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ABSTRACT 

 

Energy, communication, and computing are critical components of modern society, 

providing the foundation for technological development and economic growth. The close 

interrelation between these pillars has become increasingly apparent in recent years, as 

computing and data analysis advances have enabled new energy management and 

sustainability approaches. In this context, efficient energy usage has become a key focus 

for researchers, policymakers, and businesses alike. By harnessing the power of 

computing and machine learning (ML) techniques, it is possible to highlight the 

challenges of securing energy systems and optimizing energy usage, leading to the need 

for advanced techniques such as bio-inspired algorithms and neural networks. 

This doctoral thesis aims to analyse load consumption and demand management 

programs and strategies in the current energy landscape. The central core presents an 

study on integrating bio-inspired algorithms, such as particle swarm optimization (PSO) 

and artificial neural networks (ANN) models in load management systems to meet load 

management challenges and use energy efficiently and securely. 

The main body of this thesis comprises three scientific publications, each corresponding 

to a distinct stage within the overarching research framework of this study: the first stage 

covers the proposal of a low-cost architecture in energy systems introducing a cost-

effective web-based SCADA system that was over 80% cheaper than a similar solution. 

The proposed low-cost architecture, tailored for microgrid testbeds, offers real-time 

monitoring, remote accessibility, and user-friendly control for academic and research 

applications. The second stage combined a cascade hybrid Particle Swarm Optimization 

(PSO) with feed-forward neural networks to accurately forecast and optimize energy 

demand in an AC microgrid, notably enhancing the integration of renewable energy 

sources like biomass gasification. The results showed that the proposed PSO-ANN model 

performs 23.2% better in terms of MSE than Feedforward Backpropagation (FF-BP) and 

Cascade forward propagation (CF-P) ANN models. The third and final stage focused on 

a smart load management system fortified with hybrid cryptography to ensure protected 

communication and data privacy, thereby effectively addressing energy security 

challenges in residential settings. Results showed that the proposed Security Residential 
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System Load Management (SRS-LM) model was 37% better in performance (power cost, 

power utilization, computational time) and with a 60% peak load reduction compared to 

a Universal Smart Energy Meter (USEM) model.  
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RESUMEN 

 

La energía, la comunicación y la informática son componentes fundamentales de la 

sociedad moderna, ya que sientan las bases para el desarrollo tecnológico y el crecimiento 

económico. La estrecha interrelación entre estos pilares se ha hecho cada vez más 

evidente en los últimos años, a medida que los avances en computación y análisis de datos 

han permitido nuevos enfoques de gestión y sostenibilidad de la energía. En este contexto, 

el uso eficiente de la energía se ha convertido en un objetivo clave para los investigadores, 

los responsables políticos y las empresas por igual. Al aprovechar el poder de las técnicas 

informáticas y de aprendizaje automático (ML), es posible destacar los desafíos de 

asegurar los sistemas de energía y optimizar el uso de la energía, lo que lleva a la 

necesidad de técnicas avanzadas como algoritmos bio-inspirados y redes neuronales. 

Esta tesis doctoral tiene como objetivo analizar los programas y estrategias de gestión de 

la carga, el consumo y la demanda en el panorama energético actual. El núcleo central 

presenta un estudio exhaustivo sobre la integración de algoritmos bio-inspirados, como 

la optimización de enjambres de partículas (PSO) y los modelos de redes neuronales 

artificiales (ANN) en los sistemas de gestión de la carga para hacer frente a los retos de 

la gestión de la carga y utilizar la energía de forma eficiente y segura. 

El cuerpo principal de esta tesis comprende tres publicaciones científicas, cada una de las 

cuales corresponde a una etapa distinta dentro del marco general de investigación de este 

estudio: la primera etapa propone un sistema de monitorización de bajo coste para 

aplicaciones energéticas que introduce un sistema SCADA basado en web rentable que 

era un del 80% más barato que una solución similar. La arquitectura de bajo coste 

propuesta, diseñada para bancos de pruebas de microrredes, ofrece monitorización en 

tiempo real, accesibilidad remota y control fácil de usar para aplicaciones académicas y 

de investigación. La segunda etapa combina la optimización híbrida de enjambre de 

partículas (PSO) en cascada con redes neuronales feed-forward para pronosticar y 

optimizar con precisión la demanda de energía en una microrred en AC, mejorando la 

integración de fuentes de energía renovables como gasificación de biomasa. Los 

resultados muestran que el modelo PSO-ANN propuesto tiene un rendimiento un 23,2% 

mejor en términos de MSE que los modelos de RNA de retropropagación feed-forward 
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(FF-BP) y propagación directa en cascada (CF-P). La tercera y última etapa se centró en 

un sistema inteligente de gestión de la carga reforzado con criptografía híbrida para 

garantizar la comunicación protegida y la privacidad de los datos, abordando así de 

manera efectiva los desafíos de seguridad energética en entornos residenciales. Los 

resultados mostraron que el modelo propuesto de Gestión de Carga aplicado a Sistemas 

Residenciales de Seguridad (SRS-LM) fue un 37% mejor en rendimiento (costo de 

energía, utilización de energía, tiempo computacional) y con una reducción de carga 

máxima del 60% en comparación con un modelo de Medidor de Energía Inteligente 

Universal (USEM). 
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RESUM 

 

L'energia, la comunicació i la informàtica són components fonamentals de la societat 

moderna, ja que establixen les bases per al desenvolupament tecnològic i el creixement 

econòmic. L'estreta interrelació entre estos pilars s'ha fet cada vegada més evident en els 

últims anys, a mesura que els avanços en computació i anàlisi de dades han permés nous 

enfocaments de gestió i sostenibilitat de l'energia. En este context, l'ús eficient de l'energia 

s'ha convertit en un objectiu clau per als investigadors, els responsables polítics i les 

empreses per igual. En aprofitar el poder de les tècniques informàtiques i d'aprenentatge 

automàtic (ML), és possible destacar els desafiaments d'assegurar els sistemes d'energia 

i optimitzar l'ús de l'energia, la qual cosa porta a la necessitat de tècniques avançades com 

a algorismes bio-inspirats i xarxes neuronals. 

Esta tesi doctoral té com a objectiu analitzar els programes i estratègies de gestió de la 

càrrega, el consum i la demanda en el panorama energètic actual. El nucli central presenta 

un estudi exhaustiu sobre la integració d'algorismes bio-inspirats, com l'optimització 

d'eixams de partícules (PSO) i els models de xarxes neuronals artificials (ANN) en els 

sistemes de gestió de la càrrega per a fer front als reptes de la gestió de la càrrega i utilitzar 

l'energia de manera eficient i segura. 

El cos principal d'esta tesi comprén tres publicacions científiques, cadascuna de les 

quals correspon a una etapa diferent dins del marc general d'investigació d'este estudi: la 

primera etapa proposa un sistema de monitoratge de baix cost per a aplicacions 

energètiques que introduïx un sistema SCADA basat en web rendible que era un del 80% 

més barat que una solució similar. L'arquitectura de baix cost proposada, dissenyada per 

a bancs de proves de microxarxes, oferix monitoratge en temps real, accessibilitat remota 

i control fàcil d'usar per a aplicacions acadèmiques i d'investigació. La segona etapa 

combina l'optimització híbrida d'eixam de partícules (PSO) en cascada amb xarxes 

neuronals feed-forward per a pronosticar i optimitzar amb precisió la demanda d'energia 

en una microxarxa en AC, millorant la integració de fonts d'energia renovables com a 

gasificació de biomassa. Els resultats mostren que el model PSO-ANN proposat té un 

rendiment un 23,2% millor en termes de MSE que els models d'RNA de retropropagació 

feed-forward (FF-BP) i propagació directa en cascada (CF-P). La tercera i última etapa 
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es va centrar en un sistema intel·ligent de gestió de la càrrega reforçat amb criptografia 

híbrida per a garantir la comunicació protegida i la privacitat de les dades, abordant així 

de manera efectiva els desafiaments de seguretat energètica en entorns residencials. Els 

resultats van mostrar que el model proposat de Gestió de Càrrega aplicat a Sistemes 

Residencials de Seguretat (SRS-LM) va ser un 37% millor en rendiment (cost d'energia, 

utilització d'energia, temps computacional) i amb una reducció de càrrega màxima del 

60% en comparació amb un model de Mesurador d'Energia Intel·ligent Universal 

(USEM). 
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Chapter 1. 

Introduction  
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This thesis was written under the modality of journal compilation publishing. It 

covers the key findings and main results of four years of research reflected in three 

scientific papers published in journals indexed in the Journal Citation 1Report (JCR). This 

thesis follows four chapters, where the first describes the research background, state-of-

art, motivation, methodology, and main objectives of this work. The second chapter 

includes the author's publications, the third chapter mentions the summary conclusions of 

all the scientific papers and discusses future work, and the final chapter remarks the 

complementary activities during the development of this work. The structure of the thesis 

contains a logical order starting with the infrastructure design of the microgrid system to 

gather data from all renewable energy resources to implement a model to optimize the 

energy generation, distribution network, and securing/protecting data; all of this by using 

machine learning (ML) techniques and optimization algorithms.  

1.1 BACKGROUND 

The transition towards a sustainable energy future has brought significant attention to 

demand response programs that incentivize energy consumers to modify their electricity 

consumption patterns in response to energy supply or price changes. Demand response 

programs have effectively reduced peak demand, improved energy efficiency, and 

enhanced grid reliability and stability [1], [2]. Machine learning techniques have been 

increasingly applied in demand response programs to develop predictive models that can 

accurately forecast energy consumption patterns and optimize demand response strategies 

[3], [4]. Low-cost energy systems, including microgrids and off-grid systems, have also 

emerged as a promising solution to address energy poverty and promote sustainable 

energy access in remote and rural areas [5], [6]. Bio-inspired algorithms have been 

proposed as a computational tool to optimize system design, control, and operation to 

improve the performance and affordability of these systems [7], [8]. These algorithms 

simulate natural processes such as evolution, swarm intelligence, and neural networks to 

solve complex optimization problems and achieve better energy efficiency and cost-

effectiveness[9]. 

Microgrids are complex systems with multiple distributed energy resources, such as solar 

panels, wind turbines [10], and energy storage devices, that must be controlled and 

managed efficiently. The efficient operation of microgrids requires the optimization of 
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various parameters, including power generation, energy storage, and load management, 

to ensure that the energy demand is met while minimizing energy costs and reducing 

greenhouse gas emissions. 

Demand response, machine learning techniques, low-cost energy systems, bio-inspired 

algorithms, and energy efficiency are interconnected research topics that can contribute 

to developing a sustainable and reliable energy system environment. By leveraging 

advanced technologies and interdisciplinary approaches, researchers and practitioners can 

overcome technical, economic, and social barriers to promote sustainable energy access 

and reduce greenhouse gas emissions. 

A Load Management System (LMS) can reduce energy costs and improve the microgrid’s 

reliability by balancing supply and demand [11]. Similarly, a study by [12] suggests that 

demand response (DR) techniques can effectively reduce peak demand and mitigate the 

need for additional energy generation capacity. 

The effectiveness of LMS and DR can be improved by using advanced technologies such 

as machine learning algorithms and smart grid communication systems. For example, a 

study by [13] found that machine learning algorithms can optimize the energy 

consumption of loads in a microgrid, improving the efficiency of the LMS. Similarly, a 

study by [14] suggests that smart grid communication systems can improve DR's 

effectiveness by providing real-time information on energy demand and supply. 

Implementing LMS and DR can have significant economic and environmental benefits, 

such as reducing energy costs and greenhouse gas emissions and improving the overall 

energy efficiency of the microgrid. A study developed by [15] found that implementing 

LMS and DR in a microgrid can reduce the peak load by up to 30%, resulting in 

significant cost savings and emissions reductions. Similarly, a study developed by [16] 

suggests that DR can help improve microgrids' overall energy efficiency by reducing 

energy waste during peak periods. Some of the key findings include: 

• LMS can reduce energy costs and improve the microgrids’ reliability by 

balancing supply and demand. 
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• DR can effectively reduce peak demand and mitigate the need for additional 

energy generation capacity. 

• The effectiveness of LMS and DR can be improved by using advanced 

technologies such as machine learning algorithms and smart grid 

communication systems. 

• Implementing LMS and DR can have significant economic and environmental 

benefits, such as reducing energy costs greenhouse gas emissions and 

improving the overall energy efficiency of the microgrid. 

LMS and DR are two important strategies for efficient energy management in microgrids. 

LMS refers to the process of managing the energy consumption of the connected loads in 

a microgrid to balance supply and demand. DR refers to the process of reducing the 

demand for electricity during peak periods by adjusting the energy consumption of the 

loads [17]. Several studies have examined the use of LMS and DR in microgrids.  

1.1.1 Designing low-cost energy systems for microgrids 

Microgrids have emerged as a promising solution to address the challenges of reliable 

and sustainable energy access, especially in remote and rural areas. Microgrids can also 

provide benefits such as reduced energy costs, improved energy security, and reduced 

greenhouse gas emissions. However, the deployment and management of microgrids 

require advanced control and monitoring systems to ensure their efficient operation and 

reliable performance. 

One of the critical components of microgrid control systems is Supervisory Control and 

Data Acquisition (SCADA) systems, which are used for real-time monitoring and control 

of microgrid components and performance. Traditional SCADA systems are often 

expensive, complex, and closed-source, which limits their adoption in academic and 

research applications. To overcome these limitations, researchers and engineers have 

been exploring the development of low-cost, open-source, and web-based SCADA 

systems for microgrids. 
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1.1.2 Bio-inspired algorithms to support energy efficiency in microgrids 

Bio-inspired algorithms, also known as nature-inspired algorithms, are computational 

methods that imitate the behaviour and principles observed in natural systems such as 

animals, plants, and ecosystems. These algorithms are becoming increasingly popular in 

the field of energy management and have shown great potential in optimizing the 

performance of microgrids. 

Bio-inspired algorithms can provide an effective and efficient approach to optimizing the 

performance of microgrids. These algorithms use principles such as evolution, swarm 

intelligence, and neural networks to optimize the energy management of microgrids. For 

example, genetic algorithms can be used to optimize the scheduling of energy resources, 

particle swarm optimization can be used to optimize the control of energy storage devices, 

and artificial neural networks can be used to predict energy demand and optimize energy 

consumption schedules. 

Applying bio-inspired algorithms in microgrid energy management can have significant 

benefits, including improved energy efficiency, reduced energy costs, and enhanced grid 

stability. These algorithms can also provide a scalable and adaptable approach to 

microgrid optimization, which can be particularly beneficial for microgrids in remote or 

rural areas. They offer a promising approach to support energy efficiency in microgrids. 

By leveraging principles from nature, these algorithms can optimize the performance of 

microgrids, leading to reduced energy costs, improved energy efficiency, and enhanced 

grid stability. 

1.1.3 Integration of machine learning techniques in load management systems 

Load management systems (LMS) are an important tool for optimizing the operation 

of microgrids and reducing energy costs. Machine learning techniques, such as artificial 

neural networks, genetic algorithms, and support vector machines, have shown great 

potential for improving the performance of LMS. 

One of the main advantages of using machine learning techniques in LMS is the ability 

to predict and control energy demand in real-time. These techniques can be used to model 

the behaviour of energy consumers, predict future energy demand, and optimize energy 
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usage based on the predicted demand. This can lead to more efficient use of energy 

resources and a reduction in energy costs. 

Integrating machine learning techniques in load management systems can provide an 

effective and efficient approach to energy management in microgrids. By predicting and 

optimizing energy demand in real-time, these techniques can lead to reduced energy costs, 

increased energy efficiency, and improved grid stability. 

Overall, the integration of machine learning techniques in load management systems can 

significantly improve the energy efficiency and reliability of microgrids. These 

techniques can provide an effective approach to predicting energy demand, optimizing 

the operation of DERs, and reducing energy costs and CO2 emissions.  

1.2 MOTIVATION 

This thesis focuses on designing and implementing energy management models to 

optimize energy use by combining bio-inspired algorithms and artificial neural networks 

with a focus on energy and load management systems. Load management systems and 

demand response programs are essential for balancing energy supply and demand and 

reducing energy costs in electricity grids. Load management systems involve the real-

time monitoring and control of energy consumption, particularly during peak periods, to 

ensure that energy supply meets demand. Demand response programs aim to encourage 

consumers to adjust their energy usage patterns during peak demand periods, typically 

through incentives or penalties. 

Machine learning techniques have shown significant potential in improving the 

effectiveness and efficiency of load management systems and demand response 

programs. These techniques can analyse large amounts of data from smart meters, 

weather sensors, and other sources to identify patterns in energy consumption and predict 

future demand. Machine learning algorithms can also be used to optimize energy 

consumption schedules and identify opportunities for energy savings. 

The application of machine learning techniques in load management systems and demand 

response programs can have significant benefits, including reduced energy costs, 

improved energy efficiency, and enhanced grid stability. Machine learning can enable 
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load management systems to respond more quickly and accurately to changes in energy 

supply and demand, leading to more efficient use of energy resources. It can also help to 

reduce energy consumption during peak periods, reducing the need for expensive peaking 

power plants and minimizing the risk of blackouts. 

In summary, load management systems and demand response programs can benefit 

electricity grids significantly, and machine learning techniques can enhance their 

effectiveness and efficiency. By leveraging machine learning algorithms, energy 

providers can optimize energy consumption schedules, reduce energy costs, and improve 

the reliability and stability of the electricity grid.  

1.3 STRUCTURE 

The modality in which this thesis focuses is by journal compilation publishing. It 

consists of three scientific papers published in JCR journals. This document is structured 

in four chapters.  

Chapter one presents the state of the art of data acquisition systems for energy 

management in microgrids, demand response and optimization algorithms applied to 

renewable energy systems scenarios.  

Chapter two describes the three scientific publications in detail. The first explains the 

low-cost data acquisition system architecture of an experimental microgrid. The second 

one addresses the energy management model using artificial neural networks with particle 

swarm optimization applied to a gasification plant considering the design of the 

acquisition and monitoring system architecture, and the energy management model using 

neural networks and metaheuristic algorithms applied to a gasification plant are 

mentioned. The third one explains the proposal of a home load management model. A 

novel hybrid cryptography as an improvement contribution to the proposed management 

system is described.  

Chapter three mentions the discussion and conclusions of the three JCR papers, and the 

future work of each one is explained.  

Chapter four shows other scientific publications and research activities throughout the 

current thesis period. 
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1.4 METHODOLOGY 

This thesis presents a methodology that integrates and combines various metaheuristic 

algorithms for managing energy demand and load control in environments where 

electricity generation is provided by microgrids, and domestic consumption patterns are 

considered. Hence, the methodology of this study is divided into three stages (as shown 

in Figure 1) which are described below: 

1. Architecture and data acquisition systems using smart meters for a generation 

microgrid based on renewable energies. 

• A full review of the state-of-the-art data acquisition techniques considering 

low-cost devices in hybrid renewable energy systems was completed at this 

stage. Several studies were collected and analysed to identify best microgrid 

scenarios and trends for energy generation and load consumption 

developments in this field of research. 

2. Integrating artificial neural networks and optimization algorithms for energy 

management in a microgrid using a gasifier. 

• This stage focused on two ANN models (Cascade Forward and Feedforward 

Propagation) integrating a bio-inspired algorithm (Particle Swarm 

Optimization). Several tests were simulated in Matlab to prove the best result 

for power generation of a gasification plant. 

3. Design and implementation of a Load Management System model based on 

Demand-Response techniques alongside machine learning algorithms. 

• The final stage of this investigation concluded with the implementation the 

proposed model integrating algorithms and neural networks. Hybridization 

with specific algorithms was tested in a neighbourhood’s virtual environment 

with Smart Homes, considering historical load consumption data. Results 

were evaluated in terms of power usage, power cost, computational cost, etc. 
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Figure 1 Research methodology stages in this study. Source: own elaboration.  

 

1.5 OBJECTIVES 

This thesis aims to design, develop, integrate, and implement a Load Management 

System for reducing energy consumption based on machine learning techniques and bio-

inspired algorithms in microgrids/smart homes. However, as mentioned in the 

methodology section, every stage has a list of unique objectives to achieve the main 

purpose and validate the proposed models described in each chapter of this thesis. For 

each state, a paper was developed. The goals of each stage are explained below: 

1.5.1 Low-cost monitoring systems for supervision of energy consumption 

For the initial stage, the system needs to collect data and microgrid system’s data to 

monitor the power generation coming from the renewable sources and store them in a 

local and cloud-based database. The main objectives are: 

• To identify and analyse energy consumption patterns using of low-cost 

monitoring systems within the microgrid to develop strategies for reducing 

energy usage in these areas and optimizing energy efficiency. This will detect 

anomalies in the energy consumption that helps to identify unusual spikes or 
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drops in energy usage. Analysing energy consumption patterns may indicate 

issues with the energy system or equipment to prevent energy waste. 

• To develop strategies for optimizing energy usage, such as adjusting energy 

usage during off-peak hours or implementing energy-saving measures by 

applying any demand-response techniques.  

1.5.2 Artificial neural network model for covering energy demand 

In this stage the system’s architecture must be collecting data to propose a model to 

cover several objectives mentioned above: 

• To design a hybrid ANN model with PSO algorithm to predict the energy demand 

in the microgrid accurately to minimize waste and reducing cost of energy 

production. 

1.5.3 Machine Learning techniques in a Load Management System model. 

For this specific and final stage, the load management system model should include 

machine learning techniques to operate the whole system. The three main objectives of 

the model are: 

• To optimize the distribution of residential energy consumption using a 

Hopfield Neural Network, predict the state of loads in homes using Markov 

Chains, reduce the cost of the electricity bill through Fuzzy logic, achieve a 

high level of security in the data network using a hybrid encryption algorithm 

Blowfish, and the Elliptic Curve Cryptography (ECC) method. 

• To develop a demand management model (DSM – Demand-Side Management) 

by integrating optimization algorithms into energy management systems 

(Energy Management System) and data security in smart homes (Smart 

Homes). 

• To develop energy demand management models for energy savings in 

residential homes based on metaheuristic optimization algorithms that 

incorporate the demand response technique to reduce peak demand in periods 

of increased consumption. 
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1.6 Contributions 

This thesis proposes a new methodology to the demand-response in residential energy 

management as a solution to the consumption of fossil sources in power generation, high 

energy prices in the hours of highest energy consumption (peak hours), or sudden changes 

in load. Likewise, the present work contributes to developing energy management 

algorithms based on metaheuristic optimization and machine learning techniques in the 

residential sector, emphasizing the novel methods inspired by the behaviour of different 

species in nature, the Particle Swarm Optimization – PSO. 

On the other hand, the present work directly impacts energy efficiency in the home, by 

providing the user with a tool for classification, or categorization, of the loads of 

appliances and devices that are linked to the information of the SM and that allow the 

integration of hybrid systems of renewable electricity generation in homes or any 

residential area, along with an intelligent energy manager system that significantly 

improves the quality of the electricity grid by reducing peak demand with the inclusion 

of environmentally friendly technology.  

The contributions of every single paper of the entire work have been published in 

international indexed journals as mentioned below: 

[1] Vargas-Salgado, C., Aguila-Leon, J., Chiñas-Palacios, C., & Hurtado-Perez, E. 

(2019). “Low-cost web-based Supervisory Control and Data Acquisition system for a 

microgrid testbed: A case study in design and implementation for academic and research 

applications”. Heliyon, 5(9). https://doi.org/10.1016/j.heliyon.2019.e02474.  

• The paper described the infrastructure design of a web-based Supervisory 

Control and Data Acquisition (SCADA) system for a microgrid testbed where 

the SCADA was implemented considering open-source software and low-cost 

hardware, making it an affordable solution for academic and research 

applications. The SCADA system was designed to monitor and control the 

different components of the microgrid testbed, such as the solar panels, battery, 

and loads. A web-based interface was previously designed to allow remote 

access to the SCADA system, making it easy to monitor and control the 

microgrid from anywhere with an internet connection. 

https://doi.org/10.1016/j.heliyon.2019.e02474
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• The paper includes a case study of the SCADA system in a microgrid testbed 

at the UPV where the installation process is described, and tests were 

implemented on how the SCADA system can successfully monitor and control 

the microgrid. 

• In general, the paper demonstrated that a low-cost web-based SCADA system 

can effectively monitor and control microgrids in academic and research 

settings where the proposed SCADA system can be adapted for any microgrid 

applications. 

[2] Chiñas-Palacios, C., Vargas-Salgado, C., Aguila-Leon, J., and Hurtado-Pérez, E. 

(2021). “A cascade hybrid PSO feed-forward neural network model of a biomass 

gasification plant for covering the energy demand in an AC microgrid”. Energy 

Conversion and Management, vol. 232, no. 113896. 

https://doi.org/10.1016/j.enconman.2021.113896.  

• The paper proposed a cascade hybrid Particle Swarm Optimization (PSO) feed-

forward neural network model to predict the output power of a biomass 

gasification plant. The novel model aimed to use the predicted power output to 

cover an AC microgrid’s energy demand. Such model includes a wind turbine, 

a photovoltaic array, and an energy storage system. 

• The proposed model was trained with real data coming from the biomass 

gasification plant at the UPV. The results were compared with those obtained 

from other prediction models. The results showed that the proposed model 

outperforms other models. 

• The paper also includes a case study in which the proposed model predicted 

the biomass gasification plant’s output power and covers the AC microgrid’s 

energy demand. Thus, the proposed model can effectively manage the energy 

supply and demand of the microgrid, reducing the need for additional energy 

sources and improving the system’s overall energy efficiency. 

• As a result, the proposed cascade hybrid PSO feed-forward neural network 

model can be an effective solution for predicting the output power of a biomass 

https://doi.org/10.1016/j.enconman.2021.113896
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gasification plant and managing the energy supply and demand of an AC 

microgrid. 

[3] C. Chiñas-Palacios, J. Aguila-Leon, C. Vargas-Salgado, E. X. M. Garcia, J. Sotelo-

Castañon, and E. Hurtado-Perez, “A smart residential security assisted load management 

system using hybrid cryptography,” Sustain. Comput. Informatics Syst., vol. 32, no. 

100611, 2021, https://doi.org/10.1016/j.suscom.2021.100611.  

• The paper proposed a smart residential security-assisted load management 

system that uses hybrid cryptography to secure communication between the 

system components. The system managed the electricity load in a residential 

setting by controlling the devices connected to the grid and balancing the 

energy demand with the available energy supply. 

• The components of the system included a load management controller, a secure 

communication module, and a smart device management module. Also, a 

hybrid cryptography-based security mechanism was proposed to protect the 

communication between these components. The paper includes a case study of 

implementing the proposed system in a residential setting. The system can 

effectively manage the electricity load while maintaining communication 

security between the system components. 

• Overall, the proposed smart residential security-assisted load management 

system using hybrid cryptography can be an effective solution for managing 

the electricity load in residential settings while ensuring the system's security. 

Furthermore, the system can be adapted for applications considering other 

scenarios and settings, such as commercial or industrial applications. 

This research addresses the problem of energy management and data security in 

microgrids and smart homes in a novel way by proposing the integration of optimization 

algorithms into the grid to improve energy generation and consumption efficiently. A 

literature review in Table 1 describes the current situation of the low-cost energy systems 

in microgrids alongside bio-inspired algorithms to support energy efficiency and the 

integration of advanced ML techniques for load management systems regarding demand 

response. 

https://doi.org/10.1016/j.suscom.2021.100611
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Table 1 Comparative results of the three stages considered for this thesis. 

Literature Work Problems Considerations 

 

Proposed Model Solution 

Stage 1. Designing Low-Cost Energy Systems for Microgrids 

Development of a Web-Based 

Real-time Energy Monitoring 

System for Campus University 

(Dahlan et al., 2016) 

The monitoring system 

considered by the authors was a 

remote web-based SCADA but 

only displayed real power 

consumption. 

 

Electrical parameters such as voltage, 

current, frequency, energy, and load 

consumption were included in the 

proposed model.  

Stage 2. Bio-inspired Algorithms to Support Energy Efficiency in Microgrids 

Smart Sensing of Loads in an 

Extra Low Voltage DC Pico-grid 

using Machine Learning 

Techniques [18] 

Clustering is only done once. 

Load changes are not updated.  

Classification based on clustered 

data is not effective. 

 

Load is determined in the Markov 

chain model, which efficiently 

predicts future states. 

Dynamically updates the state of 

charge according to the energy 

consumption in the microgrid. 

 

Design and implementation of 

low–cost universal smart energy 

meter with demand-side load 

management [19] 

Emergency load is initially 

stored on the central server; in 

some cases, it cannot handle the 

load demand.  

If more than one consumer 

demands electricity, managing 

the load becomes complex. 

 

Household appliances are classified 

into three types, according to the load 

consumption.  

Depending on the electricity grid’s 

usage limit, the consumer's appliances 

are monitored in case of an overload. 

 

Stage 3. Integration of Machine Learning Techniques in Load Management Systems 

A novel low-cost smart energy 

meter based on IoT for 

developing countries’ micro 

grids [20] 

An app for Android devices is 

equipped to update power 

failures and payments; It is 

essential to be online or logged 

in.  

Stolen mobile device causes 

many security issues.  

Requires improved security to 

ensure privacy and 

authentication. 

 

In the proposed work, the information 

on the behaviour of the IoT device is 

considered. Therefore, even if a 

mobile device is stolen, the third party 

cannot decrypt the data because only 

after successful authentication will the 

remaining part of the key be granted.  

The smart meter is authenticated, and 

the measurements are securely 

delivered to the user.  

Design and Development of an 

Adaptive Fuzzy Control system 

for Power Management in 

Residential Smart Grid Using 

Bat Algorithm [21] 

 

The energy consumption of each 

user is predicted using the 

authors’ algorithm; however, 

energy management based on 

demand response was not 

achieved. 

Energy management is achieved by 

controlling appliances within the 

residential area. 

A Novel Approach for Detecting 

and Mitigating the energy Theft 

Issues in the Smart Metering 

Infrastructure [22] 

Vulnerable to physical 

manipulation (electromagnetic 

interference gives erroneous 

readings).  The measured values 

are part of a function where the 

values are not reviewed.  

The smart energy meter is 

authenticated in the proposed work, so 

authorized smart meters can only 

share information about the measured 

values.  

* Source: Own elaboration. 
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This chapter presents three scientific publications that address the architecture of low-

cost power systems, the design of energy management models and the integration of 

optimization algorithms. The papers were published in chronological order, starting from 

the first stage of the methodology (data extraction and loading into a cloud database), 

following the second stage (working with bio-inspired algorithms and neural networks to 

test the system’s power generation), and the third and last stage (covering the 

implementation of the proposed energy and load management model).    

The first publication, entitled “Low-cost web-based Supervisory Control and Data 

Acquisition system for a microgrid testbed: A case study in design and implementation 

for academic and research applications” focuses on the design of a low-cost web-based 

Supervisory Control and Data Acquisition (SCADA) system for a microgrid testbed. The 

SCADA system was designed to monitor and control the different components of the 

microgrid testbed, such as the solar panels, battery, and loads. This paper covers the first 

stage that is gathering data coming from the renewable energy sources and creating the 

database to store all systems’ information.  

The second publication, entitled “A cascade hybrid PSO feed-forward neural network 

model of a biomass gasification plant for covering the energy demand in an AC 

microgrid” introduces a hybrid model combining PSO feed-forward with artificial neural 

networks (ANN) models to predict the output power of a biomass gasification plant, 

according to energy and biomass required. Results showed that the proposed model could 

be an effective solution for predicting the output power of a biomass gasification plant 

and managing the energy supply and demand of an AC microgrid. 

The final and third publication, “A smart residential security assisted load management 

system using hybrid cryptography” proposes a smart residential security-assisted load 

management system that uses hybrid cryptography to secure communication between the 

system components. The system was designed to manage the electricity load in a 

residential setting by controlling the devices connected to the grid and balancing the 

energy demand with the available energy supply.  
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2.1 LOW-COST WEB-BASED SUPERVISORY CONTROL AND DATA 

ACQUISITION SYSTEM FOR A MICROGRID TESTBED: A CASE STUDY 

IN DESIGN AND IMPLEMENTATION FOR ACADEMIC AND RESEARCH 

APPLICATIONS 

Vargas-Salgado, C., Aguila-Leon, J., Chiñas-Palacios, C., & Hurtado-Perez, E. (2019) 
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2.1.1 Abstract 

This paper presents the design and implementation of a low-cost Supervisory Control 

and Data Acquisition system with a Web interface for a Hybrid Renewable Energy System 

(HRES) microgrid. This work is carried out as an effort to provide a reliable and low-

cost testbed for the Renewable Energy Laboratory at Universitat Politècnica de València 

(LabDER-UPV) in Spain, allowing future research on microgrid stability and energy 

transactions using an own-designed low-cost solution. The microgrid in which the 

developed low-cost SCADA operates incorporates a photovoltaic array, a wind turbine, 

a biomass gasification plant and a battery bank as an energy storage system. Sensors and 

power meters were processed digitally and integrated into Arduino-based devices to 

acquire environmental data and electric parameters, such as voltage, current, frequency, 

power factor, power generation, and energy consumption. A master device on Raspberry-

PI development board was set up to send the information acquired into a local database 

(DB) as well as to a MySQL Web-DB linked to a Web SCADA interface developed and 

programmed in HTML5. Communications protocols used include TCP/IP, I2C, SPI, and 

Serial; Arduino-based slave devices communicate over the master Raspberry-PI using 

NRF24L01 wireless radio frequency transceivers. Finally, a comparison between a 

standard SCADA against the low-cost developed Web-based SCADA system is carried 

out. As a result of the operative tests and the cost comparison of the own-designed 

developed Web-SCADA system proved to be an affordable low-cost system, on average 

86% cheaper than a standard brandmark solution for controlling, monitoring and data 

logging information, as well as for local and remote operation system applied to the 

HRES microgrid testbed presented.  

Keywords: Hybrid Renewable Energy System; Web-based SCADA; remote control and 

wireless monitoring; cloud computing; Arduino; Raspberry. 
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Abbreviations 

The following abbreviations are used in the manuscript: 

AWMDC  Arduino wireless meteorological data collector 

AWPM  Arduino wireless power meter 

AWSC  Arduino wireless switch controller 

HRES  Hybrid Renewable Energy System 

LC-SCADA Low-cost Supervisory Control and Data Acquisition 

SCADA  Supervisory Control and Data Acquisition 

2.1.2 Introduction and state-of-art 

Electricity demand has increased due to the growth of population around the world 

and conventional grids have evolved into intelligent grids, better known as Smart Grids 

(SG). Along with the Smart Grids, the use of Renewable Energy Sources has grown in 

the form of microgrid systems. Besides the penetration of decentralized renewable 

sources in the grid, as microgrids, the inclusion of Information Technologies in Energy 

Renewable Systems has grown over the last decade making management of energy, data 

and communications issues for these systems due to a lack of standardization in the topic 

[23], [24]. Because microgrid systems are itself an integration of many renewable energy 

sources and energy storage systems working co-ordinately, a microgrid can be designed 

following one of two main control topologies: centralized or decentralized. No matter 

which topology is selected, data flow and communications are essential for any decision-

making controller [25], [26]. Common microgrid controllers are often based on 

Programmable Logic Controllers (PLC) [27], dedicated computers microgrid simulators 

[28] and microcontroller-based devices[29], [30]. Selection of a proper controller should 

be addressed accordingly to the microgrid application, financial budget, and security 

issues. As there is no consensus about which control topology and which controller 

hardware technology is better, due to application target, there are also many 

communication protocols available with many different characteristics [31].  

In this paper, it is presented the methodology of developing a low-cost SCADA system 

for an experimental microgrid testbed for academic and research proposes, as well as the 
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results of operational tests and investment for the system implementation. Since the 

SCADA system is nowadays becoming an essential part of electric power systems, such 

as microgrids, it is important to consider an accurate testbed development. It is mentioned 

in [32] that there are five main approaches for testbed developments, shown in Table 2. 

Table 2 Testbed development approaches. 

Testbed 

Approach 

Fidelity Repeatability Accuracy Safety Cost-

effective 

Reliability Scalability 

Physical 

replication 

Excellent Poor Moderate Poor Poor Excellent Poor 

Simulated Low Moderate Poor Excellent Excellent Poor High 

Virtual Moderate High Moderate Excellent Moderate Moderate Moderate 

Virtual-

Physical 

High High Excellent Excellent High High Moderate 

Hybrid High High Excellent High High High Moderate 

* Taken from [10]. 

The low-cost SCADA system developed in this paper is intended to operate over a 

physical replication of a microgrid, so the fidelity and operative conditions are real. A 

brandmark SCADA system for a microgrid has poor cost-effectiveness since dataloggers, 

controllers, sensors and related devices are expensive as they are usually made for 

industrial applications limiting its integration in some universities and research centers 

because of lack of budget. The low-cost SCADA system development and integration 

methodology are an effort to solve the poor cost-effectiveness and low repeatability 

associated to deploy SCADA systems for microgrid physical testbeds. 

As a microgrid controller should be aware of the status of the system, sensing, data 

collecting, and communications are essential for a microgrid management system. 

Common parameters to be measured in microgrids are environmental variables such as 

solar irradiance, temperature, and wind speed. Also, electrical parameters such as 

frequency, apparent, active and reactive power should be collected into some SCADA 

systems that are specialized in this type of monitoring sector [33], [34], measuring such 

electrical parameters allows not only to make forecast for microgrid operation but also to 

make a microgrid devices health and ageing assessment as presented in [35], [36]. Low-

cost monitoring systems are relevant topics, especially for Academic and Research 

applications where financial budgets are often limited, so efforts have been made for a 

cheaper solution to collect and display data sensed by energy, gas or environmental 
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sensors for experimental microgrids [37]–[40], as industrial solutions are often expensive 

and not suitable for small scale applications. 

Although monitoring systems are valuable tools for collecting information, an important 

issue is to have access and consult the data in every part of the world. Every device should 

be connected to the Internet into what is known as “the Cloud”. To do so, an electronic 

device must send data over the Internet by means of a communication protocol to keep 

them stored on a Web database and displaying them on a Web page [41], [42], allowing 

microgrid interoperability [43]. Related papers mentioned the integration of the 

Raspberry Pi with Arduino [44], [45]. The development of a low-cost SCADA system for 

a stand-alone photovoltaic System is presented in [46], the authors measured 

environmental variables and power generation from the photovoltaic system using an 

Arduino UNO development board. The cost of development reported is as low as $ 62, 

however, the SCADA system presented by the authors was limited only to monitoring a 

single renewable energy source and to wired communication. In [47] it is presented a 

development of a low-cost SCADA system for remote wireless control and monitoring 

for a single power inverter. The hardware used by the authors includes an Arduino 

development board, a Raspberry development board, an ESP12E wireless transceiver and 

a Wi-Fi shield for Arduino; the implementation cost reported was $ 276, an important 

cost reduction compared to the estimated $ 750 only for the software in that specific 

application. 

This paper presents the design and implementation of a low-cost SCADA system applied 

to an experimental microgrid,  a much more complex system than the considered one by 

[46] and [47], as it integrates wireless control and monitoring for several renewable 

energy sources and storage energy systems for a Renewable Energy Laboratory. The 

proposed system is an alternative for commercial SCADA and a solution for modular 

affordable monitoring and control systems for small to medium scale applications. 

2.1.3 Proposed system architecture 

The HRES for the microgrid at the LabDER-UPV where the low-cost Web-based 

SCADA system was implemented is composed by a photovoltaic (PV) array, a small-

power wind turbine, a biomass gasification plant, a battery-based energy storage system 
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and a fuel backup generator. All the energy sources are connected to a hybrid inverter, 

which allows the microgrid to operate in both ways: standalone or grid-tied to feed the 

load as shown in Figure 2. Table 3 shows the main features of the microgrid.  

 
 

 

Table 3 LabDER-UPV microgrid main features. 

Description Main features 

Photovoltaic array 2.1 kW, 12 solar panels. Connected to a Xantrex GT solar inverter. 

Wind power system 3.5 kW @ 12 m/s wind speed. Installed on a 24-meter tower from ground level. 

Biomass power 

plant 

10 kWe @ 30 Nm3/h from syngas. 13 kg/h biomass consumption from wood 

chips and pellets. 

Battery bank 12 kWh power capacity, 4 batteries from 12 V @ 250 Ah. 

Fuel backup 

generator 

Petrol 9 kW, 230 VAC @ 50 Hz PRAMAC S12000. 

Test-load bank 10 kW, 240 VAC @ 50 Hz resistive load bank 

* Taken from [10]. 

Figure 3 shows a general electrical connection overview between the different energy 

sources and the loads in the microgrid. All the sources were connected through power 

converters and inverters to a 230 VAC at 50 Hz bus. 

The wind power generation system and the photovoltaic array work in parallel. However, 

the syngas power generator fed by the gasification plant and the fuel backup generator 

Figure 2 Overall system architecture. Taken from [134]. 
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cannot work at the same time since the central inverter has only one input for AC 

generators and none of the generators has a synchronization system.  

The microgrid can operate in two different configurations; stand-alone mode and grid-

tied mode (tied to the utility grid over a Xantrex XW hybrid central inverter).  Both modes 

of operation are available on the designed SCADA Web system. 

 

 

 

Building a low-cost SCADA system for microgrid applications requires the development 

and integration of several hardware and software implementations. Figure 4 shows the 

230 V AC microgrid that has been setup in LabDER-UPV, indicating system data and 

energy flows. Optionally, if it is required, the microgrid can be connected to the utility 

grid. The renewable and backup energy sources are connected to a common AC bus 

managed by a Xantrex XW hybrid inverter, which communicates wirelessly to an 

Arduino-Raspberry PI base station for data, and control signal management. Remote 

Figure 3 Microgrid electrical connection overview. 
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control and monitoring the microgrid is available through a Web host with a MySQL 

database.  

The Web hosting platform used is PLESK which allows users to setup Websites and 

configure a Web server through a control panel with a simple, intuitive, and easy-to-use 

interface. PLESK bases its programming language in PHP and MySQL, the used versions 

of each were 7.1 and 5.5 respectively.   

 

 

2.1.4 Methodology and case study 

The implemented low-cost experimental microgrid platform has a functional cloud-

based own-developed SCADA system, as previously shown in Figure 2. Table 4 and 

Table 5 shows the environmental and electrical parameters measured, respectively, as 

well as the measurement device and Arduino program libraries used. The libraries used 

for the Arduino code have been recommended by the device manufacturer, and as 

explained later, some libraries have been modified to obtain more information from the 

measuring device. At the end, the main contribution of this work is to create a proceeding 

to integrate all the measurement devices required in an entire system to obtain a low-cost 

measure arrangement. 

Measurements

•Voltage

•Current

•Temperature

•Relative humidiy

Calculations

•Power factor

•Active, reactive 
and apparent 
power

•Energy 
production

•Energy 
consumption

Save and 
display data

•Local DB -
micro SD card

•LCD screen 
and local 
SCADA 
system

Broadcast data

•Wireless 
communicati
ons

•Remote DB 
and remote 
Web SCADA 
interface

Figure 4 Arduino wireless power meter (AWPM) main tasks. 
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2.1.4.1 Design of measurements and control devices 

Table 4 shows the parameters which must be measured in the microgrid. It is a 

requirement to have special hardware and software to perform the measurements. For the 

electrical variables, was designed and set up an Arduino wireless power meter (AWPM). 

Its main tasks are shown in Figure 4. Inside the AWPM, an electric measures voltage and 

current, the Arduino carries out calculations using the energy monitoring library 

presented in Table 5. An integrated Arduino-based base station broadcasted the data via 

wireless using the radio frequency transceiver module NRF24L01 by means of the SPI 

(Serial Peripheral Interface) synchronous protocol, which allows the AWPM to send all 

the electrical parameters gathered. 

Table 4 Environmental parameters measured in the microgrid under study. 

Environmental 

measurements 

Units Sensor Measuring 

range 

Measurement device 

Solar 

irradiance 

W/m2 CEBEK 

C0121 Solar 

cell 

0 – 1100 

W/m2 

+-40W/m2 

Own developed Arduino based data logger: 

Multiple sensors readings, data recordings, 

and wireless communication enabled. 

EmonLib.h and LiquidCrystal.h libraries 

were used for measuring and displaying 

energy parameters, respectively. 

Environmental 

temperature 

°C DHT22 -40 - 80°C 

+-0.5 °C 

Wind speed m/s FGHGF 

Anemometer 

0-5V 

0 – 32,4 

m/s  

+- 1 m/s 

Relative 

environmental 

humidity 

% DHT22 0 - 100% 

+- 5% 

* Taken from [10]. 

Figure 5 shows the Arduino code developed for the AWPM, libraries, and variables 

measured and calculated are also shown. Calibration of the current and voltage 

measurements is an important issue for the AWPM implementation, this task is carried 

out by adjusting the calibration coefficients shown in the code, line 6 and 7. Coefficients 

are selected by means of value measurement comparison of the AWPM with a 

commercial Sentron PAC3200 Power Meter for well-known AC and DC loads, so the 

mean difference between the AWPM and the Sentron PAC 3200 measurements is less 

than +-5% on average 
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Table 5 Electrical parameters measured in the microgrid under study. 

Electrical 

measurements 

Units Sensor Measuring 

range 

Measurement device 

Current A YHDC SCT-

013-030 

0-100 A 

+-3% 

Own developed Arduino based single phase 

power meter: 

Arduino based power meters were located 

along the microgrid and developed using 

voltage and current sensors. EmonLib.h and 

EmonCalc.h (libraries provided by 

openenergymonitor.org) perform the power 

and energy calculations. [48] 

Radiofrequency wireless communications 

libraries were provided by 

arduinolibraries.info/libraries/rf24. 

Voltage V PCB Mount 

Transformer 

VB 2.3/2/12 

200 – 260 V 

+-1V 

True Power W Calculated  

Reactive 

Power 

VAR 

Apparent 

Power 

VA 

Power factor - 

Frequency Hz 

Energy 

consumption 

kWh 

Energy 

generation 

kWh 

* Taken from [10]. 

 

Figure 5 Arduino code for the Wireless Power Meter with variables and libraries used. 

The AWPM designed operates with a voltage transformer and an SCT-013 non-intrusive 

current transformer sensor. The transformer turns ratio is 12:1, reducing de grid voltage 

to a safety level that can be adjusted by a voltage divider, reduced to the Arduino analog 
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input voltage level (0-5 VDC). To measure the voltage, it is used the analog input A2. 

The current transformer SCT-013 measures the instantaneous current and the Arduino 

reads the value by means of the analog input A1. Figure 6 shows the connection of the 

main components for the AWPM. 

 

Figure 6 AWPM main components connection diagram. 

Power factor measures the phase displacement between voltage and current by means of 

zero-crossing detection algorithm programmed in the power calculations library used for 

the AWPM. A threshold system equation for the zero-crossing detection algorithm can 

be proposed for the current and voltage measurements based in the work of [49], [50], 

and [51] were it is possible to model the interaction between continuous time functions 

and discrete event models. A continuous function behaviour [52] can be modelled by a 

differential equation in the form of 𝑥̇ = 𝑓𝑥(𝑥, 𝑢, 𝑡) and an indicator discrete-event 

function with the form of 𝑔𝑥(𝑥, 𝑢, 𝑡), argument of this both equations are the subset of 

state, input and independent variables such as time. When indicator discrete-event 

function changes of sign from positive to negative or vice versa, a discrete event denoted 

by 𝜕 occurs, this is referred to be a zero-crossing detection. Equation 1 shows the relation 

between the continuous and discrete event functions referred to their sign changes. 
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𝑥̇ = {
𝑓1(𝑥),   𝑔(𝑥, 𝑡, 𝑢) ≥ 0

𝑓2(𝑥),   𝑔(𝑥, 𝑡, 𝑢) < 0
 

 Eq. (1) 

 

Where 𝑔(𝑥, 𝑡, 𝑢) is the zero-crossing detection function. Active power, apparent power, 

reactive power and, power factor are calculated by means of Eq. (4), (5), (6) and (7) 

respectively, taken from [53] for AC circuits analysis. 

𝑉𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑉2(𝑛)

𝑁−1

𝑛=0

 

 

Eq. (2) 

 

𝐼𝑅𝑀𝑆 = √
1

𝑁
∑ 𝐼2(𝑛)

𝑁−1

𝑛=0

 

 

Eq. (3) 

 

 

𝑃 =
1

𝑁
∑ 𝑉(𝑛) ∙ 𝐼(𝑛)

𝑁−1

𝑛=0

 

 

 

Eq. (4) 

 

 

𝑆 = 𝑉𝑅𝑀𝑆 ∙ 𝐼𝑅𝑀𝑆 

 

Eq. (5) 

 

 

𝑄 = √‖𝑆2 − 𝑃2‖
2

 

 

Eq. (6) 

 

 

cos 𝜑 =
𝑃

𝑆
  

 

Eq. (7) 

 

𝑉𝑅𝑀𝑆  is the voltage root mean square value, in Eq. (2); 𝐼𝑅𝑀𝑆 is the current intensity root 

mean square value, in Eq. (3); 𝑃 is the active power, in Eq. (4); 𝑆 is apparent power, in 

Eq. (5); 𝑄 is reactive power, in Eq. (6) and cos 𝜑 is the power factor, in Eq. (7). To 

perform the calculations of each power type it is important to consider discrete root mean 

square values for voltage and current measurements.  Figure 7 shows the flowchart of 

calculations based on Equations 4, 5, 6 and 7 to calculate the active, reactive, and apparent 

power in addition to the power factor. 
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Figure 7 Flowchart of electrical calculations to obtain power factor, active, apparent and 

reactive power. 

The Emonlib.h library for Arduino performs the rest of the calculations. This library has 

been modified to additionally measure frequency. Figure 8 shows the code to calculate 

the grid frequency.  

The segment parts of the algorithm programming on the Arduino software following the 

zero-crossing method to do the calculation seen previously in Equation is presented. This 

algorithm detects every time an AC signal crosses zero after reading the analog pin 

reference by the voltage transformer connected to the Arduino board, within the 10-bit 

resolution range of the analog to digital converter (ADC). When a value is between 512 

and 520 (intermediate range of 210 = 1024 possible values) means that the signal has 

crossed the zero reference of the AC voltage.  

Another Arduino board collects all the meteorological data via wireless. Figure 9b shows 

its overall design. The Arduino wireless meteorological data collector (AWMDC) 

measures wind speed, solar radiation, environmental temperature, and humidity with a 

DHT22 sensor. Again, a base station receives the data and broadcasts them via wireless 

communication using the NRF24L01 Radiofrequency transceiver module. 

The control of the microgrid requires connecting and disconnecting the energy sources to 

feed the loads or to carry out the desired test. The Arduino wireless switch controller 

(AWSC) accomplishes this task. Figure 9c shows its overall structure. The AWSC 

consists of an Arduino Mega board, a radiofrequency transceiver module NRF24L01, and 

a Relay module. Its operation depends on commands sent by the Arduino-Raspberry Pi 3 

wireless base station (ARWBS), shown in Figure 9d. 
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Figure 8 AWPM frequency calculation code. 

 

 

Figure 9 (a) Arduino wireless power meter; (b) Arduino wireless meteorological data 

collector; (c) Arduino wireless switch controller; (d) Arduino-Raspberry PI 3 wireless 

base station. 
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The ARWBS manages information and operation rules within the microgrid, this device 

consists of the integration of an Arduino board and a Raspberry Pi, allowing the system 

to log data and store it into a local DB, as well as in a cloud DB.  

The communications of the Arduino and Raspberry Pi 3 bases on the I2C serial protocol, 

with this, the Arduino operated as an interface between the Raspberry Pi and all the other 

Arduino-based data collectors. A SCADA system Website user interface has been 

developed to control and monitor the entire microgrid, this interface is linked to the 

ARWBS by TCP/IP communications and hosted in PLESK Web using a MySQL DB. 

2.1.4.2 Communications and data logging 

An NRF24L01 Radiofrequency transceiver carries out the wireless communications, 

operating at 2.4 GHz using an SPI protocol to manage the communication with an 

Arduino board. All the AWPMs, AWMDC, and AWSC are wirelessly linked into the 

ARWBS using radiofrequency as shown in Figure 10. The user interacts with the 

microgrid over the own-developed Web SCADA interface using HTML5, JavaScript and 

PHP programming languages, hosted on the PLESK Web server. Cloud DB reads and 

writes data that are constantly updated, at preset time intervals for each variable, as data 

refresh and/or operation commands sent by the ARWBS to each microgrid device. Also, 

a local DB records the information as a backup for preventing data losses due to wireless 

communication or internet connection failures.  
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2.1.4.3 Cloud DB and Web SCADA 

The user interacts with the microgrid using a Web SCADA interface that operates over 

a MySQL cloud DB, writing and consulting data from it on an own-developed Graphical 

User Interface (GUI). PHP makes queries from Web SCADA GUI through the PLESK 

platform and, subsequently, modifies the MySQL cloud DB, updating its data, according 

to user commands or automated data refresh from the measurement devices. Figure 11 

shows the general data transmission process from each microgrid device into the MySQL 

cloud DB all over the ARWBS along with the communications ports. 

 

Figure 10 Communications structure. 
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After communication is established between Plesk web server and MySQL DB, the next 

step is to locate every table created in the database and write new information from 

AWPM in a real-time monitoring data set. As there are many devices connected and 

sending information to the Remote MySQL DB, the Web SCADA needs to fetch data of 

all tables created for the power meters, the meteorological measurements, and the status 

of the contactor. The communication between the DB and the raspberry pi is carried out 

by means of 3G modem, using a SIM card, but it is possible to use a Wi-Fi network 

obtaining the same results. Every data from the sensors is stored in real time in the 

database. 

  

 

Figure 11 Connection with MySQL DB. 
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Over time, more data will be recorded increasing the size of the table and therefore, the 

space memory will reach the limit storage permitted by a Plesk regular account (6 GB). 

Moreover, it will require more data if the storing rate is every second for all variables. To 

overcome this, a maintenance schedule is programmed every year, giving time to back up 

the saved data and erasing the older information. Figure 12 represents the information 

obtained from a grid-tied PV inverter. Such data is stored in the MySQL DB. 

 

The data is collected every second and the Web SCADA fetch data from MySQL DB, 

written in SQL queries with PHP acting as a link of the remote web interface and DB 

server. The PHP query sentences aim to access the voltage, current, power, and energy 

data located in their respective column of the table.  

Figure 13 shows the fetching code to read and update data register from the DB. To do 

so, it requires specifying the exact name as it is stored in the database. In order to display 

the information correctly, it must be converted from a string format into a numerical 

value. Then, the units of each parameter are added. 

Figure 12 Information obtained from the sensors and stored in the cloud DB. 
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As previously mentioned, the user operates the microgrid through an own-developed Web 

SCADA interface, then the Web interfaces make PHP queries to the PLESK server via 

port 443 and to the cloud DB using port 3306 through the ARWBS using TCP/IP. There 

are three types of data register tables within the cloud DB: data storing registers, 

microgrid operation registers and user credential registers. Information displayed in the 

Web interface is refreshed by timely queries requests, according to internal adjusts. When 

it is required to activate/deactivate a load or an energy source, the user (or according to 

the preset programming) sends a request to cloud DB by means of Web SCADA, such 

request is read by the ARWBS and then it sends another request to the AWSC which 

finally close or open the physical switches or relays. Figure 15 shows the own-developed 

Web SCADA interface main menu. 

Figure 13 PHP request to fetch data from the MySQL DB. 
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As all devices connect to the remote PLESK server, over the ARWBS, which hosts the 

Web SCADA interface developed user, interacts with the system by means of an HTML5 

graphical user interface, allowing the user to set up operation parameters for the microgrid 

as well as the complete system monitoring and supervising. It is possible also to save and 

export data from the Plesk server to another format as is shown in figure 14. 

 

Figure 14 Formats available in Plesk to export data from the MySQL DB. 

2.1.5 Results and discussion 

To test the low-cost SCADA system functionality and its performance several 

experiments were carried out in the Laboratory of Renewable Energies at Universitat 

Politècnica de València using the microgrid previously presented in Figure 3. The energy 

flow to and from the microgrid is also appreciated in Figure 2, as well as the flow of data 

and control signals, together with the storage of information in a remote database and the 

access to a remote monitoring and control graphical interface developed in HTML5 and 

JavaScript over an internet connection. As a result of the monitoring Arduino-based 

devices implementation, the software and the database development, a system topology, 

was obtained a SCADA system, as shown in Figure 15. Figure 16 shows the curves 

obtained from a short-term experimental functionality test for power data collecting.  
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Figure 15 HTML5 Web SCADA interface main menu. 

 

Figure 16 LC-SCADA system data acquisition test over the microgrid. 
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For the tests was necessary to deploy and establish communication between the AWPMs, 

the AWMDC, the AWSC, and the ARWBS as well as the Web server.  In the experiment, 

a load demands energy from the microgrid, starting from 800 W to a maximum of 3.97 

kW, alternating between power supply from the PV array, the utility grid, and the battery 

bank. Positive values represent the energy demanded by the system and negative values 

correspond to supplied by the energy sources. It can be noticed that the battery bank 

sometimes works as a load and sometimes works as a source, as usual in this kind of 

storage systems.  

On the other hand, PV power was affected by cloudy skies, meteorological data was 

gathered by the AWMDC. The maximum solar irradiance during this short test was 600 

W/m2 at 35 °C on the surface of solar panels as shown in Figure 17. 

 

  
(a) (b) 

 

Also, are shown two long-term data collecting tests results using the low-cost SCADA 

system, one of a one-day duration and another of a one-week duration. Figure 18 shows 

the one-day test. In this figure, it is possible to appreciate the power generated by the wind 

turbine and the PV array accordingly to the current meteorological conditions present 

during the day, as well as the power load demand derivate from the daily activity inside 

the Laboratory of Renewable Energies. These activities include the use of lights, personal 
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Figure 17 (a) Solar irradiance and (b) PV surface temperature data collecting test for a short-term 

functionality test of LC-SCADA system. 
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computers from researchers etc. as well as the low-cost SCADA system related devices. 

Load power demand ranges on average from 0.3 to 3.3 kW.  

 

Figure 18 One-day long functionality LC-SCADA system test under nominal load demand. 

The third test presents a one-week duration of the experiment. Figure 19 shows the 

obtained plot for wind power, solar power, and users power demand. As can be 

appreciated in Figure 18, there was an important wind power generation from Monday to 

Thursday and on Sunday, while Friday and Saturday there were not windy days; 

meanwhile, solar PV power generation was almost constant except for Sunday, when the 

sky was cloudy.  

This one-week test shows that it is possible to obtain data in a continuous way.  The 

reliability of the system is enough for obtaining the data required for analysing the system. 
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Figure 19 One-week duration LC-SACADA test, from Monday to Sunday. 

Table 6 shows the average standard deviation from the difference between values 

obtained comparing the AWPM and a SIEMENS Sentron PAC3200. For a set of 6,506 

measurements the AWPM measurement performance test was carried for two cases: grid-

tied mode and stand-alone mode operation of the microgrid. 

Table 6 The average standard deviation between AWPM and Sentron PAC3200 power meter 

measurements 

Variable Average standard deviation 

for grid-tied experiment 

Average standard deviation 

for stand-alone experiment 

Active power 2.720 2.268 

AC bus Voltage 1.734 1.121 

AC bus Intensity 0.068 0.107 

AC bus Frequency 0.058 0.079 

 

As shown in Table 6, the highest average deviation occurs in the voltage measurement 

for both cases, this causes the high average deviation value for the active power 

measurement. Values presented are the standard deviation from a set of a total of 6,506 

measurements for each variable. It is notable how the microgrid has a better bus frequency 

performance when it is working in a grid-tied mode with a more accurate measurement 

comparing the AWPM and the Siemens Sentron PAC 3200. On the other hand, when the 

microgrid operates in standalone mode it is more complicated to have a stable frequency 
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within it, therefore, exists more average standard deviation discrepancies for the bus 

frequency measurement. This data analysis between data collected for the own-developed 

Arduino based power meter and a commercial Sentron PAC 3200 denotes that the AWPM 

is a reliable solution for low-cost data acquisition systems. 

Table 7 shows the price (Euros) for the low-cost SCADA components according to the 

Amazon.es and Plesk.com Websites. Table 8 shows the price (Euros) of the main 

components for a standard SCADA system solution using brandmark components. Prices 

as listed in PCE-instruments.com, Mouser.es, Plesk.com, and Amazon.es Web sites. The 

total implementation cost for the low-cost SCADA system developed is 1.115 €, 

meanwhile, a similar solution implemented with brandmark devices costs around 9,360 

€. It took six months to develop the low-cost SCADA, while the brandmark system was 

implemented in about three months plus management and maintenance scheduling of the 

equipment. 

Table 7 LC-SCADA system implementation cost. 

Device Qty Unit 

Cost 

Import 

Arduino based wireless single-phase Power Meter. Contains 1 

Arduino UNO, 1 ethernet shield, 1 NRF24L01 transceiver, 1 

SCT-013 current transformer, 1 VB 2.3/2/12 voltage isolated 

transformer, and miscellaneous accessories. 

9 100 € 1 900 € 

Arduino - Raspberry PI base station. Contains: 1 Arduino 

UNO, 1 NRF24L01 transceiver, 1 Raspberry Pi and 

miscellaneous accessories. 

1 80 € 1 80 € 

Arduino based wireless meteorological module. Contains 1 

Arduino UNO, 1 NRF24L01 transceiver, 1 DHT temperature 

and humidity sensor, 1 solar irradiance sensor, 1 anemometer 

analog input reading. 

1 50 € 1 50 € 

Arduino based wireless switching module. 1 Arduino UNO, 1 

NRF24L01 transceiver, 1 8-channel relay output relay. 
1 25 € 1 25 € 

PLESK Web server annual fee 1 60 € 2 60 € 

Web SCADA system interface 1 Free Free 

Other1 1 200 € 1 200 € 

TOTAL   1,315 € 

1Unitary cost prices as listed in Amazon.es Website. 

2Unitary cost prices as listed in Plesk.com Website 
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Table 8 Standard brandmark SCADA system implementation cost. 

Device Qty Unit Cost Import 

SENTRON PAC 3200 Power Meter 9 600 € 1 5,500 € 

Meteorological data logger 1 200 € 1 200 € 

OMRON Programmable Logic Controller CJ1M with serial 

communication CJ1WSCU31, ethernet communication CJ1WETN21, 

relay output CJ1WOC211 and power source CJ1W-PA205R modules. 

1 2,200 € 2 2,200 € 

PLESK Web server annual fee 1 60 € 3 60 € 

CX-Supervisor SCADA system 1 1,500 € 2 1,500 € 

Other 1 200 € 4 200 € 

TOTAL   9,360 € 

1Unitary cost prices as listed in PCE-instruments.com; 2 Unitary cost prices as listed in Mouser.es 

Website; 3 Unitary cost prices as listed in Plesk.com Website; 4Unitary cost prices as listed in Amazon.es 

Website. 
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2.2 A CASCADE HYBRID PSO FEED-FORWARD NEURAL NETWORK 

MODEL OF A BIOMASS GASIFICATION PLANT FOR COVERING THE 

ENERGY DEMAND IN AN AC MICROGRID 

Chiñas-Palacios, C., Vargas-Salgado, C., Aguila-Leon, J., and Hurtado-Pérez, E. 

(2021). 
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2.2.1 Abstract 

Agriculture and forestry crop residues represent more than half of the world's 

residual biomass; these residues turn into synthesis gas (syngas) and are used for power 

generation. Including Syngas Gensets into hybrid renewable microgrids for electricity 

generation is an interesting alternative, especially for rural communities where forest 

and agricultural waste are abundant. However, energy demand is not constant 

throughout the day. The variations in the energy demand provoke changes in both 

gasification plant efficiency and biomass consumption. This paper presents an Artificial 

Neural Network (ANN) based model hybridized with a Particle Swarm Optimization 

(PSO) algorithm for a Biomass Gasification Plant (BGP) that allows estimating the 

amount of biomass needed to produce the required syngas to meet the energy demand. 

The proposed model is compared with two traditional models of ANNs: Feed Forward 

Back Propagation (FF-BP) and Cascade Forward Propagation (CF-P). ANNs are 

trained in MATLAB software using a set of historical real data from a BGP located in the 

experimental microgrid of the Renewable Energy Laboratory at the Polytechnic 

University of Valencia, Spain. The model performance is validated using the Mean 

Squared Error (MSE) and linear regression analysis. The results show that the proposed 

model performs 23.2% better in terms of MSE than de other models. The tunning 

parameters of the optimal PSO algorithm for this application were found. Finally, the 

model was validated to predict the necessary biomass and syngas to cover the energy 

demand. 

Keywords: Artificial Neural Network Model; Particle Swarm Optimization; AC Microgrid; 

Syngas Genset. 

 

Nomenclature 

ANN Artificial Neural Network 

BGP Biomass Gasification Plant  

BGP Biomass Gasification Plant plus Genset 

BP Back Propagation  

𝑐1 PSO particle personal acceleration coefficient 
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𝑐2 PSO particle social acceleration coefficient 

CF-P Cascade Forward Propagation  

𝐶𝐻4[%] Methane Percentage 

𝐶𝑂2 Carbon Dioxide 

𝐶𝑂2[%] Carbon Dioxide Percentage 

CONACYT Consejo Nacional de Ciencia y Tecnología 

E Error 

EBPGS Energy Backup Power Generation Systems  

EMS Energy Management System 

ESS Energy Storage Systems  

𝐹 Frequency 

𝐹𝑎𝑐𝑡𝑖
 ANN Activation Function 

FF-BP Feed Forward Back Propagation 

FIS Fuzzy Inference System 

𝑓𝑚𝑖𝑛 Objective Function to be minimized 

𝐹𝑝𝑟𝑜𝑛
 ANN Propagation Function 

GA Genetic Algorithm 

Genset Internal combustion engine plus synchronous generator 

𝐻2[%] Hydrogen Percentage 

HRES Hybrid Renewable Energy Systems 

ICE Internal Combustion Engine 

LabDER-

UPV 

Distributed Energy Resources Laboratory of the Universitat 

Politècnica de València 

𝐿𝐻𝑉 Lower Heating Value 

𝑀 Biomass flow 

MG Microgrids  

MLP Multilayer-Perceptron 

MSE Mean Squared Error  

𝑁  Number of samples 



 

50 

 

𝑁2 [%] Nitrogen Percentage 

𝑜𝑖𝑗
 ANN weighted output 

𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 Predicted Output 

𝑜𝑡𝑎𝑟𝑔𝑒𝑡 Target Output 

𝑃 Active Power 

𝑃𝐹 Power Factor 

PSO Particle Swarm Optimization 

PV Photovoltaic  

𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 Airflow to the reactor 

𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 Airflow to the ICE 

𝑄𝑠𝑦𝑛𝑔𝑎𝑠 Syngas flow 

RBF Radial Basis Function 

RES Renewable Energy Source 

𝑇𝑒𝑛𝑣 Environmental Temperature 

𝑇1 Temperature of the reactor 

TEG Hybrid Thermoelectric Generator 

𝑣𝑛 PSO particle velocity function 

𝑤𝑖1,𝑗 Neuron weight 

WTG Wind Turbine Generator  

𝑋𝑖 Optimization variables vector 

𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ANN output prediction 

𝑌𝑡𝑎𝑟𝑔𝑒𝑡 ANN target training value 

𝛥𝑃𝑏𝑒𝑑 Fluidized bed pressure drop 
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2.2.2 Introduction and State of Art 

Today, society highly depends on fossil fuels such as petroleum and derivates, mineral 

coal, and natural gas, with 76% of the global primary energy consumed coming from 

these sources [54]. Thanks to their high energy density, fossil fuels have been a powerful 

driver of social transformation and technological development of the last century, and the 

continued increase in global energy demand [55]. However, extensive use of these fuels 

has led the world to an unprecedented increase in environmental problems such as global 

warming [56], [57], and health-related issues derived from pollution and toxicity [58].  

Researchers have proposed many renewable energy systems to solve this situation [59], 

[60]. Included are the Hybrid Renewable Energy Systems (HRES) as Microgrids (MG), 

integrating wind and solar technologies [61]. Since MG are complex and nonlinear 

systems, metaheuristic algorithms are an alternative to solve optimal sizing [62] and to 

improve power generation and energy demand-supply. Bio-inspired optimization 

algorithms play an important role in the power exchange problem between MG and utility 

grid, leading to an increment of the power system resilience. In [63], an Energy 

Management System (EMS) presents a combination of Fuzzy Inference System (FIS) 

with Genetic Algorithm (GA) to maximize the profit of power exchange; in  [64] power 

exchange problem studied in a multi MG environment combining a game theory 

Stackelberg game with a Quasi-oppositional Symbiotic Organism Search Algorithm to 

improve power exchange.  

An essential part of an MG is the Energy Storage Systems (ESS), which could be a battery 

bank or and Energy Backup Power Generation Systems (EBPGS) fed by fossil fuels to 

provide power when renewable sources are not available. An efficient alternative to fossil 

fuels for energy backup systems is biomass-derived fuels to supply power in MG [65].   
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Biomass is neglected despite being a widespread abundant and a Renewable Energy 

Source (RES) [66]. Some biomass research is focused on finding biomass-derived gas 

fuels, as Syngas, for power generation applications [67] combined with other RES in MG 

systems applications [68], [69]. Typical compounds of Syngas are carbon monoxide 

(𝐶𝑂), hydrogen (𝐻2) and Methane (𝐶𝐻4) as energy carriers [70], and because of the 

partial combustion of biomass in the gasifier, it may also contain appreciable amounts of 

carbon dioxide (𝐶𝑂2), nitrogen (𝑁2) and water (𝐻2𝑂) [66]. Authors in [71] reviewed on 

how microgrids integrating syngas generation units improve system resilience to natural 

disasters and other situations.  The Department of Mechanical and Aerospace Engineering 

at the University of Rome [72] developed an innovative integrated microgrid based on 

urban waste treatment that enables syngas production intended for small towns where the 

utility grid may fail, and there is enough urban waste to produce the required syngas. In 

[73], authors present a method to design an HRES in isolated rural communities in 

Honduras, considering a syngas power generation unit. They found that adding a syngas 

gasifier increases the dispatchable power rate when needed.  

Beyond experimentation with Syngas gasification plants, researchers need to have models 

that allow them to understand the dynamics of these systems and the variables involved, 

and make output predictions to variable inputs [74]. However, mathematical modelling 

of a Syngas gasification plant is a very complicated and time-consuming task, since it 

comprises multiple thermal processes and many variables that may affect the 

mathematical model accuracy [75].  



 

53 

 

Under this context, bio-inspired algorithms, and specifically Artificial Neural Networks 

(ANNs), are a powerful tool. ANNs had been widely applied to MG for primary control  

[76], [77], for prediction [78]–[81], for RES forecast [82] and, for creating black-box 

models of complex dynamic systems [83]. The tracking of the optimal operating point of 

a solar photovoltaic (PV) source [84] is achieved by modelling with an ANN part of the 

controller. Wind Turbine Generator (WTG) maximum power point tracking is achieved 

using an Adaptative Linear Neuron ANN in [85] by modelling the WTG stator's speed 

controller. In [86], the authors present a NN model approximation of a DC-DC buck-

boost converter to interface a lead-acid battery to a DC-bus. As for the application of 

ANNs to biomass systems in MG, few works talk about BGP and syngas for power 

generation. Authors in [87] present a model of a 200 kWth using a dynamic ANN; the 

presented model estimates the overall behaviour of the biomass gasification process and 

can estimate output variables bases on new measured data with a maximum 15% 

estimation error. A Multilayer-Perceptron (MLP) and a Radial Basis Function (RBF) 

ANNs were used and compared to model hydrogen-rich syngas produced from methane 

dry [88]; results showed that the MLP-based ANN had a better performance in predicting 

𝐻2 yield, 𝐶𝑂 yield, and 𝐶𝐻4 and 𝐶𝑂2 conversions. In [89], authors revealed Syngas for 

power generation using a Hybrid Thermoelectric Generator (TEG),, a Back Propagation 

(BP) ANN is used to estimate the open-circuit voltage and maximum power output at the 

hot-side of the TEG. ANN model is applied to investigate the production of methanol 

from syngas [90]. A two-inputs seven-hidden layer one-output BP ANN is used in [79] 

to predict Syngas composition product of palm oil waste gasification showing a suitable 

approach between experimental and predicted values. In [91], the authors proposed a 

model for the Prediction of pyrolysis products using eight inputs, one hidden layer, and 

three outputs ANN. As shown in the literature review, ANNs are applied in various MG, 

but few in biomass for power generation, with most of the research, focused on the 

characterization of Syngas or the process itself. We have found no work-related to the 

coverage of energy demand using syngas and its related biomass gasification process. 
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This paper aims to provide a reliable ANN-based model of a Biomass Gasification Plant 

(BGP) for covering the energy demand in an MG using syngas. To accomplish this, a 

cascade hybrid Feed Forward PSO (FF-PSO) ANN-based model is proposed for 

predicting syngas and biomass required for a specific energy demand curve. An in-depth 

analysis of the proposed model compared to a Feed-Forward Back Propagation (FF-BP) 

ANN and a Cascade-Forward Propagation (CF-P) ANN algorithm is carried out. The 

validation of the results uses the BGP experimental data at the Renewable Energies 

Laboratory at the Universitat Politènica de València (LabDER-UPV), Spain. 

The organization of this paper is as follows. Section 2 deals with the method, explaining 

the experimental setup, the presentation of the proposed ANN model, and the training 

scenarios; Section 3 shows the simulation and experimental results and validation; and, 

finally, Section 4 summarizes the conclusions of the presented work. 

2.2.3 Methodology and Proposed Model 

The methodology followed to create and validate the proposed ANN-based model for 

the BGP system comprised experimental data gathering, modelling, simulation, and 

validation. The overall methodology is divided into three crucial stages, as Figure 20 

shows. 

 

Figure 20 Overall methodology stages for the ANN model design and validation. 
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As depicted in Figure 20, Stage 1 runs the BGP using empirical input parameters to meet 

a specific energy demand curve; then, data collection is performed, filtered, and analyzed 

to select an adequate input parameter for the ANN model. 

In Stage 2, three ANN models are trained using input parameters from Stage 1. The 

proposed ANN-based model is designed to combine a PSO algorithm with a Feed-

Forward (FF) ANN to find optimum ANN weights during its training to reduce Mean 

Squared Error (MSE) between predicted and real experimentation data. The second model 

is an FF-BP ANN model designed using MATLAB NNTool, and the third model is a CF-

P ANN model also designed using MATLAB NNTool. The number of simulations 

required for each model depends on both the system dynamics and performing each 

algorithm for error reduction based on training criteria and parameters for each ANN, so 

an initial scan for each model is required to determine the best adjustment parameters for 

training the ANN models. After predicted outputs of the ANN models are obtained and 

evaluated in terms of MSE, the best model is chosen. 

Stage 3 is model validation using non-training data. For this purpose, an energy demand 

curve is fed to the ANN model; then, the model predicts the syngas, biomass, and airflow 

required by the generator to meet the energy demand. Validation is carried out using the 

suggested biomass and airflow into the experimental BGP, allowing a real-time approach 

for biomass required to produce enough syngas for energy demand covering inside an 

MG. The tests were conducted on an experimental MG located at Universitat Politècnica 

de València. 

2.2.3.1 Biomass gasification plant  

The BGP system is located at the Laboratory of Renewable Energy of the Universitat 

Politècnica de València, in Spain. (see Figure 21 ). The entire system comprises a reactor, 

a gas cleaning system, a gas cooling system, a vacuum pump, and auxiliary elements with 

its control devices. The plant can process from 7 to 10 kg/h of biomass to produce 27 to 

33 Nm3/h at rated power. The gasification system is composed of a 50 kWth gasifier and 

a 10 kWe. The flow of syngas goes from. The biomass gasification technology selected is 

based on the bubbling fluidized bed. Table 9 and Table 10 show the fundamental 

characteristics of the gasification plant and its generator. 
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.  

(a) 

 

(b) 

Figure 21 BGP at the LabDER-UPV (a) front and (b) back view. 

Table 9 Main features of the gasification system. 

Description Feature 

Biomass gasification type Bubbling fluidized bed 

Biomass reactor dimensions Diameter: 106 mm, Height: 155mm 

Fuel type Wood chips (10-15 mm) 

Pellets (6 mm diameter, 15-25 mm length) 

Biomass input @ 10% 6 – 13 kg 

Biomass flow at power rating  10,5 kg/h 

Syngas Low Heating Value (LHV) 5 – 5.8 MJ/m3 

Efficiency at the power rating 70 - 85 % 

Syngas production 13 – 33 Nm3/h 

*Adapted from [68], [92]. 

Table 10 Main features of the Genset. 

Description Feature 

Brand FG Wilson Generator Set 

Model UG14P1 

Power rating 10 kW (Natural gas), 8,7 (syngas) 

Velocity 1,500 rpm 

Compression ratio 8.5:1 

Voltage and Frequency 230 V AC, 50Hz 

*Adapted from [68], [92]. 
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describes the principal components of the BGP control system. Figure 22 shows the 

working process of the BGP. The selected inputs for training the ANN, showed in Figure 

22, depending on the power generation's performance during the syngas production 

process from the biomass according to the experimental tests carried out. 

Table 11 Main components of the control panel system. 

Description Device 

Two power meters Siemens Sentron PAC3200 

Power supply @ 240 VAC Omron CJ1W-PA202 

Programmable Logic Device (PLC) Omron CJ2M-CPU11 

Communication module Omron CJ1W-SCU31 

Six-input thermocouple module  Omron CJ1W-TS561 

Sixteen digital outputs module Omron CJ1M-OD212 

Variable frequency drive Omron V1000 

HMI touch screen Omron NS5-SQ10B-V2 

Two modules with eight analog inputs MAC 35080 

*Adapted from [68], [92]. 

 

 

Figure 22 Biomass Gasification Plant and overall diagram. 
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2.2.3.2 Proposed Artificial Neural Network Model 

An ANN is a computational bioinspired algorithm based on imitating learning and 

memorizing a biological brain's capabilities and neural network synapsis. Thanks to the 

increase of computation power, ANN algorithms are currently an interesting alternative 

for predictive modeling and control because of their robustness and handling capability 

for complex nonlinear relationships on dynamic systems. ANNs must be trained before 

their use, for this purpose, a set of input training data feeds the Neural Network. The 

information is processed to get the target data set [93]. When dispersion between target 

data and real data is small, the ANN is said to be trained and ready to use. An ANN's 

performance depends on the training procedure and the resulting neuron weights and bias 

inside its layers [94]. This paper proposes a novel Biogas Gasification (BGP) model using 

a cascade set of ANNs, each one combined with a PSO algorithm to find optimal neuron 

weights for each ANN of the model. Figure 23 indicates the input and output of every 

ANN, in the cascade set of ANN-based model for the BGP. 

 

Figure 23 Proposed cascade ANNs PSO tunned model for the BGP. 
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The proposed ANN-based architecture allows the model to be flexible enough to know 

just one set of predicted values and intermediate values related to BGP subsystems. The 

proposed ANN training algorithm uses the PSO algorithm to find optimal neuron weights 

values, so the MSE between the target and predicted data is minimized. PSO is a bio-

inspired optimization algorithm based on animal species' collective intelligence to search, 

find, and exploit resources [95]. Since neuron weight adjusts during ANN training is a 

combinatorial problem, PSO can be integrated. Figure 24 illustrates the integration of 

PSO to an FF ANN. 

 

Figure 24 PSO Feed-Forward ANN hybridized model. 

 

The input layer of each ANN of the cascade model comprises one neuron for each variable 

at the input layer. After the ANN is first configured, the PSO is initialized with a random 

particle population, and then optimization begins.  

Optimization variables are ANN weights, represented by the PSO particles, then the 

performance of the configuration is evaluated using the fitness function whose objective 

function is to minimize MSE between target and predicted values of the ANN, MSE 

minimizing is set to an Error (E) stop criteria for the optimization algorithm, the value of 

this stop criteria depend on the nature of the training and target values of the ANN.  
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The proposed FF ANN is suitable for complex dynamic system modeling and prediction. 

Layer inside ANN are interconnected via links, and the strength of this link between 

neuron 𝑖 and 𝑗 is defined as weight 𝑤(𝑖, 𝑗), that must be optimized by the PSO during 

training. The weighted sum of propagation functions (1-3), determined by inputs in the 

neurons, is transformed into an activation function (4-6) for the next layer. In that sense, 

the propagation function of the ANN can be modeled as: 

𝐴𝑁𝑁1 = 𝐹𝑝𝑟𝑜1
(𝑜𝑖1

, 𝑜𝑖2
, … , 𝑜𝑖𝑛

, 𝑤𝑖1,𝑗, 𝑤𝑖2,𝑗, … , 𝑤𝑖𝑛,𝑗) (1) 

𝐴𝑁𝑁2 = 𝐹𝑝𝑟𝑜2
(𝑜𝑖1

, 𝑜𝑖2
, … , 𝑜𝑖𝑛

, 𝑤𝑖1,𝑗, 𝑤𝑖2,𝑗, … , 𝑤𝑖𝑛,𝑗) (2) 

𝐴𝑁𝑁3 = 𝐹𝑝𝑟𝑜3
(𝑜𝑖1

, 𝑜𝑖2
, … , 𝑜𝑖𝑛

, 𝑤𝑖1,𝑗, 𝑤𝑖2,𝑗, … , 𝑤𝑖𝑛,𝑗) (3) 

Where (𝑜𝑖1
, 𝑜𝑖2

, … , 𝑜𝑖𝑛
) are the weighted output values of the related propagation function 

𝐹𝑝𝑟𝑜𝑛
. The activation function of the ANN is defined by: 

𝐴1(𝑡) = 𝐹𝑎𝑐𝑡1
(𝐴𝑁𝑁1(𝑡), 𝐴1(𝑡 − 1), Φ1 ) (4) 

𝐴2(𝑡) = 𝐹𝑎𝑐𝑡2
(𝐴𝑁𝑁2(𝑡), 𝐴2(𝑡 − 1), Φ2 ) (5) 

𝐴3(𝑡) = 𝐹𝑎𝑐𝑡3
(𝐴𝑁𝑁3(𝑡), 𝐴3(𝑡 − 1), Φ3 ) (6) 

Where 𝐹𝑎𝑐𝑡𝑛
 is the activation function for each ANN of the proposed model, the network 

input is 𝐴𝑁𝑁1(𝑡) and the previous activation status is 𝐴1(𝑡 − 1). The dispersion between 

target and predicted data depends on the assigned neuron weights inside de ANN. For this 

purpose, the PSO algorithm is integrated into the proposed model. 

Each of the particles of the PSO algorithm represents a neuron weight inside the ANN; 

these particles have their position, velocity, and acceleration during the search of the 

optimal solution, the best ANN weights combination so MSE between target and 

predicted values measured in terms of the MSE. Optimization variables are defined by 

the vector 𝑋𝑖 in (7). 

𝑋𝑖 = [𝑤𝑖1,𝑗, 𝑤𝑖2,𝑗, … , 𝑤𝑖𝑛,𝑗] (7) 

Where 𝑤𝑖𝑛,𝑗 are the ANN weights to be optimized for each ANN, and the objective 

function (8) of the PSO algorithm is: 
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𝑓𝑚𝑖𝑛  →
∑ (𝑜𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑁

𝑛=0

𝑁
 

 (8) 

Where 𝑜𝑡𝑎𝑟𝑔𝑒𝑡 is the target output value for the ANN training and 𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the 

predicted output value by the ANN model. 

The particle for each variable with the best fitness function of all algorithm iterations is 

called to be the best global 𝑔𝑏𝑒𝑠𝑡, and the best result of fitness function evaluated over 

each particle is called personal best 𝑝𝑏𝑒𝑠𝑡. As algorithm iterations progress position will 

vary, their velocity will be accelerated, pointing to the best solution (9). 

𝑣𝑛 = 𝑤 ∗ 𝑣𝑛 + 𝑐1𝑟𝑎𝑛𝑑(𝑥) ∗ (𝑔𝑏𝑒𝑠𝑡,𝑛 − 𝑥𝑛) (9) 

Being 𝑣𝑛 the updating of particle speed, 𝑤 is the inertia factor and 𝑐1 and 𝑐2 are 

acceleration constants. 

2.2.3.3 Simulation and Training  

All three ANN models were trained with the same data set. The training data set was 

obtained from experimental measurements on the described BGP. In total, 3,408 records 

were used for each variable.  

For an ANN training process, the correct choice of input variables, considering their 

interrelationship and affectation to the system's output, wanted to be predicted for plant 

modelling. The details of the ANNs models simulated are presented in Table 12. 
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Table 12 Parameters used for the ANNs models. 

Details FF-PSO FF-BP CF-P 

Type of ANN Feed Forward Neural 

Network 

Feed Forward Neural 

Network 

Cascade Forward 

Neural Network 

Training Algorithm Particle Swarm 

Optimization 

Back Propagation Propagation 

Particle Population 10 – 1000 - - 

C1 1.5 – 2.5 - - 

C2 1.5 – 2.5 - - 

Function for 

performance  

MSE MSE MSE 

Number of Input Layer 4 – 9  4 – 9 4 – 9 

Number of Hidden 

Layer 

1 1 1 

Number of Hidden 

Neurons 

1 – 100 1 – 100 1 – 100 

Learning Iterations 1000 1000 1000 

* Taken from [96]. 

Each ANN model was simulated and tested under different parameters to find the best 

configuration for each one of them.  The training algorithm for each model aims to reduce 

the error of prediction, adjusting ANN weight, and bias. The performance of the ANN 

models is measured by the MSE (10), given as, 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝑡𝑎𝑟𝑔𝑒𝑡)

2
𝑁

𝑖=1

 

(10) 

Where 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the output from the ANN, 𝑌𝑡𝑎𝑟𝑔𝑒𝑡 is the experimental data, and 𝑁 is 

the number of samples. 

Since this work aims to get a model of a BGP using a cascade architecture of a set of 

ANNs to cover energy demand in an MG, the ANNs inside the model must be trained 

considering the energy demand curve from the experimental MG. Figure 25 shows the 

energy demand profile for input data used for training the three different ANN algorithms 

(FF-BP ANN, CF-P ANN, and the proposed PSO-FF ANN) for evaluation and 

subsequent choice of best for use. 
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Figure 25 Energy demand curve used for training the cascade ANN-based model of 

the BGP. 
 

The expected outputs of the model are the best 𝑀 [
𝑘𝑔

ℎ
⁄ ] of biomass required to produce 

a  𝑄𝑠𝑦𝑛𝑔𝑎𝑠 to be fed into the Internal Combustion Engine (ICE) combined with both 

airflows of the gasifier and the ICE to generate enough power for energy demand in an 

AC Microgrid. 

2.2.4 Results and Discussion 

An ANN-based model for a BGP was developed to estimate biomass required, syngas 

production, and power generation to cover the energy demand in an AC microgrid. The 

proposed model comprises a set of three ANNs in a cascade configuration. Prediction of 

biomass flow (M) is carried out for the first ANN inside the model; the second ANN 

predicts the flow of syngas (𝑄𝑠𝑦𝑛𝑔𝑎𝑠), the flow of air required by the Genset (𝑄𝑎𝑖𝑟𝐼𝐶𝐸
), and 

the lower heating value of the syngas (LHV);  and finally, the temperature inside the 

reactor (T1), the bed reactor pressure drop (𝛥𝑃𝑏𝑒𝑑), and the airflow required by the 

gasification plant (𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
) are estimated by the third ANN. The proposed model's 

performance is tested using the MSE for three different training algorithms: FF-PSO, FF-

BP, and CF-BP, for each ANN inside the model. With the FF-PSO training algorithm, 

different values of particle populations, social 𝑐2 and personal 𝑐1 factors were evaluated. 

215 simulations were performed to find the optimal ANN configuration of each training 

algorithm compared in this work. The comparison between the best ANN of each training 

algorithm is presented in Table 13. For all predicted variables, the lowest MSE values are 

obtained using the proposed FF-PSO ANN algorithm and the closest to the unitary R-

value results. 
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Table 13 Comparison of MSE and linear regression analysis for best training algorithm 

results simulated for the ANN-based model. 

 FF-PSO FF-BP CF-P 

 MSE R MSE R MSE R 

𝑀 (𝑘𝑔/ℎ) 0.8198 

 

0.8278 0.9258 

 

0.8105 

 

0.9277 

 

0.8219 

 

𝑄𝑠𝑦𝑛𝑔𝑎𝑠 0.3464 

 

0.9865 0.5463 0.9710 0.5466 0.9798 

𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 45.1225 

 

0.6503 

 

50.6902 

 

0.6430 50.9046 

 

0.6426 

𝐿𝐻𝑉 26705 

 

0.7280 

 

29439 

 

0.6757 

 

29491 

 

0.7124 

 

𝑇1 342.5776 

 

0.6417 

 

497.3452 

 

0.5595 

 

497.1061 

 

0.5536 

 

𝛥𝑃𝑏𝑒𝑑  1.5659 

 

0.7728 

 

1.9691 

 

0.7210 

 

1.9789 

 

0.7240 

 

𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 0.4495 

 

0.9531 

 

0.6442 

 

0.9504 

 

0.6451 

 

0.9367 

 

* Taken from [96]. 

An exploration of various setting up parameters for each ANN training algorithm was 

done. The number of neurons inside the hidden layer was varied in values from 3, 10, and 

100 for the FF-PSO, FF-BP, and CF-P ANNs training algorithms.  

For the FF-PSO ANN algorithm, besides the number of neurons, it was also tested under 

different PSO algorithm configurations varying particle population with values of three 

to four times the dimension of the problem as suggested in other works about PSO 

algorithm performance using small populations [97]–[99].  

However, little attention has been paid to optimal PSO configuration for real-world 

problems [100], and therefore, for biomass-related problems.  

An exploration of the PSO performance as an ANN training algorithm is carried out using 

particle populations of 10, 100, 600, and 1000. The best FF-PSO ANN results were 

obtained for coefficients 𝑐1 and 𝑐2 values of 1.5 and 2.5 respectively being consistent with 

other authors findings in different fields of PSO applications [98].   

Table 14 presents a summary of the configurations with best performance for each ANN 

training algorithm tested. 
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Table 14 Best ANN training algorithm configurations. 

 MSE R Input 

Neurons 

Hidden Layer 

Neurons 

Population 

(only for 

PSO) 

FF-PSO      

𝑀 (𝑘𝑔/ℎ) 0.8198 

 

0.82783 9 3 600 

𝑄𝑠𝑦𝑛𝑔𝑎𝑠 0.3464 

 

0.98646 4 3 100 

𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 45.1225 

 

0.6503 

 

4 10 1,000 

𝐿𝐻𝑉 26705 

 

0.7280 

 

4 10 1,000 

𝑇1 342.5776 

 

0.6417 

 

3 10 600 

𝛥𝑃𝑏𝑒𝑑  1.5659 

 

0.7728 

 

3 10 600 

𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 0.4495 

 

0.9531 

 

3 3 1,000 

FF-BP      

𝑀 (𝑘𝑔/ℎ) 0.9258 

 

0.81045 

 

9 100 - 

𝑄𝑠𝑦𝑛𝑔𝑎𝑠 0.5463 0.97995 4 100 - 

𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 50.6902 

 

0.6430 4 100 - 

𝐿𝐻𝑉 29439 

 

0.6757 

 

4 100 - 

𝑇1 497.3452 

 

0.5595 

 

3 10 - 

𝛥𝑃𝑏𝑒𝑑  1.9691 

 

0.7210 

 

3 3 - 

𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 0.6442 

 

0.9504 

 

3 10 - 

CF-P      

𝑀 (𝑘𝑔/ℎ) 0.9277 

 

0.82194 

 

9 100 - 

𝑄𝑠𝑦𝑛𝑔𝑎𝑠 0.5466 0.97976 4 10 - 

𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 50.9046 

 

0.6426 4 100 - 

𝐿𝐻𝑉 29491 

 

0.7124 

 

4 100 - 

𝑇1 497.1061 

 

0.5536 

 

3 3 - 

𝛥𝑃𝑏𝑒𝑑  1.9789 

 

0.7240 

 

3 100 - 

𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 0.6451 

 

0.9367 

 

3 100 - 

* Taken from [96]. 
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As observed in Table 14, the best FF-PSO algorithm performances are obtained for the 

particle population between 600 and 1000 and three to ten hidden layer neurons; while 

both for the FF-BP and CF-P best results are achieved for 100 hidden layer neurons in 

most of the cases, but always with a more significant MSE value compared to the 

proposed FF-PSO training algorithm. The R value evolution for different ANNs 

configurations training tests and the best R plot for biomass flow, syngas flow, ICE inlet 

airflow, LHV, gasifier temperature, fluidized bed pressure drop, and gasifier airflow are 

shown from Figure 26 to Figure 32. 

 
 

(a) (b) 

Figure 26 (a) Linear regression R value evolution of Biomass flow for best ANN training 

algorithm results and (b) best ANN linear regression plot. 

 
 

(a) (b) 

Figure 27 (a) Linear regression R value of Syngas flow for best ANN training algorithm 

results and (b) best ANN linear regression plot. 
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(a) (b) 

Figure 28 (a) Linear regression R value evolution of ICE inlet airflow for best ANN 

training algorithm results and (b) best ANN linear regression plot. 

  

(a) (b) 

Figure 29 (a) Linear regression R value evolution of LHV for best ANN training 

algorithm results and (b) best ANN linear regression plot. 
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(a) (b) 

Figure 30 (a) Linear regression R value evolution of Gasifier Inlet Temperature for best 

ANN training algorithm results and (b) best ANN linear regression plot. 

 
 

(a) (b) 

Figure 31 (a) Linear regression R value evolution of Fluidized-Bed Pressure for best ANN 

training algorithm results and (b) best ANN linear regression plot. 
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(a) (b) 

Figure 32 (a) Linear regression R value evolution of Gasifier airflow for best ANN 

training algorithm results and (b) best ANN linear regression plot. 

High rates of dispersion on linear regression observed in variables (Figure 28 to Figure 

31) are caused because of different variable scales used during the process for the 

individual analysis. The best predictions for each of the variables analyzed are 

summarized in Table 15. 

Table 15 Best predictions for the variables analyzed using the FF-PSO model. 

 

 Best MSE,  

FF-PSO 

MSE Improvement (FF-PSO 

respect to FF-BP) 

MSE Improvement (FF-PSO 

respect to CF-P) 

𝑀 (𝑘𝑔/ℎ) 0.8198 11% 12% 

𝑄𝑠𝑦𝑛𝑔𝑎𝑠 0.3465 37% 37% 

𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 26705 11% 11% 

𝑇1 342.5776 31% 31% 

𝛥𝑃𝑏𝑒𝑑  1.5659 20% 21% 

𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 0.4495 30% 30% 

 

A comparison between the biomass flow and Syngas flow predicted by the best ANN of 

each type of training algorithm is shown in Figure 33 and Figure 34, respectively. It can 

be seen how ANN trained with the proposed FF-PSO algorithm performs better than ANN 

trained with FF-BP and CF-P. 
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Figure 33 Comparison between best training ANN algorithms and measured data for 

Biomass flow. 

 

Figure 34 Comparison between best training ANN algorithms and measured data for 

Syngas flow. 
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Because of the followed methodology, after tunning and comparing three different 

training algorithms for the BGP ANN-based model, the ANN-PSO algorithm is chosen, 

and its best configuration. Figure 35 presents the predicted biomass and syngas' predicted 

values, using the best algorithm configuration, for the corresponding energy demand 

curve. 

 

Figure 35 Biomass and Syngas flow required for Energy Demand Covering obtained for 

the best FF-PSO ANN Training Algorithm. 

 

After the evaluation of the three ANN-based models for the BGP system, the ANN-PSO 

algorithm was selected as the best training algorithm for this application.  The ANN-PSO 

algorithm got the lowest MSE values (See Figure 35). The results obtained employing the 

ANN-based model through the proposed FF-PSO were also satisfactory. 

The ANN-PSO model was validated to predict biomass and syngas flows required to 

cover energy demand from an experimental MG. Figure 36 presents the power generation 

plots, and consumption obtained during testing. 
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Figure 36 Energy Demand, required biomass, and produced Syngas and Power Plots of 

MG experimental scenario. 

 

The power produced by the BGP can be predicted and decomposed in the required 

biomass flow (
𝑘𝑔

ℎ
⁄ ) and the produced syngas flow (𝑚3

ℎ⁄ ) used to feed the ICE.  The 

ANN-based model proposed by this methodology can allow a real-time estimation of both 

the syngas required by the ICE and the biomass required for the BGP to cover the energy 

demand of the MG.  

2.2.4.1 Discussion 

In this article, a novel ANN-based model applied to a BGP system has been presented 

and validated. Since ANNs inside the model need to be trained, three different ANN 

training algorithms were evaluated: FF-PSO, FF-BP, and CF-P. Training algorithms 

performance has been measured using MSE, under different ANN configurations: 

varying number of hidden layers neurons; and different PSO configuration parameters for 

the FF-PSO, varying population size from 9 to 1000, and 𝑐1and 𝑐2 coefficients were 

varied from 1.5 to 2.5 values. An experimental MG provided the energy demand curve to 

be supplied into the proposed ANN-based model to predict, as main model outputs, the 

required biomass flow 𝑀 and syngas flow 𝑄𝑠𝑦𝑛𝑔𝑎𝑠 to cover the energy demand. The 

cascade architecture of the model also allows the prediction of airflow 𝑄𝑎𝑖𝑟𝐼𝐶𝐸
 at the inlet, 

the 𝐿𝐻𝑉, the temperature 𝑇1 at the gasifier inlet, the pressure 𝛥𝑃𝑏𝑒𝑑 at the fluidized bed 
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and the airflow 𝑄𝑎𝑖𝑟𝑔𝑎𝑠𝑖𝑓𝑖𝑒𝑟
 of the gasifier. The evaluation of these algorithms showed that 

the FF-PSO proposed for the ANN-based model has the best performance, with an MSE 

an average for all variables prediction of 23.3% lower than the obtained using the FF-BP 

and CF-P and better linear regressions values.  

The model was validated using real data of an experimental MG. The results of the 

experimentation allowed us to estimate the biomass and syngas flow required to produce 

the power generation needed. The reached ANN-based model can be applied in a real-

time approach to control and manage the BGP.  

As a general conclusion, the presented ANN-model applied to a BGP and the proposed 

FF-PSO algorithm showed to solve model dynamic Power Generation systems. The PSO 

is an efficient algorithm to train the ANN. The best results were obtained for a few hidden 

layer neurons (1 to 3), a high number of particle populations (600 to 1000), and standard 

𝑐1 and 𝑐2 coefficients (1.5 to 2.5). 

In future work is planned to extend the ANN-model to other MG subsystems, allowing 

effective control for the energy management inside the MG. 
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2.3.1 Abstract 

A residential load management system equips smart meters (SMs) to measure load 

utilization at residencies. SM reports electricity usage based on electronic appliances. In 

this paper, a smart residential load management system is designed by three-fold along 

with the provisioning of consumer security. Load management encompasses load 

categorizing by Hopfield neural network, fuzzy-logic based bill payments identification 

and load state prediction using Markov chain. Residential load is based on three classes: 

active load, affordable load and inactive load. The estimation of residential load ensures 

to manage the load at residency either to turn off the load or intimate excess consumption 

of electricity. The registered consumers of a specific residency are enabled to receive load 

status by Internet of Things (IoT) devices. SMs at residencies periodically compute the 

electricity manipulation and those readings are encrypted using hybrid blowfish and 

elliptic curve cryptography algorithm with considering the behaviour information from 

IoT device and partial key storage assists security, even if the device is theft. This smart 

residential security assisted load management (SRS-LM) system is developed in network 

simulator 3 and the results showed improvements in terms of power usage, load power, 

peak load reduction, total power consumption, power cost and computation time. 

Keywords: household appliances; IoT devices; smart residential, energy meters; 

cybersecurity; hybrid cryptography. 

2.3.2 Introduction and State of Art 

Load management in residential sectors is presented to promote the energy savings of 

the household appliances. SMs are the special devices that are deployed in residential 

environment to monitor the electricity usages. The measurements from SMs are 

temporally varied by the changes in load [101]. Home load management is designed as a 



 

80 

 

decentralized framework that is embedded with SMs [102]. The load is scheduled based 

on the cost variations from service provider that comforts the customers. In recent days, 

the increased electronic home appliances, such as air conditioners, dishwashers, 

refrigerators, washing machine and so on, consume higher energy and hence load 

management system is developed [103]. The consumption of electricity depends on the 

characteristics of every home that defines the constructed structure of it. According to 

variations in size and counts of the rooms at home, the consumption of electricity is 

varied. Among all the available home appliances, some of them consume larger energy 

whereas others consume comparatively lesser energy [104]. In designing a smart home 

architecture, the loads are divided based on their utilization of electricity.  

An energy management system in residential sector is designed regarding the control of 

household appliances to reduce the electricity cost [105]. Considering the load demand, 

the payment cost of the customer is determined. This is a potential benefit for the 

customer which is attained by the design of a two-level residential energy management 

framework. Increasing electricity demand tends to escalate the energy cost for customers. 

A smart house management system controls decisions of household appliances that 

probably comforts customers [106].  

House distributed state estimation (HDSE) system aggregates measurements from 

household appliances for determining the states. The peak load at house is controlled by 

designing an electro-thermal model. The load patterns of appliances are predicted from a 

nonintrusive load monitoring (NILM) method [107]. Load activities are determined and 

forecasted based on the individual appliance usage pattern. From the active power 

profiles, the total power consumed in multiple residencies is estimated. This residential 

load control system is also presented by the convolutional neural network (CNN) that 

extracts spatially changing features [108]. Extracted features are evaluated for controlling 

the load in residential sector. The bin values are estimated in CNN and then the control 

action is given by greedy strategy.  

Power management system is also established by knowledge-based using artificial bee 

colony (ABC) algorithm for saving energy [109]. To minimize energy consumption, the 

parameters temperature, air quality, and others are considered. To minimize the power, 

optimized values are processed in fuzzy to determine error difference. Residential load 
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management system reliability decision based is presented to evaluate customer’s 

participation [110]. Load curtailment function is modelled to minimize the satisfactory 

level of customer. End-user comfort is provisioned using heuristic algorithm i.e. genetic 

algorithm (GA) for optimal fitness estimation [111].  

Controlling of household appliances is achieved by GA for reducing energy consumption. 

User activity level is determined from the usage of appliances as ventilation, air 

conditioning, and others. Peak load at the residency is minimized with the assistance of 

Quality of Experience (QoE) based on fuzzy logic controller [112]. QoE is adaptively 

changed based on the estimated power consumption output (Low, Medium and High) 

from fuzzy logic. 

SMs in collecting electricity measurements support IoT applications based on consumers. 

Security is a challenging issue that is concerned to ensure privacy techniques [113]. 

Security provisioning is associated with lightweight authentication and cryptography 

techniques. This SM involved residential sector is subjected to certain vulnerable attacks. 

In [114], differential privacy is modelled for distinguishing SMs with privacy providence. 

Additive Homomorphic encryption is used for protecting the smart meter readings. 

Encrypting the data from SMs is a solution for ensuring security. Flexible data privacy is 

essential to appropriately decide on the SM reading [115]. Signature-based encryption is 

constructed at the gateway device in residential environment. SM can collect electricity 

measurements and encrypt the data for security. 

In this paper, a smart residential sector is presented with a secure load management 

system. Security has become a major concern in this sector which is developed using 

hybrid cryptography and the load management system identifies peak load. Peak load at 

residencies are measured by SMs and they are predicted in load management system. 

The SM based residential load management and privacy assurance are focused in this 

paper. Active load i.e. use of household appliances in a residency was monitored and 

flexibly managed [116]. Based on the household appliances, loads were categorized into 

two as controllable load and uncontrollable load. Load measurements are analysed by an 

artificial neural network (ANN) which was operated by the trained data. ANN uses two-

layer feed-forward along with back-propagation. The factors that are considered for 
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training are minute based real and reactive power. However, ANN performs faster, it 

requires a set of data to be trained. An intelligent residential energy management system 

was proposed to meet the demands of residential buildings [117]. To monitor the load, 

they were broadly classified into three categories as noninterruptible and nonschedulable 

loads (NINSLs), interruptible and nonschedulable loads (INSLs), and schedulable loads 

(SLs). Warning messages are generated if the power consumption exceeds the limit. 

External battery was operated to manage load and the owner of the residency was not 

intimated regarding the load peaks.  

An Advanced Metering Infrastructure (AMI) was implemented in this work which 

developed a win-win-win strategy [118]. The proposed strategy operated using an 

interior-point method constrained particle swarm optimization method and artificial 

immune system algorithm. Optimization method was enabled for the selection criteria. A 

hierarchical structure was constructed concerning the service providers. Here the 

measurements from smart meters are delivered to service providers via AMI. The 

significant objective of the customer was to minimize the cost based on energy demand. 

A demand response strategy was developed to schedule residential loads [119]. The loads 

from residencies were classified into noncontrollable load, interruptible load, adjustable 

load, and shiftable load. The local historical data were processed with Copula function 

and Monte Carlo simulation. Then the load setting parameters are defined based on the 

comfort of every customer, however, it may lead to cause electricity demand.  

Demand side management in residential sector was involved into the investigation of 

electricity tariff and usage of household appliances. The electricity energy cost was 

mitigated by presenting a tabu search scheduling algorithm for fair billing mechanism 

[120]. The load was randomly scheduled and based on it, household appliances were 

operated and while completing the schedules, fair billing is performed. The daytime 

energy consumption and billing were not minimized since the peak loads were not 

measured and controlled. A two-phase distributed stochastic linear programming 

management based cooperation game algorithm was developed for payments and 

verifying the energy consumptions [121]. Then a cooperative based game algorithm was 

applied in this work for identifying multiple routes using incomplete information and 

verifies whether to add or eliminate any agent. The information includes uncertainty as a 
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constraint which considers non-negative vectors. Using this information, a 

communication graph was constructed which needs to be updated on every minute 

changes.  

A hybrid demand modelling framework was designed to handle both energy management 

and billing [122]. Mixed customers whose demand was modelled with/without SM were 

taken into account. The categories of home appliances that are considered are 

nonshiftable, shiftable and curtailable. Furthermore, the electricity consumption was 

measured for each category, further cost was estimated separately for customers without 

SMs and mixed customers (with and without SMs). The minimization of the peak-to-

average ratio was significantly discussed in this work. However, the determination of 

energy consumption without SM is not ensured with accurate measurements and 

comparatively the time consumption will be higher. In [123], the individual customer’s 

electricity requirement was taken into account, since to assist demand-side management 

in residential sector. The residential demand-side flexibility by developing a bottom-up 

load model was constructed.  

The proposed Residential Electricity Load Profile simulation and optimization model 

integrates bottom-up approach with optimization. In this model, the customer exceeding 

the pre-defined limit of utilization will be applied with an additional penalty. Load 

profiles were created every week based on the utilization of their household appliances. 

A demand-side management system was discussed in [124] using weighted and 

nonweighted approach. Adaptive Neural Fuzzy Inference System (ANFIS) was 

developed with five consecutive processing layers. The inputs were based on residential 

loads of natural lighting. This work especially focused on a behavioural pattern which 

was mostly nonlinear and however it is predicted, it also requires location, lifestyle, and 

income into load profiles information.  

A multi-agent system was presented to resolve the problem of demand response over the 

electric power system [125]. A new satisfaction function was established to select 

electricity users based on a decision making. The formulated satisfaction function was 

based on the difference between the adjusted electricity consumption and the original 

load. If the satisfaction degree was not selected, then it has no changes in electricity 

consumption as well as the electricity cost. This was comprehensive and mainly focused 
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only on time difference. Reliability-based energy management system was designed 

under customer satisfaction model [2]. Customer dissatisfaction model was designed 

using Kano diagram, in which the satisfaction was given based on attractiveness and the 

dissatisfaction was given when the demands are not satisfied. The system’s peak load was 

minimized, and the weight values were estimated using fuzzy decision-making method. 

The customer’s electricity cost was mitigated by reducing the peak load.  

Load measurements in the residential sector using SMs were also essential to meet 

security requirements. Involvement of multiple harmful misbehaving particulars into the 

system, security has become significant. A novel privacy-preserving smart metering 

scheme was proposed for preventing pollution attacks [126]. This work aided to provide 

end-to-end security, integrity, and secure data aggregation. A dynamic billing mechanism 

was also developed by estimating the power consumption. Here, chameleon hash function 

was used as an identity authentication mechanism to ensure security in smart meters. The 

billing amount was re-encrypted using the operational center and then returned to 

customers. Also, an authenticated communication scheme was proposed for ensuring 

security in SM [127]. Here, a session key was generated while initializing the system and 

a Merkle hash tree was constructed. The reports are encrypted and compute a value and 

then transmit the message. The neighbourhood gateway was responsible to authenticate 

the data received.  

In [128], an AMI was resolved by proposing an Identity Management (IdM) and a key-

based scheme. Internet of Things was integrated with AMI to mitigate electricity 

consumption fraud. The proposed system was composed of IoT devices, smart home and 

Remote Terminal Unit (RTU). A session key was generated and transferred to the electric 

utility. This session key was composed of token and a serial number, this token number 

was validated by an authorization server. Later the encrypted value and the token was 

sent to RTU followed by SM. After receiving the session key, the status measured from 

SM was delivered to the operator. However, the security designed requires multiple 

message exchanges and the use of a session key based on static value is not advisable. 

The major problems exist in load management, billing strategies and security. Detection 

of load states was executed using k-means clustering algorithm to group the input signals 

and then use k-Nearest Neighbor (k-NN) algorithm for classification of load states [18]. 
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Conventional procedure was followed for these methods and the results of classification 

were based on the clustered data. According to the variation in an input signal, the 

clustering needs to be re-created for efficient classification and only limited number of 

clustered were created based on the k-value.  

In [129], a low-cost universal smart energy meter (USEM) with demand-side load 

management was proposed in which the emergency load was previous stored in utility 

server, based on which the load was managed in this system. The loads were categorized 

into two categories as heavy load and light load. Here, if the consumer exceeds permitted 

load then SMS will be sent from the control room to the user. On receiving this SMS, the 

heavy load must be switched off. In this case, the emergency load condition by a user was 

not able to satisfy demand at all times, since the electricity production failed to support 

all the residential customers. Power management was enabled by the design of an 

adaptive fuzzy logic system integrated with bat algorithm for the prediction of power 

[21]. This adaptive approach enables to select an optimal path for transmitting 

information between energy provider and user. In this algorithm, the vector frequency 

and vector rate are initialized for determining power consumption. First, the loads are 

recorded with learning vector initialization and then, adaptive vectors were changed for 

obtaining the best solution. The designed algorithm was able to predict power but failed 

to manage the load. 

Security in residential load management was presented in [22], [130]. The measured SM 

values were sent to another end, in which security was essential and it was provided by 

the Unique String Authentication procedure. Android-based application was created for 

enabling communication between the user and the utility center, in which the status is 

updated on the user mobile. But here, if the user mobile is lost or stolen, then the status 

can be viewed by any third person. However, it was equipped with security; they are 

vulnerable to physical tampering which tends major variations in measured values. 

Overall, problems defined in this residential sector of load management and security are 

resolved with the solutions in the proposed SRS-LM system. 
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2.3.3 Methodology and Proposed LMS 

The proposed SRS-LM system is presented to envision and manage load at residential 

sector along with the provisioning of security for the SM measurements.   

2.3.3.1 System model 

The SRS-LM system is comprised of IoT devices, load management system, 

residencies, and the utility grid. Each residency is deployed with multiple household 

appliances and a SM. SM plays a vital role in SRS-LM system which is responsible to 

collect electricity usage information from their residency. The designed SRS-LM system 

consists of N number of residencies as 1 2 3, , , , NR R R R with the corresponding number 

of SMs represented as 1 2 3  , , , , NSM SM SM SM and IoT devices for each residency as 

1 2 3 .  , , , , ND D D D The major home appliances that are operated in residency are light, 

fan, microwave oven, personal computer, air conditioner, refrigerator, water heater, air 

cooler, water pumps, grinder, dishwasher, and clothes dryer. Household appliances are 

categorized into three, based on their requirements and energy consumption.   

Household appliances in each residency are varied and according to their utilization, the 

bill payment cost is updated. Based on the household appliances, they are categorized 

into three as essential appliances, flexible appliances, and optional appliances as shown 

in Table 16. These categories are split for identifying the load at a residency. 

Table 16 SRS-LM Categorize of Appliances.  

Category Type Household appliances 

I 
Essential 

appliances 
Light, fan, microwave, oven, personal 

computer 

II 
Flexible 

appliances 
Air conditioner, air cooler, water heater, 

refrigerator 

III 
Optional 

appliances 
Water pump, grinder, dishwasher 

 

Initially, a three-fold load management is operated using readings from SMs. The three-

process handled are Hopfield neural network for load classification, fuzzy logic for 
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payment prediction and Markov chain for identifying states of residency. Lastly, the SM 

measurements and load updating are accessed by the residency owner via IoT device. The 

measurements are stored in an encrypted format that is securely accessed only by the IoT 

user. A hybrid blowfish-ECC algorithm is used for secure data storage. IoT devices are 

supposed to have the issues as low-memory, low-power and they are resource-

constrained. Due to these limitations in IoT, the SRS-LM system makes sure to minimize 

operations in IoT devices and store partial key for security purposes. 

The SRS-LM system gathers data from SMs that are deployed in each residency, and they 

are processed in the load management system as depicted in Fig. 37. The load 

management is enabled to compute load status and on the other hand, the bill settlement 

is also predicted. 

2.3.3.2 Load management 

Load management is comprised of three major processing as load category 

classification, load status prediction, and bill payment determination. Bill payment and 

load status prediction are simultaneously performed. 

 

Figure 37 Proposed SRS-LM system model. 
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The output from this system is updated and in case of a warning message, they are 

intimated to the user’s IoT device. This three-fold load management system is operated 

using Hopfield neural network, fuzzy logic, and Markov chain. The working of these 

three blocks for a peculiar process is detailed. The load management system initially 

authenticates the SM using its Identity (ID) and secret value ( )  .es Using these two 

constraints a message authentication code (MAC) is generated and only after 

authentication of SM, the further load management process is performed. This MAC is 

dynamically generated during the submission of SM measurements. Let 1R  having 1SM  

with 1IdS  and 1es  as secret value. The MAC value is expressed as: 

1 1SM Id eMAC S s=                                                          (1) 

 

The generated SMMAC  is exchanged and verified, then for submission of next 

measurements the MAC is supposed to be as follows:  

( )1 1 1SM Id eMAC S s=  +                                   (2) 

This computation is simpler and so it is determined by the SM and after completion of 

authentication, their measurements are analyzed by load management system. 

2.3.3.3 Hopfield neural network 

  Hopfield neural network is one of the types of ANN which is encompassed of nodes 

on a single layer. The nodes in Hopfield neural network are updated synchronously by 

clock time variations. The nodes participating here exist with connectivity based on the 

determined weight values between the connected nodes. 

Hopfield neural network uses the measurements from SM as input and classifies the load 

into active, affordable and inactive. The feedback loops formed in this network reflects 

its performance in enriching learning capability. This is efficient in solving complex 

computational problems. The household appliances used in three categories are depicted 

in the above section 4.1. The Hopfield neural network is designed with a single layer of 

nodes that are connected with other nodes as feedback connections which assists to 

redirect the output into the input. Here the number of nodes, inputs, and outputs are equal, 
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in this SRS-LM system the total number of residential as 1 2 3, , , , NR R R R  nodes are 

constructed. The nodes are binary threshold nodes since they are served as a content 

addressable memory system. According to the arrival of input, it defines a corresponding 

weight value. The weight value of the received input is determined from individual 

residential measurement which is formulated based on the weight connectivity and state 

of the node. The weighted sum of the nodes I  is estimated from the following expression: 

  
1

N

i ij j

j

I w s

=

=                                                      (3) 

 

Where ijw represents the connectivity weight exists between i  and ,j  then js  is the state 

of the node .j Training in Hopfield neural network is handled by using learning rules, in 

SRS-LM a Storkey learning rule is applied for better error minimization. The 

mathematically defined Storkey learning rule is formulated as follows: 

0 0        ,ijw i j=                             (4) 

1 1 1 1k k k k k k k k
ij ij i j i ji ij jw w h h

N N N
   −= + − −                            (5) 

  

From the above learning rules, it enables the properties of local and incremental for 

updating the connectivity weight information and increases, if there is no need for 

information from any other previously trained pattern respectively. Herein (4) and (5), 

the k
ijw is the weight estimated between i and j only after the thk pattern is learned, k

denotes the new learning pattern and the local field k
ijh is given as: 

1

1, ,

N
k k k
ij in n

n n i j

h w −

= 

=                                    (6) 

Hopfield neural network is designed to classify the loads based on the utilization of 

categorizes of household appliances. Figure 38 depicts the Hopfield network with a single 

layer for classifying the load, the inputs from the residencies are 1 2 3, , , .,i Nx x x x x  and 

the corresponding outputs are  1 2 3  , , , ., .i Ny y y y y  The inputs are received from each 
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SMs that are deployed in the residencies  1 2 3, , , ., .NR R R R Output in Hopfield network 

is obtained for each residency in the determination of their current class. 
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Figure 38 Hopfield network in SRS-LM. 

 

The significance of Hopfield neural network is its use of associative memory. This 

memory is enabled to store part of the information using which the rest of the pattern is 

recollected. Recalling the previous patterns supports to have prior knowledge of load 

class for each residency. The load is categorized into three classes as shown in Table 17. 

Table 17 Hopfield neural network based on load classification. 

Class Load type Condition 

1 Active load All category (I, II and III) appliances are 

ON 

2 Affordable load Only appliances in category I and II are 

ON 

3 Inactive load 
All category (I, II and III) appliances 

are OFF 

 

The states of nodes in the proposed SRS-LM are estimated as: 

( )1 2 i NS s s s s=                                       (7)            
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States s  for each node are formulated in a matrix that is trained and here the three classes 

are the possible states of the load. The state of node is  is determined as: 

( )i i Ns sign I Th= −                                                           (8) 

Where NTh  denotes the threshold. Here, ( ) 1 0sign x X=    and here, ( ) 1 0.sign x X= −    

Then the weighted values for each node in the constructed Hopfield network are 

determined in a matrix i.e. zero diagonal. As in this neural network, no node is connected 

to itself, it should obey w w= and the weight of the node’s connectivity is expressed as: 

12 1 1

21 2 2

1 2

1 2

0

0 ,

0

0

i N

i N

i i iN

N N Ni

w w w

w w w

W w w w

w w w

  
 

  
 
 

=   
 
 

  
 
 

                         (9) 

 

The threshold iTh  is given for each node according to their household appliances that are 

present. So here it is not necessary to have all the listed household appliances in each 

residency. Hence the threshold for nodes is given in the matrix format as:  

1

2

N
i

N

Th









 
 
 
 

=  
 
 
 
 
 

                                                    (10) 

The terms 1 2{ , , }N   are the individual threshold values for each node. Based on the 

presence of household appliances in each residency the threshold is varied. If the user 

includes a new household appliance, then the threshold is also updated. After detecting 

the load classes of residential sector, the utilization of the categorizing of load at the 

residency is identified. Then, individual residential payment status is verified and on the 

other hand, the exact utilization of load by the residency is predicted.     

2.3.3.4 Markov chain 
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Markov chain is used to predict the states of residency based on the pre-defined electricity 

utilization limit. In this SRS-LM, load prediction, three load states are considered as 

 , ,n r c gX s s s=  i.e. normal state, critical state, and emergency state. Discrete time-based 

Markov chain which deals with n  transition time alternately. The Markov chain process 

is to determine the load state which can either stay in its previous state or move into 

another possible state. This Markov chain is also equipped to predict future states with 

respect to the present state. Let 0X  be the initial state in which the system currently exists. 

The transferring probability of the system from one state to another is mathematically 

represented as: 

( )( )1
| ,      0,1,2,lm r nn

P P X m X l n
+

= = =  =                   (11) 

Where l  and m  are the probable states in the system, then the probability of state m  after 

1n +  is given as:  

( ) ( ) ( )1 1 2
( | , 1,lm r nn n n

P P X m X l X l X
+ − −

= = = = −
02 . ),  0, , , 1 .l X n l m l= −    −          (12) 

The possible state transitions in proposed SRS-LM predict the probability of state 

transition (see Fig. 39). The transition probability of a system to reach the state of itself 

is said to be 1.lmP =  Markov chain for state transition is easier about obtaining successive 

data. 
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Figure 39 Load status prediction using Markov chain. 
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Markov chain process predicts a sequence of possible events based on the probability of 

the events estimated. Each state is possible to change into another state and hence 

continuous building the Markov chain model. Three states compose the probabilities of 

state transition for every state. The normal state is  00 01 02, ,P P P  where no change of state 

can happen, move to critical state, or move to emergency state respectively. Similarly, 

other two states as critical and emergency are supposed to have the probabilities 

 10 11 12,  ,P P P and  20 21 22  ,  , ,P P P based on the state transition, the load status of each residency 

is predicted. If the load status is ,gs  then the higher power consuming load in category II 

and III are insisted to turn it off. In turn, if the load status remains the same as before, 

then the utility grid is informed to shut down electricity to that residency.    

2.3.3.5 Fuzzy logic 

In this section, the proposed SRS-LM system is presented to envision and manage load 

at residential sector along with the provisioning of security for the SM measurements.  

Electricity bill payment is one of the essential processes that is involved to detect whether 

the individual residential owner has paid the bill. Also, we intimate the user to pay bill 

priory to avoid unnecessary penalties. Fuzzy logic considers last electricity payment date 

and penalty value for modelling fuzzy rules. Fuzzy logic control system is flexible, and it 

allows observations from the input parameters. Decision-making problems are efficiently 

solved, and hence fuzzy logic is used for verifying bill payments. 

Table 18 Fuzzy rules. 

Inputs 

Fuzzy output ( )oF  
Previous bill 

payment (PP) 
Penalty (P) 

True True Paid 

True False Paid 

False True Bill not paid 

False False Bill not paid 
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The fuzzy rules are supposed to be binary sets that are comprised of two-valued logic as 

True / False. Fuzzy logic control system is designed with the functioning of four 

consecutive blocks as fuzzification, rule base, interference engines, and defuzzification. 

In SRS-LM, two inputs are considered and processed to retrieve an output whether the 

payment is completed or incomplete (see Table 18).  

• Fuzzy Block I (Fuzzification): 

Fuzzification is the first block that receives input parameters and transforms it into 

operable values of degree of membership functions. Each linguistic term has its degree 

of membership for the corresponding input parameter. The key processing in fuzzification 

is mapping the input parameter values involving predefined fuzzy membership functions. 

Linguistic variables are numerical values that define the scale based on membership 

functions.       

• Fuzzy Block II (Rule Base): 

Rule base is the key block present in fuzzy logic system which is deployed with the 

knowledge of building a set of rules. The rules are developed in ‘If-Then’ format that 

mimics operators’ logic as AND, OR and NOT. From these Boolean logic operators, OR 

operator is used in SRS-LM system. The Takagi-Sugeno fuzzy model defines rules as:  

Rule 1 – If ( | ),yPP True P True= =  Then 1oF =  

Rule 2 – If ( | ),yPP True P False= =  Then 1oF =  

Rule 3 – If ( | ),yPP False P True= =  Then 0oF =  

Rule 4 – If ( | ),yPP False P False= =  Then 0oF =  

The true and false represents 1 and 0 respectively, the output FO having 1 and 0 denotes 

bill paid customer and bill unpaid customer. | is the OR operator which is used to define 

fuzzy rules. The membership functions are modeled into triangular sets having equal 

widths.   
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• Fuzzy Block III (Interference Engine): 

Interference engine handles three steps as aggregation, activation, and accumulation. 

The aggregation is performed for estimating the degree of fulfillment ( )ffd  for the defined 

f  rules. Then activation is involved to mitigate the ffd by determining a weighted factor 

 0,1 .fw   Using this, the ffd  is altered as follows: 

* *ff f ffd w d=                                                              (13) 

Where *
ffd  is defined as a degree of confidence that is determined for adapting the defined 

rules under the considered input-output relationship. On reducing the ffd  for each rule, 

then accumulation is determined by summing up all the output. As a result, the rules are 

constructed with two inputs and single output variable. 

• Fuzzy Block IV (Defuzzification): 

The variables in this block are converted into crisp values for processing. Center of 

gravity method is presented in defuzzification. Finally, the crisp output oF  is 

mathematically estimated using center of gravity as: 

( )

( )

i i
i

O

i
i

c c
F

c




=



                                                  (14) 

From this, ic  is the discrete point running and ( )ic  is the membership value that is 

defined in the corresponding membership function.  

Fuzzy logic having higher precision and efficiencies for estimating the customer’s 

payment details at a faster rate. A set of four rules as 2 p  i.e. 2p =  denotes the total number 

of input parameters, hence 22 4.=  These two parameters are enough to verify the user’s 

payment. If the output is false, then the residential customer will be receiving a warning 

message to pay the bill via their IoT device. This warning message will include the cost 

to be paid for the energy consumed from their residential household appliances use. 

Power consumption cost [131] is determined from the following formulation: 
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1

1

2
1 2

( ) &

( ) &

t t t t
i s s

t t t t t t t
i i s i i i
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C R C R if R G R p
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  


=   


 +  −  

                    (15) 

 

( )t
iC R  is the cost of thi  residency at time t  that is estimated from total power consumption 

1 2, , , T
s s s sG G G G=  , where T  is the time slot in a day, t

ip  is the power allocated for the 

particular customer i . The cost per customer is determined and their payment amounts 

will be included in the message.  

2.3.3.6 User security 

The proposed SRS-LM offers user security by encrypting electricity readings using 

hybrid blowfish and ECC algorithms. IoT users are enabled to access their household 

electricity utilization and keep update with the increase in load. Monitoring of load is 

associated to minimize electricity cost. In hybrid blowfish and ECC, a random number is 

generated [132]. Here in this proposed SRS-LM system, the integrated blowfish uses ECC 

for the generation of that random number. The unique point from ECC is used as a random 

number. 

Blowfish is a symmetric-key cryptography that splits the message into blocks and 

encrypts 64-bit block. Blowfish algorithm performs subkey generation and 

encryption/decryption. The key size differs between 32 bits to 448 bits. Here 18, 32-bit 

sub-keys are composed by using P-arrays. This array initializes 4-s boxes and then P-

arrays are XORed for generating sub-keys. Determine a random number from the ECC 

algorithm. Let the ECC curve equation be: 

2 3y x ax b= + +                                                                 (16) 

Two points 1P  and 2P  are selected from ECC as a new random number which is said to 

be 64-bit. Combining both 1P  and 2P  convert them into binary form for random number 

generation. This number should exist with a minimum of five 1’s in its least significant 

16-bit. Based on the 1’s position in the least significant bit, the function is operated in 16 

rounds. The plain text is performed XOR operation with the generated ransom number 

and then they are divided into two sub-divisions. The sub-divisions are swapped on each 
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iteration until total iterations are reached. Lastly, the two divisions are recombined, and 

encryption is terminated.  

The encrypted plain text is updated on user side, while accessing the user decrypts and 

views the original measurement status. Since the increased theft of mobile devices, in the 

SRS-LM system only a partial key is stored in the device. IF a customer requests to access 

the information from the SRS-LM system, he/she will be authenticated based on the 

behavioural information. This information includes typing speed, location, and others. 

Only after authentication, the partial key will be provided for decryption. In this SRS-LM 

system, security is ensured even in the case of lost IoT devices. If the device is lost, then 

the user can register with a new device into the SRS-LM system and receive partial keys 

to keep updated with the electricity utilization.   

2.3.4 Results and Discussion 

A simulation environment is constructed using the parameters that are highlighted in 

Table 19. The simulation parameters are not limited to this. SRS-LM system is proposed 

with load prediction and security in residential sector. The SRS-LM system model is 

developed in network simulator–3.26 (Ns-3) installed on Ubuntu 14.04 LTS operating 

system. The developed SRS-LM is executed using two commands as ‘sudo ./waf 

configure’ and ‘sudo ./waf build’. 

This work is implemented in a simulation tool, we have properly specified individual 

residency with the above-discussed number of household appliances and their appropriate 

power consumption values are fed into. Table 20 depicts the load and their load values 

which is used in SRS-LM system. 

From the load power of each household appliance, SM in individual residency delivers 

the values to the server. The server is fed with a three-fold load balancing with hybrid 

cryptography algorithm. Using the parameters as shown in the above table, the simulation 

setup is generated as depicted in Fig.  40. According to the simulation setup, the proposed 

SRS-LM system’s results are obtained and compared with previous USEM. 
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Table 19 Simulation parameters. 

Entities Specifications 

Simulation area 1000 x 1000 m 

Number of SMs (Static) 25 

Number of IoT devices (Dynamic) 25 

Load management server 1 

Number of measurement packets 

generated 
50 – 100 

Measurement time interval 5 – 7 seconds 

Mobility model (IoT mobile device) Random waypoint mobility model 

Mobility speed 10 – 50 mps 

Transmission rate 100 Mbps 

Simulation time 300 seconds 

 

Table 20 Load power consumption. 

Category ID Load Power rating / kW 

I 

01 Light (Fluorescent lamp) 0.04 

02 Fan 0.10 

03 Microwave oven 0.8 

04 Personal computer (charging) 0.05 

II 

05 Air conditioner 1.5 

06 Air cooler 1.0 

07 Water heater 2.0 

08 Refrigerator 2.4 

III 

09 Water pumps 2.3 

10 Grinder 0.5 

11 Dishwasher 2.1 
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Figure 40 Ns-3 SRS-LM simulation setup. 

2.3.4.1 Comparative results 

The proposed SRS-LM system procedure is compared with USEM and the performance 

efficiencies are discussed. In USEM, the load management system emergency load was 

determined from the user-defined load condition. However, it works well for a single 

residency it tends to cause improper management among a residential sector. The 

performance is evaluated in terms of the following metrics as load power, peak load 

reduction, power cost, power utilization and computational time.  

2.3.4.2 Load power 

Load power is defined as the power consumed by different household appliances at 

residency. The load power is variable in accordance with the presence of appliances in 

residency.  

According to increasing in the number of residencies, power increases due to the use of 

all categories of household appliances. Figure 41 demonstrates the performance of load 

power by comparing the proposed SRS-LM with USEM. In USEM, a single residency 
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consumes 0 – 80kW, whereas our proposed work SRS-LM deals with 25 residencies and 

the load power is little higher than the previous work. As per the increase in execution 

time, the number of residencies operation is increased and hence the load is gradually 

increased, but the prediction of accurate load status manages load at residential sector 

with 25 residencies. The variation in minimum to maximum power for each household 

appliance is involved in load power estimation. 

 

Figure 41 Comparative results for load power.       

2.3.4.3 Peak load reduction 

Peak load reduction is present to manage the load when it exceeds the limit. The 

minimization in peak load reflects on reduction in power cost of each consumer. Peak 

load reduction requires accurate load prediction.  

In SRS-LM peak load is predicted from Markov chain which initially identifies the load 

category in which that residency is activated currently. Figure 42 depicts the comparison 

of peak load reduction of proposed and existing USEM.  
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In SRS-LM, nearly 40% of peak load is reduced for increasing number of residencies. On 

increasing the residencies, the utilization of their appliances is also increased gradually. 

Comparatively, USEM also reduces up to 35% of load but which was minimized for a 

residency. The accurate classification of load and then prediction of load achieves higher 

peak load reduction in SRS-LM. Peak load reduction for 25 residencies greatly impacts 

on minimizing power cost for all the consumers and dynamic management of emergency 

load is a potential benefit for consumers.  

2.3.4.4 Power cost 

Power cost is a significant metric that estimates the price for the utilized electricity 

power. Increasing electricity usage and ignoring peak load reduction will certainly lead 

to higher power costs. Power cost is estimated from the above sections using the 

formulated equation (15). Detecting peak load in SRS-LM and USEM is designed to 

minimize the power cost of the consumer. Power cost for residency is varied timely based 

on the use of different household appliances.  

Figure 43 shows comparison results of SRS-LM and USEM based on their power cost. 

When the execution time reaches 300s, all 25 residencies are active state by using certain 

load whereas in USEM a single residency is present entirely. Power cost is an increasing 

factor that gradually increases in peak times and it has eventual reduction while managing 

loads efficiently. Power cost is estimated in terms of kW i.e. electricity use. 
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Figure 42 Comparative results for the peak load minimization. 
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2.3.4.5 Power utilization 

Power utilization is analysed in terms of power usage and total power consumption in 

the deployed environment. In Table 21, the power usage with respect to the number of 

residency and power consumption is given with respect to execution time. 

Table 21 Power utilization 

Number of 

residencies 

Power usage 

(kW) Execution 

time (s) 

Total power 

consumption (kW) 

SRS-

LM USEM SRS-LM USEM 

5 11 12 100 41 42 

10 14 15 150 42 43 

15 19 21 200 43 45 

20 28 30 250 45 48 

25 41 45 300 50 52 

* Taken from [133]. 

The existing USEM is presented for more than one residence which resulted in higher 

utilization of power than the SRS-LM. However, only a smaller variation in power 

utilization, it impacts the changes in total power consumption. Minimizing the total power 

consumption by balancing the load is the key goal of SRS-LM. Monitoring SM 

measurements and predicting the load obtain moderate power consumption.       
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Figure 43 Comparative results for power cost. 
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2.3.4.6 Computational time 

Load in individual residency is predicted using three-fold load balancing which deals 

with certain mathematical computations to identify the load and update customers 

through their IoT device. Computation time is determined for predicting load status of 

residency.  

Computational time is plotted concerning the number of increasing residencies as 

depicted in Fig. 44. Computation time gradually increases with the growth of the number 

of residencies, since additional involvement of residency includes processing of 

household appliances.  

This comparison shows, the computation time for proposed SRS-LM decreases while 

USEM has higher time to predict load status. 

 

 

Figure 44 Comparative results for computational time.  

 

The Hopfield neural network and Markov chain in SRS-LM guarantees lesser time for 

computations to predict load accurately. While in previous USEM the load is predicted 

based on user-defined threshold values.  

The load preference by the owner is not advisable since it creates electricity scarcity 

problem and different limits by each residency become complex and consume time for 

load prediction.       
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2.3.4.7 Security analysis 

Security is majorly focused in this paper by presenting a hybrid algorithm that 

integrates blowfish with ECC algorithm. The measured values from SMs are securely 

accessed by consumers using their IoT devices. Initially, the originality of SM is verified 

by generating MAC, later the data are encrypted using a hybrid algorithm and stored. 

The stored information is periodically updated according to the changes in power 

consumption. This information is accessed from anywhere by the user. Table 22 

illustrates the execution time of blowfish ECC algorithm, whose data size is 1 KB. Here 

the SM measurements are numerical values of power readings, and those data are smaller 

in size. The performance of blowfish ECC algorithm in SRS-LM is evaluated in terms of 

authentication, confidentiality, and data integrity. The three constraints of security 

analysis are discussed below. 

Table 22 Execution time for hybrid algorithm 

Number of rounds Execution time (s) 

4 0.08 

8 0.09 

12 0.12 

16 0.14 

* Taken from [133]. 

2.3.4.8 Authentication 

In proposed SRS-LM, the communication is authentic since the behavior of the user is 

determined. Behavior is based on the details of built-in sensors that are extracted. Here it 

is not possible for a third person to access SM data since only a partial key is present in 

IoT device. Also, it gives the SM data only after authenticating user based on their 

behavior.   

 

2.3.4.9 Confidentiality 
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This constraint is also attained in SRS-LM system which stores the data after 

encrypting it. Encrypting the SM measurements and load status information using a 

hybrid blowfish ECC algorithm enables to provide confidentiality since no one can read 

this information unless the corresponding user is authenticated and decrypt the 

information.    

2.3.4.10 Integrity 

The SM values in SRS-LM are encrypted and so it can be altered by any third party. 

The communication between IoT and server is handled in a secure channel. Also, the 

users are authenticated before receiving the information which ensures data integrity.  

The proposed SRS-LM system is accomplished with the goal of load management and 

security. Load management is attained by three-fold process of load category detection, 

load status prediction, and bill payments verification. On the other hand, security is 

provisioned by authenticating SM, authenticating IoT device and hybrid cryptography-

based secure data access. Also, to minimize computations and memory limitations in IoT 

device partial key is stored which supports security even if the device is stolen. 
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3.1 DISCUSSION AND CONCLUSIONS 

This section is divided into two categories: discussion and conclusion of each 

publication related to every stage described in the first chapter of this thesis, and its future 

work considered for further development. As previously mentioned, the scope of the first 

stage was to implement the design of low-cost energy systems for microgrids so the paper 

"Low-cost web-based Supervisory Control and Data Acquisition system for a microgrid 

testbed: A case study in design and implementation for academic and research 

applications" helped to identify microgrid’s energy consumption patterns. Energy-saving 

opportunities to optimize energy consumption were identified by analysing patterns. The 

proposed system uses open-source technologies and standards to be user-friendly, 

scalable, and adaptable. A case study of the implementation of the system in an academic 

microgrid testbed is presented to demonstrate its effectiveness and practicality. 

Developing low-cost and accessible SCADA systems for microgrids can significantly 

affect the adoption and implementation of microgrid technologies, especially in 

developing countries and remote areas. The proposed system can also be valuable for 

education and outreach activities to promote awareness and understanding of microgrid 

technologies and applications. A low-cost monitoring system can provide valuable 

information about energy consumption and help identify areas for energy efficiency 

improvements, leading to reduced energy costs and increased energy efficiency. 

Furthermore, identifying and analysing energy consumption patterns is crucial in 

developing effective energy management strategies. Low-cost monitoring systems can 

provide valuable insights into energy usage, reducing energy costs and increasing energy 

efficiency. 

The second stage contemplated bioinspired algorithms to support energy efficiency in 

microgrids. Thus, the paper "A Cascade Hybrid PSO Feed-Forward Neural Network 

Model of a Biomass Gasification Plant for Covering the Energy Demand in an AC 

Microgrid" proposes a hybrid model that combines particle swarm optimization (PSO) 

and a feed-forward neural network (FFNN) to model the energy production of a biomass 

gasification plant and to cover the energy demand in an AC microgrid. The proposed 

model consists of two steps. In the first step, PSO is used to optimize the FFNN 

architecture and to train the network on a dataset of historical energy production and 
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consumption data. The PSO algorithm adjusts the weights and biases of the FFNN to 

minimize the error between the predicted and actual energy production and consumption. 

In the second one, the FFNN trained is used to predict the biomass gasification plant's 

energy production and optimize the microgrid's operation. The FFNN model is used in 

cascade with a proportional-integral-derivative (PID) controller, which adjusts the 

gasification plant's setpoint to match the microgrid's predicted energy demand. The 

proposed model is validated using a case study of a real biomass gasification plant 

connected to an AC microgrid. The results showed that the hybrid PSO-FFNN model can 

accurately predict the gasification plant's energy production and optimize the microgrid's 

operation, leading to improved energy efficiency and reduced energy costs. It was 

demonstrated that the potential of combining PSO and FFNN in a hybrid model to model 

the energy production of a biomass gasification plant can optimize the operation of an 

AC microgrid. The proposed model can effectively support energy management in 

microgrids with distributed energy resources, leading to improved energy efficiency and 

reduced energy costs.  

Discussing ANN models, it is possible to use them to predict energy demand with high 

accuracy once trained. By accurately predicting energy demand, it is possible to optimize 

energy supply and ensure that energy systems are running efficiently. They can also 

optimize energy generation by predicting energy demand and adjusting the generation 

accordingly. This can help to minimize waste and reduce the cost of energy production. 

Besides, they can be used to integrate renewable energy sources, such as solar and wind 

power, into the energy system. By predicting energy demand and adjusting the 

generation, accordingly, optimizing the use of renewable energy sources and reducing 

reliance on non-renewable sources is possible. 

ANN models help monitor energy consumption in real time, providing information about 

energy usage and identifying potential issues with energy systems. This can help optimize 

energy consumption and ensure energy systems work efficiently. Finally, they can be 

used to predict energy storage requirements based on energy demand and generation. By 

predicting energy storage requirements, optimizing the use of energy storage systems, 

and ensuring that energy systems are running efficiently is possible. In summary, ANN 
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models can provide valuable information about energy demand and supply, reducing 

energy costs and increasing energy efficiency. 

In the third and final stage, the integration of ML techniques in LMS was considered. An 

SRS-LM system was proposed and tested for load management in the residential sector 

with the provisioning of secure access by customers using IoT devices. The readings from 

SMs are authenticated with MAC, and then based on the measurements, they are 

categorized into different loads. Three-fold lad management is presented by designing a 

Hopfield neural network, Markov chain, and fuzzy logic. Hopfield neural network 

classifies the load into three categories: active, affordable, and inactive. Furthermore, the 

Markov chain predicts the current load status as normal, critical, or emergency. This load 

status is enabled to give a warning message to turn off excessively used load at residency. 

SRS-LM ensures secure accessing of SM measurements and load status by the applied 

hybrid cryptography algorithm. The Blowfish algorithm is integrated with the ECC 

algorithm. The Blowfish procedure is followed in which ECC undergoes the random 

number generation. The comparative results for power utilization, peak load reduction, 

power cost and computation time have proven its efficiency better than the previous 

USEM system. In the future, we have planned to concentrate on a demand-side load 

management system. Using machine learning techniques in a Load Management System 

model can provide valuable insights into energy consumption patterns, leading to reduced 

energy costs, increased energy efficiency, and a more sustainable energy system. 

3.2 FUTURE WORK 

This thesis considered some aspects of an optimized model for energy management 

systems and load control, some potential lines of research for the first publication, “Low-

cost web-based Supervisory Control and Data Acquisition system for a microgrid testbed: 

A case study in design and implementation for academic and research applications” are: 

• Focusing on data integration from multiple sources, including weather data, 

occupancy data, peak-hours usage, high-demand appliance, and building/home 

automation systems, to gain a more comprehensive understanding of energy 

consumption patterns integrating new technologies and infrastructure and 

considering energy policies. 
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• Developing more advanced data analytics techniques with the use of machine 

learning techniques that can provide valuable insights into energy consumption 

patterns. Future work could focus on developing more advanced data analytics 

techniques, such as deep learning and reinforcement learning, to improve the 

accuracy and reliability of energy consumption predictions. 

• Improving energy management strategies to focus on developing more advanced 

energy management strategies that incorporate real-time energy consumption 

data. These strategies could be used to optimize energy usage, reduce energy 

costs, and improve energy efficiency considering real-time pricing according to 

the current network tariffs and the impact on consumers and prosumers. 

Related to ANN models for covering energy demand, future work for the second 

publication “A cascade hybrid PSO feed-forward neural network model of a biomass 

gasification plant for covering the energy demand in an AC microgrid” can include: 

• Optimizing hyperparameters for a better performance of many ANN models. 

Developing more efficient methods for selecting these hyperparameters, such as 

the learning rate, batch size, and number of hidden layers. 

• Developing more advanced ANN architectures such as convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs). Exploring the use of 

these advanced architectures for energy demand forecasting may lead to more 

accurate and reliable predictions. 

For the last publication “A smart residential security assisted load management system 

using hybrid cryptography”, potential areas for future work on machine learning 

techniques in load management system models could include: 

• Designing and developing more advanced machine learning algorithms such as 

deep learning and reinforcement learning for more efficient and effective load 

management strategies. Likewise, a system that can learn and adapt to any 

changing conditions in real time should be important to consider so developing 

adaptive strategies that can respond to changes in energy demand or supply could 

be explored. 
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• This technology can be used to predict demand and optimize distributed systems 

in real-time; therefore a future work is to integrate the technology into a real 

application integrating electricity generation by renewable sources and doing tests 

with an off-grid microgrid (standalone applications) and on-grid MG.  

3.3 DISCUSIÓN Y CONCLUSIONES 

Esta sección se divide en dos categorías: discusión y conclusión de cada publicación 

relacionada con cada una de las etapas descritas en el primer capítulo de esta tesis, y su 

trabajo futuro considerado para su posterior desarrollo. Como se mencionó anteriormente, 

el alcance de la primera etapa fue implementar el diseño de sistemas de energía de bajo 

costo para microrredes, por lo que el artículo "Sistema de control de supervisión y 

adquisición de datos basado en la web de bajo costo para un banco de pruebas de 

microrredes: un estudio de caso en diseño e implementación para aplicaciones 

académicas y de investigación" ayudó a identificar los patrones de consumo de energía 

de las microrredes. Se identificaron oportunidades de ahorro de energía para optimizar el 

consumo de energía mediante el análisis de patrones. El sistema propuesto utiliza 

tecnologías y estándares de código abierto para ser fácil de usar, escalable y adaptable. 

Se presenta un estudio de caso de la implementación del sistema en un banco de pruebas 

de microrredes académicas para demostrar su efectividad y practicidad. El desarrollo de 

sistemas SCADA accesibles y de bajo costo para microrredes puede afectar 

significativamente la adopción e implementación de tecnologías de microrredes, 

especialmente en países en desarrollo y áreas remotas. El sistema propuesto también 

puede ser valioso para las actividades de educación y divulgación para promover el 

conocimiento y la comprensión de las tecnologías y aplicaciones de las microrredes. Un 

sistema de monitoreo de bajo costo puede proporcionar información valiosa sobre el 

consumo de energía y ayudar a identificar áreas para mejoras de eficiencia energética, lo 

que lleva a una reducción de los costos de energía y una mayor eficiencia energética. 

Además, la identificación y el análisis de los patrones de consumo de energía son 

cruciales para desarrollar estrategias eficaces de gestión de la energía. Los sistemas de 

monitoreo de bajo costo pueden proporcionar información valiosa sobre el uso de energía, 

reduciendo los costos de energía y aumentando la eficiencia energética. 
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La segunda etapa contempló algoritmos bio-inspirados para apoyar la eficiencia 

energética en microrredes. Así, el artículo "A Cascade Hybrid PSO Feed-Forward Neural 

Network Model of a Biomass Gasification Plant for Covering the Energy Demand in an 

AC Microgrid" propone un modelo híbrido que combina la optimización del enjambre de 

partículas (PSO) y una red neuronal feed-forward (FFNN) para modelar la producción de 

energía de una planta de gasificación de biomasa y cubrir la demanda de energía en una 

microrred de CA. El modelo propuesto consta de dos pasos. En el primer paso, PSO se 

utiliza para optimizar la arquitectura FFNN y entrenar la red con un conjunto de datos 

históricos de producción y consumo de energía. El algoritmo PSO ajusta los pesos y 

sesgos del FFNN para minimizar el error entre la producción y el consumo de energía 

previstos y reales. En el segundo, el FFNN entrenado se utiliza para predecir la 

producción de energía de la planta de gasificación de biomasa y optimizar la operación 

de la microrred. El modelo FFNN se utiliza en cascada con un controlador proporcional-

integral-derivativo (PID), que ajusta el punto de ajuste de la planta de gasificación para 

que coincida con la demanda de energía prevista de la microrred. El modelo propuesto se 

valida mediante un estudio de caso de una planta de gasificación de biomasa real 

conectada a una microrred de corriente alterna. Los resultados mostraron que el modelo 

híbrido PSO-FFNN puede predecir con precisión la producción de energía de la planta de 

gasificación y optimizar el funcionamiento de la microrred, lo que conduce a una mayor 

eficiencia energética y a una reducción de los costes energéticos. Se demostró que el 

potencial de combinar PSO y FFNN en un modelo híbrido para modelar la producción de 

energía de una planta de gasificación de biomasa puede optimizar el funcionamiento de 

una microrred de CA. El modelo propuesto puede apoyar eficazmente la gestión de la 

energía en microrredes con recursos energéticos distribuidos, lo que conduce a una mejora 

de la eficiencia energética y a una reducción de los costes energéticos.  

Hablando de los modelos de ANN, es posible utilizarlos para predecir la demanda de 

energía con alta precisión una vez entrenados. Al predecir con precisión la demanda de 

energía, es posible optimizar el suministro de energía y garantizar que los sistemas de 

energía funcionen de manera eficiente. También pueden optimizar la generación de 

energía mediante la predicción de la demanda de energía y el ajuste de la generación en 

consecuencia. Esto puede ayudar a minimizar el desperdicio y reducir el costo de 

producción de energía. Además, se pueden utilizar para integrar fuentes de energía 
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renovables, como la solar y la eólica, en el sistema energético. Al predecir la demanda de 

energía y ajustar la generación en consecuencia, es posible optimizar el uso de fuentes de 

energía renovables y reducir la dependencia de fuentes no renovables. 

Los modelos ANN ayudan a monitorear el consumo de energía en tiempo real, 

proporcionando información sobre el uso de energía e identificando posibles problemas 

con los sistemas de energía. Esto puede ayudar a optimizar el consumo de energía y 

garantizar que los sistemas de energía funcionen de manera eficiente. Por último, se 

pueden utilizar para predecir las necesidades de almacenamiento de energía en función 

de la demanda y la generación de energía. Es posible predecir los requisitos de 

almacenamiento de energía, optimizar el uso de los sistemas de almacenamiento de 

energía y garantizar que los sistemas de energía funcionen de manera eficiente. En 

resumen, los modelos de RNA pueden proporcionar información valiosa sobre la 

demanda y el suministro de energía, reduciendo los costes energéticos y aumentando la 

eficiencia energética. 

En la tercera y última etapa, se consideró la integración de técnicas de ML en LMS. Se 

propuso y probó un sistema SRS-LM para la gestión de la carga en el sector residencial 

con el aprovisionamiento de un acceso seguro por parte de los clientes que utilizan 

dispositivos IoT. Las lecturas de los SM se autentican con MAC y, a continuación, en 

función de las mediciones, se clasifican en diferentes cargas. La gestión de tres grupos se 

presenta mediante el diseño de una red neuronal de Hopfield, una cadena de Markov y 

una lógica difusa. La red neuronal de Hopfield clasifica la carga en tres categorías: activa, 

asequible e inactiva. Además, la cadena de Markov predice el estado actual de la carga 

como normal, crítico o de emergencia. Este estado de carga está habilitado para dar un 

mensaje de advertencia para desactivar la carga excesivamente utilizada en la residencia. 

SRS-LM garantiza el acceso seguro a las mediciones de SM y al estado de carga mediante 

el algoritmo de criptografía híbrida aplicado. El algoritmo Blowfish está integrado con el 

algoritmo ECC. Se sigue el procedimiento Blowfish en el que ECC se somete a la 

generación de números aleatorios. Los resultados comparativos para la utilización de la 

energía, la reducción de la carga máxima, el costo de la energía y el tiempo de cálculo 

han demostrado su eficiencia mejor que el sistema USEM anterior. En el futuro, hemos 

planeado concentrarnos en un sistema de gestión de carga del lado de la demanda. El uso 
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de técnicas de aprendizaje automático en un modelo de sistema de gestión de carga puede 

proporcionar información valiosa sobre los patrones de consumo de energía, lo que 

conduce a una reducción de los costos de energía, una mayor eficiencia energética y un 

sistema energético más sostenible. 

3.4 TRABAJO FUTURO 

En esta tesis se consideraron ciertos elementos en un modelo optimizado para sistemas 

de gestión energética y control de carga, algunas líneas potenciales de investigación para 

la primera publicación "Low-cost web-based Supervisory Control and Data Acquisition 

system for a microgrid testbed: A case study in design and implementation for academic 

and research applications" son: 

• Centrarse en la integración de datos de múltiples fuentes, incluidos datos 

meteorológicos, datos de ocupación, uso de horas pico, electrodomésticos de alta 

demanda y sistemas de automatización de edificios / hogares, para obtener una 

comprensión más completa de los patrones de consumo de energía integrando 

nuevas tecnologías e infraestructura y considerando políticas energéticas. 

• Desarrollar una técnica de análisis de datos más avanzada con el uso de técnicas 

de aprendizaje automático que pueden proporcionar información valiosa sobre los 

patrones de consumo de energía. El trabajo futuro podría centrarse en el desarrollo 

de técnicas de análisis de datos más avanzadas, como el aprendizaje profundo y 

el aprendizaje por refuerzo, para mejorar la precisión y la fiabilidad de las 

predicciones de consumo de energía. 

• Mejorar las estrategias de gestión energética para centrarse en el desarrollo de 

estrategias de gestión de la energía más avanzadas que incorporen datos de 

consumo de energía en tiempo real. Estas estrategias podrían utilizarse para 

optimizar el uso de energía, reducir los costos de energía y mejorar la eficiencia 

energética teniendo en cuenta los precios en tiempo real de acuerdo con las tarifas 

de red actuales y el impacto en los consumidores y prosumidores. 

En relación con los modelos ANN para cubrir la demanda de energía, el trabajo futuro 

para la segunda publicación "A cascade hybrid PSO feed-forward neural network model 
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of a biomass gasification plant for covering the energy demand in an AC microgrid" 

puede incluir: 

• Optimización de hiperparámetros para un mejor rendimiento de muchos modelos 

ANN. Desarrollar métodos más eficientes para seleccionar estos hiperparámetros, 

como la tasa de aprendizaje, el tamaño del lote y el número de capas ocultas. 

• Desarrollar arquitecturas ANN más avanzadas, como redes neuronales 

convolucionales (CNN) y redes neuronales recurrentes (RNN). Explorar el uso de 

estas arquitecturas avanzadas para la previsión de la demanda de energía puede 

conducir a predicciones más precisas y fiables. 

Para la última publicación "Un sistema inteligente de gestión de carga asistido por 

seguridad residencial utilizando criptografía híbrida", las áreas potenciales para el trabajo 

futuro sobre técnicas de aprendizaje automático en modelos de sistemas de gestión de 

carga podrían incluir: 

• Diseñar y desarrollar algoritmos de aprendizaje automático más avanzados, como 

el aprendizaje profundo y el aprendizaje por refuerzo, para estrategias de gestión 

de carga más eficientes y efectivas. Del mismo modo, debería ser importante 

considerar un sistema que pueda aprender y adaptarse a cualquier condición 

cambiante en tiempo real, por lo que se podría explorar el desarrollo de estrategias 

adaptativas que puedan responder a los cambios en la demanda o el suministro de 

energía. 

• Esta tecnología se puede utilizar para predecir la demanda y optimizar los sistemas 

distribuidos en tiempo real; por lo tanto, un trabajo futuro es integrar la tecnología 

en una aplicación real, integrando la generación de electricidad mediante fuentes 

renovables y haciendo pruebas con una microrred aislada (aplicaciones 

independientes) y MG en red. 

3.5 DISCUSSIÓ Y CONCLUSIONS 

Esta secció es divideix en dues categories: discussió i conclusió de cada publicació 

relacionada amb cadascuna de les etapes descrites en el primer capítol d'esta tesi, i el seu 

treball futur considerat per al seu posterior desenvolupament. Com es va esmentar 
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anteriorment, l'abast de la primera etapa va ser implementar el disseny de sistemes 

d'energia de baix cost per a microxarxes, per la qual cosa l'article "Sistema de control de 

supervisió i adquisició de dades basat en la web de baix cost per a un banc de proves de 

microxarxes: un estudi de cas en disseny i implementació per a aplicacions acadèmiques 

i d'investigació" va ajudar a identificar els patrons de consum d'energia de les 

microxarxes. Es van identificar oportunitats d'estalvi d'energia per a optimitzar el consum 

d'energia mitjançant l'anàlisi de patrons. El sistema proposat utilitza tecnologies i 

estàndards de codi obert per a ser fàcil d'usar, escalable i adaptable. Es presenta un estudi 

de cas de la implementació del sistema en un banc de proves de microxarxes acadèmiques 

per a demostrar la seua efectivitat i practicitat. El desenvolupament de sistemas SCADA 

accessibles i de baix cost per a microxarxes pot afectar significativament l'adopció i 

implementació de tecnologies de microxarxes, especialment en països en 

desenvolupament i àrees remotes. El sistema proposat també pot ser valuós per a les 

activitats d'educació i divulgació per a promoure el coneixement i la comprensió de les 

tecnologies i aplicacions de les microxarxes. Un sistema de monitoratge de baix cost pot 

proporcionar informació valuosa sobre el consum d'energia i ajudar a identificar àrees per 

a millores d'eficiència energètica, la qual cosa porta a una reducció dels costos d'energia 

i una major eficiència energètica. A més, la identificació i l'anàlisi dels patrons de consum 

d'energia són crucials per a desenvolupar estratègies eficaces de gestió de l'energia. Els 

sistemes de monitoratge de baix cost poden proporcionar informació valuosa sobre l'ús 

d'energia, reduint els costos d'energia i augmentant l'eficiència energètica. 

La segona etapa va contemplar algorismes bio-inspirats per a donar suport a l'eficiència 

energètica en microxarxes. Així, l'article "A Cascade Hybrid PSO Feed-Forward Neural 

Network Model of a Biomass Gasification Plant for Covering the Energy Demand in an 

AC Microgrid" proposa un model híbrid que combina l'optimització de l'eixam de 

partícules (PSO) i una xarxa neuronal feed-forward (FFNN) per a modelar la producció 

d'energia d'una planta de gasificació de biomassa i cobrir la demanda d'energia en una 

microxarxa de CA. El model proposat consta de dos passos. En el primer pas, PSO 

s'utilitza per a optimitzar l'arquitectura FFNN i entrenar la xarxa amb un conjunt de dades 

històriques de producció i consum d'energia. L'algorisme PSO ajusta els pesos i biaixos 

del FFNN per a minimitzar l'error entre la producció i el consum d'energia previstos i 

reals. En el segon, el FFNN entrenat s'utilitza per a predir la producció d'energia de la 
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planta de gasificació de biomassa i optimitzar l'operació de la microxarxa. El model 

FFNN s'utilitza en cascada amb un controlador proporcional-integral-derivatiu (PID), que 

ajusta el punt d'ajust de la planta de gasificació perquè coincidisca amb la demanda 

d'energia prevista de la microxarxa. El model proposat es valguda mitjançant un estudi 

de cas d'una planta de gasificació de biomassa real connectada a una microxarxa de 

corrent altern. Els resultats van mostrar que el model híbrid PSO-FFNN pot predir amb 

precisió la producció d'energia de la planta de gasificació i optimitzar el funcionament de 

la microxarxa, la qual cosa condueix a una major eficiència energètica i a una reducció 

dels costos energètics. Es va demostrar que el potencial de combinar PSO i FFNN en un 

model híbrid per a modelar la producció d'energia d'una planta de gasificació de biomassa 

pot optimitzar el funcionament d'una microxarxa de CA. El model proposat pot secundar 

eficaçment la gestió de l'energia en microxarxes amb recursos energètics distribuïts, la 

qual cosa condueix a una millora de l'eficiència energètica i a una reducció dels costos 

energètics.  

Parlant dels models d'ANN, és possible utilitzar-los per a predir la demanda d'energia 

amb alta precisió una vegada entrenats. En predir amb precisió la demanda d'energia, és 

possible optimitzar el subministrament d'energia i garantir que els sistemes d'energia 

funcionen de manera eficient. També poden optimitzar la generació d'energia mitjançant 

la predicció de la demanda d'energia i l'ajust de la generació en conseqüència. Això pot 

ajudar a minimitzar el desaprofitament i reduir el cost de producció d'energia. A més, es 

poden utilitzar per a integrar fonts d'energia renovables, com la solar i l'eòlica, en el 

sistema energètic. En predir la demanda d'energia i ajustar la generació en conseqüència, 

és possible optimitzar l'ús de fonts d'energia renovables i reduir la dependència de fonts 

no renovables. 

Els models ANN ajuden a monitorar el consum d'energia en temps real, proporcionant 

informació sobre l'ús d'energia i identificant possibles problemes amb els sistemes 

d'energia. Això pot ajudar a optimitzar el consum d'energia i garantir que els sistemes 

d'energia funcionen de manera eficient. Finalment, es poden utilitzar per a predir les 

necessitats d'emmagatzematge d'energia en funció de la demanda i la generació d'energia. 

És possible predir els requisits d'emmagatzematge d'energia, optimitzar l'ús dels sistemes 

d'emmagatzematge d'energia i garantir que els sistemes d'energia funcionen de manera 
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eficient. En resum, els models d'RNA poden proporcionar informació valuosa sobre la 

demanda i el subministrament d'energia, reduint els costos energètics i augmentant 

l'eficiència energètica. 

En la tercera i última etapa, es va considerar la integració de tècniques de ML en LMS. 

Es va proposar i va provar un sistema SRS-LM per a la gestió de la càrrega en el sector 

residencial amb l'aprovisionament d'un accés segur per part dels clients que utilitzen 

dispositius IoT. Les lectures dels SM s'autentiquen amb MAC i, a continuació, en funció 

dels mesuraments, es classifiquen en diferents càrregues. La gestió de tres grups es 

presenta mitjançant el disseny d'una xarxa neuronal de Hopfield, una cadena de Màrkov 

i una lògica difusa. La xarxa neuronal de Hopfield classifica la càrrega en tres categories: 

activa, assequible i inactiva. A més, la cadena de Màrkov prediu l'estat actual de la càrrega 

com a normal, crític o d'emergència. Este estat de càrrega està habilitat per a donar un 

missatge d'advertiment per a desactivar la càrrega excessivament utilitzada en la 

residència. SRS-LM garanteix l'accés segur als mesuraments d'SM i a l'estat de càrrega 

mitjançant l'algorisme de criptografia híbrida aplicat. L'algorisme Blowfish està integrat 

amb l'algorisme ECC. Se segueix el procediment Blowfish en el qual ECC se sotmet a la 

generació de números aleatoris. Els resultats comparatius per a la utilització de l'energia, 

la reducció de la càrrega màxima, el cost de l'energia i el temps de càlcul han demostrat 

la seua eficiència millor que el sistema USEM anterior. En el futur, hem planejat 

concentrar-nos en un sistema de gestió de càrrega del costat de la demanda. L'ús de 

tècniques d'aprenentatge automàtic en un model de sistema de gestió de càrrega pot 

proporcionar informació valuosa sobre els patrons de consum d'energia, la qual cosa 

condueix a una reducció dels costos d'energia, una major eficiència energètica i un 

sistema energètic més sostenible. 

3.6 TREBALL FUTUR 

En aquesta tesi es van considerar uns certs elements en un model optimitzat per a sistemes 

de gestió energètica i control de càrrega, algunes línies potencials d'investigació per a la 

primera publicació "Low-cost web-based Supervisory Control and Data Acquisition 

system for a microgrid testbed: A case study in design and implementation for academic 

and research applications" són: 
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• Centrar-se en la integració de dades de múltiples fonts, incloses dades 

meteorològiques, dades d'ocupació, ús d'hores pique, electrodomèstics d'alta 

demanda i sistemes d'automatització d'edificis / llars, per a obtindre una 

comprensió més completa dels patrons de consum d'energia integrant noves 

tecnologies i infraestructura i considerant polítiques energètiques. 

• Desenvolupar una tècnica d'anàlisi de dades més avançada amb l'ús de 

tècniques d'aprenentatge automàtic que poden proporcionar informació 

valuosa sobre els patrons de consum d'energia. El treball futur podria centrar-

se en el desenvolupament de tècniques d'anàlisis de dades més avançades, com 

l'aprenentatge profund i l'aprenentatge per reforç, per a millorar la precisió i la 

fiabilitat de les prediccions de consum d'energia. 

• Millorar les estratègies de gestió energètica per a centrar-se en el 

desenvolupament d'estratègies de gestió de l'energia més avançades que 

incorporen dades de consum d'energia en temps real. Aquestes estratègies 

podrien utilitzar-se per a optimitzar l'ús d'energia, reduir els costos d'energia i 

millorar l'eficiència energètica tenint en compte els preus en temps real d'acord 

amb les tarifes de xarxa actuals i l'impacte en els consumidors i prosumidors. 

En relació amb els models ANN per a cobrir la demanda d'energia, el treball futur per a 

la segona publicació "A cascade hybrid PSO feed-forward neural network model of a 

biomass gasification plant for covering the energy demand in an AC microgrid" pot 

incloure: 

• Optimització de hiperparámetres per a un millor rendiment de molts models 

ANN. Desenvolupar mètodes més eficients per a seleccionar aquests 

hiperparámetres, com la taxa d'aprenentatge, la grandària del lot i el nombre de 

capes ocultes. 

• Desenvolupar arquitectures ANN més avançades, com a xarxes neuronals 

convolucionals (CNN) i xarxes neuronals recurrents (RNN). Explorar l'ús 

d'aquestes arquitectures avançades per a la previsió de la demanda d'energia 

pot conduir a prediccions més precises i fiables. 
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Per a l'última publicació "Un sistema intel·ligent de gestió de càrrega assistit per seguretat 

residencial utilitzant criptografia híbrida", les àrees potencials per al treball futur sobre 

tècniques d'aprenentatge automàtic en models de sistemes de gestió de càrrega podrien 

incloure: 

• Dissenyar i desenvolupar algorismes d'aprenentatge automàtic més avançats, 

com l'aprenentatge profund i l'aprenentatge per reforç, per a estratègies de 

gestió de càrrega més eficients i efectives. De la mateixa manera, hauria de ser 

important considerar un sistema que puga aprendre i adaptar-se a qualsevol 

condició canviant en temps real, per la qual cosa es podria explorar el 

desenvolupament d'estratègies adaptatives que puguen respondre als canvis en 

la demanda o el subministrament d'energia. 

• Esta tecnologia es pot utilitzar per a predir la demanda i optimitzar els sistemes 

distribuïts en temps real; per tant, un treball futur és integrar la tecnologia en 

una aplicació real, integrant la generació d'electricitat mitjançant fonts 

renovables i fent proves amb una microxarxa aïllada (aplicacions 

independents) i MG en xarxa. 
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Chapter 4. More 

Publications and 

Research Activities  

  



 

126 

 

This chapter shows all the academic and scientific activities throughout the thesis’ 

research period with highly important contributions over it. The following publications 

are indexed into the JCR but were not included in the compendium. 

 

4.1 ANOTHER PEER REVIEW PUBLICATIONS 

• Aguila-Leon, J., Vargas-Salgado, C., Chiñas-Palacios, C., & Díaz-Bello, D. 

(2022). Solar Photovoltaic Maximum Power Point Tracking Controller 

Optimization using Grey Wolf Optimizer: A Performance Comparison 

Between Bio-inspired and Traditional Algorithms. Expert Systems with 

Applications, Elsevier (JCR, Q1), 118700. 

https://doi.org/10.1016/j.eswa.2022.118700  

Contributions: selection of the best MPPT optimization model, power converter model 

design and implementation using Gray Wolf Optimizer, algorithms integration (bio-

inspired and traditional algorithms). 

• Aguila-Leon, J., Vargas-Salgado, C., Chiñas-Palacios, C., & Díaz-Bello, D. 

(2022). Energy management model for a standalone hybrid microgrid through 

a particle Swarm optimization and artificial neural networks approach. Energy 

Conversion and Management, Elsevier (JCR Q1), 267, 115920. 

https://doi.org/10.1016/j.enconman.2022.115920 

Contributions: design and implementation of artificial neural network models, 

machine learning algorithms integration, simulation evaluation using historical data to 

get the best ANN results. 

• J. Aguila-Leon, C. Chiñas-Palacios, C. Vargas-Salgado, E. Hurtado-Perez, 

E.X.M.  "Particle Swarm Optimization, Genetic Algorithm and Grey Wolf 

Optimizer Algorithms Performance Comparative for a DC-DC Boost 

Converter PID Controller", Advances in Science, Technology and Engineering 

Systems Journal (JCR Q3), vol. 6, no. 1, pp. 619-625 (2021). 

http://dx.doi.org/10.25046/aj060167 

https://doi.org/10.1016/j.eswa.2022.118700
https://doi.org/10.1016/j.enconman.2022.115920
http://dx.doi.org/10.25046/aj060167
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Contributions: Three bio-inspired algorithms were tested and validated against 

traditional PID techniques, simulation results showed better performance with the GWO 

algorithm than PSO or GA. 

• Aguila‐Leon, J., Chiñas‐Palacios, C., Garcia, E. X. M., & Vargas‐Salgado, C. 

(2020). A multimicrogrid energy management model implementing an 

evolutionary game‐theoretic approach. International Transactions on Electrical 

Energy Systems (JCR Q2), 30(11). https://doi.org/10.1002/2050-7038.12617  

Contributions: Novel Energy Management Model considering multi-Microgrid 

design, integration of optimization algorithms with fuzzy logic and game theory with 

simulations and evaluations. 

4.2 RESEARCH STAYS 

• Universidad de Guadalajara, Centro Universitario de Tonala. Tonala, Jalisco. 

Mexico. From 01/18/2022 to 12/17/2022. 

4.3 AWARDS AND DISTINCTIONS 

• Award for the best presentation on November 13, 2020 at the 8th International 

Conference on Innovation, Documentation and Teaching Technologies 

(INNODOCT), Valencia, Spain, for the work "Arduino Based Smart Power 

Meter: A Low-cost Approach for Academic and Research Applications". 

4.4 CONFERENCES 

4.4.1 International Conferences 

• Chiñas-Palacios, C. D., Vargas-Salgado, C., Aguila-Leon, J., & Hurtado-Perez, 

E. (2020). Arduino Based Smart Power Meter: A Low-cost Approach for 

Academic and Research Applications. 8th International Conference on 

Innovation, Documentation and Education INNODOCT. 

http://dx.doi.org/10.4995/INN2020.2020.11904  

• C. Vargas Salgado, J. Águila-León, C. Chiñas-Palacios, and D. Alfonso-Solar 

(2020). Supervisory Control And Data Acquisition system applied to a 

https://doi.org/10.1002/2050-7038.12617
http://dx.doi.org/10.4995/INN2020.2020.11904
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researching purpose microgrid based on Renewable Energy. 8th International 

Conference on Innovation, Documentation and Education INNODOCT. 

http://dx.doi.org/10.4995/INN2020.2020.11898  

• J. Águila-León, C. Vargas Salgado, C. D. Chiñas-Palacios, and E. Hurtado-

Pérez. Design and Deployment of a Web SCADA for an Experimental 

Microgrid. 8th International Conference on Innovation, Documentation and 

Education INNODOCT/20. http://dx.doi.org/10.4995/INN2020.2020.11878  

• Chiñas-Palacios, C., Aguila-Leon, J., Vargas-Salgado, C., Sotelo-Castañón, J., 

Hurtado, E. J., & García, E. X. M. (2020). Reducción del Voltaje de Rizado en 

un Convertidor Elevador DC-DC mediante la Optimización por Enjambre de 

Partículas. E-Gnosis, 18(12), 1–8. http://www.e-gnosis.udg.mx/index.php/e-

gnosis/article/view/798/418 

• Aguila-Leon, J., Chiñas-Palacios, C., Vargas-Salgado, C., Sotelo, J., Hurtado-

Perez, E., & Garcia, E. X. M. (2020). Sintonización Óptima de un Controlador 

PID para un Convertidor Recortador-Elevador CC-CC utilizando un Algoritmo 

de Optimización de Manada de Lobo Gris. E-Gnosis, 18(11), 1–8. 

http://www.e-gnosis.udg.mx/index.php/e-gnosis/article/view/797/416# 

• J. Águila-León, C. D. Chiñas-Palacios, C. Vargas-Salgado, E. Hurtado-Perez 

and E. X. M. García, Optimal PID Parameters Tunning for a DC-DC Boost 

Converter: A Performance Comparative Using Grey Wolf Optimizer, Particle 

Swarm Optimization and Genetic Algorithms, 2020 IEEE Conference on 

Technologies for Sustainability (SusTech), Santa Ana, CA, USA, 2020, pp. 1-

6, doi: https://doi.org/10.1109/SusTech47890.2020.9150507 

• Vargas-Salgado, C., Aguila-León, J., Chiñas-Palacios, C., & Montuori, L. 

(2019). Potential of landfill biogas production for power generation in the 

Valencian Region (Spain). Proceedings 5th CARPE Conference: Horizon 

Europe and Beyond, 183–190. https://doi.org/10.4995/carpe2019.2019.10201 

• Vargas-Salgado, C., Chiñas-Palacios, C., Aguila-León, J., & Alfonso-Solar, D. 

(2019). Measurement of the black globe temperature to estimate the MRT and 

WBGT indices using a smaller diameter globe than a standardized one: 

http://dx.doi.org/10.4995/INN2020.2020.11898
http://dx.doi.org/10.4995/INN2020.2020.11878
http://www.e-gnosis.udg.mx/index.php/e-gnosis/article/view/798/418
http://www.e-gnosis.udg.mx/index.php/e-gnosis/article/view/798/418
http://www.e-gnosis.udg.mx/index.php/e-gnosis/article/view/797/416
https://doi.org/10.1109/SusTech47890.2020.9150507
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Experimental analysis. Proceedings 5th CARPE Conference: Horizon Europe 

and Beyond, 201–207. https://doi.org/10.4995/carpe2019.2019.10203 

4.4.2 Academic Conferences 

• Jesus Aguila-León, Cristian Chiñas-Palacios, Carlos Vargas-Salgado, Elías 

Hurtado-Pérez, y Francisco Martínez (2020). Competencias para la 

Responsabilidad Social Universitaria: una Comparativa de Perspectivas entre 

Universidades. INRED-2020: VI Congreso de Innovación Educativa y Docencia 

En Red.    

• Chiñas-Palacios, C. D., Aguila-León, J., Vargas-Salgado, C., Alcázar-Ortega, M., 

(2019). Questionnaire design in gamification process for education: a case study 

at Universidad de Guadalajara-Mexico. International Conference on Innovation, 

Documentation and Education INNODOCT/19. 

https://doi.org/10.4995/INN2019.2019.10123 

• L. Montuori; M. Alcázar-Ortega; C. Vargas-Salgado; C. D. Chiñas-Palacios 

(2019). Development of an interactive tool based on Education ERPs Software to 

support the learning of Transversal Competences. International Conference on 

Innovation, Documentation and Education INNODOCT/19. 

https://doi.org/10.4995/INN2019.2019.10090  

• D. Ribó-Pérez; P. Bastida-Molina; C. Vargas-Salgado; C. D. Chiñas-Palacios 

(2019). Introducing a gender perspective in engineering degrees,  a case of study 

in an Energy Markets course. International Conference on Innovation, 

Documentation and Education INNODOCT/19. 

https://doi.org/10.4995/INN2019.2019.10092   

• Chiñas-Palacios, C., Vargas-Salgado, C., Águila-León, J., & García, E. X. M. 

(2019). Zoom y Moodle: acortando distancias entre universidades. Una 

experiencia entre la Universidad de Guadalajara, México y la Universidad Libre 

de Colombia. IN-RED 2019. V Congreso de Innovación Educativa y Docencia En 

Red, 516–526. https://doi.org/10.4995/inred2019.2019.10359 

• Chiñas-Palacios, C., Vargas Salgado, C., Águila León, J., & Bastida Molina, P. 

(2019). Metodología de doble evaluación modificada mediante la integración de 

entornos virtuales para el proceso de enseñanza y aprendizaje: Aplicación a la 

https://doi.org/10.4995/INN2019.2019.10123
https://doi.org/10.4995/INN2019.2019.10090
https://doi.org/10.4995/INN2019.2019.10092
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asignatura Teoría de Control del Grado en Ingeniería en Energía en la Universidad 

de Guadalajara (México). IN-RED 2019: V Congreso de Innovación Edicativa y 

Docencia En Red, 556–569. https://doi.org/10.4995/INRED2019.2019.10428 

• Chiñas-Palacios, C., Vargas-Salgado, C., Águila-León, J., & Montuori, L. (2019). 

Utilización de Plickers como plataforma didáctica para la evaluación del 

desempeño estudiantil en universidades. IN-RED 2019. V Congreso de 

Innovación Educativa y Docencia En Red, 699–711. 

https://doi.org/10.4995/inred2019.2019.10440 

• Jesus Aguila-Leon, Cristian Chiñas-Palacios, Carlos Vargas-Salgado, Edith X. M. 

Garcia (2018). Anemometro con comunicaciones MODBUS TCP IP basado en 

un microcontrolador Arduino. V Congreso Internacional de Agua y el Ambiente 

(CIAYA) y del III Simposio de Agua y Energía. Tonala, Mexico. 
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