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Rate, Power, and Energy Efficiency trade-offs in
Massive MIMO Systems with Carrier Aggregation

Alessio Zappone, David López-Pérez, Antonio De Domenico, Nicola Piovesan and Harvey Bao

Abstract—This work considers a multi-cell, multi-carrier mas-
sive MIMO network with carrier aggregation capabilities, and
tackles both the rate versus power consumption and the rate
versus energy efficiency (EE) trade-offs, by jointly optimizing
the number of employed carriers, transmit antennas, base station
density, and transmit power. Provably convergent algorithms for
both trade-off problems are developed, together with closed-form
results for the individual optimization of the considered resources,
taking three main carrier aggregation techniques into account,
namely inter-carrier, intra-carrier contiguous, and intra-carrier
non-contiguous. Numerical results show how the use of carrier
aggregation represents an effective way of increasing the network
rate and EE, while keeping the power consumption at bay. By
using carrier aggregation, it is possible to reduce the number of
deployed antennas, without sacrificing the rate performance and
increasing the system EE.

I. INTRODUCTION

The rise of 5G wireless networks has brought unprecedented
performance in terms of rate, ultra-reliable low latency and EE.
Mobile network operators are able to offer innovative services
to their customers, which brings us one step closer to the
vision of a society with ubiquitous, high-capacity, reliable,
and sustainable connectivity. Nevertheless, with 5G being a
reality, the attention of the research community is focusing on
how to address some of the limitations that mobile networks
still have. In particular, one issue that deserves attention is the
energy consumption of present and future wireless networks.
Although the EE of 5G networks has improved compared to
legacy 4G ones due to the significant increase in network
throughput, the energy consumption level is a concern [1]. EE
is explicitly mentioned as a key problem for future wireless
networks by the Global System for Mobile communications
Alliance (GSMA) [2] and the Next Generation Mobile Net-
works (NGMN) alliance [3], as it threats the environmental
sustainability, and due to monetary reasons. In fact, the energy
consumption constitutes a large portion of an operator’s bill.
In a recent report, it has been argued that, while 3GPP new
radio (NR) deployments provide an EE level approximately
four times higher than 3GPP long term evolution (LTE) ones,
they also consume up to three times more energy, mainly due
to the larger number of deployed antennas [4]. Moreover, the
4x increase of the EE observed is far from the 100x increase
that the International Telecommunication Union (ITU) had set
as objective for 5G [5]. At the same time, it has also forecasted
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that the number of internet protocol (IP) connections is going
to annually rise by 55%, reaching 607 exabytes in 2025 and
5,016 exabytes in 2030, thus requiring an additional increase
in the rate performance of future wireless networks. As a
result, besides the use of the massive MIMO technology, it is
of paramount importance to explore alternative approaches to
provide the required rate levels, without causing a proportional
increase of the energy consumption, to make future networks
sustainable from an energy point of view.

A. Carrier Aggregation

A technique with the potential of reaching the targeted data-
rates with a sustainable power consumption is that of carrier
aggregation (CA), as introduced by 3GPP NR. Specifically,
CA is an enhanced multi-carrier operation, in which two or
more component carriers are merged into one data channel,
even if the component carriers are in separated frequency
bands, e.g., sub-7GHz and millimeter wave spectrum. 3GPP
NR supports the aggregation for a single mobile user (MS)
up to 400MHz in the sub-7GHz band and up to 700MHz
in the millimeter wave frequency region. The aggregation of
component carriers can take place in three manners:

‚ Inter-band CA: component carriers from different fre-
quency ranges are aggregated. This is the most flexible
approach, but the hardest to implement, because compo-
nent carriers from very different frequency bands may
require a different transceiver chain due to the large
frequency separation.

‚ Intra-band contiguous CA: adjacent component carriers
from the same frequency range are aggregated. This is
the least flexible approach, but the easiest to implement,
because the aggregated channel can be considered as
a single, enlarged channel from the radio frequency
viewpoint, and thus a single transceiver chain may suffice.

‚ Intra-band non-contiguous CA: component carriers from
the same frequency range, but not necessarily contiguous,
can be aggregated. This approach represents a middle
ground between the previous two, compromising between
the flexibility of aggregation and the hardware require-
ments. The aggregated channel cannot be treated as a
single, enlarged channel, thus requiring 1 transceiver
chain per component carrier, but some degree of hardware
sharing may still be possible among component carriers,
e.g. multi-carrier filtering.

From the description above, it emerges that, just as it happens
when increasing the number of antennas in a MIMO array,
aggregating more component carriers will provide higher rates,
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but at the same time incur a larger power consumption,
since more hardware is employed. This is true for all three
aggregation techniques, but the hardware energy requirement
will vary with the adopted carrier aggregation technique.

This work aims at answering the question whether it is
more convenient to activate more component carriers or more
antennas in a multi-cell network, which employs carrier ag-
gregation and massive MIMO, from the point of view of
increasing the rates, improving the EE, and lowering the
power consumption. Specifically, the trade-off problems of
rate versus power consumption and of rate versus EE will be
considered with respect to the number of component carriers,
active antennas, base station density, and transmit power.

B. State-of-the-art
Traditionally, the vast majority of works on the trade-off

between rate, power, and EE focus on the optimization of
the transmit power and/or the transmit beamforming, e.g., [6],
[7], with few contributions focusing also on the design of the
number of component carriers, number of antennas, and base
station density.

In [8], a relay-assisted massive MIMO system is considered,
and the trade-off between the spectral and EE is analyzed in
the limit of a large number of relay antennas. It is shown that
a large number of antennas can reduce multi-user interference,
even though it increases the hardware power consumption.
In [9], the spectral and the EE of a relay-assisted massive
MIMO network are studied. It is shown that the EE function
admits a unique maximizer with respect to both the number
of antennas and the transmit power. In [10], the trade-off
between the spectral and EE in heterogeneous massive MIMO
networks is investigated. The problem is formulated, as a bi-
objective program with the spectral and the EE as objectives,
for the optimization of the user-cell associations, power and
bandwidth allocations, and the number of active antennas.
In [11], a general framework for the optimization of the
EE of interference-limited wireless networks is developed by
merging fractional programming and sequential optimization
theory. In [12], the trade-off between the spectral and EE
is analyzed in a massive MIMO system employing spatial
modulation. The results indicate that, when a large number
of transmit antennas is used, using a single radio frequency
(RF) chain coupled with spatial modulation performs better
than using multiple RF chains without spatial modulation. In
[13], the trade-off between the spectral and EE is studied in
a cell-free massive MIMO system considering the scenario in
which the access points share information with a centralized
controller by sending quantized versions of the signals. In
[14], the spectral-energy Pareto-frontier is characterized in
multi-cell MIMO networks resorting to the use of sequential
fractional programming. In [15], the spectral and the energy
efficiencies of a cell-free massive MIMO system are inves-
tigated. The weighted combination of these two metrics is
optimized with respect to power control and to the association
between MSs and access points. This leads to a mixed-integer
problem, which is tackled by relaxing the discrete variables
to continuous ones, and then employing the framework of
sequential fractional programming.

Although all above works consider deterministic approaches
in which the MS locations are estimated, a different line of
research takes a stochastic approach, modeling the MS posi-
tions as random variables, and employing stochastic geometry
to derive expressions of the performance metrics averaged
over the MS positions. In this context, the vast majority of
works embraces the so-called “standard modeling assump-
tions”, among which there is the assumption of single-antenna
transmission [16], [17], [18]. Few works have considered se-
tups with multiple antennas. In [19], a massive MIMO system
is considered, and a model that expresses the system power
consumption as a function of the number of active antennas
is introduced. The results show that the power consumption
of a massive MIMO system grows at least linearly with the
number of active antennas, and thus the EE is unimodal in the
number of active antennas. These results are then extended in
[20] to dense networks, where massive MIMO base stations
are considered. In [21], the area spectral efficiency and the EE
of a massive MIMO network are analysed, and the trade-off
between them is also studied with respect to the number of
active antennas and MSs. In [22], the trade-off between the
energy and the spectral efficiencies is optimized with respect
to the number of active antennas and the transmit power. In
[23], a multi-cell massive MIMO system is considered, and
the scaling laws of the EE with respect to the number of
active antennas are derived. The results confirm that the EE of
massive MIMO systems does not monotonically increase with
the number of antennas. In [24], the scaling law of the EE
is also studied with respect to a relay-assisted massive MIMO
system. In [25], a dense massive MIMO network is considered,
and the system EE is optimized with respect to the pilot reuse
factor, the access point density, and the number of access
point antennas and users. Finally, in [26], a full duplex, multi-
carrier massive MIMO base station communicates with single
antenna nodes, and the spectral and the energy efficiencies are
optimized. These results are extended in [27] to the scenario
in which the rate splitting approach coupled with successive
interference cancellation is adopted.

All above works do not consider the CA technique. Indeed,
the studies on the EE of CA are scarce, and have been
focused mainly on legacy 4G networks. CA was shown to
improve the performance of multi-carrier networks by allow-
ing a base station to merge multiple physical carriers into
a larger logical channel [28]. This clearly leads to a higher
rates, but it can also increase the network energy consump-
tion, with different energy consumption levels depending on
its particular implementation [29]. In [30], a dynamic CA
scheduling scheme is proposed, with the aim of improving
the EE of uplink communications. Two scheduling methods
are designed to reduce transmit power, while maximizing
the utilization of wireless resources. In [31], the sum EE
of a multi-carrier network is maximized with respect to the
bandwidth and power allocation on each carrier component.
A similar setup is considered in [32], and the problem of joint
user-cell association and transmit power control for sum EE
maximization is tackled. In [33], the bi-objective problem of
power minimization and spectral efficiency maximization is
considered in a system employing CA. In [34], the trade-off
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between EE and transmission delay in networks employing
the CA technique is addressed. In [35], the EE of a multi-
carrier system based on an heterogeneous network using CA
is optimized with respect to the number of frequency bands,
the active antennas, and the amount of feedback bits. In
[36], an LTE-A-based network employing CA is considered,
the optimization of an on-off operation of the transceiver is
investigated. Finally, in [37], the optimization of the number
of component carriers and antennas, as well as base station
density and transmit power is tackled in a multi-carrier massive
MIMO network, which a realistic power consumption model.

C. Contributions
At present, no research work considers the optimization of

the rate versus power consumption or rate versus EE trade-offs
in a system where CA and massive MIMO are jointly used.
This work aims at filling this gap, making the following novel
contributions.

‚ A stochastic geometry approach is taken, considering an
average expression of the MS’ rate for a multi-cell, multi-
carrier, massive MIMO network. In this context, a power
consumption model is derived, which accounts for the
joint use of CA and massive MIMO, and relates the
network power consumption to the base station density,
MS density, and transmit power, as well as to the static
power consumption of the whole system, which includes
the power consumed for optimizing the radio resources.

‚ The rate versus power consumption and the rate versus
EE trade-off problems are solved with respect to the
number of component carriers, deployed antennas, base
station density, and transmit power. Both problems are
formulated as bi-objective optimization programs, for
which the Pareto optimal frontier is computed.

‚ For each trade-off problem, the optimization of the differ-
ent radio resources is separately investigated, and closed-
form optimal allocation strategies are derived. These
closed-form results represent the building blocks of the
iterative algorithms that are proposed, ensuring a very
limited overall computational complexity.

‚ Numerical results are provided to corroborate that carrier
aggregation is a viable technique, which can be used
together with massive MIMO to reduce the system power
consumption without reducing the achieved rate, by trad-
ing off antennas with carriers. Indeed, our work shows
that carrier aggregation may be a more energy efficient
technique to achieve the rate requirements of MSs than
massive MIMO.

The rest of the work is organized as follows. Section II de-
scribes the considered system model and problem formulation.
Sections III and IV analyze the rate versus power consump-
tion and the rate versus EE trade-off problems, respectively,
providing the proposed solution algorithms. Finally, Section V
presents a numerical performance analysis, while concluding
remarks are provided in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let us consider the downlink of a multi-cell, multi-carrier,
massive MIMO network operating in TDD mode. In this work,

we take a stochastic geometry approach [38], in which the
base stations are spatially distributed according to a homoge-
neous Poisson point process with intensity λ. The available
communication bandwidth B is composed of N orthogonal
component carriers managed by means of a CA technique.
Inter-band CA, intra-band contiguous CA, and intra-band non-
contiguous CA are all considered in this work. Moreover,
we consider that each MS is allocated across all frequency
resources of a cell, and that K single-antenna MSs are uni-
formly distributed within each Voronoi cell area. As a result,
every base station has the same number of connected MSs.
In addition, we consider that each base station is equipped
with M transmit antennas and employs ZF precoding to
remove intra-cell multi-user interference. User-cell association
is performed based on the geographical distance and each MS
is scheduled across all physical resource blocks (PRBs) of
a component carrier. The path-loss between any base station
and any given MS is modeled as ωdη , with d the distance
between the communicating nodes, η the path-loss exponent,
and ω the path-loss at the reference distance. Flat fast fading
is assumed, with fast-fading channels modeled according to
the Rayleigh distribution, and considered independent among
different base stations and MSs. Finally, the presence of
hardware impairments is modeled by the presence of the
impairment parameter ϵ P r0, 1s, which causes both a decrease
of useful signal power by a factor 1 ´ ϵ2 and the presence of
an additional interference term with power ϵ2 [19].

Adapting single-carrier model from [20] to the consid-
ered multi-carrier scenario, we consider that the base station
transmit power p is uniformly split among MSs, component
carriers, and MIMO layers, the average area rate (AR) (in
bit{s{m2) is,

AR“λMSNB log2

˜

1`
p1 ´ ϵ2qpM ´Kq

2K
ή 2 `ϵ2pM´Kq`

Γp1̀ η{2q

πλ2
ω σ2

p

¸

,

(1)
wherein λMS is the mobile users’ density, Γp¨q is the Gamma
function, and σ2 is the receive noise power. Thus, denoting
by Topt the time required to compute the radio resources to
be employed, and by T the time duration before the radio
resources are updated, the amount of information transmitted
to the average MS is pT ´ToptqR. On the other hand, the area
energy consumption (AEC) (in rJ{m2s) during the complete
time interval T is expressed as

AEC “ λ

˜

NKpT ´ Toptqµp`
N

β0
EFIX `

N

β1
ESY N

`
N

β1
E0M `NE1MK ` E2K ` Eopt

¸

, (2)

wherein

‚ µ ě 1 is the inverse of the transmit power amplifier
efficiency, assumed to be independent of the transmit
power.

‚ EFIX “ PFIXT is the load-independent energy con-
sumed for control signaling, backhaul, cooling, and base
band processing during the time T , with PFIX being the
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corresponding power consumption.
‚ ESY N “ PSY NT is the load-independent energy con-

sumed by the local oscillators during the time T , with
PSY N being the corresponding power consumption.

‚ E0 is the overall energy consumed by each antenna
transceiver during the time T .

‚ E1 “ fcT {ηf is the overall energy consumed for signal
processing purposes during the time T , wherein fc is the
clock frequency of the digital signal processor (and so
fcT is the total number of flops in a coherence block),
while ηf is the computational efficiency in Watts/flop.

‚ E2 “ TAτRBS is the energy consumed for coding at the
base station and for backhaul purposes during the time
T , with τ the symbol interval, and A the coding power
per MS.

‚ RBS is the target data-rate of the base stations, while
Eopt “ fcTopt{ηf is the energy consumed for radio
resource optimization purposes.

‚ β0pNq and β1pNq model the type of carrier aggrega-
tion technique that is used. More in detail, in intra-
band contiguous CA, the clock and the transceiver of
each antenna can be shared among all the component
carriers of a base station, which can be modeled by
setting β0pNq “ β1pNq “ N for all N . Instead, when
inter-band CA is employed, each component carrier may
need a different clock and a different transceiver per
antenna, thus implying β0pNq “ β1pNq “ 1 for all
N . By considering β0pNq, β1pNq P t1, . . . , Nu, every
intermediate case can be modeled, e.g., the intra-band
non-contiguous CA scenario. In any case, regardless of
the specific carrier aggregation techniques that is used,
physical considerations require that both functions β0 and
β1 must increase at most linearly with N .

Thus, the bit-per-Joule network EE is defined as the amount
of information transferred during the time T , over the corre-
sponding energy consumption, as shown in (3), where it was
accounted for the fact that, within the time T , information
transfer takes place for T ´ Topt seconds. Moreover, the area
power consumption (APC) (in rW {m2s), defined as AEC{T ,
is shown in (4). with P0 “ E0{T , P1 “ E1{T , P2 “ E2{T ,
and Popt “ Eopt{Topt.

A. Problem formulation
The aim of this work is to analyze two trade-off problems,

namely the rate versus power consumption trade-off and the
rate versus EE trade-off, with respect to the optimization of
the number of component carriers, active antennas, base station
density, and transmit power. As for the number of MSs K per
cell, let us observe that it is not a free parameter, since it is
uniquely determined once λMS and λ are given. Indeed, if A
is the service area, NBS is the total number of base stations,
and K

1

“ KNBS is the total number of MSs in the service
area, then it holds that

K “
KNBS{A

NBS{A
“
λMS

λ
. (5)

Plugging (5) into (1), (4), and (3), the trade-off problems
to be solved can be formulated as bi-objective maximization

programs, which, upon applying the scalarization technique,
lead to

max
p,N,M,λ

ϕARpp,N,M, λq ´ p1 ´ ϕqAPCpp,N,M, λq (6a)

s.t. ARpp,N,M, λq ě Rmin (6b)
Pmin ď p ď Pmax (6c)
Nmin ď N ď Nmax (6d)
Mmin ď M ď Mmax (6e)
λmin ď λ ď λmax , (6f)

for the rate versus power trade-off, and

max
p,N,M,λ

ϕARpp,N,M, λq ` p1 ´ ϕqEEpp,N,M, λq (7a)

s.t. ARpp,N,M, λq ě Rmin (7b)
Pmin ď p ď Pmax (7c)
Nmin ď N ď Nmax (7d)
Mmin ď M ď Mmax (7e)
λmin ď λ ď λmax , (7f)

for the rate versus EE trade-off.
In both problems, Rmin is the minimum MS’s rate require-

ment, Pmax and Pmin are the maximum feasible and mini-
mum required transmit power at the base station, Nmin and
Nmax are the minimum and maximum number of component
carriers, Mmin and Mmax are the minimum and maximum
number of antennas, λmin and λmax are the minimum and
maximum density of base stations.

In addition, in the problems, the boundary of the Pareto
region can be described by varying ϕ P r0, 1s, with ϕ “ 0
and ϕ “ 1 corresponding to the two extreme points of the
region associated to the individual optimization of the rate
and power consumption for Problem (6) and of the rate and
EE for Problem (7).

III. AREA RATE VERSUS AREA POWER CONSUMPTION
TRADE-OFF

In order to tackle Problem (6) for any given value ϕ P r0, 1s,
we resort to the alternating maximization algorithm, separately
and iteratively optimizing N , M , λ, p. This choice is motivated
by both complexity reasons and by the need of deriving some
closed-form insight into the structure of the optimal solution.
Indeed, Problem (6) is a mixed-integer problem, which is not
convex with respect to the continuous optimization variables.

In the following three subsections, the optimization of N ,
M , λ, and p will be solved separately.

A. Optimization of N

The problem to be solved is stated as

max
N

F pNq (8a)

s.t. ARpNq ě Rmin (8b)
Nmin ď N ď Nmax (8c)
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EE“
pT ´ ToptqAR

AEC
“

NBλMS log2

ˆ

1 `
p1´ϵ2qpM´Kq

2K
α´2 `ϵ2pM´Kq`

Γp1`α{2q

πλ2
ωσ2

p

˙

λ
´

NKµp` T
T T́opt

´

N
β0pNq

PFIX ` N
β1pNq

PSY N ` N
β1pNq

P0M `NP1MK`P2K
¯

`
Topt

T´Topt
Popt

¯ (3)

APC“
AEC

T
“λ

ˆ

T ´ Topt
T

NKµp`
N

β0pNq
PFIX `

N

β1pNq
PSY N `

N

β1pNq
P0M `NP1MK ` P2K `

Topt
T

Popt

˙

(4)

with

F pNq “ ϕARpNq ´ p1 ´ ϕqAPCpNq

“ ϕNa´p1´ϕqpδN ` ψg0pNq ` γg1pNq ` ζq , (9)

and

a“ BλMS log2

˜

1`
p1 ´ ϵ2qpM ´ λMS{λq

2λMS{λ
ή 2 `ϵ2pM´λMS{λq`

Γp1̀ η{2q

πλ2
ωσ2

p

¸

(10)

δ “ λMSµp
T ´ Topt

T
` P1MλMS , ψ “ PFIXλ (11)

ζ “ P2λMS ` λ
ToptPopt

T
, γ “ λpPSY N ` P0Mq, (12)

and where we have also defined the functions

g0pNq “
N

β0pNq
, g1pNq “

N

β1pNq
. (13)

Clearly, the optimal number of component carriers N˚ de-
pends on the choice of the functions g0 and g1. However, in
general the following result holds.

Proposition 1: For any β0 and β1 sub-linearly increasing
with values in r1, N s, if ϕa ě p1 ´ ϕqpδ ` ψ ` γq, then the
optimal number of component carrier is N˚ “ Nmax. Instead,
if ϕa ă p1 ´ ϕqδ, then the optimal number of component
carrier is

N “ max

"

Nmin,

R

Rmin

a

V*

. (14)

Proof: Temporarily relaxing N to the continuous domain
and studying the first-order derivative of F leads to

BF

BN
ě 0 ÐÑ ϕa ě p1 ´ ϕq

´

δ ` ψg
1

0pNq ` γg
1

1pNq

¯

.

(15)

Next, let us observe that

g
1

0pNq “
β0pNq ´Nβ

1

0pNq

β2
0pNq

ď
1

β0pNq
ď 1 (16)

g
1

1pNq “
β1pNq ´Nβ

1

1pNq

β2
1pNq

ď
1

β1pNq
ď 1 , (17)

because β0pNq and β1pNq are both increasing functions of N
and are lower-bounded by 1 and upper-bounded by N . As a
consequence, (15) is always implied by the condition

ϕa ě p1 ´ ϕqpδ ` ψ ` γq . (18)

Thus, if (18) holds, the objective F is monotonically increasing
with N , and hence the solution of Problem (8) is N “ Nmax.

Next, to show the second part of the thesis, let us recall
that β0 and β1 are sub-linear functions, thus implying that
g

1

0pNq ě 0 and g
1

1pNq ě 0. Therefore, if

ϕa ă p1 ´ ϕqδ , (19)

then the condition in (15) can never be fulfilled, regardless of
the choice of the functions g0 and g1. In this case, the objective
function F is monotonically decreasing, thus implying that
the optimal solution of Problem (8) is the minimum feasible
number of component carriers. Then, since the rate constraint
is fulfilled by any N ě

P

Rmin

a

T

, we obtain the thesis.

Remark 1: Inspecting the condition in (18) we see that the
right-hand-side corresponds to the inter-band CA case where
β0pNq “ β1pNq “ 1 for all N , which therefore can be
regarded as the worst-case as far as power consumption is
concerned. Instead, the condition in (19) corresponds to the
intra-band CA case where β0pNq “ β1pNq “ N for all N ,
which therefore can be regarded as the best-case as far as
power consumption is concerned.

Based on the remark above, we can provide an interpretation
of the condition in (18). The left-hand-side depends on the
priority of the rate ϕ and on the rate-per-carrier a, while the
right-hand-side on the priority of the power consumption 1´ϕ
and on the worst-case power consumption per carrier. Thus, if
the rate-per-carrier weighted by the priority assigned to the rate
is higher than the worst-case power consumption per carrier
weighted by the priority assigned to saving power, then the
optimal strategy is to employ all available component carriers.
If instead, the rate-per-carrier weighted by the priority assigned
to the rate is lower than the best-case power consumption
per carrier weighted by the priority assigned to saving power,
then the optimal strategy is to employ the minimum feasible
number of component carriers. Moreover, since these results
hold for any choice of β0 and β1, they are true for any of
the three carrier aggregation methods, i.e., inter-carrier, intra-
carrier contiguous, and intra-carrier non contiguous.

If instead neither (18) nor (19) hold, i.e.,

p1 ´ ϕqδ ď ϕa ă p1 ´ ϕqpδ ` ψ ` γq , (20)

the optimal number of component carriers depends on the
particular shape of the functions β0 and β1. For any choice
of β0 and β1, it is always possible to solve (15) numerically
to obtain the solution of the problem. Let us illustrate this
in detail for the three notable cases of inter-band carrier
aggregation, intra-band contiguous carrier aggregation, and
intra-band non-contiguous carrier aggregation.
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1) Inter-band carrier aggregation: Assume (20) holds, and
set β0pNq “ β1pNq “ 1, which is a suitable model for inter-
band carrier aggregation. Elaborating from (15) and plugging
the expression of the derivatives of g0pNq and g1pNq leads to
the condition

ϕa ě p1 ´ ϕqpδ ` ψ ` γq . (21)

Thus, since (20) holds, the objective function F is mono-
tonically decreasing in this case, and the optimal solu-
tion is the minimum feasible value of N , i.e. N˚ “

max
␣

Nmin,
P

Rmin

a

T(

.

2) Intra-band contiguous carrier aggregation: Assume
(20), and set β0pNq “ β1pNq “ N , which is a suitable
model for intra-band contiguous carrier aggregation. Elaborat-
ing from (15) and plugging the expression of the derivatives
of g0pNq and g1pNq leads to the condition

ϕa ě p1 ´ ϕqδ . (22)

Thus, since (20) holds, the objective function F is mono-
tonically increasing in this case, and the optimal solution is
N˚ “ Nmax.

3) Intra-band non-contiguous carrier aggregation: Assume
(20), and set β0pNq “ β1pNq “ N`1

2 , which is a suit-
able model for intra-band non-contiguous carrier aggregation.
Elaborating from (15) and plugging the expression of the
derivatives of g0 and g1 leads to the condition

pϕa´ p1 ´ ϕqδqpN ` 1q2 ě 2pψ ` γqp1 ´ ϕq . (23)

Due to (20), we have that pϕa ´ p1 ´ ϕqδq ą 0, and thus we
can find that

N̄ “

d

2pψ ` γqp1 ´ ϕq

ϕa´ p1 ´ ϕqδ
´ 1 . (24)

Moreover, (24) can be seen to be positive whenever ϕa ă p1´

ϕqpδ`2pψ`γqq, which is true due to (20). Thus, when intra-
carrier aggregation with non-contiguous bandwidth is used, the
optimal number of component carriers is given by

N˚ “ max

"

max

"

Nmin,

R

Rmin

a

V*

,mintrN̄ s, Nmaxu

*

,

(25)
where the constraints of Problem (8) have been taken into
account.1

B. Optimization of p

The problem to be solved is stated as

max
p

F ppq (26a)

s.t. ARppq ě Rmin (26b)
Pmin ď p ď Pmax , (26c)

1Note that, depending on the values of the parameters a, ψ, γ, δ, and ϕ, it is
still possible that the optimal number of component carriers is the maximum
or minimum feasible value of N .

with

F ppq “ ϕARppq ´ p1 ´ ϕqAPCppq

“ ϕNBλMS log2

ˆ

1`
αp

βp`γ

˙

´p1´ϕqpδp`ζq , (27)

and

α “ p1 ´ ϵ2qλ2pM ´ λMS{λq (28)

β “

„

2

η ´ 2
´ ϵ2

ȷ

λ2λMS ` ϵ2Mλ2 (29)

γ “ Γ
´

1 `
η

2

¯

ωσ2{π , δ “ λMSNµ
T ´ Topt

T
(30)

ζ “
λNPFIX

β0
`
λNPSY N

β1
`
λNP0M

β1

`NP1MλMS ` P2λMS `
λTopt
T

Popt (31)

Studying the first-order derivative of F , we obtain that

BF

Bp
ě 0 ÐÑ pα ` βqβp2 ` pα ` 2βqγp` γ2 ď ψ , (32)

with ψ “
ϕNBλMS lnp2qαγ

p1´ϕqδ .
The inequality above is fulfilled for p ď p ď p̄, with p and

p̄ being the solutions of the associated second order equation.
Elaborating, it readily follows that p is negative, and thus not
feasible, while p̄ can be computed as

p̄ “
´pα ` 2βqγ `

a

γ2α2 ` 4βpα ` βqψ

2βpα ` βq
. (33)

Studying the sign of (33) reveals that p̄ is non-negative when

γ2α2 ` 4βpα ` βqψ ě pα ` 2βq2γ2

ÐÑ ψ ě γ2

ÐÑ
ψNB lnp2qα

p1 ´ ϕqδγ
ě 1 (34)

Thus, when (34) holds, the optimal solution of (26) is given
by

p˚ “ maxtp0,mintp̄, Pmaxuu , (35)

wherein p0 “ maxtPmin, PRu, with PR being the power
level that fulfills the minimum rate constraint with equality.
Elaborating leads to

PR “
γp2Rmin{NBλMS ´ 1q

α ´ βp2Rmin{NBλMS ´ 1q
. (36)

If instead (34) does not hold, then the objective function
F is monotonically decreasing for positive p, and thus the
solution of (26) is given by p˚ “ p0.

C. Optimization of M

The problem to be solved is stated as

max
M

F pMq (37a)

s.t. ARpMq ě Rmin (37b)
Mmin ď M ď Mmax , (37c)
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with

F pMq“ϕARpMq ´ p1 ´ ϕqAPCpMq

“ϕNBλMS log2

ˆ

1`
αM´ξ

βM`γ

˙

´p1´ϕqpδM`ζq,

(38)

wherein

α “ p1 ´ ϵ2q , β “ ϵ2 , ξ “ p1 ´ ϵ2qλMS{λ (39)
δ “ λNP0{β1 `NP1λMS (40)

γ “ Γ
´

1 `
η

2

¯

ωσ2{pπpλ2q `
2pλMSλ

η ´ 2
´ ϵ2λMS{λ ,

(41)

ζ “ λMSNµp
T ´ Topt

T
`
λNPFIX

β0
`
λNPSY N

β1

` P2λMS `
λTopt
T

Popt (42)

In order to determine the optimal integer M , we proceed
by first relaxing M to a continuous variable. This allows us
to study the first-order derivative of F , which, by exploiting
the fact that α ` β “ 1, yields

BF

BM
ě 0 ÐÑ βM2 ` ppβ ` 1qγ ´ ξβqM ` pγ ´ ξqγ ď ψ ,

(43)

with ψ “
ϕNBλMS lnp2qpαγ`βξq

p1´ϕqδ . By a similar reasoning as in
the case of the optimization of p, we obtain that the unique
feasible solution is given by

M̄ “
ξβ ´ pβ ` 1qγ `

a

pγp1 ´ βq ` ξβq2 ` 4βψ

2β
, (44)

which can be shown to be non-negative whenever ψ ě γpγ ´

ξq. In this case, the integer solution of (37) is given by

M˚ “ maxtM0,mintrM̄ s,Mmaxuu , (45)

wherein M0 “ maxtMmin,MRu, with MR being the smallest
integer M that fulfills the minimum rate constraint with
equality. Elaborating, we obtain

MR “

R

ξ ` γp2Rmin{NBλMS ´ 1q

α ´ βp2Rmin{NBλMS ´ 1q

V

. (46)

Instead, if ψ ă γpγ ´ ξq, then the objective function F is
monotonically decreasing for positive M , and thus the solution
of (37) is given by M˚ “ M0.

Remark 2: The result above shows that, unlike what happens
for the number of component carriers, in general the optimum
number of antennas to trade-off rate for power consumption
is an intermediate value between the maximum and minimum
number of antennas.

D. Optimization of λ

The problem to be solved is stated as

max
λ

F pλq (47a)

s.t. ARpλq ě Rmin (47b)
λmin ď λ ď λmax . (47c)

with

F pλq “ ϕARpλq ´ p1 ´ ϕqAPCpλq

“ ϕNBλMS log2

ˆ

1`
αλ2´βλ

γλ2`δλ`υ

˙

´p1´ϕqpνλ`ψq,

(48)

wherein

α “ pp1 ´ ϵ2qM , β “ pp1 ´ ϵ2qλMS , γ “ pϵ2M (49)

δ “

„

2

η ´ 2
´ ϵ2

ȷ

pλMS , υ “ Γ
´

1 `
η

2

¯

ωσ2{π (50)

ν “
N

β0
PFIX `

N

β1
PSY N `

N

β1
P0M `

Topt
T

Popt (51)

ψ “ NµpλMS
T ´ Topt

T
` λMSpNP1M ` P2q (52)

Unfortunately, in this case, the study of the first-order deriva-
tive of F leads to an equation that can only be solved
numerically. Then, let us denote by L the set containing the
feasible stationary points of F pλq, which can be computed
numerically. Then, the optimal λ can be found by selecting
the element of L that yields the largest value of the objective,
namely

λ˚ “ arg max
L
Ť

tλmax,λ0u
F pλq , (53)

with λ0 “ maxtλmin, λRu, and λR equal to the value of
λ, which solves the rate constraint with equality. The value
λR can be determined in closed-form. Indeed, defining ρ “

2Rmin{NBλMS ´ 1, λR can be found by solving the equation

λMSNB log2

ˆ

1 `
αλ2 ´ βλ

γλ2 ` δλ` υ

˙

“ Rmin

ÐÑ pα ´ ργqλ2 ´ pβ ´ ρδqλ´ ρυ “ 0 , (54)

which can be seen to admit only one non-negative solution,
which is given by

λR “
pβ ` δρq `

a

pβ ` δρq2 ` 4υρpα ´ ρδq

2pα ´ ρδq
. (55)

Finally, we can state the overall alternating optimization
algorithm as in Algorithm 1, for which the following conver-
gence result holds.

Proposition 2: Algorithm 1 monotonically improves the
value of the objective function and converges in the value of
the objective.

Proof: In each iteration of Algorithm 1, each optimization
variable is updated with the optimal solution of the corre-
sponding subproblem. Thus, the sequence tFnu of the values
of the objective is monotonically increasing. Thus, since the
objective F is an upper-bounded function, the sequence tFnu

must eventually converge.
Running Algorithm 1 for all ϕ P r0, 1s provides the Pareto-
boundary of Problem (6).

IV. AREA RATE VERSUS EE TRADE-OFF

Following a similar approach as in the previous sections, we
tackle Problem (7) by alternating optimization of the variables
p, M , λ, and N .
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Algorithm 1 Rate versus Power trade-off optimization
Initialize M , p, λ, N to feasible values;
n “ 0; Fn “ 0; F´1 “ ´1; ϵ ą 0; ϕ P r0, 1s;
while Fn ´ Fn´1 ą ϵ do
Compute a, δ, ψ, γ, ζ in (10), (11), (12);
if ϕa ě p1 ´ ϕqpδ ` ψ ` γ then
N “ Nmax;

else if ϕa ă p1 ´ ϕqδ then
N “ max

␣

Nmin,
P

Rmin

a

T(

;
else
Set N̄ as the solution of (15);
N˚ “ max

␣

max
␣

Nmin,
P

Rmin

a

T(

,mintrN̄ s, Nmaxu
(

;
end if
Compute α, β, γ, ζ in (28), (29), (30), (31);
ψ “

ϕNB lnp2qαγ
p1´ϕqδ ;

Compute p̄ in (33) and PR in (36);
if ψ ě γ2 then
p˚ “ maxtmaxtPmin, PRu,mintp̄, Pmaxuu;

else
p˚ “ maxtPmin, PRu;

end if
Compute α, β, ξ, δ, γ, ζ in (39), (40), (41), (42);
ψ “

ϕNB lnp2qpαγ`βξq

p1´ϕqδ ;
Compute M̄ in (44) and MR (46);
if ψ ě γpγ ´ ξq then
M˚ “ maxtmaxtMmin,MRu,mintrM̄ s,Mmaxuu;

else
M˚ “ maxtMmin,MRu;

end if
Compute α, β, γ, δ, υ, ν, ψ in (49), (50), (51),
(52)
λ0 “ maxtλmin, λRu , with λR in (55);
λ˚ “ argmaxL

Ť

tλmax,λ0u F pλq;
Fn´1 “ Fn;
Fn “ ϕRpp˚, N˚,M˚, λ˚q ´ p1 ´

ϕqAPCpp˚, N˚,M˚, λ˚q;
end while

A. Optimization of N

The problem to be solved is stated as

max
N

F pNq (56a)

s.t. ARpNq ě Rmin (56b)
Nmin ď N ď Nmax (56c)

with

F pNq “ ϕARpNq ` p1 ´ ϕqEEpNq

“ Na

ˆ

ϕ`
1 ´ ϕ

δN ` ψg0pNq ` γg1pNq ` ζ

˙

, (57)

and a given in (10), while

δ“λMSµp`
T

T´Topt
P1MλMS , ψ“

T

T ´ Topt
PFIXλ (58)

ζ“
TP2λMS`λToptPopt

T´Topt
, γ “

TλpPSY N ` P0Mq

T ´ Topt
. (59)

Proposition 3: For any functions β0 and β1, that are increas-
ing with values in r1, N s, the optimal solution of Problem (56)
is N˚ “ Nmax.

Proof: Relaxing N to the continuous domain, we obtain
that
BF

BN
“ aϕ` (60)

ap1 ´ ϕq
ψpg0pNq ´Ng

1

0pNqq ` γpg1pNq ´Ng
1

1pNqq ` ζ

pδN ` ζq2
.

Moreover, it holds that

g0pNq ´Ng
1

0pNq “
N

β0pNq
´

N

β2
0pNq

´

β0pNq ´Nβ
1

0pNq

¯

“
Nβ

1

0pNq

β2
0pNq

ě 0 (61)

g1pNq ´Ng
1

1pNq “
N

β1pNq
´

N

β2
1pNq

´

β1pNq ´N2β
1

1pNq

¯

“
N2β

1

1pNq

β2
1pNq

ě 0 , (62)

where the last inequalities follow because β0 and β1 are
increasing functions with N . Thus, (60) is non-negative for any
positive value of N , which proves that the objective function F
is always monotonically increasing in the feasible set. Hence,
the optimal integer N˚ is N˚ “ Nmax.

Remark 3: The result above shows that, unlike what hap-
pens for the rate versus power consumption trade-off, when
the power consumption metric is replaced by the EE, it is
always optimal to transmit employing all available component
carriers, regardless of the choice of the functions β0 and
β1. Thus, employing all available component carriers is the
optimal choice for inter-carrier, intra-carrier contiguous, and
intra-carrier non-contiguous carrier aggregation. Intuitively,
this can be explained noticing that the rate and the EE are
not totally contrasting objectives, like the rate and the power
consumption. Indeed, the numerator of the EE is equal to the
rate. Therefore, even when the priority is completely in favor
of the EE, i.e. ϕ “ 0, there is still an incentive to obtain a
high rate, and thus use all available component carriers.

B. Optimization of p

The problem to be solved is stated as

max
p

F ppq (63a)

s.t. ARppq ě Rmin , Pmin ď p ď Pmax , (63b)

with

F ppq “ ϕARppq ` p1 ´ ϕqEEppq

“ NBλMS log2

ˆ

1`
αp

βp`γ

˙ˆ

ϕ`
p1´ϕq

δp`ζ

˙

, (64)

and α, β, γ given in (28), (29), (30), while

δ “ λMSNµ (65)

ζ“
λNPFIX

β0pNq
`
λNpPSY N `P0Mq

β1pNq
`NP1MλMS`P2λMS

(66)
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The stationarity condition for F is given by

BF

Bp
“ 0 ÐÑ

lnp2qαγ

ppα ` βqp` γqpβp` γq

ˆ

ϕ`
1 ´ ϕ

δp` ζ

˙

“
p1 ´ ϕqδ

pδp` ζq2
log2

ˆ

1 `
αp

βp` γ

˙

(67)

Unfortunately, (67) does not admit a closed-form solution.
On the other hand, it is possible, however, to guarantee that
(67) admits a unique solution, which coincides with the global
maximizer of the function F . To this end, let us first provide
the following lemma.

Lemma 1: Let g : R`
0 Ñ R`

0 be a differentiable, increasing,
and strictly S-shaped function,2 with fp0q “ 0. Then, the ratio

gpxq “
fpxq

ax` b
, with a, b positive coefficients, is a strictly

pseudo-concave function.
Proof: Denote by x˚ the point below which f is strictly

convex, and above which it is strictly concave. We will prove
the result by separately showing that g is strictly pseudo-
concave for x ě x˚ and strictly increasing for x ă x˚. This
clearly implies strict pseudo-concavity of g for all x ě 0, since
g is also differentiable in x˚. For x ě x˚, g is the ratio of a
strictly concave function over a linear function, and therefore
it is strictly pseudo-concave. Next, we have to show that for
x ă x˚, g is strictly increasing. To see this let us compute the
first derivative of g, which yields

dg

dx
“

pax` bqf 1pxq ´ afpxq

pax` bq2
“
apxf 1pxq ´ fpxqq ` f 1pxqb

pax` bq2
.

(68)
Now, for x ă x˚, we have that f is strictly convex, thus
implying that py ´ xq f 1 pxq ă f pyq´f pxq, for all x, y ă x˚.
Setting y “ 0, we obtain the condition xf 1pxq ą fpxq, for all
x ă x˚, which shows that (68) is strictly positive. Then, we
have that, for x ă x˚, gpxq is strictly increasing, and hence,
the proof.
Equipped with Lemma 1, we can prove the following result.

Proposition 4: Define d “ pϕζ ` 1 ´ ϕq{δϕ, and assume
2αdβ`2dβ2´αγ´2βγ ą 0. Then, the stationarity condition
in (67) admits a unique solution, which is the global maximizer
of the function F in (64).

Proof: Let us rewrite the objective function (64) as

F ppq “ NBλMSδϕ
pp` dq log2pfppqq

δp` ζ
, (69)

with fppq “ 1 `
αp

βp`γ . Now, let us consider only the
numerator of F , which we have defined as the function
gppq “ NBλMSδϕpp ` dq log2pfppqq. The next step of the
proof is to show that g is an S-shaped function, i.e. it has
a unique inflection point p0, being convex for p ď p0 and
concave for p ě 0. Studying the sign of the second derivative
of g, after some elaborations, we obtain the condition

B2g

Bp2
ě 0 ÐÑ 2f

1

ppqfppq ě

”

pf
1

ppqq2 ´ f
2

ppqfppq

ı

px` dq

(70)

2An increasing, positive function is said to be strictly S-shaped, if there
exists a point below which it is strictly convex, and a point above which it is
strictly concave.

Plugging in the first and second derivative of f , and elaborat-
ing yields that

2pα ` βqp` 2γ ě px` dq

„

αγ ` 2βpα ` βqp` 2βγ

βp` γ

ȷ

2γ2 ´ dαγ ´ 2βγd ě pp2αβd` 2dβ2 ´ αγ ´ 2βγq

p ď
γp2γ ´ dα ´ 2βdq

2αdβ ` 2dβ2 ´ αγ ´ 2βγ
“ p0 ,

(71)

wherein in the last step we have exploited the assumption that
2αdβ ` 2dβ2 ´αγ ´ 2βγ ě 0. The function g is thus strictly
convex for p ď p0 and strictly concave for p ě p0, i.e. it is S-
shaped. As a consequence, by virtue of Lemma 1, it holds that
the objective F is strictly pseudo-concave, since it is the ratio
between the S-shaped function g, which fulfills all assumptions
of Lemma 1 over the problem feasible set, and the affine
function δp ` ζ. Thus, the result follows because a strictly
pseudo-concave function admits a unique global maximizer,
which coincides with its unique stationary point.

Remark 4: It should be noted that there was no need to make
any assumption on the sign of γp2γ ´ dα ´ 2βdq. Indeed, if
γp2γ ´ dα ´ 2βdq, then p0 ă 0, and the function g will be
strictly concave over the problem feasible set, which shows
again the strict pseudo-concavity of the objective F .3

Remark 5: As for the practicality of the assumption 2αdβ`

2dβ2 ´ αγ ´ 2βγ ą 0, we observe the following. The
coefficient γ is proportional to the noise power σ2, while the
coefficients β and d tend to assume large values for practical
choices of the system parameters. Indeed, β is proportional to
the number of antennas, base station density, and MS density,
while d is proportional to the static power consumption ζ,
which is in turn proportional to the number of component
carriers, antennas, and MS density. Thus, it is practical to
assume that 2dβ ą γ and dβ ą γ, which together imply
the assumption 2αdβ ` 2dβ2 ´ αγ ´ 2βγ ě 0.

Based on the results above, denoting by p̄ the unique
solution p˚ of (67), the unique solution of Problem (63) is
obtained by taking into account the constraints of the problem,
which leads to

p˚ “ maxtp0,mintp̄, Pmaxuu , (72)

with p0 “ maxtPmin, PRu, where PR is the power level that
fulfills the minimum rate constraint with equality, which can
be found as

PR “
γp2Rmin{NBλMS ´ 1q

α ´ βp2Rmin{NBλMS ´ 1q
. (73)

C. Optimization of M

The problem to be solved is stated as

max
p

F pMq (74a)

s.t. ARpMq ě Rmin (74b)
Mmin ď M ď Mmax , (74c)

3Recall that the ratio between a strictly concave function and an affine
function is strictly pseudo-concave [6].
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with

F pMq “ ϕARpMq ` p1 ´ ϕqEEpMq

“ NBλMS log2

ˆ

1`
αM´ξ

βM`γ

˙ˆ

ϕ`
p1´ϕq

δM`ζ

˙

, (75)

and α, β, ξ, γ given in (39), (41), and (42), respectively, while

δ “ λNP0{β1pNq `NP1λMS (76)

ζ “ λMSNµp`
λNPFIX

β0pNq
`
λNPSY N

β1pNq
` P2λMS (77)

Let us observe that the rate is an increasing function of the
number of antennas M , only if αM´ξ

βM`γ is increasing with M ,
which leads to the condition q “ αγ ` βξ ą 0. In the
following, we focus on this scenario, which is that of most
practical relevance, since the opposite case q ă 0 would
trivially yield that the optimal number of antennas is M “ 1.
Moreover, it should be noted that the only negative term in q
is the coefficient ´ϵ2λMS{λ, which appears in γ. and that is
proportional to the hardware impairment factor ϵ2, which is
close to 0 for practical hardware. Thus, we can assume that
q ą 0.

In order to analyze the objective F , let us temporarily relax
M to a continuous variable. Then, it is possible to consider
the derivative of (75) and set it to 0, which yields

BF

BM
“ 0 ÐÑ

lnp2qαγ

ppα`βqM ` γ´ξqpβM`γq

ˆ

ϕ`
1´ϕ

δM`ζ

˙

“
p1 ´ ϕqδ

pδM ` ζq2
log2

ˆ

1 `
αM ´ ξ

βM ` γ

˙

(78)

Similarly to (67), a closed-form solution of (78) is not avail-
able. Nevertheless, it is possible to ensure that (78) has a
unique solution, which coincides with the global maximizer
of (75). Specifically, the following proposition holds.

Proposition 5: Define d “ pϕζ ` 1 ´ ϕq{δϕ, and assume
q ` 2βαd´ 2αγ ą 0. Then, the stationarity condition in (78)
admits a unique solution, which is the global maximizer of
the function F in (75).

Proof: Let us rewrite the function in (75) as

F pMq “ NBδϕ
pM ` dq log2pfpMqq

δM ` ζ
, (79)

with fpMq “ 1 `
αM´ξ
βM`γ . Now, let us prove that the

numerator of F , which we have defined as the function
gpMq “ NBλMSδϕpM ` dq log2pfpMqq, is an S-shaped
function. Studying the sign of the second derivative of g, after
similar steps as in the proof of Proposition 4, we obtain the
condition

2qpaM ´ ξqpβM ` γq ě pM ` dqpq2 ` 2βαpαM ´ ξqq

2βqdξ ´ 2qξγ ´ qd ě Mqpq ` 2dβα ´ 2αγq

M ď
2βqdξ ´ 2qξγ ´ qd

qpq ` 2dβα ´ 2αγq
“ M0 . (80)

where, in the last step, we have exploited the assumption that
q ą 0 and pq`2dβα´2αγq ą 0. The function g is thus strictly
convex for M ď M0 and strictly concave for M ě M0, i.e.
it is S-shaped. As a consequence, applying again Lemma 1, it
holds that the function F is strictly pseudo-concave, and the

result follows.
Remark 6: As for the practicality of the assumption pq `

2dβα ´ 2αγq ą 0, the condition can be rewritten as

2ϵ2
λMS

λ
` 2dϵ2 ą 2

λMS

pη ´ 2qλ
` Γ

´

1 `
η

2

¯ ωσ2

πpλ2
, (81)

which approximately reduces to

dϵ2 ą
λMS

pη ´ 2qλ
, (82)

because the term that is proportional to the noise power σ2

is negligible compared to the other term on the right-hand-
side, while ϵ2λMS{λ is negligible compared to the coefficient
d, which is proportional to ζ, i.e., the power consumption
of the base station that does not depend on the number of
antennas. To elaborate further, we argue that, despite being
multiplied by ϵ2, the coefficient d is still likely to be larger
than the right-hand-side of (82). To see this, let us consider
that a typical value for the coefficient PFIX that measures the
power consumption of base-band signal processing is of the
order of 300W.4 Then, a system employing even a relatively
low number of component carriers, e.g. N “ 10, with a base
station density of λ “ 10, would consume PFIXNλ “ 3 ˚

104 W in terms of static power consumption. On the other
hand, even at peak hours with a MS density of the order of
λMS “ 200, in the same system, we would have λMS{λ “ 20.
Thus, recalling that η is a number larger than 2, but of the
order of units, and that typical hardware of good quality has
a factor ϵ2 of the order of 10´2, we see that (82) holds by a
large margin.

Equipped with the above results, let us denote by M̄ the
unique solution of (78). Then, the optimal integer solution
M˚ of Problem (74) is found by mapping back into the integer
domain and accounting for the constraints, which leads to

M˚ “ maxtM0,mintrM̄ s,Mmaxuu , (83)

with M0 “ maxtMmin,MRu, and MR being the smallest
integer M that fulfills the minimum rate constraint with
equality, i.e.

MR “

R

ξ ` γp2Rmin{NBλMS ´ 1q

α ´ βp2Rmin{NBλMS ´ 1q

V

(84)

D. Optimization of λ

The problem to be solved is stated as

max
λ

F pλq (85a)

s.t. ARpλq ě Rmin (85b)
λmin ď λ ď λmax . (85c)

with

F pλq “ ϕARpλq ´ p1 ´ ϕqEEpλq

“ NBλMS log2

ˆ

1`
αλ2 ´ βλ

γλ2 ` δλ` υ

˙ˆ

ϕ`
1 ´ ϕ

νλ` ψ

˙

,

(86)

4This is the value that will be used in the numerical simulations.
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and α, β, γ, δ, υ given in (49), (50), while

ν “
N

β0pNq
PFIX `

N

β1pNq
PSY N `

N

β1pNq
P0M (87)

ψ “ NµpλMS ` λMSpNP1M ` P2q (88)

Unfortunately, setting the first-order derivative of F with
respect to λ to 0 yields an equation that can only be solved
numerically, and for which it is not clear if only 1 solution
exists. Nevertheless, proceeding similarly to the rate-power
consumption trade-off case, let us denote by L the set con-
taining the feasible stationary points of F pλq, which can be
computed numerically. Then, the optimal λ can be found by
selecting the element of L that yields the largest value of the
objective, namely

λ˚ “ arg max
L
Ť

tλmax,λ0u
F pλq , (89)

with λ0 “ maxtλmin, λRu and λR equal to the value of λ that
solves the rate constraint with equality. Following similar steps
as for the rate-power trade-off, the value λR can be computed
as in (55).

Finally, we can state the overall alternating optimization
algorithm as in Algorithm 2, for which the following conver-
gence result holds.

Proposition 6: Algorithm 2 monotonically improves the
value of the objective function and converges in the value of
the objective.

Proof: The proof follows upon the same lines as for
Algorithm 1.
Running Algorithm 2 for all ϕ P r0, 1s provides the Pareto-
boundary of Problem (7).

Algorithm 2 Rate versus EE trade-off optimization
Initialize M , p, λ, N to feasible values;
n “ 0; Fn “ 0; F´1 “ ´1; ϵ ą 0; ϕ P r0, 1s;
N “ Nmax;
while Fn ´ Fn´1 ą ϵ do
Compute α, β, γ in (28), (29), (30) and δ, ζ
in (65), (66);
Compute p̄ as the unique solution of (67);
Compute PR as in (73);
p˚ “ maxtmaxtPmin, PRu,mintp̄, Pmaxuu;
Compute α, β, ξ, γ in (39), (41), and δ, ζ in
(76), (77);
Compute M̄ as the unique solution of
(78);
Compute MR as in (84);
M˚ “ maxtmaxtMmin,MRu,mintrM̄ s,Mmaxuu;
Compute α, β, γ, δ, υ, in (49), (50), (51), (52)
and ν, ψ in (87), (88)
λ0 “ maxtλmin, λRu , with λR in (55);
λ˚ “ argmaxL

Ť

tλmax,λ0u F pλq;
Fn´1 “ Fn;
Fn “ ϕRpp˚, N˚,M˚, λ˚q ´ p1 ´

ϕqAPCpp˚, N˚,M˚, λ˚q;
end while

V. NUMERICAL RESULTS

The performance of the developed resource allocation meth-
ods has been analyzed by numerical simulation in a multi-
cell multi-carrier, massive MIMO network with the following
parameters:

‚ B “ 20MHz, σ2 “ 6.32 ˚ 10´13, η “ 4, ω “ 131.4 dB
‚ ϵ “ 0.05, T “ 2 ˚ 10´5s, λMS=25 /km2

‚ PFIX “ 300W, PSY N “ 34W, P0 “ 4.49W
‚ fc “ 4GHz, ηf “ 12.8Gflop/W, τ “ 1{B
‚ A “ 3.5 ˚ 10´8, RBS “ 100Mb/s, Rmin “ 100Mb/s
‚ Nmin “ 1, Nmax “ 64, Mmin “ 64, Mmax “ 512
‚ λmin “ 10/km2, λmax “ 100/km2, Pmin “ ´20 dBW,
Pmax “ 20 dBW

In all numerical results, the displayed rate function is the
area rate in (1) normalized to the mobile stations density
λMS , which is a constant for all considered problems and thus
does not affect the optimal resource allocations. Moreover,
we have set β0pNq “ β1pNq “ 1, i.e., inter-band carrier
aggregation. This represents a worst-case power consumption
model, because it leads to a power consumption model that
scales linearly with the component carriers, while with the
other carrier aggregation models, the power consumption
would scale sub-linearly with the component carriers. As for
the MS density, at first we set it to λMS “ 25MS/km2, which
models a lightly-loaded network. In this scenario, Figs. 1 and
2 show the Pareto optimal frontier of Problems (6) and (7),
respectively, as obtained by means of Algorithm 1. Moreover,
each figure also shows specific points on the Pareto frontier,
with the associated optimized resource allocation. In addition
to the optimized values of N , p, M , and λ, the value K
computed based on (5) is also reported.

Inspecting Fig. 1, one can see that, in the extreme case in
which the rate priority is set to 0 (ϕ “ 0), all resources are
set to the minimum values that fulfill the rate requirements,
because in this case the problem reduces to power consump-
tion minimization subject to minimum rate constraints. On the
other hand, when the rate priority approaches 1 (ϕ Ñ 1), all
resources are allocated to their maximum values, because in
this case there is no concern about power consumption, and
all resources are allocated to provide the best possible rate.
Moreover, as we increase the priority of the rate, the first
variable increased to support the higher rate is the number of
component carriers, which rapidly reaches its maximum value.

Thus, for the considered realistic setup, the system param-
eters are such that N “ Nmax is the optimal allocation, even
if inter-band contiguous carrier aggregation is assumed here,
unless a very low rate priority is used, in which case the
minimum feasible number of component carriers is employed.
After N “ Nmax has been reached, the number of antennas,
the base station density, and the transmit power are increased
too. The increase of the rate is observed to be more significant
when the number of component carriers is increased, then less
and less significant as the other resources are increased. At the
same time, the increase in power consumption is more limited
when the number of component carriers are increased, then
more and more significant as the other resources are increased.
This shows how increasing the component carriers is the key
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strategy to increase the rate with a lower power consumption
increase than the other resources. These results can be justified
by the following considerations:

1) The number of component carriers N is the only variable
that affects the rate linearly, while all other resources
affect the rate logarithmically. On the other hand, all
resources affect the power consumption linearly. As a
result, when the priority of the rate in increased, the op-
timal approach is to increase the number of component
carriers, since this yields the largest increase of the rate,
while causing a similar power consumption increase than
the other variables.

2) The number of antennas M appears both at the numera-
tor and the denominator of the argument of the logarithm
in the rate function. However, at the numerator, M
multiplies the term p1´ϵq2, while at the denominator, it
multiplies the term ϵ2. Since ϵ is typically a small value
(ϵ2 “ 0.05 in our simulations), the term at the numerator
is much more significant than that at the denominator,
and thus it can be claimed that M affects the argument
of the logarithm approximately linearly. This explains
why the number of antennas M is the second resource
to be increased when the priority of the rate is increased.

3) On the other hand, the transmit power p and the base
station density λ appear at the denominator of the
argument of the logarithm, in a term that is proportional
to the inverse of the SNR. Thus, in practical scenarios,
in which the system operates at moderate-to-high SNRs,
the impact of both p and λ is less significant than that
of the component carriers and the number of antennas.
Thus, these two resources are the last to be increased as
the rate priority increases.

As for the Pareto frontier of the rate versus EE trade-off
shown in Fig. 2, similar considerations can be made. However,
in this case, as analytically shown, the optimal number of
component carriers N is always equal to the maximum value
Nmax. For this reason the initial value of the rate is much
higher than the minimum requirement, even for very low rate
priorities. Moreover, the increase of the rate as its priority
approaches 1 is not as significant as in Fig. 1. due to the fact
that N “ Nmax for all points of the frontier. Next, as the
rate priority increases, the number of antennas is the resource
that is increased first, followed by the base station density and
transmit power, as for the rate-power consumption trade-off
shown in Fig. 1.

Finally, a heavily-loaded network is considered in Figs. 3
and 4, which is modeled by setting λMS “ 160MS/km2. All
other parameters, as well as the choice of the functions β0 and
β1 is the same as in Figs. 1 and 2. Also in this heavily-loaded
scenario, a similar trend of the Pareto frontiers as in Figs.
3 and 4 is observed. The only significant difference lies in
the fact that the base station density becomes a more relevant
variable as a consequence of the larger value of the MS density.
Indeed, as we increase the rate priority, it is observed that
the base station density increases faster than in the lightly-
loaded scenario in order to support the larger number of MSs,
which causes a faster increase of the rate as its priority factor

approaches 1.

VI. CONCLUSIONS

This work has considered a multi-cell, multi-carrier, massive
MIMO network in which carrier aggregation is employed.
Two trade-off problems have been studied, namely the rate
versus power consumption trade-off and the rate versus EE
trade-off. Taking a weighted sum utility approach, alternating
maximization algorithms have been derived to compute the
Pareto frontiers of both problems. For each algorithm, closed-
form results have been provided as to the optimal allocation
of the individual resources, considering three main classes
of carrier aggregation techniques, namely inter-carrier, intra-
carrier contiguous, and intra-carrier non-contiguous.

The obtained results show that multi-carrier transmissions
are a very effective way of improving the rate and EE
of a wireless network, while guaranteeing a limited power
consumption. Simulation results show that higher values of
rate and EE can be obtained at a lower power consumption if
the maximum number of component carriers is increased, com-
pared to the choice of increasing other radio resources like the
number of antennas, the base station density, and the transmit
power. This behavior has been observed in both lightly-loaded
and heavily- loaded networks, and provide useful guidance
for radio resource allocation in both scenarios. Moreover,
the numerical results have been obtained assuming inter-
band carrier aggregation, which is the most power-consuming
carrier aggregation method, among the three considered carrier
aggregation techniques, although the easiest to be implemented
in practice. Even more favorable results in favor of using more
component carriers than other resources would be seen for
intra-band approaches.
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[37] D. López-Pérez, A. D. Domenico, N. Piovesan, X. Geng, H. Bao, and
M. Debbah, “Energy Efficiency of Multi-Carrier Massive MIMO Net-
works: Massive MIMO Meets Carrier Aggregation,” in IEEE Globecom
2021, Madrid, Spain, Dec. 2021.

[38] Y. Hmamouche, M. Benjillali, S. Saoudi, H. Yanikomeroglu, and M. D.
Renzo, “New trends in stochastic geometry for wireless networks: A
tutorial and survey,” Proceedings of the IEEE, vol. 109, no. 7, pp. 1200–
1252, 2021.


