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Generalized conformable fractional Newton-type
method for solving nonlinear systems

Giro Candelario1,2 ·Alicia Cordero2 · Juan R. Torregrosa2 ·Marı́a P. Vassileva1

Abstract
In a recent paper, a conformable fractional Newton-type method was proposed
for solving nonlinear equations. This method involves a lower computational cost
compared to other fractional iterative methods. Indeed, the theoretical order of con-
vergence is held in practice, and it presents a better numerical behaviour than
fractional Newton-type methods formerly proposed, even compared to classical
Newton-Raphson method. In this work, we design a generalization of this method for
solving nonlinear systems by using a new conformable fractional Jacobian matrix,
and a suitable conformable Taylor power series; and it is compared with classical
Newton’s scheme. The necessary concepts and results are stated in order to design
this method. Convergence analysis is made and a quadratic order of convergence is
obtained, as in classical Newton’s method. Numerical tests are made, and the Approx-
imated Computational Order of Convergence (ACOC) supports the theory. Also, the
proposed scheme shows good stability properties observed by means of convergence
planes.
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1 Introduction

Fractional calculus is a generalization of classical calculus, and many properties from
this are held. Many problems in real life can be described by using mathematical
tools form fractional calculus, because of the higher degree of freedom compared to
classical calculus tools [1, 2].

In order to find the solution x̄ ∈ R of a nonlinear function f (x) = 0, where
f : I ⊆ R −→ R is a continuous function in I ∈ R, some fractional Newton-type
methods for solving nonlinear equations were proposed in recent years by using the
Riemann-Liouville, Caputo and conformable fractional derivatives (see [3–5]). Our
goal is to design a conformable vectorial Newton-type method, and make a compari-
son with the classical vectorial Newton method in terms of convergence analysis and
numerical stability.

Let us firstly introduce some preliminary concepts related to scalar conformable
derivative. The left conformable fractional derivative of a function f : [a, ∞) −→ R,
starting from a, of order α ∈ (0, 1], α, a, x ∈ R, a < x, is defined as (see [11])

(T a
α f )(x) = lim

ε−→0

f (x + ε(x − a)1−α) − f (x)

ε
. (1)

If that limit exists, f is said to be α-differentiable. If f is differentiable, (T a
α f )(x) =

(x − a)1−αf ′(x). If f is α-differentiable in (a, b), for some b ∈ R, (T a
α f )(a) =

lim
x→a+(T a

α f )(x). It is also easy to see that T a
α C = 0, being C a constant.

The conformable fractional derivative is the most natural definition of fractional
derivatives and involves a low computational cost, because it does not require the
evaluation of special functions, such as Gamma or Mittag-Leffler functions.

Recently, a fractional Newton-type method by using conformable derivative has
been designed for solving nonlinear equations in [5] with the following iterative
expression:

xk+1 = a +
(

(xk − a)α − α
f (xk)

(T a
α f )(xk)

)1/α

, k = 0, 1, 2, . . . (2)

Where (T a
α f )(xk) is the left conformable fractional derivative of order α, α ∈ (0, 1],

starting at a, a < xk , ∀k. When α = 1, the classical Newton-Raphson method is
obtained.

In [5], the quadratic convergence of this method by using a suitable conformable
Taylor series (see [6]) is stated by the next result.

Theorem 1 ([5]) Let f : I ⊆ R −→ R be a continuous function in the interval
I ∈ R containing the zero x̄ of f (x). Let (T a

α f )(x) be the conformable fractional
derivative of f (x) starting from a, with order α, for any α ∈ (0, 1]. Let us suppose

1172



Numerical Algorithms (2023) 93:1171–1208

that (T a
α f )(x) is continuous and not null at x̄. If an initial approximation x0 is suffi-

ciently close to x̄, then the local order of convergence of the conformable fractional
Newton-type method

xk+1 = a +
(

(xk − a)α − α
f (xk)

(T a
α f )(xk)

)1/α

, k = 0, 1, 2, . . .

is at least 2, where 0 < α ≤ 1, and the error equation is

ek+1 = α(x̄ − a)α−1C2e
2
k + O

(
e3
k

)
, (3)

where Cj = 1

j !αj−1

(T a
α f )(j)(x̄)

(T a
α f )(x̄)

for j = 2, 3, 4, . . .

Remark 1 It can be shown that, by using the conformable product and chain rules
stated in [11], the asymptotic constant of the error equation can be expressed as (3)

α(x̄ − a)α−1C2 = α(x̄ − a)α−1 1

2α

(T a
α f )(2)(x̄)

(T a
α f )(x̄)

= α(x̄ − a)α−1

2α

[
(x̄ − a)2−2αf ′′(x̄) + (1 − α)(x̄ − a)1−2αf ′(x̄)

(x̄ − a)1−αf ′(x̄)

]

= 1

2

[
f ′′(x̄)

f ′(x̄)
+ 1 − α

x̄ − a

]

= c2 + 1

2

1 − α

x̄ − a
, (4)

being cj = 1

j !
f (j)(x̄)

f ′(x̄)
for j = 2, 3, 4, . . . , which is the classical asymptotical error

constant. In this case, j = 2. It can also be proven that the error equation of iterative
scheme (2) by using the classical Taylor Series is:

ek+1 =
(

c2 + 1

2

1 − α

x̄ − a

)
e2
k + O

(
e3
k

)
. (5)

So, (4) and (5) show that error equation obtained by both Taylor series (the classical
one, and that provided in [6]) is the same.

Remark 2 As predicted by Traub, since conformable Newton-type method proposed
in [5] and the classical one have the same order of convergence, the asymptotical error
constant of conformable Newton-type method equals the asymptotical error constant
of classical one, plus some value described in [7] (Theorem 2-8).

In both error equations, (3) and (5), when α = 1, we obtain the error equation of
classical Newton’s method. In this work, we are going to use both Taylor series to
make the convergence analysis, in this case, for a vector valued function.

That method proposed in [5], as seen in Theorem 1, can be only used to solve
scalar nonlinear problems. In order to design a conformable vectorial Newton’s
method to find the solution x̄ ∈ R

n of a nonlinear system F(x) = 0̂, with coordinate
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functions f1, . . . , fn, where F : D ⊆ R
n −→ R

n is a sufficiently Fréchet-
differentiable function in an open convex set D, we have to state the existing concepts
and results which will be necessary.

First, for the analysis of the convergence of nonlinear systems by using the
classical Taylor Series, we can find in [8, 9] the following notation:

Definition 1 Let F : D ⊆ R
n −→ R

n be sufficiently Fréchet-differentiable in
D. The qth derivative of F at u ∈ R

n, q ∈ N, q ≥ 1, is the q-linear function
F (q)(u) : R

n × · · · × R
n −→ R

n such that F (q)(u)(v1, . . . , vq) ∈ R
n. It can be

observed that:

1. F (q)(u)(v1, . . . , vq−1, ·) ∈ L(Rn), being L(Rn) the space of linear mappings of
R

n −→ R
n.

2. F (q)(u)(vσ1 , . . . , vσq ) = F (q)(u)(v1, . . . , vq), for any permutation σ ∈
{1, . . . , q}.

From properties above, we can use the following notation:

1. F (q)(u)(v1, . . . , vq) = F (q)(u)v1 · · · vq .
2. F (q)(u)vq−1F (p)(u)vp = F (q)(u)F (p)(u)vq+p−1.

In [10], we can find a definition of conformable partial derivative as shown next:

Definition 2 Let f be a function in n variables, x1, . . . , xn, the conformable partial
derivative of f of order α ∈ (0, 1] in xi > a = 0 is defined as:

∂α
0

∂xα
i

f (x1, . . . , xn) = lim
ε→0

f (x1, . . . , xi + εx1−α
i , . . . , xn) − f (x1, . . . , xn)

ε
, (6)

In [10] is also defined the conformable Jacobian matrix as:

Definition 3 Let f , g be functions in 2 variables x and y, and their respective partial
derivatives exist and are continuous, where x > a1 and y > a2, being a = (a1, a2) =
(0, 0) = 0̂, then the conformable Jacobian matrix is given by:

F
α(1)

0̂
(x) =

⎛
⎜⎜⎝

∂α
0 f

∂xα

∂α
0 f

∂yα

∂α
0 g

∂xα

∂α
0 g

∂yα

⎞
⎟⎟⎠ =

⎛
⎜⎝

x1−α ∂f

∂x
y1−α ∂f

∂y

x1−α ∂g

∂x
y1−α ∂g

∂y

⎞
⎟⎠ , (7)

This can be directly extended to higher dimensions and, as it will be seen in the
next section, a can be considered not null.

Another necessary concept, the Hadamard product, can be found in [12]:

Definition 4 Let A = (aij )m×n and B = (bij )m×n be m×n matrices. The Hadamard
product is defined by A 
 B := (aij bij )m×n.
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Remark 3 An analogous concept to Hadamard product is the Hadamard power,
where A
r = A 
 A 
 · · · 
 A︸ ︷︷ ︸

r times

, being r ∈ R.

In next section, the new concepts and results needed to design a vectorial
conformable Newton-type method are stated.

In this manuscript, the design and convergence analysis of the proposed method
are made in Section 3, the numerical tests and numerical stability are discussed in
Section 4, and the conclusions are given in Section 5.

2 New concepts and results

Regarding that, in (6), xi ∈ (0, ∞), we can define the conformable partial derivative
in xi ∈ (a, ∞) as follows:

Definition 5 Let f be a function in n variables, x1, . . . , xn, the conformable partial
derivative of f of order 0 < α ≤ 1 in xi ∈ (a, ∞) is defined as

∂α
a

∂xα
i

f (x1, . . . , xn) = lim
ε→0

f (x1, . . . , xi + ε(xi − a)1−α, . . . , xn) − f (x1, . . . , xn)

ε
.

(8)

In the case xi = a,
∂α
a

∂xα
i

f (x1, . . . , a, . . . , xn) = lim
xi→a+

∂α
a

∂xα
i

f (x1, . . . , xi, . . . , xn).

This derivative is linear, and the product, quotient and chain rules are satisfied,
likewise to conformable derivative given in [11]. In next result, a relation between
classical partial derivative and conformable partial derivative is stated:

Theorem 2 Let f be a differentiable function in n variables, x1, . . . , xn, xi > a,
then,

∂α
a

∂xα
i

f (x1, . . . , xn) = (xi − a)1−α ∂

∂xi

f (x1, . . . , xn). (9)

Proof Let h = ε(xi − a)1−α , and ε = h(xi − a)α−1, we have

∂α
a

∂xα
i

f (x1, . . . , xn) = lim
h→0

f (x1, . . . , xi + h, . . . , xn) − f (x1, . . . , xn)

h(xi − a)α−1

= (xi − a)1−α lim
h→0

f (x1, . . . , xi + h, . . . , xn) − f (x1, . . . , xn)

h

= (xi − a)1−α ∂

∂xi

f (x1, . . . , xn).

We can also define the conformable Jacobian matrix for x1 ∈ (a1, ∞) and x2 ∈
(a2, ∞), where x = (x1, x2) and a = (a1, a2):
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Definition 6 Let f and g be coordinate functions of a vector valued function
F : R

2 −→ R
2 in variables x1 > a1 and x2 > a2, where x = (x1, x2) and

a = (a1, a2), such that their respective partial derivatives exist and are continuous.
Then, the conformable Jacobian matrix is given by

Fα(1)
a (x) =

⎛
⎜⎜⎝

∂α
a1

f

∂xα
1

∂α
a2

f

∂xα
2

∂α
a1

g

∂xα
1

∂α
a2

g

∂xα
2

⎞
⎟⎟⎠ =

⎛
⎜⎝

(x1 − a1)
1−α ∂f

∂x1
(x2 − a2)

1−α ∂f

∂x2

(x1 − a1)
1−α ∂g

∂x1
(x2 − a2)

1−α ∂g

∂x2

⎞
⎟⎠ . (10)

This can be directly extended to higher dimensions.

To analyze the convergence of nonlinear systems by using a conformable Taylor
Series, we can use the following notation analogous to Definition 1:

Definition 7 Let F : D ⊆ R
n −→ R

n be sufficiently α-differentiable in D. The
qth conformable derivative of F at u ∈ R

n is the α(q)-linear function F
α(q)
a (u) :

R
n ×· · ·×R

n −→ R
n such that F

α(q)
a (u)(v1, . . . , vq) ∈ R

n. It can be observed that:

1. F
α(q)
a (u)(v1, . . . , vq−1, ·) ∈ L(Rn), being L(Rn) the space of linear mappings

of Rn −→ R
n.

2. F
α(q)
a (u)(vσ1 , . . . , vσq ) = F

α(q)
a (u)(v1, . . . , vq), for any permutation σ ∈

{1, . . . , q}.
From properties above, we can use the following notation:

1. F
α(q)
a (u)(v1, . . . , vq) = F

α(q)
a (u)v1 · · · vq .

2. F
α(q)
a (u)vq−1F

α(p)
a (u)vp = F

α(q)
a (u)F

α(p)
a (u)vq+p−1.

To define a conformable Taylor series for a vector valued function, we proceed in
a similar way as in Theorem 4.1 from [11].

Theorem 3 Let us suppose that F : R
n −→ R

n is an infinitely α-differentiable
vector valued function, for some α ∈ (0, 1], around a point t0 ∈ R

n. Then, F has the
conformable Taylor power series

F(t) =
∞∑

k=0

F
α(k)
t0

(t0)(t − t0)
kα

αkk! , (11)

where F
α(k)
t0

(t0) means the mapping of conformable derivative k times.

Proof Let F(t) = K0 + K1(t − t0)
α + K2(t − t0)

2α + K3(t − t0)
3α + · · · . Then,

F(t0) = K0.
If we map the conformable derivative once to F , and then we evaluate at t0, we

obtain F
α(1)
t0

(t0) = K1α, so, K1 = F
α(1)
t0

(t0)

α
.
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If we map the conformable derivative twice to F , and then we evaluate at t0, we

obtain F
α(2)
t0

(t0) = 2K2α
2, so, K2 = F

α(2)
t0

(t0)

2α2
. Proceeding by induction, we have

Kn = F
α(n)
t0

(t0)

αnn! , n ∈ N. (12)

So, (11) is obtained.

Thus, F(t) in (11) may be written as

F(t) = F(t0) + F
α(1)
t0

(t0)

α
(t − t0)

α + F
α(2)
t0

(t0)

2α2
(t − t0)

2α + . . .

As it may be seen, the conformable derivatives start at t0, which is the value where
derivatives are being also evaluated. This is a problem to be avoided in order to define
a conformable Newton-type iterative method.

Proceeding as in [6] (Theorem 4.1), we can obtain a new Taylor series by
using Theorem 3 , where the conformable derivatives start at some point a =
(a1, . . . , an) ∈ R

n different from another point b = (b1, . . . , bn) ∈ R
n where they

are evaluated:

Theorem 4 Let F : R
n −→ R

n be an infinitely α-differentiable vector valued
function, for some α ∈ (0, 1], around a point bi ∈ (ai, ∞), ∀i = 1, . . . , n, where
a = (a1, . . . , an) ∈ R

n and b = (b1, . . . , bn) ∈ R
n. Then, F has the conformable

Taylor power series

F(t) = F(b) + F
α(1)
a (b)

α
� + F

α(2)
a (b)

2!α2
�2 + · · · , (13)

where � = H
α − L
α; H = t − a, L = b − a, being 
 the Hadamard power.

Proof Let us denote by t0 = a in (11),

F(t) = F(a) + F
α(1)
a (a)

α
(t − a)α + F

α(2)
a (a)

2α2
(t − a)2α + · · · (14)

Evaluating (14) at b,

F(b) = F(a) + F
α(1)
a (a)

α
(b − a)α + F

α(2)
a (a)

2α2
(b − a)2α + · · · , (15)

isolating F(a), we get

F(a) = F(b) − F
α(1)
a (a)

α
(b − a)α − F

α(2)
a (a)

2α2
(b − a)2α − · · · (16)

If we map the conformable derivative once and twice to F , starting at a, we obtain,
respectively,

Fα(1)
a (a) = Fα(1)

a (b) − F
α(2)
a (a)

α
(b − a)α − F

α(3)
a (a)

2α2
(b − a)2α − . . . (17)
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and

Fα(2)
a (a) = Fα(2)

a (b) − F
α(3)
a (a)

α
(b − a)α − F

α(4)
a (a)

2α2
(b − a)2α − . . . (18)

Replacing all derivatives evaluated at a in (14), with all derivatives evaluated at b in
(16), (17) and (18) we obtain (13), which can be written as

F(t) = F(b) + F
α(1)
a (b)

α

[
(t − a)
α − (b − a)
α

]

+F
α(2)
a (b)

2α2

[
(t − a)
α − (b − a)
α

]2 + · · · ,

= F(b) + F
α(1)
a (b)

α
� + F

α(2)
a (b)

2α2
�2 + · · · ,

and the proof is finished.

Remark 4 With these expressions, we can write the Taylor power series expansion
of F around the solution x̄, being the conformable Jacobian matrix F

α(1)
a (x̄) not

singular, as shown next:

F
(
x(k)

)
= F

α(1)
a (x̄)

α

[
� + C2�

2 + C3�
3 + · · · + Cp�p

]
+ O

(
e(k)p+1

)
, (19)

where � = H
α − L
α; H = x(k) − a, L = x̄ − a, e(k) = x(k) − x̄ and being 
 the

Hadamard power, C1 = I , Cq = 1

q!αq−1

[
F

α(1)
a (x̄)

]−1
F

α(q)
a (x̄), q ≥ 2.

Remark 5 By using Definition 7, Theorem 2 and Hadamard power, we obtain

Fα(1)
a (x) = (x − a)
(1−α)F ′(x), (20)

and

Fα(1)
a (a) = lim

x→a+(x − a)
(1−α)F ′(x), (21)

respectively, for a vector valued function F , being F ′(x) the classical Jacobian
matrix. Note that, in (21) x → a+ means that xi → a+

i , ∀i = 1, . . . , n, where
x = (x1, . . . , xn) ∈ R

n and a = (a1, . . . , an) ∈ R
n.

Moreover, in order to make the convergence analysis of our main proposal, another
concept must be introduced.

Theorem 5 Let x, y ∈ R
n, r ∈ R, and be 
 the Hadamard power/product. The

Newton’s binomial theorem for vector values and fractional power is given by

(x + y)
r =
∞∑

k=0

(
r

k

)
x
(r−k) 
 y
k, k ∈ {0} ∪ N, (22)
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being the generalized binomial coefficient (see [13])(
r

k

)
= �(r + 1)

k!�(r − k + 1)
, k ∈ {0} ∪ N. (23)

Proof Since Hadamard power/product is an element-wise power/product, the proof
is analogous to classical one.

In next section, we deduce the conformable Newton-type method for solving
nonlinear systems.

3 Design and convergence analysis

As we proceeded in [5], let us regard the approximation of function F through the
Taylor power series (13) up to order one evaluated at the solution x̄, as follows:

F(x) ≈ F(x̄) + F
α(1)
a (x̄)

α
�. (24)

As F(x̄) = 0̂, and � = H
α − L
α; H = x − a, L = x̄ − a,

F(x) ≈ F
α(1)
a (x̄)

α

[
(x − a)
α − (x̄ − a)
α

]
. (25)

Multiplying both sides of (25), by α
[
F

α(1)
a (x̄)

]−1
from the left,

α
[
Fα(1)

a (x̄)
]−1

F(x) ≈ (x − a)
α − (x̄ − a)
α . (26)

From (x̄ − a)
α , we isolate x̄, so

x̄ ≈ a +
(

(x − a)
α − α
[
Fα(1)

a (x̄)
]−1

F(x)

)
1/α

. (27)

Regarding iterates x(k) and x(k+1) are approximations of solution x̄, we obtain the
conformable Newton-type method for nonlinear systems:

x(k+1) = a+
[(

x(k) − a
)
α − α

[
Fα(1)

a

(
x(k)

)]−1
F

(
x(k)

)]
1/α

, k = 0, 1, 2, . . .

(28)
Next, convergence analysis of conformable Newton-type method (28) is made by
using the conformable Taylor series (13), and the classical one.

In next result, the quadratic convergence of vectorial Newton-type method (28) by
using the conformable Taylor series (13) is proven.

Theorem 6 Let F : D ⊆ R
n −→ R

n be a continuous function in an open convex
set D ⊆ R

n holding a zero x̄ ∈ R
n of a vector valued function F(x). Let F

α(1)
a (x)

be the conformable Jacobian matrix of F starting at a ∈ R
n, of order α, for any

α ∈ (0, 1]. Let us suppose that F
α(1)
a (x) is continuous and not singular at x̄. If an
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initial approximation x(0) ∈ R
n is sufficiently close to x̄, then the local order of

convergence of conformable vectorial Newton’s method

x(k+1) = a+
[(

x(k) − a
)
α − α

[
Fα(1)

a

(
x(k)

)]−1
F

(
x(k)

)]
1/α

, k = 0, 1, 2, . . .

is at least 2, and the error equation is

e(k+1) = αC2(x̄ − a)
(α−1)e(k)2 + O
(
e(k)3

)
, (29)

being Cj = 1

j !αj−1

[
F

α(1)
a (x̄)

]−1
F

α(j)
a (x̄), j = 2, 3, 4, . . . , such that a < x(k), ∀k.

Proof By using Definition 7, Theorem 4, and regarding x(k) = e(k) + x̄, the
conformable Taylor power series expansion of F(x) around x̄ is

F
(
x(k)

)
= F

α(1)
a (x̄)

α

[
� + C2�

2
]

+ O
(
e(k)3

)

= F
α(1)
a (x̄)

α

[((
x̄ − a + e(k)

)
α − (x̄ − a)
α

)

+ C2

((
x̄ − a + e(k)

)
α − (x̄ − a)
α

)2
]

+ O
(
e(k)3

)
,

being Cj = 1

j !αj−1

[
F

α(1)
a (x̄)

]−1
F

α(j)
a (x̄); j = 2, 3, 4, . . .

Using Theorem 5 (22) and (23), and considering the Hadamard powers (Definition 4
and Remark 3),

F
(
x(k)

)
= F

α(1)
a (x̄)

α

[(
α(x̄ − a)
(α−1)

)
e(k)

+
(α

2
(α − 1)(x̄ − a)
(α−2) + α2C2(x̄ − a)
(2α−2)

)
e(k)2

]
+O

(
e(k)3

)
.

Regarding (20), and using again Definition 7 and Theorem 5, the conformable
Jacobian matrix of F

(
x(k)

)
can be expressed as

Fα(1)
a

(
x(k)

)
= F

α(1)
a (x̄)

α

[
αI +

(
2α2C2(x̄ − a)
(α−1)

)
e(k)

]
+ O

(
e(k)2

)
.

We can set the Taylor power series expansion of
[
F

α(1)
a

(
x(k)

)]−1
as

[
Fα(1)

a

(
x(k)

)]−1 =
[

1

α
I + X2e

(k)

]
α

[
Fα(1)

a (x̄)
]−1 + O

(
e(k)2

)
,

being X2 an unknown variable such that
[
F

α(1)
a

(
x(k)

)]−1
F

α(1)
a

(
x(k)

) = I , so,
(

2αC2(x̄ − a)
(α−1) + αX2

)
e(k) = 0̂.

Solving for X2,
X2 = −2C2(x̄ − a)
(α−1).
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So,[
Fα(1)

a

(
x(k)

)]−1 =
[

1

α
I +

(
−2C2(x̄−a)
(α−1)

)
e(k)

]
α

[
Fα(1)

a (x̄)
]−1 +O

(
e(k)2

)
.

Thus,

−α
[
Fα(1)

a

(
x(k)

)]−1
F

(
x(k)

)
= −

(
α(x̄ − a)
(α−1)

)
e(k)

+
(
α2C2(x̄ − a)
(2α−2)

− α

2
(α − 1)(x̄ − a)
(α−2)

)
e(k)2 + O

(
e(k)3

)
.

Then,(
x(k)−a

)
α−α
[
Fα(1)

a

(
x(k)

)]−1
F

(
x(k)

)
= (x̄−a)
α+α2C2(x̄−a)
(2α−2)e(k)2

+O
(
e(k)3

)
.

Using once again Theorem 5,[(
x(k)−a

)
α−α
[
Fα(1)

a

(
x(k)

)]−1
F

(
x(k)

)]
1/α

= x̄−a+αC2(x̄−a)
(α−1)e(k)2

+O
(
e(k)3

)
.

Let x(k+1) = e(k+1) + x̄,

e(k+1) + x̄ = a + x̄ − a + αC2(x̄ − a)
(α−1)e(k)2 + O
(
e(k)3

)
.

Finally,

e(k+1) = αC2(x̄ − a)
(α−1)e(k)2 + O
(
e(k)3

)
.

And this completes the proof.

As in (4), it can be shown that, by using the product and chain rules, and
considering (20), in error (29),

αC2(x̄ − a)
(α−1) = c2 + 1

2
(1 − α)(x̄ − a)
(−1),

being cj = 1

j !
[
F ′(x̄)

]−1
F (j)(x̄) for j = 2, 3, 4, . . . , which is the classical asymp-

totical error constant for a vector valued function F , and F ′ is the classical Jacobian
matrix. For this case, j = 2.

In next result, the quadratic convergence of conformable Newton-type method (28)
by using the the classical Taylor series can be proven:

Corollary 1 Let F : D ⊆ R
n −→ R

n be a continuous function in an open convex
set D ⊆ R

n holding a zero x̄ ∈ R
n of a vector valued function F(x). Let F

α(1)
a (x)

be the conformable Jacobian matrix of F starting at a ∈ R
n, of order α, for any

α ∈ (0, 1]. Let us suppose that F
α(1)
a (x) is continuous and not singular at x̄. If an
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initial approximation x(0) ∈ R
n is sufficiently close to x̄, then the local order of

convergence of conformable vectorial Newton’s method

x(k+1) = a+
[(

x(k) − a
)
α − α

[
Fα(1)

a

(
x(k)

)]−1
F

(
x(k)

)]
1/α

, k = 0, 1, 2, . . .

is at least 2, and the error equation is

e(k+1) =
(

c2 + 1

2
(1 − α)(x̄ − a)
(−1)

)
e(k)2 + O

(
e(k)3

)
, (30)

being cj = 1

j !
[
F ′(x̄)

]−1
F (j)(x̄) for j = 2, 3, 4, . . . , such that a < x(k), ∀k.

Remark 6 It is confirmed that error equations given in (29) and (30) are the same.

In next section, some numerical tests with some nonlinear systems of equations
are made. We remark that, in all tests, a comparison with classical Newton-Raphson’s
method (when α = 1) is made. Also, the dependence on initial estimates of both
methods is analyzed by using the convergence plane.

4 Numerical results

The following tests have been made by using MATLAB R2020a with double pre-
cision arithmetic, ‖F(x(k+1))‖ < 10−8 or ‖x(k+1) − x(k)‖ < 10−8 as stopping
criterium, and at most 500 iterations. For each test, we use a = (a1, . . . , an) =
(−10, . . . , −10) to ensure that ai < xi , ∀i = 1, . . . , n, according to Definitions 5
and 6 , and a < x(k), ∀k, according to Theorem 6 and Corollary 1. We also use the
Approximated Computational Order of Convergence (ACOC)

ACOC = ln(‖x(k+1) − x(k)‖/‖x(k) − x(k−1)‖)
ln(‖x(k) − x(k−1)‖/‖x(k−1) − x(k−2)‖) , k = 0, 1, 2, . . . ,

defined in [14], to check the theoretical order of convergence is obtained in practice.
To make a comparison to each of all test vector valued functions, we have used the
same initial estimation for each table, and α ∈ (0, 1].

From each table, two figures with error curves are provided in order to visualize
the error committed (‖x(k+1) −x(k)‖) versus number of iterations for different values
of α; firstly, it is shown a figure for all the able values of α, then, it is shown a figure
for some values of α in order to distinguish each curve from others. In the latter case,
the curves chosen correspond to values of α with fewer iterations, or to an arbitrary
choice when the number of iterations is the same. For each case, the corresponding
curve to α = 1 is always chosen if possible to visualize both methods, the classical
one (when α = 1) and the proposed in this paper, in the same figure.

Our first test vector valued function is F1(x, y) = (x2−2x−y+0.5, x2+4y2−4)T

with real and complex roots x̄1 ≈ (−0.2222, 0.9938)T , x̄2 ≈ (1.9007, 0.3112)T and
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Table 1 Results for F1(x, y) = 0̂ with initial estimation x(0) = (−2,−1.5)T

α x̄ ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖ Iter ACOC

1 – – – > 500 –

0.9 x̄3 5.40 × 10−11 5.86 × 10−6 54 2.00

0.8 x̄3 9.77 × 10−9 7.87 × 10−5 86 2.00

0.7 x̄3 2.27 × 10−14 4.75 × 10−8 36 1.98

0.6 x̄2 2.95 × 10−10 1.16 × 10−5 23 2.05

0.5 x̄2 4.09 × 10−15 2.13 × 10−8 200 1.98

0.4 x̄2 7.12 × 10−15 4.38 × 10−8 114 2.04

0.3 x̄2 4.94 × 10−10 1.79 × 10−5 35 2.03

0.2 x̄2 1.16 × 10−14 6.76 × 10−8 21 1.98

0.1 x̄2 2.16 × 10−10 1.08 × 10−5 39 2.06

x̄3 ≈ (1.1608 − 0.6545i,−0.9025 − 0.2104i)T . The conformable Jacobian matrix of
F1(x, y) is

Fα(1)
a 1(x, y) =

(
(x − a1)

1−α(2x − 2) (y − a2)
1−α(−1)

(x − a1)
1−α(2x) (y − a2)

1−α(8y)

)
,

being a = (a1, a2) = (−10,−10).
In Table 1, we observe for F1(x, y) that classical Newton’s method (when α = 1)

does not find any solution in 500 iterations, whereas conformable vectorial Newton’s

0 50 100 150 200

Iterations

10-8

10-6

10-4

10-2

100

102

104

Fig. 1 Error curves of F1(x, y) for all values of α from Table 1
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Fig. 2 Error curves of F1(x, y) for some values of α from Table 1

procedure converges. We can also observe that ACOC may be even slightly greater
than 2 when α �= 1. We have to remark that a complex root is found with real initial
estimate and different values of α when conformable vectorial Newton’s method is
used. In Figs. 1 and 2, error curve for classical Newton’s procedure (when α = 1)
is not provided because no solution was found in this case, whereas we can see that
error curves stop erratic behaviour in later iterations.

In Table 2, we can see for F1(x, y) with a different initial estimation that, classi-
cal vectorial Newton’s scheme and conformable vectorial Newton’s method have a

Table 2 Results for F1(x, y) = 0̂ with initial estimation x(0) = (−2, 1.5)T

α x̄ ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖ Iter ACOC

1 x̄1 8.31 × 10−11 7.29 × 10−6 5 2.00

0.9 x̄1 5.94 × 10−11 6.15 × 10−6 5 2.00

0.8 x̄1 4.21 × 10−11 5.17 × 10−6 5 2.00

0.7 x̄1 2.97 × 10−11 4.33 × 10−6 5 2.00

0.6 x̄1 2.09 × 10−11 3.62 × 10−6 5 2.00

0.5 x̄1 1.45 × 10−11 3.01 × 10−6 5 2.00

0.4 x̄1 1.01 × 10−11 2.49 × 10−6 5 2.00

0.3 x̄1 6.97 × 10−12 2.06 × 10−6 5 2.00

0.2 x̄1 4.80 × 10−12 1.69 × 10−6 5 2.00

0.1 x̄1 3.30 × 10−12 1.39 × 10−6 5 2.00
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Fig. 3 Error curves of F1(x, y) for all values of α from Table 2
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Fig. 4 Error curves of F1(x, y) for some values of α from Table 2
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Table 3 Results for F2(x, y) = 0̂ with initial estimation x(0) = (2,−2.5)T

α x̄ ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖ Iter ACOC

1 x̄3 7.60 × 10−12 2.32 × 10−6 6 2.00

0.9 x̄3 5.21 × 10−12 1.92 × 10−6 6 2.00

0.8 x̄3 3.54 × 10−12 1.59 × 10−6 6 2.00

0.7 x̄3 2.38 × 10−12 1.31 × 10−6 6 2.00

0.6 x̄3 1.58 × 10−12 1.07 × 10−6 6 2.00

0.5 x̄3 1.04 × 10−12 8.69 × 10−7 6 2.00

0.4 x̄3 6.73 × 10−13 7.03 × 10−7 6 2.00

0.3 x̄3 4.35 × 10−13 5.65 × 10−7 6 2.00

0.2 x̄3 2.71 × 10−13 4.51 × 10−7 6 2.00

0.1 x̄3 1.82 × 10−13 3.58 × 10−7 6 2.00

similar behaviour as to amount of iterations and ACOC. Again, the quadratic conver-
gence of conformable Newton’s method is held, for all α ∈ (0, 1]. In Figs. 3 and 4,
erratic behaviour is not observed, due to errors decrease with each iteration.

The second test vector valued function is F2(x, y) = (x2+y2−1, x2−y2−1/2)T

with real roots x̄1 =
(√

3/2, 1/2
)T

, x̄2 =
(
−√

3/2, 1/2
)T

, x̄3 =
(√

3/2, −1/2
)T

and x̄4 =
(
−√

3/2, −1/2
)T

. The conformable Jacobian matrix of F2(x, y) is

Fα(1)
a 2(x, y) =

(
(x − a1)

1−α(2x) (y − a2)
1−α(2y)

(x − a1)
1−α(2x) (y − a2)

1−α(−2y)

)
,

being a = (a1, a2) = (−10,−10).
It can be seen in Tables 3 and 4 for F2(x, y) that classical Newton’s method

and conformable vectorial Newton’s scheme have a similar behaviour as in amount

Table 4 Results for F2(x, y) = 0̂ with initial estimation x(0) = (2, 2.5)T

α x̄ ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖ Iter ACOC

1 x̄1 7.60 × 10−12 2.32 × 10−6 6 2.00

0.9 x̄1 9.98 × 10−12 2.65 × 10−6 6 2.00

0.8 x̄1 1.30 × 10−11 3.02 × 10−6 6 2.00

0.7 x̄1 1.70 × 10−11 3.44 × 10−6 6 2.00

0.6 x̄1 2.20 × 10−11 3.91 × 10−6 6 2.00

0.5 x̄1 2.84 × 10−11 4.43 × 10−6 6 2.00

0.4 x̄1 3.65 × 10−11 5.01 × 10−6 6 2.00

0.3 x̄1 4.67 × 10−11 5.66 × 10−6 6 2.00

0.2 x̄1 5.96 × 10−11 6.37 × 10−6 6 2.00

0.1 x̄1 7.57 × 10−11 7.16 × 10−6 6 2.00
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Fig. 5 Error curves of F2(x, y) for all values of α from Table 3
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Fig. 6 Error curves of F2(x, y) for some values of α from Table 3
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Fig. 7 Error curves of F2(x, y) for all values of α from Table 4
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Fig. 8 Error curves of F2(x, y) for some values of α from Table 4
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Table 5 Results for F3(x, y) = 0̂ with initial estimation x(0) = (2.5,−0.5)T

α x̄ ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖ Iter ACOC

1 x̄2 1.03 × 10−13 6.18 × 10−7 6 2.04

0.9 x̄2 4.51 × 10−14 3.94 × 10−7 6 2.04

0.8 x̄2 1.29 × 10−14 2.32 × 10−7 6 2.04

0.7 x̄2 7.62 × 10−15 1.23 × 10−7 6 2.04

0.6 x̄2 3.79 × 10−15 5.67 × 10−8 6 2.04

0.5 x̄2 4.67 × 10−15 2.12 × 10−8 6 2.05

0.4 x̄2 7.53 × 10−9 1.69 × 10−4 5 2.03

0.3 x̄2 3.93 × 10−9 8.25 × 10−5 5 2.07

0.2 x̄2 1.31 × 10−9 3.51 × 10−5 5 2.09

0.1 x̄2 1.75 × 10−10 2.25 × 10−5 5 1.94

of iterations as in ACOC. Figures 5, 6, 7 and 8 show that erratic behaviour is not
observed, because errors are decreasing with iterations.

Our third test vector valued function is F3(x, y) = (x2 − x − y2 − 1, − sin x +
y)T with real roots x̄1 ≈ (−0.8453, −0.7481)T and x̄2 ≈ (1.9529, 0.9279)T . The
conformable Jacobian matrix of F3(x, y) is

Fα(1)
a 3(x, y) =

(
(x − a1)

1−α(2x − 1) (y − a2)
1−α(−2y)

(x − a1)
1−α(− cos x) (y − a2)

1−α(1)

)
,
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Fig. 9 Error curves of F3(x, y) for all values of α from Table 5
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Fig. 10 Error curves of F3(x, y) for some values of α from Table 5

being a = (a1, a2) = (−10,−10).
We can see in Table 5 for F3(x, y) that conformable vectorial Newton’s procedure

requires less iterations than classical Newton’s method for lower values of α. It can
also be observed that ACOC may be slightly greater than 2 for lower values of α. In
Figs. 9 and 10, errors are decreasing in each iteration.

In Table 6, we can see for F3(x, y) that conformable vectorial and classical New-
ton’s method require the same amount of iterations, and ACOC is around 2 in all
cases. Again, the errors are decreasing in each iteration in Figs. 11 and 12.

Table 6 Results for F3(x, y) = 0̂ with initial estimation x(0) = (2.5, 0.5)T

α x̄ ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖ Iter ACOC

1 x̄2 8.80 × 10−14 3.40 × 10−7 4 1.88

0.9 x̄2 1.26 × 10−13 3.89 × 10−7 4 1.87

0.8 x̄2 1.58 × 10−13 4.42 × 10−7 4 1.87

0.7 x̄2 1.94 × 10−13 5.00 × 10−7 4 1.87

0.6 x̄2 2.47 × 10−13 5.63 × 10−7 4 1.87

0.5 x̄2 3.07 × 10−13 6.33 × 10−7 4 1.87

0.4 x̄2 3.85 × 10−13 7.09 × 10−7 4 1.87

0.3 x̄2 4.81 × 10−13 7.92 × 10−7 4 1.87

0.2 x̄2 5.81 × 10−13 8.82 × 10−7 4 1.87

0.1 x̄2 7.15 × 10−13 9.80 × 10−7 4 1.87
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Fig. 11 Error curves of F3(x, y) for all values of α from Table 6
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Fig. 12 Error curves of F3(x, y) for some values of α from Table 6
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Table 7 Results for F4(x, y) = 0̂ with initial estimation x(0) = (−2.5,−3.5)T

α x̄ ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖ Iter ACOC

1 x̄1 2.32 × 10−15 5.88 × 10−9 7 2.00

0.9 x̄1 6.04 × 10−9 7.83 × 10−5 6 1.99

0.8 x̄1 1.57 × 10−9 4.03 × 10−5 6 1.99

0.7 x̄1 4.29 × 10−10 2.12 × 10−5 6 1.99

0.6 x̄1 1.29 × 10−10 1.17 × 10−5 6 1.99

0.5 x̄1 4.62 × 10−11 7.07 × 10−6 6 1.99

0.4 x̄1 2.18 × 10−11 4.90 × 10−6 6 1.99

0.3 x̄1 1.52 × 10−11 4.12 × 10−6 6 1.99

0.2 x̄1 1.72 × 10−11 4.41 × 10−6 6 1.99

0.1 x̄1 3.30 × 10−11 6.15 × 10−6 6 1.98

The fourth test vector valued function is F4(x, y) = (x2+y2−4, ex +y−1)T with
real roots x̄1 ≈ (−1.8163, 0.8374)T and x̄2 ≈ (1.0042, −1.7296)T . The conformable
Jacobian matrix of F4(x, y) is

Fα(1)
a 4(x, y) =

(
(x − a1)

1−α(2x) (y − a2)
1−α(2y)

(x − a1)
1−α(ex) (y − a2)

1−α(1)

)
,

being a = (a1, a2) = (−10,−10).
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Fig. 13 Error curves of F4(x, y) for all values of α from Table 7
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Fig. 14 Error curves of F4(x, y) for some values of α from Table 7

We observe in Table 7 for F4(x, y) that again, conformable vectorial Newton’s
scheme requires less iterations than classical Newton’s method for all values of α. It
can also be seen that ACOC is around 2. We can see in Figs. 13 and 14 that errors are
decreasing with iterations.

In Table 8, we observe for F4(x, y) that conformable vectorial and classical New-
ton’s method require the same amount of iterations, and ACOC is around 2. Again,
the errors are decreasing with iterations in Figs. 15 and 16.

Table 8 Results for F4(x, y) = 0̂ with initial estimation x(0) = (−2.5, 3.5)T

α x̄ ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖ Iter ACOC

1 x̄1 4.09 × 10−9 6.39 × 10−5 5 2.00

0.9 x̄1 2.86 × 10−9 5.38 × 10−5 5 2.00

0.8 x̄1 1.99 × 10−9 4.53 × 10−5 5 1.99

0.7 x̄1 1.38 × 10−9 3.81 × 10−5 5 1.99

0.6 x̄1 9.58 × 10−10 3.20 × 10−5 5 1.99

0.5 x̄1 6.64 × 10−10 2.68 × 10−5 5 1.99

0.4 x̄1 4.60 × 10−10 2.25 × 10−5 5 1.99

0.3 x̄1 3.19 × 10−10 1.89 × 10−5 5 1.98

0.2 x̄1 2.21 × 10−10 1.58 × 10−5 5 1.98

0.1 x̄1 1.54 × 10−10 1.33 × 10−5 5 1.98
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Fig. 15 Error curves of F4(x, y) for all values of α from Table 8
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Fig. 16 Error curves of F4(x, y) for some values of α from Table 8
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Table 9 Results for F5(x) = 0̂ with initial estimation x(0) = (−1.5, . . . , −1.5)T

α x̄ ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖ Iter ACOC

1 x̄1 1.02 × 10−10 5.08 × 10−11 5 2.00

0.9 x̄1 8.55 × 10−11 4.27 × 10−11 5 2.00

0.8 x̄1 7.18 × 10−11 3.59 × 10−11 5 2.00

0.7 x̄1 6.01 × 10−11 3.01 × 10−11 5 2.00

0.6 x̄1 5.02 × 10−11 2.51 × 10−11 5 2.00

0.5 x̄1 4.17 × 10−11 2.09 × 10−11 5 2.00

0.4 x̄1 3.47 × 10−11 1.73 × 10−11 5 2.00

0.3 x̄1 2.87 × 10−11 1.43 × 10−11 5 2.00

0.2 x̄1 2.36 × 10−11 1.18 × 10−11 5 2.00

0.1 x̄1 1.93 × 10−11 9.69 × 10−12 5 2.00

Our fifth test vector valued function is F5(x) = (f1(x), . . . , f15(x))T , being x =
(x1, . . . , x15)

T and fi : Rn −→ R, i = 1, 2, . . . , 14, 15, such that

fi(x) = xixi+1 − 1, i = 1, 2, . . . , 13, 14

f15(x) = x15x1 − 1,

with real roots x̄1 = (−1, . . . , −1)T and x̄2 = (1, . . . , 1)T . The conformable
Jacobian matrix of F5(x) is

Fα(1)
a 5(x) =

⎛
⎜⎜⎜⎜⎜⎝

χ1,1 χ1,2 0 . . . . . . 0 0
0 χ2,2 χ2,3 0 . . . 0 0

...
0 0 . . . . . . 0 χ14,14 χ14,15

χ15,1 0 . . . . . . . . . 0 χ15,15

⎞
⎟⎟⎟⎟⎟⎠

,

Table 10 Results for F5(x) = 0̂ with initial estimation x(0) = (2.5, . . . , 2.5)T

α x̄ ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖ Iter ACOC

1 x̄2 2.60 × 10−11 1.30 × 10−11 6 2.00

0.9 x̄2 3.38 × 10−11 1.69 × 10−11 6 2.00

0.8 x̄2 4.38 × 10−11 2.19 × 10−11 6 2.00

0.7 x̄2 5.65 × 10−11 2.83 × 10−11 6 2.00

0.6 x̄2 7.26 × 10−11 3.63 × 10−11 6 2.00

0.5 x̄2 9.28 × 10−11 4.64 × 10−11 6 2.00

0.4 x̄2 1.18 × 10−10 5.91 × 10−11 6 2.00

0.3 x̄2 1.50 × 10−10 7.49 × 10−11 6 2.00

0.2 x̄2 1.89 × 10−10 9.47 × 10−11 6 2.00

0.1 x̄2 2.38 × 10−10 1.19 × 10−10 6 2.00
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Fig. 17 Error curves of F5(x) for all values of α from Table 9
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Fig. 18 Error curves of F5(x) for some values of α from Table 9
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Fig. 19 Error curves of F5(x) for all values of α from Table 10
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Fig. 20 Error curves of F5(x) for some values of α from Table 10
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Table 11 Results for F6(x) = 0̂ with initial estimation x(0) = (2, . . . , 2)T

α x̄ ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖ Iter ACOC

1 x̄1 2.86 × 10−10 2.53 × 10−11 20 2.00

0.9 – – – > 500 –

0.8 x̄2 3.30 × 10−8 3.10 × 10−9 7 1.99

0.7 x̄3 1.40 × 10−13 5.62 × 10−15 9 2.07

0.6 x̄3 1.66 × 10−10 1.17 × 10−11 9 2.01

0.5 x̄5 6.67 × 10−8 4.70 × 10−9 7 2.03

0.4 x̄6 1.44 × 10−8 1.35 × 10−9 9 2.00

0.3 x̄6 2.40 × 10−11 2.25 × 10−12 7 2.00

0.2 x̄7 1.87 × 10−13 2.81 × 10−14 9 1.79

0.1 x̄7 1.87 × 10−13 0 8 1.99

where

χ1,1 = (x1 − a1)
1−α(x2)

χ1,2 = (x2 − a2)
1−α(x1)

χ2,2 = (x2 − a2)
1−α(x3)

χ2,3 = (x3 − a3)
1−α(x2)

χ14,14 = (x14 − a14)
1−α(x15)

χ14,15 = (x15 − a15)
1−α(x14)

χ15,1 = (x1 − a1)
1−α(x15)

χ15,15 = (x15 − a15)
1−α(x1),

being a = (a1, . . . , a15) = (−10, . . . ,−10).
It can be observed in Tables 9 and 10 for F5(x) that classical Newton’s method

and conformable vectorial Newton’s scheme have a similar behaviour as in amount
of iterations as in ACOC. We can see that Figs. 17, 18, 19 and 20 show that errors
are decreasing with iterations, so, erratic behaviour is not observed.

The sixth test vector valued function is F6(x) = (f1(x), . . . , f10(x))T , where
x = (x1, . . . , x10)

T and fi : Rn −→ R, i = 1, 2, . . . , 9, 10, such that

fi(x) = xi − 1.5 sin(x1 + x2 + · · · + x9 + x10 − xi), i = 1, 2, . . . , 9, 10,

with real roots x̄1 ≈ (−0.9691, . . . ,−0.9691)T , x̄2 ≈ (−0.7569, . . . ,−0.7569)T ,
x̄3 ≈ (−0.3248, . . . ,−0.3248)T , x̄4 = (0, . . . , 0)T , x̄5 ≈ (0.3248, . . . , 0.3248)T ,
x̄6 ≈ (0.7569, . . . , 0.7569)T and x̄7 = (0.9691, . . . , 0.9691)T . The conformable
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Table 12 Results for F6(x) = 0̂ with initial estimation x(0) = (3, . . . , 3)T

α x̄ ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖ Iter ACOC

1 – – – > 500 –

0.9 – – – > 500 –

0.8 x̄7 6.04 × 10−14 0 43 1.99

0.7 – – – – –

0.6 x̄7 4.44 × 10−11 3.93 × 10−12 9 2.00

0.5 x̄1 2.81 × 10−15 0 44 1.99

0.4 x̄5 2.15 × 10−11 1.50 × 10−12 38 2.00

0.3 x̄6 6.77 × 10−9 6.36 × 10−10 30 2.00

0.2 - - - > 500 -

0.1 x̄4 7.63 × 10−8 6.11 × 10−9 12 2.62

Jacobian matrix of F6(x) is

Fα(1)
a 6(x) =

⎛
⎜⎜⎜⎜⎜⎝

χ1,1 χ1,2 . . . . . . . . . χ1,9 χ1,10
χ2,1 χ2,2 . . . . . . . . . χ2,9 χ2,10

...
χ9,1 χ9,2 . . . . . . . . . χ9,9 χ9,10
χ10,1 χ10,2 . . . . . . . . . χ10,9 χ10,10

⎞
⎟⎟⎟⎟⎟⎠

,

where

χ1,1 = (x1 − a1)
1−α(1)

χ1,2 = (x2 − a2)
1−α(−1.5 cos(x1 + x2 + · · · + x9 + x10 − x2))

χ1,9 = (x9 − a9)
1−α(−1.5 cos(x1 + x2 + · · · + x9 + x10 − x9))

χ1,10 = (x10 − a10)
1−α(−1.5 cos(x1 + x2 + · · · + x9 + x10 − x10))

χ2,1 = (x1 − a1)
1−α(−1.5 cos(x1 + x2 + · · · + x9 + x10 − x1))

χ2,2 = (x2 − a2)
1−α(1)

χ2,9 = (x9 − a9)
1−α(−1.5 cos(x1 + x2 + · · · + x9 + x10 − x9))

χ2,10 = (x10 − a10)
1−α(−1.5 cos(x1 + x2 + · · · + x9 + x10 − x10))

χ9,1 = (x1 − a1)
1−α(−1.5 cos(x1 + x2 + · · · + x9 + x10 − x1))

χ9,2 = (x2 − a2)
1−α(−1.5 cos(x1 + x2 + · · · + x9 + x10 − x2))

χ9,9 = (x9 − a9)
1−α(1)

χ9,10 = (x10 − a10)
1−α(−1.5 cos(x1 + x2 + · · · + x9 + x10 − x10))

χ10,1 = (x1 − a1)
1−α(−1.5 cos(x1 + x2 + · · · + x9 + x10 − x1))

χ10,2 = (x2 − a2)
1−α(−1.5 cos(x1 + x2 + · · · + x9 + x10 − x2))

χ10,9 = (x9 − a9)
1−α(−1.5 cos(x1 + x2 + · · · + x9 + x10 − x9))

χ10,10 = (x10 − a10)
1−α(1),

being a = (a1, . . . , a10) = (−10, . . . ,−10).

1199



Numerical Algorithms (2023) 93:1171–1208

0 5 10 15 20

Iterations

10-15

10-10

10-5

100

105

Fig. 21 Error curves of F6(x) for all values of α from Table 11
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Fig. 22 Error curves of F6(x) for some values of α from Table 11
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Fig. 23 Error curves of F6(x) for all values of α from Table 12

We can see in Table 11 for F6(x) that conformable vectorial Newton’s procedure
requires, in general, much less iterations than classical Newton’s method. It can also
be observed that ACOC may be slightly greater than 2. In Figs. 21 and 22, we can
see that error curves stop erratic behaviour in later iterations.

In Table 12, we can observe for F6(x) that classical Newton’s method does not
find any solution in 500 iterations, whereas conformable one converges for most of
values of α. We can see that ACOC is around two, but much greater than 2 when
α = 0.1. No results are shown when α = 0.7 because conformable Jacobian matrix
becomes singular. Again, in Figs. 23 and 24, we can observe that error curves stop
erratic behaviour in later iterations.

In Tables 11 and 12, some errors are zero because double precision arithmetic is
used. A value very close to zero could be observed if a variable precision arithmetic
be used.

4.1 Numerical stability

In this section, we study the stability of conformable vectorial Newton’s method
tested above. In that sense, we analyze the dependence on initial estimates by means
of convergence planes, which is defined in [15], and used in [3–5]. Only two dimen-
sions can be visualized in convergence planes, so we are going to provide them for
vector valued functions F1, F2, F3 and F4.
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Fig. 24 Error curves of F6(x) for some values of α from Table 12

For the construction of convergence planes, we consider from initial estimates
(x0, y0), the points x0 in horizontal axis, and values of α ∈ (0, 1] in vertical axis.
Each one of 8 planes in each figure is representing a different value of y0 from initial
estimates (x0, y0). Each color represents a different solution found, and it is painted
in black when no solution is found after 500 iterations. Each plane is made with a
400 × 400 grid, with a maximum of 500 iterations, and tolerance 0.001.

In Fig. 25, we can see for F1(x, y) that in (e), (f), (g) and (h) almost 100% of
convergence is obtained, whereas in (a), (b), (c) and (d) it is obtained around 86% of
convergence. For each case, this method converges to all roots, even to complex root
with real initial estimate.

In Fig. 26, for F2(x, y) almost 100% of convergence is obtained for each plane. In
(a), (b), (c) and (d) this method converges to 2 of 4 roots, and in (e), (f), (g) and (h)
this method converges to the other 2 roots.

In Fig. 27, for F3(x, y) we can observe that between 77% and 98% of convergence
is obtained. For each plane, this method converges to both real roots.

In Fig. 28, for F4(x, y) we can see that 100% of convergence is obtained in some
cases, and almost in other cases. For (a), (b), (c), (d) and (e) this method converges
to both real roots, and for (f), (g) and (h) converges to one root.

We can also observe, in general, it is possible to find several solutions with the
same initial estimate by choosing distinct values for α.
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Fig. 25 Convergence planes of F1(x, y). x̄1: green, x̄2: red, x̄3: blue
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Fig. 26 Convergence planes of F2(x, y). x̄1: red, x̄2: green, x̄3: blue, x̄4:yellow
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Fig. 27 Convergence planes of F3(x, y). x̄1: red, x̄2: blue
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Fig. 28 Convergence planes of F4(x, y). x̄1: green, x̄2: blue
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5 Conclusion

In this work, the first conformable fractional Newton-type iterative scheme for solv-
ing nonlinear systems was designed. Also, we have introduced all the analytical
tools required to construct this method. The convergence analysis was made, and
the quadratic convergence is held as in classical Newton’s method for nonlinear sys-
tems. It was concluded that, by using the conformable Taylor series introduced in this
work, and the classical one, the same error equation is obtained in both versions (the
conformable scalar method in [5], and the conformable vectorial method proposed in
this work). Numerical tests were made, error curves were provided, and the depen-
dence on initial estimates was analyzed, supporting the theory. We could observe
that the conformable vectorial Newton-type method presents, in some cases, a better
numerical behaviour than classical one in terms of amount of iterations, ACOC, and
wideness of basins of attractions of the roots. We also could observe that complex
roots may be obtained with real initial estimates, and several roots may be obtained
with the same initial estimate by choosing different values of α.
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