                  | Lossos IS, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D, et al. Prediction of Survival in Diffuse Large-B-Cell Lymphoma Based on the Expression of Six Genes. n engl j med. 2004;35018350(29):1828–37.                                                                                                                                                                                                                                                                                                                                            |
| 458 24.<br>459<br>460                                                                                                  | Herreros-Pomares A, De-Maya-Girones JD, Calabuig-Fariñas S, Lucas R,<br>Martínez A, Pardo-Sánchez JM, et al. Lung tumorspheres reveal cancer stem cell-<br>like properties and a score with prognostic impact in resected non-small-cell lung                                                                                                                                                                                                                                                                                                                         |

| 461<br>462               |     | cancer. Cell Death Dis [Internet]. 2019 Sep 10 [cited 2019 Sep 28];10(9):660.<br>Available from: http://www.ncbi.nlm.nih.gov/pubmed/31506430                                                                                                                                                                   |
|--------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 463<br>464<br>465        | 25. | Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D, Dougherty B, et al.<br>Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small<br>cell lung cancer harboring EGFR T790M. Nat Med. 2015 Jun;21(6):560–2.                                                                                   |
| 466<br>467<br>468<br>469 | 26. | Planchard D, Loriot Y, Andre F, Gobert A, Auger N, Lacroix L, et al. EGFR-<br>independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-<br>positive NSCLC patients. Ann Oncol Off J Eur Soc Med Oncol. 2015<br>Oct;26(10):2073–8.                                                                |
| 470<br>471<br>472<br>473 | 27. | Ichihara E, Westover D, Meador CB, Yan Y, Bauer JA, Lu P, et al. SFK/FAK<br>Signaling Attenuates Osimertinib Efficacy in Both Drug-Sensitive and Drug-<br>Resistant Models of EGFR-Mutant Lung Cancer. Cancer Res. 2017<br>Jun;77(11):2990–3000.                                                               |
| 474<br>475<br>476        | 28. | Lim SM, Kim HR, Lee J-S, Lee KH, Lee Y-G, Min YJ, et al. Open-Label,<br>Multicenter, Phase II Study of Ceritinib in Patients With Non-Small-Cell Lung<br>Cancer Harboring ROS1 Rearrangement. J Clin Oncol. 2017 Aug;35(23):2613–8.                                                                            |
| 477<br>478<br>479<br>480 | 29. | Drilon A, Siena S, Ou S-HI, Patel M, Ahn MJ, Lee J, et al. Safety and Antitumor<br>Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib:<br>Combined Results from Two Phase I Trials (ALKA-372-001 and STARTRK-1).<br>Cancer Discov. 2017 Apr;7(4):400–9.                                |
| 481<br>482<br>483        | 30. | Yu HA, Planchard D, Lovly CM. Sequencing Therapy for Genetically Defined<br>Subgroups of Non-Small Cell Lung Cancer. Am Soc Clin Oncol Educ book Am<br>Soc Clin Oncol Annu Meet. 2018 May;38:726–39.                                                                                                           |
| 484<br>485               | 31. | Raju S, Joseph R, Sehgal S. Review of checkpoint immunotherapy for the management of non-small cell lung cancer. ImmunoTargets Ther. 2018;7:63–75.                                                                                                                                                             |
| 486<br>487<br>488        | 32. | Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov [Internet].<br>2022 Jan 1;12(1):31 LP – 46. Available from:<br>http://cancerdiscovery.aacrjournals.org/content/12/1/31.abstract                                                                                                                  |
| 489<br>490<br>491        | 33. | Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, et al.<br>Efficacy and Safety of Vismodegib in Advanced Basal-Cell Carcinoma. N Engl J<br>Med. 2012;366(23):2171–9.                                                                                                                            |
| 492<br>493<br>494        | 34. | Basset-Séguin N, Hauschild A, Kunstfeld R, Grob J, Dréno B, Mortier L, et al.<br>Vismodegib in patients with advanced basal cell carcinoma: Primary analysis of<br>STEVIE, an international, open-label trial. Eur J Cancer. 2017 Nov;86:334–48.                                                               |
| 495<br>496<br>497<br>498 | 35. | Lear JT, Migden MR, Lewis KD, Chang ALS, Guminski A, Gutzmer R, et al.<br>Long-term efficacy and safety of sonidegib in patients with locally advanced and<br>metastatic basal cell carcinoma: 30-month analysis of the randomized phase 2<br>BOLT study. J Eur Acad Dermatol Venereol. 2018 Mar;32(3):372–81. |
| 499<br>500<br>501<br>502 | 36. | Pietanza MC, Litvak AM, Varghese AM, Krug LM, Fleisher M, Teitcher JB, et al. A phase I trial of the Hedgehog inhibitor, sonidegib (LDE225), in combination with etoposide and cisplatin for the initial treatment of extensive stage small cell lung cancer. Lung Cancer. 2016 Sep;99:23–30.                  |
| 503                      | 37. | Jeng K-S, Sheen I-S, Jeng W-J, Yu M-C, Hsiau H-I, Chang F-Y. High expression                                                                                                                                                                                                                                   |

| 504<br>505                      |     | of Sonic Hedgehog signaling pathway genes indicates a risk of recurrence of breast carcinoma. Onco Targets Ther. 2013;7:79–86.                                                                                                                                                                                 |
|---------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 506<br>507<br>508<br>509        | 38. | Walter K, Omura N, Hong S-M, Griffith M, Vincent A, Borges M, et al.<br>Overexpression of smoothened activates the sonic hedgehog signaling pathway in<br>pancreatic cancer-associated fibroblasts. Clin cancer Res an Off J Am Assoc<br>Cancer Res. 2010 Mar;16(6):1781–9.                                    |
| 510<br>511<br>512               | 39. | Tao Y, Mao J, Zhang Q, Li L. Overexpression of Hedgehog signaling molecules and its involvement in triple-negative breast cancer. Oncol Lett. 2011 Sep;2(5):995–1001.                                                                                                                                          |
| 513<br>514<br>515<br>516        | 40. | Campione E, Di Prete M, Lozzi F, Lanna C, Spallone G, Mazzeo M, et al. High-<br>Risk Recurrence Basal Cell Carcinoma: Focus on Hedgehog Pathway Inhibitors<br>and Review of the Literature. Chemotherapy [Internet]. 2020;65(1–2):2–10.<br>Available from: https://www.karger.com/DOI/10.1159/000509156        |
| 517<br>518<br>519               | 41. | Archer TC, Weeraratne SD, Pomeroy SL. Hedgehog-GLI pathway in medulloblastoma. J Clin Oncol Off J Am Soc Clin Oncol. 2012 Jun;30(17):2154–6.                                                                                                                                                                   |
| 520<br>521<br>522               | 42. | Chung JH, Bunz F. A loss-of-function mutation in PTCH1 suggests a role for autocrine hedgehog signaling in colorectal tumorigenesis. Oncotarget. 2013 Dec;4(12):2208–11.                                                                                                                                       |
| 523<br>524<br>525<br>526        | 43. | Wang C-Y, Chang Y-C, Kuo Y-L, Lee K-T, Chen P-S, Cheung CHA, et al.<br>Mutation of the PTCH1 gene predicts recurrence of breast cancer. Sci Rep<br>[Internet]. 2019;9(1):16359. Available from: https://doi.org/10.1038/s41598-019-<br>52617-4                                                                 |
| 527<br>528                      | 44. | Savani M, Guo Y, Carbone DP, Csiki I. Sonic hedgehog pathway expression in non-small cell lung cancer. Ther Adv Med Oncol. 2012 Sep;4(5):225–33.                                                                                                                                                               |
| 529<br>530<br>531               | 45. | Gialmanidis IP, Bravou V, Amanetopoulou SG, Varakis J, Kourea H, Papadaki H. Overexpression of hedgehog pathway molecules and FOXM1 in non-small cell lung carcinomas. Lung Cancer. 2009 Oct;66(1):64–74.                                                                                                      |
| 532<br>533<br>534<br>535<br>536 | 46. | Lemjabbar-Alaoui H, Dasari V, Sidhu SS, Mengistab A, Finkbeiner W, Gallup M, et al. Wnt and Hedgehog Are Critical Mediators of Cigarette Smoke-Induced Lung Cancer. Heisenberg C-P, editor. PLoS One [Internet]. 2006 Dec 20;1(1):e93. Available from:<br>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1762353/ |
| 537<br>538<br>539               | 47. | Raz G, Allen KE, Kingsley C, Cherni I, Arora S, Watanabe A, et al. Hedgehog signaling pathway molecules and ALDH1A1 expression in early-stage non-small cell lung cancer. Lung Cancer. 2012 May;76(2):191–6.                                                                                                   |
| 540<br>541<br>542               | 48. | Huang L, Walter V, Hayes DN, Onaitis M. Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clin cancer Res an Off J Am Assoc Cancer Res. 2014 Mar;20(6):1566–75.                                                                                                               |
| 543<br>544<br>545<br>546        | 49. | Jiang WG, Ye L, Ruge F, Sun P-H, Sanders AJ, Ji K, et al. Expression of Sonic<br>Hedgehog (SHH) in human lung cancer and the impact of YangZheng XiaoJi on<br>SHH-mediated biological function of lung cancer cells and tumor growth.<br>Anticancer Res. 2015 Mar;35(3):1321–31.                               |

| 547<br>548<br>549<br>550<br>551 | 50. | Kim JE, Kim H, Choe J-Y, Sun P, Jheon S, Chung J-H. High Expression of Sonic<br>Hedgehog Signaling Proteins Is Related to the Favorable Outcome, EGFR<br>Mutation, and Lepidic Predominant Subtype in Primary Lung Adenocarcinoma.<br>Ann Surg Oncol [Internet]. 2013;20(3):570–6. Available from:<br>https://doi.org/10.1245/s10434-013-3022-6 |
|---------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 552<br>553<br>554               | 51. | Zhao Y, Li Y, Lu H, Chen J, Zhang Z, Zhu Z-Z. Association of copy number loss of CDKN2B and PTCH1 with poor overall survival in patients with pulmonary squamous cell carcinoma. Clin Lung Cancer. 2011 Sep;12(5):328–34.                                                                                                                       |
| 555<br>556<br>557               | 52. | Huang E, Ishida S, Pittman J, Dressman H, Bild A, Kloos M, et al. Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat Genet. 2003 Jun;34(2):226–30.                                                                                                                                                          |
| 558<br>559<br>560               | 53. | Raponi M, Zhang Y, Yu J, Chen G, Lee G, Taylor JMG, et al. Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res. 2006 Aug;66(15):7466–72.                                                                                                                                           |
| 561<br>562<br>563               | 54. | Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A Multigene Assay to<br>Predict Recurrence of Tamoxifen-Treated, Node-Negative Breast Cancer.<br>N.Engl.J.Med. p.                                                                                                                                                                      |
| 564<br>565<br>566<br>567<br>568 | 55. | Sanmartín E, Sirera R, Usó M, Blasco A, Gallach S, Figueroa S, et al. A Gene<br>Signature Combining the Tissue Expression of Three Angiogenic Factors is a<br>Prognostic Marker in Early-stage Non-small Cell Lung Cancer. Ann Surg Oncol<br>[Internet]. 2014;21(2):612–20. Available from:<br>http://www.ncbi.nlm.nih.gov/pubmed/24145997      |
| 569<br>570<br>571<br>572        | 56. | Usó M, Jantus-Lewintre E, Calabuig-Fariñas S, Blasco A, García del Olmo E, Guijarro R, et al. Analysis of the prognostic role of an immune checkpoint score in resected non-small cell lung cancer patients. Oncoimmunology. 2017;6(1):e1260214.                                                                                                |
| 573                             |     |                                                                                                                                                                                                                                                                                                                                                 |
| 574                             |     |                                                                                                                                                                                                                                                                                                                                                 |
| 575                             |     |                                                                                                                                                                                                                                                                                                                                                 |
| 576                             |     |                                                                                                                                                                                                                                                                                                                                                 |
| 577                             |     |                                                                                                                                                                                                                                                                                                                                                 |
| 578                             |     |                                                                                                                                                                                                                                                                                                                                                 |
| 579                             |     |                                                                                                                                                                                                                                                                                                                                                 |
| 580                             |     |                                                                                                                                                                                                                                                                                                                                                 |
| 581                             |     |                                                                                                                                                                                                                                                                                                                                                 |
| 582                             |     |                                                                                                                                                                                                                                                                                                                                                 |
| 583                             |     |                                                                                                                                                                                                                                                                                                                                                 |
| 584                             |     |                                                                                                                                                                                                                                                                                                                                                 |
| 585                             |     |                                                                                                                                                                                                                                                                                                                                                 |

## **Supplementary Table S1**. Results from the non-parametric tests to determine

- associations between the relative gene expression of *PTCH1*, *SHH*, *GL11* and *SMO* and
- 597 clinicopathological variables.

|             | PTCH1           |             | SHH              |             | GLII             |             | SMO                      |              |  |
|-------------|-----------------|-------------|------------------|-------------|------------------|-------------|--------------------------|--------------|--|
|             | Mean ± SD       | p-value     | Mean ± SD        | p-value     | Mean ± SD        | p-value     | Mean ± SD                | p-value      |  |
| Gender      |                 |             |                  |             |                  |             |                          |              |  |
| Male        | $1.49 \pm 2.07$ | 0.777       | $2.35\pm7.80$    | 0.871       | $4.14\pm7.52$    | 0.679       | $5.53\pm7.32$            | 0.167        |  |
| Female      | $1.34 \pm 1.99$ | 0.777       | $2.05\pm3.03$    | 0.871       | $3.35\pm 6.95$   | 0.079       | $3.11\pm5.31$            | 0.107        |  |
| Age         | Age             |             |                  |             |                  |             |                          |              |  |
| <65         | $1.40 \pm 1.94$ | 0.646       | $1.33 \pm 3.44$  | 0.083       | $4.36\pm8.05$    | 0.550       | $5.62\pm8.24$            | 0.426        |  |
| >65         | $1.56\pm2.20$   | 0.040       | $3.51 \pm 10.15$ | 0.085       | $3.59\pm6.55$    | 0.550       | $4.67 \pm 5.31$          | 0.450        |  |
| Smoking l   | nabit           |             |                  |             |                  |             |                          |              |  |
| Never       | $1.28 \pm 1.10$ | 0.630 (1v2) | $2.53\pm3.38$    | 0.945 (1v2) | $4.30\pm7.69$    | 0.947 (1v2) | $3.70\pm 6.02$           | 0.474 (1v2)  |  |
| Former      | $1.62\pm2.68$   | 0.540 (2v3) | $2.70 \pm 9.41$  | 0.608 (2v3) | $4.13\pm9.26$    | 0.872 (2v3) | $5.03 \pm 6.41$          | 0.639 (2v3)  |  |
| Current     | $1.39 \pm 1.64$ | 0.813 (1v3) | $1.98 \pm 6.21$  | 0.738 (1v3) | $3.91\pm5.87$    | 0.826 (1v3) | $5.65\pm7.81$            | 0.364 (1v3)  |  |
| Performa    | nce Status      |             |                  |             |                  |             |                          |              |  |
| 0           | $1.15\pm1.36$   | 0.007       | $1.29\pm2.66$    | 0.010       | $3.35\pm5.60$    | 0.124       | $4.79 \pm 7.33$          | 0.205        |  |
| 1-2         | $2.16\pm2.95$   | 0.006       | $4.42 \pm 12.09$ | 0.019       | $5.43 \pm 9.65$  | 0.124       | $6.11 \pm 6.60$          | 0.305        |  |
| Histology   | -               | -           |                  |             | -                | -           |                          |              |  |
| SCC         | $1.91 \pm 2.55$ | 0.011 (1v2) | $2.42\pm8.39$    | 0.128 (1v2) | $5.58 \pm 9.34$  | 0.039 (1v2) | $7.51 \pm 8.85$          | 0.001 (1v2)  |  |
| ADC         | $0.98 \pm 1.35$ | 0.367 (2v3) | $1.48\pm2.36$    | 0.331(2v3)  | $2.79\pm5.06$    | 0.422 (2v3) | $3.24\pm4.23$            | 0.347 (2v3)  |  |
| Others      | $1.32 \pm 1.34$ | 0.359 (1v3) | $4.30 \pm 11.52$ | 0.447 (1v3) | $1.74 \pm 1.96$  | 0.003 (1v3) | $2.24 \pm 1.89$          | <0.001 (1v3) |  |
| Differentia | ation grade     |             |                  |             |                  |             |                          |              |  |
| Well        | $1.29\pm2.22$   | 0.847 (1v2) | $1.69\pm3.10$    | 0.629 (1v2) | $4.71 \pm 10.20$ | 0.869 (1v2) | $5.12\pm7.80$            | 0.866 (1v2)  |  |
| Moderate    | $1.37 \pm 1.50$ | 0.497 (2v3) | $1.37\pm2.78$    | 0.147 (2v3) | $4.41 \pm 6.38$  | 0.179 (2v3) | $5.38 \pm 6.23$          | 0.343 (2v3)  |  |
| Poor        | $1.67\pm2.74$   | 0.540 (1v3) | $4.54 \pm 13.00$ | 0.201 (1v3) | $2.68 \pm 5.45$  | 0.296 (1v3) | $4.21\pm5.21$            | 0.567 (1v3)  |  |
| Tumor siz   | e               |             |                  |             |                  |             |                          |              |  |
| T1a/b       | $2.00\pm2.59$   | 0.135 (1v2) | $2.61\pm5.66$    | 0.859 (1v2) | $4.67\pm9.65$    | 0.520 (1v2) | $5.88 \pm 6.98$          | 0.609 (1v2)  |  |
| T2a/b       | $1.31\pm2.04$   | 0.952 (2v3) | $2.32\pm8.33$    | 0.779 (2v3) | $3.61\pm6.99$    | 0.502 (2v3) | $5.07\pm7.86$            | 0.892 (2v3)  |  |
| T3          | $1.29\pm0.95$   | 0.157 (1v3) | $1.80\pm5.34$    | 0.598 (1v3) | $4.68\pm5.52$    | 0.998 (1v3) | $4.84 \pm 3.98$          | 0.517 (1v3)  |  |
| LN involv   | ement           |             |                  |             |                  |             |                          |              |  |
| No          | $1.58 \pm 2.26$ | 0.246       | $2.84 \pm 8.52$  | 0.100       | $4.12\pm7.91$    | 0.924       | $5.55\pm7.96$            | 0.200        |  |
| Yes         | $1.22 \pm 1.47$ | 0.340       | $1.03 \pm 2.48$  | 0.190       | 3.83 ± 6.23      | 0.834       | $4.44 \pm 4.64$          | 0.399        |  |
| Stage       |                 |             |                  |             |                  |             |                          |              |  |
| Ι           | $1.66 \pm 2.48$ | 0.779 (1v2) | $3.20 \pm 9.57$  | 0.442 (1v2) | $3.95\pm8.57$    | 0.674 (1v2) | $5.\overline{54\pm8.33}$ | 0.764 (1v2)  |  |

| Π       | $1.53 \pm 1.77$  | 0.099 (2v3) | $1.93 \pm 4.60$ | 0.128 (2v3) | $4.61\pm 6.06$  | 0.457 (2v3) | $6.01\pm 6.89$  | 0.061 (2v3) |
|---------|------------------|-------------|-----------------|-------------|-----------------|-------------|-----------------|-------------|
| IIIA    | $0.97 \pm 0.97$  | 0.051 (1v3) | $0.68 \pm 1.65$ | 0.163 (1v3) | $3.48\pm6.15$   | 0.792 (1v3) | $3.46\pm3.11$   | 0.071 (1v3) |
| Relapse |                  |             |                 |             |                 |             |                 |             |
| No      | $1.43 \pm 1.65$  | 0.950       | $1.49\pm2.79$   | 0.220       | $3.29\pm5.05$   | 0.270       | $4.49 \pm 4.82$ | 0.273       |
| Yes     | $1.50\ \pm 2.33$ | 0.830       | $3.01 \pm 9.62$ | 0.230       | $4.67 \pm 8.96$ | 0.279       | $5.81 \pm 8.55$ |             |
| Exitus  |                  |             |                 |             |                 |             |                 |             |
| No      | $1.46 \pm 2.23$  | 0.062       | $1.37\pm2.98$   | 0.270       | $3.74 \pm 8.55$ | 0.738       | $4.78\pm6.14$   | 0.601       |
| Yes     | $1.47 \pm 1.97$  | 0.903       | $2.82\pm8.80$   | 0.270       | $4.19\pm6.79$   |             | $5.44 \pm 7.59$ | 0.001       |

ADC, adenocarcinoma; LN, Lymph nodes; SCC, Squamous Cell Carcinoma; SD, Standard Desviation

## Supplementary Table S2. Results from survival analyses based on HH pathway components for the global cohort and the ADC and SCC subcohorts.

|               | RFS OS   |               |         |       |             |         |  |
|---------------|----------|---------------|---------|-------|-------------|---------|--|
| Gene          | HR       | 95% CI        | p-value | HR    | 95% CI      | p-value |  |
| Global cohort |          |               |         |       |             |         |  |
| GLI1          | 0.927    | 0.640-1.341   | 0.687   | 1.021 | 0.694-1.503 | 0.916   |  |
| PTCH1         | 0.575    | 0.395-0.839   | 0.004*  | 0.699 | 0.473-1.033 | 0.072   |  |
| SHH           | 0.808    | 0.555-1.175   | 0.264   | 0.896 | 0.607-1.322 | 0.580   |  |
| SMO           | 0.906    | 0.627-1.310   | 0.601   | 0.957 | 0.651-1.407 | 0.824   |  |
| Adenocarcino  | ma sub   | cohort        |         |       |             |         |  |
| GLI1          | 0.784    | 0.420-1.463   | 0.444   | 0.933 | 0.489-1.782 | 0.834   |  |
| PTCH1         | 0.495    | 0.275-0.889   | 0.019*  | 0.491 | 0.264-0.913 | 0.025*  |  |
| SHH           | 1.103    | 0.588-2.071   | 0.759   | 1.158 | 0.601-2.231 | 0.662   |  |
| SMO           | 0.934    | 0.525-1.661   | 0.817   | 1.019 | 0.554-1.875 | 0.952   |  |
| Squamous cel  | l carcin | oma subcohort |         |       |             |         |  |
| GLI1          | 0.727    | 0.435-1.217   | 0.225   | 0.754 | 0.44-1.291  | 0.304   |  |
| PTCH1         | 0.784    | 0.477-1.290   | 0.338   | 0.933 | 0.553-1.573 | 0.795   |  |
| SHH           | 0.600    | 0.358-1.008   | 0.054   | 0.699 | 0.409-1.196 | 0.191   |  |
| SMO           | 0.739    | 0.451-1.209   | 0.229   | 0.769 | 0.461-1.285 | 0.317   |  |

## **Supplementary Table S3**. Results from the multivariate model for OS with genes

608 included in the expression score.

| Variable | Regression<br>coefficient | SE    | <i>p</i> -value | HR    | 95% CI      |
|----------|---------------------------|-------|-----------------|-------|-------------|
| PTCH1    | -0.170                    | 0.108 | 0.116           | 0.844 | 0.683-1.043 |
| SHH      | 0.013                     | 0.049 | 0.795           | 1.013 | 0.921-1.114 |
| GLI1     | 0.074                     | 0.096 | 0.438           | 1.030 | 0.893-1.300 |

|     | SMO | 0.007 | 0.070 | 0.916 | 1.007 | 0.877-1.157 |
|-----|-----|-------|-------|-------|-------|-------------|
| 609 |     |       |       |       |       |             |
| 610 |     |       |       |       |       |             |
| 611 |     |       |       |       |       |             |
| 612 |     |       |       |       |       |             |
| 613 |     |       |       |       |       |             |
| 614 |     |       |       |       |       |             |
| 615 |     |       |       |       |       |             |
| 616 |     |       |       |       |       |             |
| 617 |     |       |       |       |       |             |
| 618 |     |       |       |       |       |             |

- 619 Supplementary Table S4. Results from the non-parametric tests to determine
- 620 associations between the relative gene expression of Hedgehog Score and
- 621 clinicopathological variables.

| Hedgehog Score        |                          |             |  |  |  |  |
|-----------------------|--------------------------|-------------|--|--|--|--|
|                       | Mean ± SD                | p-value     |  |  |  |  |
| Gender                |                          |             |  |  |  |  |
| Male                  | $0.14\pm0.15$            | 0.722       |  |  |  |  |
| Female                | $0.16\pm0.18$            | 0.732       |  |  |  |  |
| Age                   |                          |             |  |  |  |  |
| <65                   | $0.16\pm0.18$            | 0.018       |  |  |  |  |
| >65                   | $0.15\pm0.17$            | 0.918       |  |  |  |  |
| Smoking l             | nabit                    |             |  |  |  |  |
| Never                 | $0.11\pm0.11$            | 0.305 (1v2) |  |  |  |  |
| Former                | $0.17\pm0.19$            | 0.574 (2v3) |  |  |  |  |
| Current               | $0.15\pm0.17$            | 0.432 (1v3) |  |  |  |  |
| Performa              | nce Status               |             |  |  |  |  |
| 0                     | $0.15\pm0.16$            | 0 000       |  |  |  |  |
| 1-2                   | $0.16\pm0.21$            | 0.898       |  |  |  |  |
| Histology             |                          |             |  |  |  |  |
| SCC                   | $0.14\pm0.19$            | 0.295 (1v2) |  |  |  |  |
| ADC                   | $0.17\pm0.16$            | 0.322 (2v3) |  |  |  |  |
| Others                | $0.13\pm0.15$            | 0.848 (1v3) |  |  |  |  |
| Differentiation grade |                          |             |  |  |  |  |
| Well                  | $0.13\pm0.15$            | 0.491 (1v2) |  |  |  |  |
| Moderate              | $0.15\pm0.17$            | 0.526 (2v3) |  |  |  |  |
| Poor                  | $0.18\pm0.19$            | 0.255 (1v3) |  |  |  |  |
| Tumor size            |                          |             |  |  |  |  |
| T1a/b                 | $0.10\pm0.19$            | 0.053 (1v2) |  |  |  |  |
| T2a/b                 | $0.17\pm0.\overline{17}$ | 0.830(2v3)  |  |  |  |  |
| T3                    | $0.18\pm0.16$            | 0.096 (1v3) |  |  |  |  |
| LN involvement        |                          |             |  |  |  |  |

| No      | $0.16\pm0.17$   | 622                  |  |  |  |
|---------|-----------------|----------------------|--|--|--|
| Yes     | $0.14\pm0.18$   | 0.444                |  |  |  |
| Stage   |                 |                      |  |  |  |
| Ι       | $0.13\pm0.16$   | 0.124 (\$22)         |  |  |  |
| II      | $0.19\pm0.20$   | 0.432 (2v3)          |  |  |  |
| IIIA    | $0.15\pm0.16$   | 0.604 (१४३)          |  |  |  |
| Relapse |                 |                      |  |  |  |
| No      | $0.15\pm0.17$   | 0.724                |  |  |  |
| Yes     | $0.16\pm0.18$   | 0.72 <del>6</del> 27 |  |  |  |
| Exitus  |                 |                      |  |  |  |
| No      | $0.12 \pm 0.17$ | 0.120                |  |  |  |
| Yes     | $0.17 \pm 0.17$ | 0.1.3629             |  |  |  |

- --

<sup>650</sup> Supplementary Table S5. Clinicopathological characteristics of the TCGA patients

<sup>651</sup> included in the study.

| Characteristics                | N (860)    | %    |  |  |  |
|--------------------------------|------------|------|--|--|--|
| Age at surgery (median, range) | 66 [33-90] |      |  |  |  |
| Gender                         |            |      |  |  |  |
| Male                           | 343        | 39.9 |  |  |  |
| Female                         | 517        | 60.1 |  |  |  |
| TNM staging                    |            |      |  |  |  |
| Stage I                        | 440        | 51.2 |  |  |  |
| Stage II                       | 233        | 27.1 |  |  |  |
| Stage III                      | 146        | 16.9 |  |  |  |
| Stage IV                       | 29         | 3.4  |  |  |  |
| Not specify                    | 12         | 1.4  |  |  |  |
| Histology                      |            |      |  |  |  |
| ADC                            | 445        | 51.7 |  |  |  |
| SCC                            | 415        | 48.3 |  |  |  |
| Smoking status                 |            |      |  |  |  |
| Never                          | 83         | 9.7  |  |  |  |
| Current                        | 218        | 25.3 |  |  |  |
| Former                         | 540        | 62.8 |  |  |  |
| Not specify                    | 19         | 2.2  |  |  |  |
| Relapse                        |            |      |  |  |  |
| No                             | 526        | 61.2 |  |  |  |
| Yes                            | 225        | 26.2 |  |  |  |
| Not specify                    | 109        | 12.7 |  |  |  |
| Exitus                         |            |      |  |  |  |
| No                             | 532        | 61.9 |  |  |  |
| Yes                            | 328        | 38.1 |  |  |  |
|                                |            |      |  |  |  |

## 663 Supplementary Table S6. Results from survival analyses based on HH pathway

664 components for TCGA patients.

|                                   | RFS           |             |         | OS    |             |         |  |  |
|-----------------------------------|---------------|-------------|---------|-------|-------------|---------|--|--|
| Gene                              | HR            | 95% CI      | p-value | HR    | 95% CI      | p-value |  |  |
| Global col                        | Global cohort |             |         |       |             |         |  |  |
| GLI1                              | 1.040         | 0.834-1.296 | 0.727   | 1.048 | 0.842-1.304 | 0.674   |  |  |
| PTCH1                             | 0.789         | 0.632-0.984 | 0.035*  | 0.824 | 0.661-1.025 | 0.083   |  |  |
| SHH                               | 0.929         | 0.745-1.158 | 0.513   | 0.883 | 0.709-1.099 | 0.266   |  |  |
| SMO                               | 1.065         | 0.854-1.329 | 0.575   | 1.089 | 0.874-1.357 | 0.447   |  |  |
| Adenocar                          | cinoma s      | ubcohort    |         |       |             |         |  |  |
| GLI1                              | 0.968         | 0.705-1.330 | 0.842   | 1.040 | 0.754-1.435 | 0.809   |  |  |
| PTCH1                             | 0.617         | 0.446-0.852 | 0.003*  | 0.687 | 0.495-0.952 | 0.024*  |  |  |
| SHH                               | 0.920         | 0.670-1.263 | 0.607   | 0.924 | 0.670-1.274 | 0.629   |  |  |
| SMO                               | 1.171         | 0.852-1.611 | 0.331   | 1.234 | 0.893-1.706 | 0.203   |  |  |
| Squamous cell carcinoma subcohort |               |             |         |       |             |         |  |  |
| GLI1                              | 0.900         | 0.662-1.223 | 0.502   | 0.874 | 0.648-1.179 | 0.379   |  |  |
| PTCH1                             | 0.981         | 0.722-1.332 | 0.900   | 0.959 | 0.712-1.295 | 0.788   |  |  |
| SHH                               | 1.077         | 0.792-1.332 | 0.637   | 1.037 | 0.769-1.399 | 0.812   |  |  |
| SMO                               | 0.909         | 0.669-1.235 | 0.542   | 0.920 | 0.682-1.241 | 0.587   |  |  |