
Citation: Behl, R.; Arora, H.;

Martínez, E.; Singh, T.

Approximating Multiple Roots of

Applied Mathematical Problems

Using Iterative Techniques. Axioms

2023, 12, 270. https://doi.org/

10.3390/axioms12030270

Academic Editors: Behzad

Djafari-Rouhani, Francesca Pitolli

and Yurii Kharkevych

Received: 4 January 2023

Revised: 8 February 2023

Accepted: 23 February 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Approximating Multiple Roots of Applied Mathematical
Problems Using Iterative Techniques
Ramandeep Behl 1 , Himani Arora 2, Eulalia Martínez 3,* and Tajinder Singh 2

1 Mathematical Modelling and Applied Computation Research Group (MMAC), Department of Mathematics,
King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

2 Department of Mathematics, Guru Nanak Dev University, Amritsar 143005, India
3 Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València,

46022 València, Spain
* Correspondence: eumarti@mat.upv.es

Abstract: In this study, we suggest a new iterative family of iterative methods for approximating the
roots with multiplicity in nonlinear equations. We found a lack in the approximation of multiple
roots in the case that the nonlinear operator be non-differentiable. So, we present, in this paper,
iterative methods that do not use the derivative of the non-linear operator in their iterative expression.
With our new iterative technique, we find better numerical results of Planck’s radiation, Van Der
Waals, Beam designing, and Isothermal continuous stirred tank reactor problems. Divided difference
and weight function approaches are adopted for the construction of our schemes. The convergence
order is studied thoroughly in the Theorems 1 and 2, for the case when multiplicity p ≥ 2. The
obtained numerical results illustrate the preferable outcomes as compared to the existing ones in
terms of absolute residual errors, number of iterations, computational order of convergence (COC),
and absolute error difference between two consecutive iterations.

Keywords: Steffensen’s method; nonlinear equations; optimal iterative methods; multiple roots
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1. Introduction

Let f : C→ C be a complex valued function that possesses the nth order derivatives.
Let ker f = {α ∈ C : f (j)(α) = 0; j = 0, 1, 2, . . . , p− 1 and f (p)(α) 6= 0 ; p ∈ N} be the ker-
nel of function f . This ker f consists of the roots of function f and p is the multiplicity of
the root. Therefore, to find the ker f , one should work to find out the roots of the equation
f (x) = 0. In most of the cases, it is almost impossible to find the exact roots. In such cases,
one needs to apply an iterative approach to find the approximate roots. There are different
research papers that provide us with iterative techniques for approximating the solution α
of nonlinear equation f (x) = 0 with multiplicity p > 1. The well-known modified New-
ton’s method [1] is one of the simplest and most popular iterative methods for multiple
roots, which is provided by

xt+1 = xt − p
f (xt)

f ′(xt)
, t = 0, 1, 2, . . . (1)

The convergence order of the modified Newton’s method is quadratic for p ≥ 1. Based on
this method, many methods (Hansen and Patrick [2], Osada [3], Neta [4], Sharifi et al. [5],
Soleymani et al. [6], Zhou et al. [7], Li et al. [8], and Chebyshev–Halley methods [9]) have
been published; the theoretical treatment of iterative methods can be found in [10,11].
However, it can be seen that all these methods use the derivative of the function f in their
iterative function, or higher order derivatives.
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So, we have account for how sometimes the derivatives of function f do not exist or we
consume a huge time in order to have them, then we think about derivative free methods for
multiple roots, but these techniques are very limited in the literature. This is because it is not
an easy task to retain the same convergence order (as the simple roots) and the calculation
work is very hard and time consuming. However, due to the rapid development of digital
computers, advanced computer languages, and software, the production of derivative free
methods for obtaining the multiple roots of nonlinear equations have become the new area
of interest. Most of the time derivatives are replaced by first-order divided differences in
such methods.

Traub–Steffensen’s method [12] is one of the derivative free methods where the deriva-
tive f ′(xt) in Equation (1) is replaced with the first-order divided difference f [ηt, xt] =
f (ηt)− f (xt)

ηt−xt
and ηt = xt + γ f (xt), γ 6= 0 ∈ R. Therefore, Equation (1) becomes

xt+1 = xt − p
f (xt)

f [ηt, xt]
. (2)

Recently, some higher order derivative free methods have been proposed by different
researchers on the basis of Traub–Steffensen’s method [12]. The methods by Kumar et al. [13],
Behl et al. [14], Sharma et al. [15,16], Dong [17,18], and Kumar et al. [19] are some examples
of derivative free methods.

Motivated by derivative-free methods for multiple roots, we try to develop a new
derivative-free multipoint iterative method. The advantages of our techniques are: they
have smaller residual errors, consume smaller number of iterations, and have better er-
ror difference and more stable computational order of convergence (COC). In addition,
the proposed scheme also adopts as small a number of function evaluations as possible to
procure a high convergence order. The convergence order of the new family is four.

The rest of the paper is summarized as follows. Section 2 includes the construction as
well as the convergence analysis of new family. Some special cases of the newly developed
family are discussed in Section 3. In Section 4, various numerical examples are considered
to confirm the theoretical results. Finally, concluding remarks are provided in Section 5.

2. Construction of Higher-Order Scheme

Here, we construct a fourth-order family of Steffensen-type method [12] for multiple
zeros (p ≥ 2), which is defined by

yt = xt − p
f (xt)

f [ηt, θt]

xt+1 = yt − G(κt)
f (xt)

f [ηt, θt]
,

(3)

where ηt = xt + γ f (xt), θt = xt − γ f (xt), γ ∈ R, γ 6= 0, and p ≥ 2 is known as the
multiplicity of the required zero. In addition, G(κt) is a single variable weight function and
f [ηt, θt] is a finite difference of order one and is provided by f [ηt, θt] =

f (ηt)− f (θt)
ηt−θt

. Moreover,

κt =
(

f (yt)
f (xt)

) 1
p , is a multi-valued function. Suppose their principal analytic branches

(see [20]), st as a principal root provided by κt = exp
[

1
p log

(
f (yt)
f (xt)

)]
, with log

(
f (yt)
f (xt)

)
=

log
∣∣∣ f (yt)

f (xt)

∣∣∣+ i arg
(

f (yt)
f (xt)

)
for −π < arg

(
f (yt)
f (xt)

)
≤ π. The choice of arg(z) for z ∈ C agrees

with that of log(z) to be employed later in the numerical experiments of section. We have

an analogous way κt =
∣∣∣ f (yt)

f (xt)

∣∣∣ 1
p . exp

[
1
p arg

(
f (yt)
f (xt)

)]
= O(et).

In Theorem 1, we illustrate that the constructed scheme (3) attains a maximum fourth-
order of convergence for all γ 6= 0, without adopting the evaluation of the derivative.
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Theorem 1. Let us consider function f : D ⊂ C→ C an analytic function in D surrounding the
required zero x∗, which is a solution of multiplicity p = 2 of equation f (x) = 0. Then, the scheme
(3) has fourth-order convergence, when

G(0) = 0, G′(0) = 2, G′′(0) = 8, |G′′′(0)| < ∞, (4)

and satisfies the following error equation

et+1 =

−
(

G′′′(0)− 66
)

B2
1

96
− 1

4
B1B2

e4
t + O(e5

t ),

where et = xt − x∗ and Bi =
2!

(2+i)!
f (2+i)(x∗)
f (2)(x∗)

, i = 1, 2, 3, . . . are the errors in the t–th iteration
and the asymptotic error constant numbers, respectively.

Proof. We develop the Taylor’s series expansions for the functions f (xt), f (ηt) and f (θt)
around x = x∗ with the assumption f (x∗) = f ′(x∗) = 0 and f (2)(x∗) 6= 0, which are given,
respectively, by

f (xt) =
f (2)(x∗)

2!
e2

t

(
1 + B1et + B2e2

t + B3e3
t + B4e4

t + O(e5
t )

)
(5)

f (ηt) =
f (2)(x∗)

2!
e2

t

[
1 +

(
γ∆2 + B1

)
et +

1
4

(
10B1γ∆2 + 4B2 + γ2∆2

2

)
e2

t

+
1
4

(
5B1γ2∆2

2 + 6B2
1γ∆2 + 4

(
3B2γ∆2 + B3

))
e3

t

+
1
8

(
B1
(
28B2γ∆2 + γ3∆3

2
)
+ 4
(
4B2γ2∆2

2 + 7B3γ∆2 + 2B4
)
+ 14B2

1γ2∆2
2

)
e4

t + O(e5
t )

]
,

(6)

and

f (θt) =
f (2)(x∗)

2!
e2

t

[
1 +

(
B1 − γ∆2

)
et +

1
4

(
−10B1γ∆2 + 4B2 + γ2∆2

2

)
e2

t

+
1
4

(
5B1γ2∆2

2 − 6B2
1γ∆2 + 4

(
B3 − 3B2γ∆2

))
e3

t

+
1
8

(
14B2

1γ2∆2
2 − B1(28B2γ∆2 + γ3∆3

2) + 4(4B2γ2∆2
2 − 7B3γ∆2 + 2B4)

)
e4

t + O(e5
t )

]
,

(7)

where ∆2 = f (2)(x∗).
By adopting expressions (5)–(7), we obtain further

f (xt)

f [ηt, θt]
=

1
2

et −
B1

4
e2

t +
1
8
(3B2

1 − 4B2)e3
t +

1
16

(
B1

(
20B2 − γ2∆2

2

)
− 9B3

1 − 12B3

)
e4

t + O(e5
t ), (8)

and, by using the expression (8) in the first step of (3), we have

yt =
B1

2
e2

t +

(
B2 +

3
4

B2
1

)
e3

t +
1
8

(
B1
(
γ2∆2

2 − 20B2
)
+ 9B3

1 + 12B3

)
e4

t + O(e5
t ). (9)

Now, we use the expression (9), so we obtain

f (yt) =
1
2

∆2e2
t

[
1
4

B2
1e2

t + B1

(
B2 −

3B2
1

4

)
e3

t

+
1

16

(
2B2

1
(
γ2∆2

2 − 32B2
)
+ 29B4

1 + 24B3B1 + 16B2
2

)
e4

t + O(e5
t )

]
,

(10)
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and

κt =

(
f (yt)

f (xt)

) 1
2
=

B1

2
et + (B2 − B2

1)e
2
t +

1
16

(
2B1(γ

2∆2
2 − 26B2) + 29B3

1 + 24B3

)
e3

t + O(e4
t ). (11)

The expression (11) demonstrates that κt = O(et). So, we expand the weight function
G(κt) in the neighborhood of the origin obtaining:

G(κt) = G(0) + G′(0)κt +
1
2!

G′′(0)κ2
t +

1
3!

G′′′(0)κ3
t . (12)

Now, we have the following expression by inserting Equation (11) in the scheme (3)

et+1 = −G(0)
2

et +
1
4

B1

(
G(0)− G′(0) + 2

)
e2

t

+
1
16

[
8B2

(
G(0)− G′(0) + 2

)
− B2

1

(
6G(0)− 10G′(0) + G′′(0) + 12

)]
e3

t

+ Ω1e4
t + O(e5

t ),

(13)

where Ω1 is a function that depends on the parameters defined previously,

Ω1

(
γ, ∆2, B1, B2, B3, G(0), G′(0), G′′(0), G′′(0)

)
.

From expression (13), we deduce that the scheme (3) reaches at the least fourth-order
convergence, if

G(0) = 0,

G(0)− G′(0) + 2 = 0,

6G(0)− 10G′(0) + G′′(0) + 12 = 0

which further provide
G(0) = 0, G′(0) = 2, G′′(0) = 8. (14)

Next, by inserting above expression (14) in (12), we obtain

et+1 =

(
− 1

96
B3

1(G
′′′(3)− 66)− B2B1

4

)
e4

t + O(e5
p), (15)

provided |G′′′(0)| < ∞. Hence, the scheme (3) has fourth-order convergence for p = 2.

Theorem 2. Let us consider function f : D ⊂ C→ C an analytic function in D surrounding the
required zero x∗, which is a solution of multiplicity p ≥ 3 of equation f (x) = 0. Then, the scheme
(3) has fourth-order convergence, when

G(0) = 0, G′(0) = p, G′′(0) = 4p, |G′′′(0)| < ∞, (16)

and satisfies the following error equation

et+1 =

−
(

G′′′(0)− 3p(p + 9)
)

M2
1

6p4 − 1
p2 M1M2

e4
t + O(e5

t ),

where et = xt − x∗ and Mi =
p!

(p+i)!
f (p+i)(x∗)
f (p)(x∗)

, i = 1, 2, 3, . . . are the errors in t-th iteration and

asymptotic error constant numbers, respectively.
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Proof. We obtain Taylor’s series expansions for the functions f (xt), f (ηt), and f (θt) around
x = x∗ with the assumption f (x∗) = f ′(x∗) = f ′′(x∗) = · · · = f (p−1)(x∗) = 0 and
f (p)(x∗) 6= 0, which are provided by, respectively,

f (xt) =
f (p)(x∗)

p!
ep

t

(
1 + M1et + M2e2

t + M3e3
t + M4e4

t + O(e5
p)

)
(17)

f (ηt) =
f p(x∗)

p!
ep

t

[
1 + M1et + Γ1e2

t + Γ2e3
t + Γ3e4

t + O(e5
t )

]
, (18)

and

f (θt) =
f p(x∗)

p!
ep

t

[
1 + M1et + Γ̄1e2

t + Γ̄2e3
t + Γ̄3e4

t + O(e5
t )

]
, (19)

where ∆p = f (p)(x∗), p = 3, 4, 5, . . . , Γi = Γi

(
γ, ∆p, M1, M2, M3, M4

)
, and

Γ̄i = Γ̄i

(
γ, ∆p, M1, M2, M3, M4

)
; some of them are provided below:

Γ1 =


1
2
(γ∆3 + 2M2), p = 3

M2 p ≥ 4

,

and

Γ̄1 =


1
2
(−γ∆3 + 2M2), p = 3

M2 p ≥ 4

.

By adopting expressions (17)–(19), we obtain further

f (xt)

f [ηt, θt]
=

1
p

et −
M1

p2 e2
t +

1
p3

(
(p + 1)M2

1 − 2pM2

)
e3

t

− 1
p4

[
(p + 1)2M3

1 − p(3p + 4)M1M2 + 3p2M3

]
e4

t + O(e5
p).

(20)

For the expression (20) used in the first substep of (3), we have

yt = eyt =
M1

p
e2

t −
1
p2

(
(p + 1)M2

1 − 2pM2

)
e3

t

+
1
p3

[
(p + 1)2M3

1 − p(3p + 4)M1M2 + 3p2M3

]
e4

t + O(e5
p).

(21)

Now, use the expression (21), we obtain

f (yt) =
f (p)(x∗)

p!
ep

yt

(
1 + M1eyt + M2e2

yt + M3e3
yt + M4e4

yt + O(e5
p)

)
(22)

and

κt =

(
f (yt)

f (xt)

) 1
p
=

M1

2
et + (M2 −M2

1)e
2
t +

1
16

(
2M1(γ

2∆2
2 − 26M2) + 29M3

1 + 24M3

)
e3

t

+ O(e4
t ).

(23)

The expression (23) demonstrates that κt = O(et). So, we expand the weight function
G(κt) in the neighborhood of the origin in the following way

G(κt) = G(0) + G′(0)κt +
1
2!

G′′(0)κ2
t +

1
3!

G′′′(0)κ3
t . (24)
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We have the following expression by inserting equation (23) in the scheme (3)

et+1 = −G(0)
p

et +
1
p2 M1

(
G(0)− G′(0) + p

)
e2

t +
1

2p3

[
4pM2

(
G(0)− G′(0) + p

)
−M2

1

(
G′′(0) + 2(p + 1)G(0)− 2(p + 3)G′(0) + 2p(p + 1)

)]
e3

t + Ce4
t + O(e5

t ),
(25)

where C depends on parameters defined before, C
(

γ, ∆p, M1, M2, M3, G(0), G′(0), G′′(0), G′′(0)
)

.
From the expression (25), we deduce that the scheme (3) reaches at least fourth-order

convergence, if

G(0) = 0,

G(0)− G′(0) + p = 0,

G′′(0) + 2(p + 1)G(0)− 2(p + 3)G′(0) + 2p(p + 1) = 0

which further provide

G(0) = 0, G′(0) = p, G′′(0) = 4p. (26)

Next, by inserting above expression (26) in (24), we obtain

et+1 =

−
(

G′′′(3)− 3m(m + 9)
)

6p4 M3
1 −

M2M1

p2

e4
t + O(e5

p), (27)

provided |G′′′(0)| < ∞. Hence, the scheme (3) has fourth-order convergence for p ≥ 3.

3. Special Cases

In this section, we want to show that we can develop as many new derivative-free
methods for multiple roots as we can build weight functions. However, all the weight
functions should satisfy the conditions of Theorem 1. Some of the important special cases
are mentioned in Table 1.

Table 1. Some special cases of our scheme (3).

Cases (Naming) Weight Functions Corresponding
Iterative Method

Case-1 (RM1) G(κt) =
pκt

1−2κt

yt = xt − p f (xt)
f [ηt ,θt ]

xt+1 = yt − pκt
1−2κt

f (xt)
f [ηt .θt ]

.

Case-2 (RM2) G(κt) =
pκt

1−2κt−κ2
t

yt = xt − p f (xt)
f [ηt ,θt ]

xt+1 = yt − pκt
1−2κt−κ2

t

f (xt)
f [ηt ,θt ]

.

Case-3 (RM3) G(κt) =
pκt+κ2

t
1−2κt

− κ2
t

yt = xt − p f (xt)
f [ηt ,θt ]

xt+1 = yt − (
pκt+κ2

t
1−2κt

− κ2
t )

f (xt)
f [ηt ,θt ]

.

Case-4 (RM4) G(κt) =
pκt

1−2κt+κ2
t

yt = xt − p f (xt)
f [ηt ,θt ]

xt+1 = yt − pκt
1−2κt+κ2

t

f (xt)
f [ηt ,θt ]

.

Case-5 (RM5) G(κt) =
p

1−κt
− p + pκ2

t

yt = xt − p f (xt)
f [ηt ,θt ]

xt+1 = yt − ( p
1−κt
− p + pκ2

t ) f [ηt.θt].

Case-6 (RM6) G(κt) = pκt + 2pκ2
t

yt = xt − p f (xt)
f [ηt ,θt ]

xt+1 = yt − (pκt + 2pκ2
t )

f (xt)
f [ηt ,θt ]

Case-7 (RM7) G(κt) = p exp 2κt − sin κt − 1
yt = xt − p f (xt)

f [ηt ,θt ]

xt+1 = yt − (p exp 2κt − sin κt − 1) f (xt)
f [ηt ,θt ]
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4. Numerical Results

In this section, the efficiency and convergence of the newly generated methods are
checked on some nonlinear problems. For this purpose, we consider RM1, RM2, RM3, and
RM4 methods. We compared them with other existing derivative free and fourth-order
convergence methods.

First of all, we compare them with the following fourth-order method proposed by
Kumar et al. [19]:

yt = xt − p
f (xt)

f [ηt, xt]

xt+1 = yt −
(
(p + 2)κt

1− 2κt

)
f (xt)

f [ηt, xt] + 2 f [ηt, yt]
,

(28)

where ηt = xt + γ f (xt), γ 6= 0 ∈ R, p ≥ 2 is the known multiplicity of the required zero,

κt =
(

f (yt)
f (xt)

) 1
p is multi-valued functions, and f [ηt, xt] =

f (ηt)− f (xt)
ηt−xt

is finite difference of
order one. We called the expression (28) using (SM2).

We also contrast them with a fourth-order scheme provided by Zafar et al. [21], which
is defined as follows:

yt = xt − p
f (xt)

f ′(xt) +
p
2 f (xt)

xt+1 = yt − pκt(
11
2
(κt)

2 + 2κt + 1)
f (xt)

f ′(xt) + 2p f (xt)
,

(29)

where κt =
(

f (yt)
f (xt)

) 1
p and p ≥ 2 is the known multiplicity of the required zero. We

symbolized the scheme (29) by (ZM).
We chose a fourth-order method presented by Behl et al. [22], which is provided below:

yt = xt − p
f (xt)

f [ηt, xt]

xt+1 = xt + p

(
1 +

κt

1− 2ακt

)(
1
2

κt − (1 +
st

2
+ 2(1− α)s2

t )

)
f (xt)

f [ηt, xt]
,

(30)

where ηt = xt + γ f (xt), γ 6= 0 ∈ R, α ∈ R, p ≥ 2 is the known multiplicity of the required

zero, and f [ηt, xt] =
f (ηt)− f (xt)

ηt−xt
is finite difference of order one. Further, κt =

(
f (yt)
f (xt)

) 1
p and

st =
(

f (yt)
f (ηt)

) 1
p are multi-valued functions. We denoted the scheme (30) using (BM).

We consider the following method provided by Kansal et al. [23]:

yt = xt − p
f (xt)

f ′(xt)

xt+1 = yt − pκt

(
1 + 2st +

13
2

s2
t

)
f (xt)

f ′(xt)
,

(31)

where κt =
(

f (yt)
f (xt)

) 1
p and st =

κt
1+κt

are multi-valued functions. We called the scheme (30)
using (MKM).

The computational work is performed on Mathematica programming software [24]
by selecting the value of the parameter γ = 0.01. The numerical results are depicted
in Tables 2–5. The tables include the number of iterations required to obtain the root
with stopping criterion |xt+1 − xt| + | f (xt)| < 10−200, estimated errors |xt+1 − xt|, and
residual errors of the considered function | f (xt)|. In addition, the computational order of
convergence (COC) by using the proceeding formula:
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COC =
log| xt+2−α

xt+1−α |

log| xt+1−α
xt−α |

, where t = 1, 2, . . . (32)

In order to illustrate the applicability of our scheme, we chose the following four real
life problems. The considered problems are mentioned in Examples 1–4, which are defined
as follows:

Example 1. Van Der Waals equation of state:

In 1873, Van Der Waals modified the Ideal Gas Law ( PV = nRT) when he realised no
gas in the universe is ideal. He just adjusted the Pressure and Volume. This equation of
state is presented as (

P +
an2

V2

)
(V − nb) = nRT,

where P is the pressure, V is the volume, R is the universal gas constant, and T is the
absolute temperature. The constants a and b represent the magnitude of intermolecular
attraction and excluded, respectively. These constants are specific to a particular gas.
The above equation can also be written as

PV3 − (nbP + nRT)V2 + αn2V − αβn2 = 0.

For a particular gas, the problem reduces to the following polynomial in x of degree three

f (x) = x3 − 5.22x2 + 9.0825x− 5.2675. (33)

According to the Fundamental Theorem of arithmetic, the above polynomial has three
roots and, among them, x = 1.75 is a multiple root of multiplicity p = 2 and x = 1.72 is a
simple zero. The numerical results for this problem are mentioned in Table 2.

Example 2. Planck’s radiation problem:

Consider the Planck’s radiation equation that determines the spectral density Eλ of
electromagnetic radiations emitted by a black body in the thermal equilibrium at a definite
temperature [25] as

Eλ =
8πch

λ5 ×
1

e
ch

kTλ − 1
,

where T, λ, k, h, and c are, respectively, the absolute temperature of the black body, the wave-
length of radiation, the Boltzmann constant, the Plank’s constant, and the speed of light in
the medium (vacuum).

To evaluate the wavelength λ, for which the energy density Eλ is maximum, the nec-
essary condition is E′λ = 0, provides us with the following equation:

( ch
λkT )e

ch
λkT

e
ch

λkT − 1
= 5.

Using x = ch
λkT , the corresponding non-linear function is as follows:

f (x) =
(

e−x − 1 +
x
5

)p
. (34)

The approximated zero of f (x) is x∗ = 4.965114231744276303698759 with multiplicity
p = 4 and, by using this solution, one can easily determine the wave length λ from the
relation x = ch

λkT . The computational results are provided in Table 3.
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Example 3. Beam Designing Model

Consider a beam designing problem where a beam of length r unit is leaning against
the edge of a cubical box with sides of length 1 unit each, such that one end of the beam
touches the wall and the other end touches the floor. What should the distance along the
floor from the base of the wall to the bottom of the beam be? Suppose y is the distance
along the beam from the floor to the edge of the box, and let x be the distance from the
bottom of the box to the bottom of the beam. Then for a given value of r, we have

x4 + 4x3 − 24x2 + 16x + 16 = 0.

The solution x = 2 of the above equation is a double root. We consider the initial
guess x∗ = 1.8 to find the root. Table 4 shows the numerical results of various methods
corresponding to the problem.

Example 4. Isothermal Continuous Stirred Tank Reactor Problem [26]

The test equation corresponding to this problem is provided as follows:

x4 + 11.50x3 + 47.49x2 + 83.06325x + 51.23266875 = 0.

The solution of the equation is x = −2.85 with multiplicity 2. We consider the initial
guess as x∗ = 2.7 to find the root. The numerical results of various methods for this problem
are shown in Table 5.

Table 2. Comparison of different iterative methods based on Example (1).

Methods t |et−2| |et−1| |et| | f (xt+1)| COC

RM1 7 6.11× 10−26 9.67× 10−98 6.08× 10−385 2.71× 10−3068 4.0

RM2 7 3.24× 10−32 2.57× 10−123 1.00× 10−487 1.66× 10−3891 4.0

RM3 7 2.55× 10−30 9.77× 10−116 2.11× 10−457 6.39× 10−3649 4.0

RM4 7 3.44× 10−22 1.63× 10−82 8.13× 10−324 7.65× 10−2579 4.0

ZM 8 1.61× 10−48 3.95× 10−189 5.36× 10−376 7.09× 10−2999 6.0

BM (α = 0) 7 1.21× 10−19 3.52× 10−72 2.48× 10−282 1.14× 10−2246 4.0
(α = 0) 7 6.04× 10−26 9.22× 10−98 5.01× 10−385 5.78× 10−3069 4.0

MKM 7 3.47× 10−22 6.70× 10−83 9.33× 10−326 3.68× 10−2595 4.0

SKM 7 7.75× 10−28 1.67× 10−105 3.59× 10−416 1.77× 10−3318 4.0

Table 3. Comparison of different iterative methods based on Example (2).

Methods t |et−2| |et−1| |et| | f (xt+1)| COC

RM1 5 6.78× 10−26 2.43× 10−105 3.99× 10−423 9.96× 10−6778 4.0

RM2 5 5.63× 10−26 1.09× 10−105 1.56× 10−424 2.29× 10−6800 4.0

RM3 5 6.19× 10−26 1.64× 10−105 8.12× 10−424 7.79× 10−6789 4.0

RM4 5 8.11× 10−26 5.23× 10−105 9.04× 10−422 5.82× 10−6756 4.0

ZM 7 1.55× 10−33 2.73× 10−132 7.74× 10−264 1.11× 10−4214 6.0

BM (α = 0) 5 9.61× 10−26 1.08× 10−104 1.72× 10−420 2.01× 10−6735 4.0
(α = 1) 5 6.75× 10−26 2.38× 10−105 3.71× 10−423 3.07× 10−6778 4.0

MKM 5 6.30× 10−26 1.76× 10−105 1.07× 10−423 6.52× 10−6787 4.0

SKM 5 6.77× 10−26 2.42× 10−105 3.90× 10−423 7.03× 10−6778 4.0
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Table 4. Comparison of different iterative methods based on Example (3).

Methods t |et−2| |et−1| |et| | f (xt+1)| COC

RM1 6 1.71× 10−18 1.56× 10−73 1.09× 10−293 1.57× 10−2346 4.0

RM2 6 3.97× 10−22 6.44× 10−89 4.48× 10−356 2.65× 10−2847 4.0

RM3 6 2.09× 10−21 4.93× 10−86 1.54× 10−344 5.02× 10−2755 4.0

RM4 6 1.71× 10−17 2.87× 10−69 2.29× 10−276 2.08× 10−2207 4.0

ZM 10 1.06× 10−35 1.31× 10−140 2.56× 10−280 4.92× 10−2236 6.0

BM (α = 0) 7 4.22× 10−45 6.32× 10−179 3.18× 10−714 9.96× 10−5709 4.0
(α = 1) 7 9.11× 10−26 6.14× 10−51 4.75× 10−203 6.70× 10−809 1.3

MKM 6 1.20× 10−18 2.20× 10−74 2.42× 10−297 3.07× 10−2376 4.0

SKM 8 7.55× 10−50 1.37× 10−198 1.40× 10−396 6.22× 10−3169 6.0

Table 5. Comparison of different iterative methods based on Example (4).

Methods t |et−2| |et−1| |et| | f (xt+1)| COC

RM1 6 1.37× 10−49 2.02× 10−198 9.39× 10−794 4.12× 10−6349 4.0

RM2 6 1.36× 10−49 1.94× 10−198 8.12× 10−794 1.27× 10−6349 4.0

RM3 6 1.36× 10−49 1.94× 10−198 8.11× 10−794 1.27× 10−6349 4.0

RM4 6 1.38× 10−49 2.09× 10−198 1.09× 10−793 1.33× 10−6348 4.0

ZM 6 3.15× 10−35 9.46× 10−70 2.24× 10−277 4.84× 10−1107 1.3

BM (α = 0) 6 4.90× 10−48 4.80× 10−192 4.41× 10−768 2.10× 10−6143 4.0
(α = 1) 6 4.44× 10−48 3.18× 10−192 8.31× 10−769 3.17× 10−6149 4.0

MKM 6 1.37× 10−49 1.97× 10−198 8.62× 10−794 2.07× 10−6349 4.0

SKM 6 4.43× 10−48 3.14× 10−192 7.93× 10−769 2.18× 10−6149 4.0

5. Concluding Remarks

• We presented new derivative-free and multi-point iterative techniques that can handle
multiple zeros (p ≥ 2) of nonlinear models.

• Divided difference and weight function approaches are the main pillar where the
construction of our scheme lies.

• Our expression (3) consuming is an optimal scheme in the regard of Kung–Traub
conjecture. Because, it adopts only three values of f at different points.

• Many new weight functions are depicted in Table 1 that satisfy the hypotheses of
the Theorems 1 and 2. These new weight functions also correspond to new iterative
techniques.

• Our techniques provide better numerical solutions in terms of the residual errors,
stable COC, absolute error between two iterations, and number iterations as compared
to the existing ones (see Tables 2–5). We have emphasized, in the Tables, the better
result in all problems and coincides in Tables 2 and 3 with the new method RM2,
while, in Table 5, we remark that new methods perform less iterations for reaching the
same tolerance than the known ones.

• Finally, we wind up with this statement that “our schemes is a good alternative to
the existing methods”. Our scheme is not valid for the solutions of nonlinear system.
In the future, we will try to work on this direction.
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